
 123 

LN
BI

P 
53

3 

ICPM 2024 International Workshops 
Lyngby, Denmark, October 14–18, 2024 
Revised Selected Papers 

Process Mining 
Workshops 

Andrea Delgado 
Tijs Slaats (Eds.)



Lecture Notes 
in Business Information Processing 533 

Series Editors 
Wil van der Aalst , RWTH Aachen University, Aachen, Germany 
Sudha Ram , University of Arizona, Tucson, USA 
Michael Rosemann , Queensland University of Technology, Brisbane, Australia 
Clemens Szyperski, Microsoft Research, Redmond, USA 
Giancarlo Guizzardi , University of Twente, Enschede, The Netherlands

https://orcid.org/0000-0002-0955-6940
https://orcid.org/0000-0001-6053-1311
https://orcid.org/0000-0003-3303-2896
https://orcid.org/0000-0002-3452-553X


LNBIP reports state-of-the-art results in areas related to business information systems 
and industrial application software development – timely, at a high level, and in both 
printed and electronic form. 

The type of material published includes

• Proceedings (published in time for the respective event)
• Postproceedings (consisting of thoroughly revised and/or extended final papers)
• Other edited monographs (such as, for example, project reports or invited volumes)
• Tutorials (coherently integrated collections of lectures given at advanced courses, 

seminars, schools, etc.)
• Award-winning or exceptional theses 

LNBIP is abstracted/indexed in DBLP, EI and Scopus. LNBIP volumes are also 
submitted for the inclusion in ISI Proceedings.



Andrea Delgado · Tijs Slaats 
Editors 

Process Mining 
Workshops 
ICPM 2024 International Workshops 
Lyngby, Denmark, October 14–18, 2024 
Revised Selected Papers



Editors 
Andrea Delgado 
Universidad de la República 
Montevideo, Uruguay 

Tijs Slaats 
University of Copenhagen 
Copenhagen, Denmark 

ISSN 1865-1348 ISSN 1865-1356 (electronic) 
Lecture Notes in Business Information Processing 
ISBN 978-3-031-82224-7 ISBN 978-3-031-82225-4 (eBook) 
https://doi.org/10.1007/978-3-031-82225-4 

© The Editor(s) (if applicable) and The Author(s) 2025. This book is an open access publication. 

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International 
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution 
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons license and indicate if changes were made. 
The images or other third party material in this book are included in the book’s Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, 
you will need to obtain permission directly from the copyright holder. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
The publisher, the authors and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the 
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors 
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations. 

This Springer imprint is published by the registered company Springer Nature Switzerland AG 
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland 

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0003-4749-9366
https://orcid.org/0000-0001-6244-6970
https://doi.org/10.1007/978-3-031-82225-4
http://creativecommons.org/licenses/by/4.0/


Preface 

The International Conference on Process Mining (ICPM), established five years ago, 
has consolidated as the main event for people from academia and industry to meet and 
exchange new ideas, discuss the latest developments and deepen collaborations and 
networking. This includes process mining theory, techniques and algorithms, practical 
applications and challenges, and supporting tools. The ICPM conference series continues 
to attract top quality and innovative research contributions from leading scholars and 
industrial researchers. 

This year the conference took place in Copenhagen, Denmark, and included co-
located workshops that were held on October 14, 2024. The workshops covered a wide 
range of current topics and featured outstanding research contributions and paper pre-
sentations. Workshops were also expanded with contributions from keynote speakers, 
panels, tutorials and hands-on sessions, short papers, extended abstracts and posters pre-
sentations, providing an extended and diverse space for discussion of each addressed 
topic. 

ICPM 2024 presented thirteen workshops from which ten were traditional workshops 
consisting primarily of the plenary presentation of submitted and peer-reviewed papers: 

– 3rd International Workshop on Collaboration Mining for Distributed Systems 
(COMINDS) 

– 5th International Workshop on Event Data and Behavioral Analytics (EDBA) 
– 3rd International Workshop on Education Meets Process Mining (EduPM) 
– 1st International Workshop on Empirical Research in Process Mining (ERPM) 
– 1st International Workshop on Generative Artificial Intelligence for Process Mining 

(GenAI4PM) 
– 5th International Workshop on Leveraging Machine Learning in Process Mining 

(ML4PM) 
– 1st International Workshop on Process Mining for Sustainability (PM4S) 
– 7th International Workshop on Process-Oriented Data Science for Healthcare 

(PODS4H) 
– 9th International Workshop on Process Querying, Manipulation, and Intelligence 

(PQMI) 
– 4th International Workshop on Stream Management & Analytics for Process Mining 

(SMA4PM) 

Three workshops were fully interactive, focusing on sessions that actively engaged 
the audience and short submissions with a more relaxed review process: 

– What’s the buzz with objects? Workshop (BuzzOs) 
– Process Discovery Contest Workshop (PDWC) 
– Processes, Laws, and Compliance Workshop (PLC)



vi Preface

The proceedings present and summarize the work that was discussed during the 
traditional workshops sessions. In total, the traditional workshops received 126 full-
paper submissions of which 56 papers were accepted for publication after a single-blind 
review process in which submissions on average each received three reviews, leading 
to a total acceptance rate of about 44%. In addition 21 submissions were accepted for 
presentation only, including also short papers, extended abstracts and posters. Finally, 
28 submissions were presented at the interactive workshops. Most traditional workshops 
granted a best workshop paper award and selected best papers will be invited to submit 
an extended version to the Process Science Journal. 

We would like to thank all the members of the ICPM community who helped to make 
the ICPM 2024 workshops a resounding success. We particularly thank the entire orga-
nization committee for delivering such an outstanding conference. We are also grateful 
to the workshop organizers, the numerous reviewers and, of course, the authors for their 
contributions to the ICPM 2024 workshops. 

November 2024 Andrea Delgado 
Tijs Slaats
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Preface 

9th International Workshop on Process Querying, Manipulation, 
and Intelligence (PQMI 2024) 

The aim of the Ninth International Workshop on Process Querying, Manipulation, and 
Intelligence (PQMI 2024) was to provide a high-quality forum for researchers and prac-
titioners to exchange research findings and ideas on methods and practices in the cor-
responding areas. Process Querying combines concepts from Big Data and Process 
Modeling & Analysis with Business Process Intelligence and Process Analytics to study 
techniques for retrieving and manipulating models of processes, both observed in the 
real world as per the recordings of IT systems, and envisioned as per their design in 
the form of conceptual representations. The ultimate aim is to systematically organize 
and extract process-related information for subsequent systematic use. Process Manip-
ulation studies inferences from real world observations for augmenting, enhancing, and 
redesigning models of processes with the ultimate goal of improving real-world busi-
ness processes. Process Intelligence looks for the symbiosis effects between artificial 
intelligence and process mining, encompassing such domains as knowledge representa-
tion, automated planning, reasoning, natural language processing, explainable AI, and 
multi-agent systems. 

Techniques, methods, and tools for process querying, manipulation, and intelligence 
have wide-ranging applications. Examples of practical problems tackled by the themes 
of the workshop include business process compliance management, business process 
vulnerabilities detection, process variance management, process performance analy-
sis, predictive process monitoring, process model translation, syntactical correctness 
checking, process model comparison, infrequent behavior detection, process instance 
migration, process reuse, and process standardization. 

PQMI 2024 attracted thirteen high-quality submissions. Each paper was reviewed 
by at least three members of the Program Committee. The review process led to seven 
accepted papers. 

The keynote by Irit Hadar entitled “Mining the Process of Process Mining: Nav-
igating Cognition of Process Miners in Action” opened the workshop. It focuses on 
theories that extend the traditional cognitive paradigm, with a specific focus on hypothe-
ses generation and testing, and demonstrated their contributions to the process mining 
field, using recent empirical evidence of cognitive processes underlying the process of 
process mining, e.g., during process querying. Understanding the cognitive challenges 
faced by process miners and the reasons why they arise can ensure the development of 
process mining methods and tools that better navigate and support the cognitive tasks of 
process miners. 

The paper by Benedikt Knopp, Mahsa Pourbafrani, and Wil van der Aalst presents a 
method for Root Cause Analysis that operates on object-centric event logs (OCELs) and 
returns a set of association rules on the activity level. These rules associate descriptive 
patterns over the various object types occurring at events with patterns indicating the
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process outcome. The paper by Tian Li, Sander J.J. Leemans, and Artem Polyvyanyy 
studies the applicability of Jensen-Shannon Distance for stochastic conformance check-
ing. Feasibility on real-life event data is also presented. The paper by Frederik Fonger, 
Niclas Nebelung, Arvid Lepsien, Milda Aleknonyte-Resch, and Agnes Koschmider pro-
poses two novel event log sampling algorithms, RemainderPlus and AllBehavior, and 
evaluates them experimentally. Wil van der Aalst, Wied Pakusa, and Christopher T. 
Schwanen propose a novel algorithm that efficiently constructs optimal alignments for 
process trees with unique labels, i.e., in polynomial time. The paper by Luciana Bar-
bieri, Kleber Stroeh, Edmundo Madeira, and Wil van der Aalst proposes a new strat-
egy to combine Large Language Model capabilities with a framework for a natural 
language question-and-answer interface to process mining. The paper by Peter Filipp, 
Rene Dorsch, and Andreas Harth presents EVErPREP, a novel workflow model that 
leverages Event Knowledge Graphs and Semantic Web technologies to enhance event 
data preparation for event logs. Finally, the paper by Jakob Brand, Timotheus Kampik, 
Cem Okulmus, and Matthias Weidlich explores the use of standard SQL for process 
querying and mining tasks. 

We hope the reader will enjoy reading the PQMI papers in these proceedings to 
learn more about the latest advances in research in process querying, manipulation, and 
intelligence. 

We would like to thank all the authors who submitted papers for publication in this 
book. We are also grateful to the members of the Program Committee and the external 
reviewers for their excellent work in reviewing the submitted and revised papers with 
expertise and patience. 

The PQMI Workshop Organizers 

October 2024
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Abstract. A growing number of empirical papers on the topic of process
mining has been published in years. After a first wave of contributions on
application scenarios, there has been a second wave aiming to establish
theoretical insights into how process mining tools are used and how ben-
efits unfold from this usage. Many of these papers follow an explorative,
qualitative, or inductive approach. A weakness of these contributions is
their theoretical cohesion and integration. This paper makes an effort to
integrate them into a more holistic theory that can eventually provide
a foundation for more deductive and quantitative empirical research on
process mining. To this end, we build on the theory of effective use and
focus on the individual effect on decision makers. We find opportunities
for revision and refinement of this theory for process mining. Specifically,
we discuss moving from constructs on learning to expertise, and integrat-
ing a pragmatic perspective that complements the semantic emphasis of
representational fidelity.

Keywords: Process Mining · Theory of Effective Use · Empirical
Research

1 Introduction

Recent years have seen process mining developing from a research domain to a
category of commercial enterprise software with an increasing uptake in indus-
try [11]. The growing usage in practice has also confronted process mining
researchers with new research questions that shift from the technical level to
the user level and the organizational level [7]. Many of these research questions
require an empirical research agenda and a more profound treatment than many
of the early empirical studies before 2018 that report which type of organization
is using process mining for which application scenario [37].
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Since 2020, a second wave of empirical works has gathered insights into how
process mining contributes to organizational performance. Contributions such
as [21] differ from the earlier application scenario studies in their ambition of
developing a theoretical understanding of the causal chain and corresponding
mechanisms from process mining adoption to usage and eventually to improved
organizational performance. Much of these works use explorative, qualitative, or
inductive research methods with the ambition of contributing to theory build-
ing. A diverse collection of observations and theoretical arguments on the usage
and impact of process mining tools has emerged from these contributions. At
the same time, this research body also exhibits weaknesses in terms of theoreti-
cal cohesion and theoretical integration of more general streams of information
systems research.

This paper makes an effort to integrate into a more holistic theory that can
eventually provide a foundation for more deductive and quantitative empirical
research on process mining. To this end, we build on the theory of effective use
and focus on the individual effect on decision makers [38]. More specifically, we
use this theory to organize empirical observations on process mining. Our work
contributes to the consolidation of empirical research on process mining and
its integration into more general information systems theories. We also identify
blind spots in the theory of effective use where empirical insights on process
mining provide complementary perspectives.

The rest of the paper is structured as follows. Section 2 summarizes recent
empirical work on process mining. Section 3 describes the theory of effective
use and builds on it to integrate empirical process mining findings. Section 4
discusses our findings before Sect. 5 concludes with a summary and an outlook
onto future work.

2 Background

This section describes the background of empirical research on process min-
ing. Research on process mining has traditionally focused on developing new
and improved algorithms for automatic process discovery, conformance check-
ing, and process enhancement [1]. A first wave of empirical research investigates
application scenarios of these algorithms and corresponding tools [37,39]. The
focus of this second wave of empirical research is on the development of theo-
retical insights into the mechanisms of how process mining provides benefits. To
this end, we discuss research that focuses on the work of the analysts and their
interaction with process mining tools. Then, we describe contributions that look
at the impact on organizational performance.

2.1 Analysts and Their Interaction with Process Mining Tools

Research on the impact of process mining tools on the work of the process analyst
in various domains has been limited to exploratory studies. Early work by Ailenei
et al. [2] describes 19 use cases, in essence, analysis tasks that analysts can
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investigate using process mining tools. They find that identifying the structure
of the process, its most frequent path, the distribution of cases over paths, and
the compliance with a pre-defined process models are the most relevant use
cases. Interviews by Zimmermann et al. have revealed that analysts perceive
challenges in conducting process mining projects [43]. From these interviews, 23
challenges of using process mining are described. What makes the analysts’ work
difficult appears to be essentially the access to additional information (C14), data
access (C6), data extraction (C4), as much as tool knowledge (C11) and analysis
focus (C17) [44]. In order to cope with these challenges, analysts apply different
types of strategies to understand, plan, analyze, and evaluate their results [42].
Sorokina et al. show that effective strategies of creating process mining results
lead to superior performance [35]. Much of these strategies can be related to
analyst strategies described in the field of visual analytics [13] and its basic
mantra of overview first, zoom and filter, then details-on-demand [34]. In turn,
the effective use of an analytical tool then becomes an issue of how well these
cognitive strategies of the analyst are readily supported by corresponding tool
features.

2.2 Organisational Impact of Process Mining Adoption

Research on the impact of process mining on organizational performance has
developed in recent years, mostly building on case studies and qualitative
research designs. Grisold et al. conduct interviews with process managers who
report difficulties in quantifying the value of process mining and issues with
an increased level of transparency [21]. Eggers et al. also find a social impact of
increased process transparency through process mining, but highlight its benefits
for process awareness [15]. This process awareness appears to be the foundation
for evidence-based decision-making and overall contributions to organizational
value creation, as Badakhshan et al. emphasize [4]. However, not all process min-
ing initiatives progress in this direction. Stein Dani et al. report issues connected
with lack of expertise, lack of incentives, loss of interest, or sheer denial [36].
Mamudu et al. identify ten success factors for process mining including stake-
holder support, information availability, technical expertise, team configuration,
structured approach, data quality, tool capabilities, project and change manage-
ment, and training [28]. Joas et al. find challenges for organizational impact of
process mining with a focus on sustainability reporting in the six categories of the
BPM success factors model [23]. Brock et al. develop a process mining maturity
model including 23 factors grouped into the five categories organization, data
foundation, people’s knowledge, scope of process mining, and governance [6].
The list of these factors is extensive, yet there are no quantitative insights into
the relative importance of the factors.

2.3 Theorizing the Impact of Process Mining

Some papers point to opportunities for further advancing this research area
by building on theories from information systems research [7] and from cog-
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nitive research on diagrams [30]. So far, theorizing is limited to the observa-
tion that models of technology acceptance [40] and task-technology fit [19] are
presumably applicable [7]. There is support from research on business intelli-
gence systems that highlight the applicability of information systems theories
including the DeLone & McLean success model, technology acceptance model,
diffusion of innovation theory, and the unified theory of acceptance and use of
technology [3]. Also personal factors as anxiety, absorptive capacity, self-efficacy
and user involvements are discussed, as much as challenges including system
acceptance, motivation, fear of losing power, or lack of knowledge [3]. The rele-
vance of cognitive factors has been emphasized in works that build on diagram
understanding [30]. In essence, this stream of research stressed the importance
of understanding characteristics of analyst tasks relative to the representations
that are offered to support the task at hand [27].

These theories however focus on preconditions of use, while offering little
regarding how tool-supported task performance feeds back to the behaviour of
the analyst. Foregrounding the dynamics of actual usage is the basis for under-
standing the impact that process mining tools have on the work of process ana-
lysts and their decision-making. The theory of effective use (TEU) [38] has been
recently adapted for business intelligence systems, a group of systems related to
process mining tools. This adaptation provides opportunities to map and inte-
grate the different empirical studies on process mining. In the following, we will
pursue this opportunity.

3 Theoretical Integration Based on Theory of Effective
Use

The theory of effective use has developed from a longer debate about the rel-
evance and characteristics of information systems use. The DeLone & McLean
model of information system success had already identified the use construct as
of central importance in the causal chain from information system to eventual
success. However, use turned out to be difficult to specify from a theoretical
angle [31]. Burton-Jones and Grange observed that use is much less of relevance
than effective use. They developed their theory of effective use based on key
concepts of representation theory, originally defined by Wand and Weber based
on Bunge’s work on ontology [33]. The original version describes effective use
as a chain from transparent interaction with a system towards representational
fidelity towards informed action, which all contribute to performance in terms
of efficiency and effectiveness [8]. Next, we describe a recent contextualization
of the theory of effective use and then use it to integrate diverse findings from
qualitative studies on process mining.

3.1 Theory of Effective Use

Recently, the theory of effective use has been extended with resource-related
constructs and contextualized for business intelligence (BI) systems [38]. The
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corresponding model describes three categories of factors with three constructs
each that have a hypothetical effect on decision-making efficiency and effective-
ness. We discuss these three categories in turn.

Effective Use of BI System: Constructs in this category stem from the origi-
nal theory formulation of Burton-Jones and Grange, which in essence defines
a causal chain from transparent interaction to representational fidelity and
informed action [8]. In this context, transparent interaction (TI) is defined
as “the extent to which a user is accessing the system’s representations unim-
peded by its surface and physical structures” [38]. Items of this construct
relate to the system being easy to use and user-friendly, such that users do
not have difficulties interacting with it. Representational fidelity (RF)
refers to the interaction with the system and “the extent to which a user is
obtaining representations that faithfully reflect the domain that the systems
represent” [38]. This means in essence that the system’s representations cor-
rectly represent reality. Finally, informed decisions (IF) as a specific type
of informed action captures “the extent to which a user acts on the informa-
tion/output that he or she obtains from the system to improve his or her
work performance” [38].

BI Resources: The recent TEU model of Trieu et al. adds three resources to
the theory at each of its three stages [38]. A hypothetical factor of transparent
interaction is BI system quality (SQ). This is “a measure of the perfor-
mance of the BI system from a technical and design perspective” [12,18]. Rep-
resentational fidelity is expected to be affected by data integration (DI).
“Data integration ensures that data have the same meaning and use across
time and across users, making the data in different systems or databases con-
sistent or logically compatible [20]. Finally, informed action is affected by an
evidence-based management culture (EBM). “An evidence-based man-
agement culture involves the use of data and analysis to support decision-
making [32].

Learning Activities: The original TEU also assumes the relevance of learning
activities [8]. Learning the system (LS) is described as a factor of trans-
parent interaction and refers to “any action a user takes to learn the system
(its representations, or its surface or physical structure)”. Learning fidelity
(LF) is described as a moderator of the effect of transparent interaction on
representational fidelity. It covers “any action a user takes to learn the extent
to which the output from the system faithfully represents the relevant real-
world domain”. The effect of representational fidelity on informed action is
assumed to be moderated by learning how to leverage output (LL). It
refers to “any action a user takes to learn how to leverage the output obtained
from the system in his/her work”. Mind though that none of these learning
variables were significant in the evaluation of Trieu et al. [38].

The theory of effective use and its application to business intelligence systems
points to its relevance for investigating the impact of process mining systems.
So far, research on process mining and on effective use have been disconnected.
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3.2 Integration of Empirical Process Mining Studies

Recent empirical studies on process mining follow qualitative methods. They
contribute observations on process mining use, but with little theoretical inte-
gration. The theory of effective use and its application to BI systems offers the
opportunity to structure various empirical contributions on process mining. To
this end, we focus on the following empirical process mining papers (the studies
in the following):

1. Badakhshan, Wurm, Grisold, Geyer-Klingeberg, Mendling, vom Brocke:
Creating business value with process mining (JSIS 2022) [4].

2. Brock, Brennig, Löhr, Bartelheimer, von Enzberg, Dumitrescu: Improving
Process Mining Maturity–From Intentions to Actions (BISE 2024) [6].

3. Eggers, Hein, Böhm, Krcmar: No longer out of sight, no longer out of
mind? How organizations engage with process mining-induced transparency
to achieve increased process awareness (BISE 2021) [15].

4. Eggert, Dyong: Applying process mining in small and medium sized it enter-
prises: challenges and guidelines (BPM 2022) [16].

5. Grisold, Mendling, Otto, vom Brocke: Adoption, use and management of
process mining in practice (BPMJ 2021) [21].

6. Joas, Gierlich-Joas, Bahr, Bauer: Towards Leveraging Process Mining for
Sustainability – An Analysis of Challenges and Potential Solutions (BPM
Forum 2024) [23].

7. Kipping, Djurica, Franzoi, Grisold, Marcus, Schmid, vom Brocke, Mendling,
Röglinger: How to leverage process mining in organizations-towards process
mining capabilities (BPM 2022) [25]

8. Mamudu, Bandara, Wynn, Leemans: Process Mining Success Factors and
Their Interrelationships (BISE 2024) [28].

9. Sorokina, Soffer, Hadar, Leron, Zerbato, Weber: PEM4PPM: A Cognitive
Perspective on the Process of Process Mining (BPM 2023) [35].

10. Stein Dani, Leopold, van der Werf, Beerepoot, Reijers: From Loss of Interest
to Denial: A Study on the Terminators of Process Mining Initiatives (CAISE
2024) [36].

11. Martin, Fischer, Kerpedzhiev, Goel, Leemans, Röglinger, van der Aalst,
Dumas, La Rosa, Wynn: Opportunities and challenges for process mining in
organizations: results of a Delphi study (BISE 2021) [29].

12. Zimmermann, Zerbato, Weber: What makes life for process mining analysts
difficult? A reflection of challenges (SoSyM 2023) [44].

We reviewed the constructs being discussed in these papers and mapped them,
where possible, to constructs of the theory of effective use. We will again use the
three categories of the recent version of TEU to organize this discussion.

Effective Use and Process Mining: The transparent interaction of a pro-
cess manager with a process mining system (PMS) is mentioned as a challenge
by Zimmermann et al. [44]. Kipping et al. report that a potential discrepancy
between model and reality is an issue [25]. This relates to what Zimmermann
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et al. describe as a challenge of process mining suitability [44]. Several obser-
vations of the studies focus on the relationship between representational
fidelity and informed action. First, here are observations on how this con-
nection materializes. Both Mamudu et al. and Brock et al. emphasize the
need to follow a structured approach or a systematic method [6,28]. Grisold
et al. mention process selection in particular [21]. However, their arguments
partially mix a) getting the PMS ready to use (planning, data extraction,
project-focused) and b) actual use (analysis and evaluation). Second, Zim-
mermann et al. describe challenges of drawing conclusions and formulating
recommendations [44]. Badakhshan et al. highlight that data-driven decision-
making has to be considered separately from the actual implementation of
interventions [4]. Both Mamudu et al. and Brock et al. agree that implemen-
tation requires attention to change management [6,28]. Insights do not always
yield action, as Stein Dani et al. observe: stakeholders might deny the correct-
ness of analytic insights, may have a lack of incentives to take action, or lose
interest for other reasons [36]. Also Eggert and Dyong report doubts about
analysis results [16]. Grisold et al. point to potential issues of coping with
increased transparency along with a fear of surveillance [21]. These observa-
tions relate to what TEU describes as disturbances, i.e. external constraints
affecting effective use, but without detailing them in the theory.

BI Resources and Process Mining: According to TEU, system quality
plays an important role as a factor of transparent interaction. The studies sup-
port this view, pointing to the relevance of tool capabilities [28] such as pro-
cess visualization and process analytics [4]. All studies strongly emphasize the
relevance of data integration, not only in terms of “the same meaning and
use across time and across users”, but also in terms of data quality and sheer
data accessibility [6,16,21,23,28,44]. Often, laborious data preparation [36]
is needed to achieve data connectivity [4]. Also evidence-based management
culture is mentioned. Brock et al. [6] refer to Kerpedzhiev et al. [24] who point
to cultural factors including process centricity, evidence centricity, and change
centricity. Martin et al. list a total of ten culture-related challenges including
aversion to transparency and resistence to change [29]. Overall, the studies
are consistent with TEU, partially providing a more detailed perspective on
data issues and tool capabilities.

Learning Activities and Process Mining: The learning variables define the
third category of factors. Though they were significant in the evaluation of
Trieu et al., there was further support for their relevance in reflection inter-
views [38]. The studies also support their importance, a.o. by pointing to
insufficient skills [23,29,44], the need to conduct training [28], and inappro-
priate analysis strategies [35]. Learning the system relates to observations
about technical expertise as a prerequisite [28] and lack of expertise as a road-
block [36]. Regarding learning fidelity, Badakhshan et al. describe the need
to perceive end-to-end process visualization and performance indicators [4].
For learning how to leverage output, Grisold et al. observe issues with
understanding how variables inform decision-making [21]. Badakhshan et al.
highlight the need to engage in sense-making of process-related information
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before decisions can be made [4]. Here, Zimmermann et al. identify analysis
expertise as a challenges [44]. Brock et al. stress people’s knowledge as a fac-
tor and point to various aspects of knowledge. They distinguish knowledge of
process mining tools, technical basics, data preparation, classical data min-
ing, process mining basics, and advanced applications [6]. Eggers et al. iden-
tify shared process awareness as a central construct [15]. In essence, they
argue that process mining usage contributes to process awareness, which in
turn contributes to process performance. Altogether, the studies confirm the
importance of this category, but rather as a matter of skill and expertise
(variables of status) instead of learning (variables of action). The study by
Trieu et al. [38] partially addresses this concern by using “experience using
BI” and “experience working in organization” as control variables.

Other Factors: The studies mention a number of organizational factors that
are relevant for the effective use of process mining. Some of them relate to a
link with strategic objectives. Brock et al. point to the purpose of using
process mining [6] and Stein Dani et al. to incentives [36]. Potential internal
resistence can be an issue [25], therefore, Mamudu et al. call for stakeholder
involvement [28]. Grisold et al. and Martin et al. observe issues with justi-
fying the business case of using process mining [21,29]. A second category
relates to governance mentioned in [4,6,15]. Brock et al. provide the most
detailed discussion. They distinguish general roles and responsibilities plus a
governance of methods and tools, processes, and data [6]. Brock et al. also
advocate establishing a center of excellence for process mining.

In summary, empirical studies on process mining are largely consistent with
propositions of the theory of effective use. The studies provide some more
detailed and nuanced perspectives on skills, culture, strategy, and governance.

4 Towards a Theory of Effective Use of Process Mining
Systems

Our analysis has defined a theoretical bridge between empirical studies on pro-
cess mining and the theory of effective use. While the causal path from trans-
parent interaction to representational fidelity to informed action and eventually
efficiency and effectiveness is by large consistently reflected in the studies, it
is interesting to note that the studies point to those four success factors of
BPM beyond the foundational method and technology category, namely strate-
gic alignment, governance, people, and culture [14, Ch.12], also observed by
Martin et al. [29]. There is potential to refine and revise the theory of effective
use in each of these categories towards a theory of effective use of process mining
systems. Here, we focus on relevant, but non-significant constructs of learning
and the notion of process awareness.

First, a direction for further developing TEU is to move from learning to
expertise. The non-significance together with the relevance of learning-related
constructs in the study by Trieu et al. [38] points to the need for a revise the
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theory of effective use. We suggest refocusing on expertise instead of learning.
First, the concept of learning has conceptual disadvantages. The TEU constructs
refer to actions taken to acquire knowledge. This ignores the status of knowledge,
and mixes in diligence and motivation. Second, information systems research has
demonstrated the importance of expertise in various studies, highlighting chal-
lenges of a revision of TEU. Already in the 1980s, Vitalari identifies a catalogue
of eight larger knowledge categories of a system analyst with partially up to 30
different knowledge items [41]. In relation to process mining usage, Brock et al.
point to the fact that several categories of knowledge are relevant [6]. Another
challenge are the dependencies between the knowledge categories. Mackay et al.
find that a lack of technical usage expertise appears to be a roadblock to lever-
aging domain expertise [26]. Hahn and Lee discuss complications stemming from
the division of labour and expertise between business and information technology
units in many companies. Cross-domain knowledge turns out to be specifically
important for effective collaboration.

Second, a direction for further developing TEU is to move from seman-
tics to pragmatics. Zimmermann et al. mentions process domain understand-
ing as an important factor beyond what is visible through the process mining
system [44]. Trieu et al. reflect on their study and state that information pro-
vided by a system “could still be useful even when representational fidelity was
low” [38]. Apparently, even when data quality is often low, managers can still
draw conclusions using their business knowledge to make informed decisions.
This is in line with the argument of Bera et al. that highlight the strength
of pragmatics [5]. Taking pragmatics seriously requires a deeper reflection of
the connection between knowledge and tasks at the individual and organiza-
tional level [27]. Indeed, Eggers et al. identify different types of use scenarios
for process mining, namely explorative analysis versus monitoring, with likely
implications for usage [15]. The authors also identify process awareness as a
central construct on the path to organizational performance. Mind that this is
not necessarily fidelity of the representations in the process mining system, but
the shared understanding of the process by the process manager and involved
stakeholders. Important to note is also the fact that process awareness goes
beyond the ontological description of the process, but rather relates to notions
of situation awareness [17] as often discussed in human factor studies. We must
also acknowledge the fact that much of the work with process mining systems
is rather problem solving than decision making. Both involve uncertainty, but
problems are much more open. Campbell characterizes decision tasks by a num-
ber of conflicting outcomes (e.g. selecting a new employee), while problem tasks
suffer from various paths to arrive at a desired outcome [9]. Chandra Kruse et al.
describe various behaviours of how analysts approach such a task: understand
the problem and scope, retrieve prior knowledge, look for alternatives, generate
new concepts, propose solutions, and finally implement and communicate [10].
Clearly, not all of these behaviours are directly supported by systems, but much
of the iterative behaviour is consistently reported in visual analytics research [13]
and empirical process mining research [22,44].
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In summary, the non-significance in the study of Trieu et al. [38] and the
observations of empirical process mining studies highlight the potential of revis-
ing and refining the theory of effective use for process mining systems.

5 Conclusion

In this paper, we have discussed empirical research on process mining. We iden-
tified the recent contextualization of the theory of effective use for business
intelligence systems as an opportunity to organize and integrate various empiri-
cal observations on process mining from twelve recent papers. Overall, we found
the studies and the theory consistent in large parts, but there are also opportu-
nities for revision and refinement. We discussed specific opportunities for moving
from constructs on learning to expertise and integrating a pragmatic perspective
that complements the semantic emphasis of representational fidelity. In future
research, we aim to further develop our discussion into a theoretical model and
make it subject to an empirical research agenda.
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