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Abstract 

Background  Type 2 diabetes (T2DM) affects brain structure and function, and is associated with an increased risk 
of dementia and mild cognitive impairment. It is known that exercise training has a beneficial effect on cognition 
and brain structure and function, at least in healthy people, but the impact of exercise training on these aspects 
remains to be fully elucidated in patients with T2DM.

Objective  To determine the impact of exercise training on cognition and brain structure and function in T2DM, 
and identify the involved physiological mediators.

Methods  This paper systematically reviews studies that evaluate the effect of exercise training on cognition in T2DM, 
and aims to indicate the most beneficial exercise modality for improving or preserving cognition in this patient 
group. In addition, the possible physiological mediators and targets involved in these improvements are narratively 
described in the second part of this review. Papers published up until the 14th of January 2025 were searched 
by means of the electronic databases PubMed, Embase, and Web of Science. Studies directly investigating the effect 
of any kind of exercise training on the brain or cognition in patients with T2DM, or animal models thereof, were 
included, with the exception of human studies assessing cognition only at one time point, and studies combining 
exercise training with other interventions (e.g. dietary changes, cognitive training, etc.). Study quality was assessed 
by means of the TESTEX tool for human studies, and the CAMARADES tool for animal studies.

Results  For the systematic part of the review, 22 papers were found to be eligible. 18 out of 22 papers (81.8%) 
showed a significant positive effect of exercise training on cognition in T2DM, of which two studies only showed 
significant improvements in the minority of the cognitive tests. Four papers (18.2%) could not find a significant effect 
of exercise on cognition in T2DM. Resistance and endurance exercise were found to be equally effective for achiev-
ing cognitive improvement. Machine-based power training is seemingly more effective than resistance training 
with body weight and elastic bands to reach cognitive improvement. In addition, BDNF, lactate, leptin, adiponectin, 
GSK3β, GLP-1, the AMPK/SIRT1 pathway, and the PI3K/Akt pathway were identified as plausible mediators directly 
from studies investigating the effect of exercise training on brain structure and function in T2DM. Via these media-
tors, exercise training induces multiple beneficial brain changes, such as increased neuroplasticity, increased insulin 
sensitivity, and decreased inflammation.
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Conclusion  Overall, exercise training beneficially affects cognition and brain structure and function in T2DM, 
with resistance and endurance exercise having similar effects. However, there is a need for additional studies, 
and more methodological consistency between different studies in order to define an exercise program optimal 
for improving cognition in T2DM. Furthermore, we were able to define several mediators involved in the effect 
of exercise training on cognition in T2DM, but further research is necessary to unravel the entire process.

Key points 

1.	 The current body of literature demonstrates a positive effect of exercise training on the brain in T2DM, but simul-
taneously emphasizes the need for additional studies on this topic.

2.	 BDNF, lactate, leptin, adiponectin, GSK3β, GLP-1, the AMPK/SIRT1 pathway, and the PI3K/Akt pathway have been 
identified as factors mediating the effect of exercise on the brain in T2DM.

3.	 There is a need for a standardised cognitive test battery to investigate the effect of exercise on cognition in T2DM.

Introduction
Cognitive Decline in Aging
Cognitive decline is inherent to aging. As we age, synaptic 
plasticity reduces, neural mitochondrial function 
declines, epigenetic changes occur, etc., all contributing 
to decreased cognitive abilities [1–5]. Especially fluid 
intelligence, defined as the ability to solve problems, 
process new information, and learn new things, declines 
with aging. Fluid intelligence consists of several domains, 
including executive function, psychomotor ability, 
memory, and processing speed [6, 7].

Aging is associated with a decline in both grey and 
white matter volume, accompanied by ventricular 
enlargement and cortical thinning, as well as a decline 
in brain function [7, 8]. Amyloid β plaques are not 
only found in Alzheimer’s disease (AD) patients, but 
also in 20–30% of healthy adults, and are speculated to 
contribute to this neuronal loss [6, 9]. Also neuronal 
volume and the number of neuronal connections 
decreases due to a decline in the complexity of dendrite 
arborization, decreased neuritic spines, and reduced 
dendrite length [6, 10]. In addition, demyelination and 
decreased white matter integrity contribute to functional 
impairment of the brain [8].

Cognitive Dysfunction in T2DM
T2DM patients are prone to more severe cognitive 
decline than what occurs during normal aging. A large 
fraction (45%) of T2DM patients experience cognitive 
dysfunction and have an increased risk of dementia [11–
16]. Subjects with diabetes have a relative risk of 1.46 for 
AD, and a relative risk of 1.51 for any form of dementia 
[17]. Especially executive functioning, memory, attention, 
and information processing speed have been shown to be 
affected in T2DM [14, 18, 19]. This cognitive impairment 
is related to the affected brain structure and metabolism 
in T2DM. Decreased regional grey matter volume as well 

as altered intrinsic activity in the default mode network 
have been demonstrated in these patients [20–22]. 
Multiple pathophysiologies have been suggested as the 
cause of this, including cardiovascular complications, 
chronic low-grade inflammation, and hyperglycemia [14, 
15, 18].

Several studies have demonstrated a link between 
T2DM and AD, also called type 3 diabetes. These 
studies focus on the fact that insulin signalling also 
plays an important role in the brain, and that T2DM 
and AD seem to share a number of pathophysiological 
processes such as amyloid β plaques, disturbed cerebral 
glucose metabolism, tau hyperphosphorylation, and 
inflammation [18, 23–26]. Insulin and insulin-like-
growth-factor (IGF)-1 are important for neuronal survival 
and brain function. Numerous insulin receptors (IR) and 
IGF-1 receptors (IGF-1R) can be found in the brain, 
with a large amount being present in the hippocampus. 
One of the major downstream pathways of the IR is the 
PI3K/Akt pathway, which plays an important role in the 
regulation of brain function, and in the inactivation of 
GSK3β, which is an enzyme able to phosphorylate tau at 
pathological tau epitopes [23, 27, 28]. Reduced cerebral 
IR activation and insulin levels have been demonstrated 
in AD [25, 29], highlighting similar processes in AD and 
T2DM. Moreover, insulin-degrading enzyme is capable of 
clearing amyloid β peptides that aggregate into amyloid 
plaques, a key pathological hallmark of AD. In T2DM, 
competitive binding of high insulin concentrations and 
amyloid β peptides with this enzyme could be involved 
in decreased amyloid β clearance, thereby potentially 
contributing to increased accumulation of amyloid β 
peptides, and formation of amyloid β plaques [15, 30, 31].

Positive Effect of Exercise on Cognitive Function
In healthy people, exercise has a positive effect on 
cognitive function [32–34]. This effect is mediated by 
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multiple processes. Muscle contraction during exercise 
releases myokines, which stimulate the production of 
neurotrophic factors such as brain-derived neurotrophic 
factor (BDNF), promoting neurogenesis. Additionally, 
the exercise-induced release of anti-inflammatory 
factors contributes to balancing the brain’s redox status, 
counteracting many pathological processes [35–38]. 
Research shows that exercise reduces the age-related 
decrease in hippocampal volume [39–41], which, in 
combination with increased levels of neurotrophic 
factors, contributes to the maintenance of memory and 
neuroplasticity [36, 42, 43]. Moreover, there is a positive 
association between cardiorespiratory fitness levels and 
whole-brain and white matter volume in patients with 
early-stage AD [44]. In this way, exercise reduces the risk 
of dementia and neurodegenerative diseases [36, 45–47].

Lactate has been identified as an important contributor 
to the positive effect of exercise on cognitive function. 
During anaerobic exercise, lactate is released from 
contracting muscles, eventually leading to increased 
lactate levels in the brain after crossing the blood–brain-
barrier (BBB). This results in an increased expression 
of brain plasticity genes such as BDNF, Arc, and c-fos, 
contributing to neurogenesis [48–50]. In addition, lactate 
also binds to hydroxycarboxylic acid receptor 1 (HCAR1), 
which leads to an increase in vascular endothelial growth 
factor (VEGF), stimulating angiogenesis and thereby 
contributing to increased cognitive function [50–52]. 
Also the myokine irisin has been shown to positively 
influence cognition [53]. Synaptic plasticity and memory 
in amyloid pathology mimicking AD mouse models 
can be rescued by boosting brain levels of FNDC5/
irisin, and peripheral overexpression of FNDC5/irisin 
rescues memory impairment [54]. Cathepsin b is another 
myokine which has been associated with improved 
cognition. It is known to play a role in both neurogenesis 
and angiogenesis [55, 56]. Cathepsin b levels increase 
in mouse and human plasma in response to exercise, 
which is positively correlated with memory, while 
cathepsin b-knockout mice do not show any cognitive 
improvements following running exercise [57]. This 
suggests that cathepsin b is mandatory for the positive 
effect of exercise on cognition.

The Association of Physical Activity with Cognitive 
Function in T2DM
Because of the above-mentioned positive effects of 
exercise on cognitive function, and to get more insight 
into whether this translates to T2DM, some studies have 
explored the association between physical activity (PA) 
and cognition in T2DM. The effect of exercise training 
on the brain in T2DM could be different than in other 
populations due to the reduced insulin sensitivity in 

this patient group. Exercise increases insulin sensitivity, 
and could thus have a more pronounced effect in 
insulin resistant patients [58, 59]. Moreover, the existing 
cognitive decline in T2DM [11, 12] could affect the extent 
of the effect of exercise on cognition in patients with 
T2DM. In addition, cardiovascular complications such as 
atherosclerosis can increase the risk of vascular dementia 
in T2DM [60, 61], and are responsive to exercise training 
[62, 63].

For example, one study found significantly higher 
cognitive scores in an active group of T2DM patients 
compared to a sedentary group of T2DM patients 
[64]. They also found a significant negative correlation 
(r = − 0.2, p = 0.03) between cognition and BMI in the 
sedentary group, and a significant positive correlation 
(r = 0.55, p = 0.01) between cognition and minutes of 
weekly exercise in the active group. Another study found 
that active elderly T2DM patients had a significantly 
slower rate of cognitive decline compared to non-active/
sedentary elderly T2DM patients, more specifically in 
the global cognition (p = 0.005), executive functioning 
(p = 0.014), and attention/working memory (p = 0.01) 
domains [65]. These findings were confirmed by multiple 
other studies [66–68].

In a study investigating the influence of the BDNF 
Val66Met polymorphism on the association between 
cognition and PA in diabetic patients, it was found 
that carriers of the Met-allele showed significantly 
higher scores of words recall (p < 0.001), mental status 
(p = 0.004), and total cognition, (p = 0.04), and had a 
significantly higher education level. Overall, PA was 
associated with better total cognition, words recall, and 
mental status, no matter the intensity. This association 
was strongest in the Met/Met carrier group, and stronger 
for females than for males within this group. They 
also found that light to moderate PA showed greater 
association with cognitive domains than moderate to 
vigorous PA. These findings thus suggest that female 
Met/Met diabetic carriers cognitively benefit the most 
from PA, and that light to moderate PA has the most 
influence on the brain [68].

Another study examined the individual and joint 
influence of diabetes status, apolipoprotein E (APOE) ε4, 
and PA on the risk of dementia and cognitive impairment 
without dementia (CIND) in cognitively normal older 
adults. The risk of dementia and CIND was higher in 
diabetic patients and APOE ε4 carriers who reported 
low levels of moderate to vigorous PA. The risk was even 
found to be nearly tenfold higher for physically inactive 
diabetic APOE ε4 carriers. Higher levels of PA were 
associated with lower dementia/CIND risk [67].

Overall, these findings suggest that higher levels of PA 
are associated with better cognitive function and less 
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cognitive decline in T2DM. However, based on these 
studies alone, one cannot assume causality. In addition, 
there is a possibility of reverse causality, where reduced 
cognitive function contributes to lower levels of PA. 
Therefore, several studies have investigated the acute 
effect of exercise on cognitive function in T2DM.

The Acute Effect of Exercise on Cognitive Function in T2DM
The acute effect of exercise on cognition in T2DM has 
mainly been investigated in the domain of executive 
function.

One study found that both endurance and resistance 
training acutely improved inhibitory control and 
response time in T2DM patients [69]. In addition, 
moderate-intensity integrated concurrent exercise 
(ICE), consisting of both endurance and resistance 
training, acutely improved all three aspects of executive 
function (inhibition, conversion and refresh function) in 
cognitively normal hospitalised T2DM patients, while 
resistance exercise improved inhibition, and endurance 
exercise only caused significant improvements in the 
refresh function. The ICE-induced improvements in 
executive function were accompanied by a simultaneous 
increase in cerebral blood flow in the dorsolateral 
prefrontal cortex (DLPFC), the frontal pursuit area (FPA), 
and the orbitofrontal cortex (OFC), while resistance 
exercise showed a corresponding activation of DLPFC 
and FPA, and endurance exercise increased cerebral 
perfusion in the FPA, OFC and Broca region [70]. These 
results suggest that an exercise-induced increase in 
cerebral blood flow in certain areas can elicit specific 
cognitive improvements. This knowledge can be used to 
customise exercise programs in T2DM patients in order 
to obtain the desired effect.

These studies already give some insight into the effect 
of exercise on cognition in T2DM. However, with the 
aim to incorporate exercise in T2DM treatment for 
cognitive improvement, it is necessary to know the effect 
of long-term exercise training on the brain, which can be 
different from the acute effect. Therefore, this review will 
focus on pre-post intervention studies. This review only 
describes RCTs and clinical trials investigating the effect 
of exercise training on cognition and brain structure in 
T2DM and animal models thereof, with special emphasis 
on the mediators and targets involved in this. So far, this 
is the first review of this kind. The knowledge provided 
by this review could more reliably provide insights in 
the mechanisms of cognitive decline and cognitive 
improvement in T2DM, and could be used to design 
more specific exercise programs to target the brain in 
T2DM patients.

Methods
This review consists of two parts, the first of which is a 
systematic review of the papers investigating the effect 
of exercise training on cognition in T2DM. The second 
part narratively describes studies that show beneficial 
brain changes or brain changes in combination with 
cognitive improvement in T2DM as a result of exercise 
training, and aims to identify the involved mediators by 
pooling studies discussing similar pathways or targets. 
The addition of this second part distinguishes this review 
from previous similar reviews [71–73], and deepens the 
understanding of how exercise improves cognition, and 
identifies pathways that could be pharmacologically 
targeted to mimic the effect of exercise on cognition in 
individuals unable to exercise.

Eligibility
The PICO (population, intervention, comparison, out-
come) method was used to determine whether articles 
were eligible for inclusion in this review. In order to be 
included in the systematic part of this review, the arti-
cles had to be written in English, and had to investigate 
the effect of any kind of exercise training on cognition in 
T2DM patients or T2DM animal models. Studies inves-
tigating the effect of a single exercise bout or physical 
activity during daily living were not included. Exercise 
training in T2DM was compared to usual care, or a dif-
ferent kind (intensity/modality/…) of exercise training in 
T2DM. Studies without a T2DM control group were not 
included. Articles discussing only type 1 diabetes were 
excluded, as well as articles only investigating depression, 
anxiety, or other mental disorders in T2DM. Also studies 
investigating the effect of exercise training in combination 
with another intervention (e.g. dietary changes, cognitive 
training, etc.) were excluded. Studies in which cognitive 
function was only assessed at one time point in human 
subjects were excluded since these make it impossible to 
accurately assess the effect of exercise training on cogni-
tion (pre- and post-intervention assessments mandatory). 
The narrative part of this review includes studies from 
the systematic section that also examined certain cerebral 
pathways, mediators, or targets. Additionally, to further 
explain the findings, we also reference other studies that 
explore the effects of exercise on these cerebral path-
ways, mediators, or targets in T2DM, even if they do not 
directly assess cognition.

Study Selection
The papers described in the systematic part of this 
review were found by entering the following search 
string into PubMed, Embase and Web of Science: 
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(exercise OR "physical activity" OR "aerobic exercise" 
OR "aerobic training" OR "resistance exercise" OR 
"resistance training" OR "combined exercise" OR "com-
bined training" OR “endurance exercise” OR “endurance 
training”) AND (T2DM OR diabetes OR "type 2 diabe-
tes") AND (memory OR "executive function*" OR "pro-
cessing speed" OR attention OR brain OR cognition OR 
"cognitive function"). The filters “randomised controlled 
trial” and “clinical trial” were applied. Relevant related 
articles suggested by PubMed when accessing articles 
found by entering the aforementioned search string 
were also considered. Reference lists of reviews in line 
with the present one [71–79] were examined as well. 
The current review discusses articles published up until 
the 14th of January 2025. Duplicate articles (identical 
PMID) and studies not meeting the TESTEX or CAMA-
RADES criteria were removed (Fig.  1). The following 
information was extracted from the studies: author(s), 
year of publication, age of the subjects, type of subjects 
(population), number of subjects in the intervention 
group, type of control group, number of subjects in the 
control group, type, duration, frequency, and intensity 
of the exercise intervention, duration of each exercise 
session, outcome measures (cognitive tests), and main 

cognitive results. Effect sizes were extracted, or cal-
culated if not mentioned. For the narrative part of the 
review, only studies directly investigating the effect of 
exercise on the brain in T2DM were considered to iden-
tify plausible mediators and pathways.

Quality Control
Quality control of the included human studies was con-
ducted by means of the Tool for the assEssment of Study 
qualiTy and reporting in EXercise (TESTEX), which is 
designed specifically for exercise training studies [80]. 
With this tool, a maximal score of 15 can be reached, with 
5 points assigned to study quality, and 10 points to report-
ing. A score of ≥ 7/15 was required for inclusion (Table 1). 
Quality of the animal studies was assessed by means of the 
Collaborative Approach to Meta-Analysis and Review of 
Animal Data from Experimental Studies (CAMARADES) 
checklist [81]. Animal studies with a score of < 6/10 were 
excluded (Table  2). If nothing was mentioned about the 
criterion, it was indicated as not fulfilled.

Results
Study Selection
See Fig.1.

Fig. 1  Prisma flow chart of study selection procedure. Reason 1: Does not discuss the effect of exercise training on cognition in T2DM; Reason 
2: Article not available in English; Reason 3: Article only discusses the protocol. Study is not conducted yet. Reason 4: No T2DM control group. 
T1DM = type 1 diabetes. From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: 
an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. https://​doi.​org/​10.​1136/​bmj.​n71
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Quality Control
See Table 1.

Systematic Review on the Effect of Exercise Training 
on Cognition in T2DM
Endurance Exercise Training
Human Studies  Endurance exercise as simple as walk-
ing can already significantly improve cognition in T2DM 
patients. In a study by Leischik et  al. (2021), T2DM 
patients were randomised into a walking group, pedom-
eter group or control group. The walking group had to 
walk for 40  min, 3 times a week. The pedometer group 
had to reach 10,000 steps per day. Both the walking group 
and the pedometer group, the latter of which managed 
to reach an average of 8700 steps per day, showed signifi-
cant improvements in attention and non-verbal memory. 
Verbal memory also significantly improved in the walk-
ing group [82]. In contrast, a pilot RCT on the effect of 
3  months of walking at moderate intensity on cognitive 
function in T2DM failed to find significant improvements 
in executive function, episodic memory, working mem-
ory, and processing speed [97]. Besides normal walking, 
also aquatic Nordic walking performed for 60 min 3 times 
a week for 12  weeks, has proven to cause significantly 
increased Montreal Cognitive Assessment (MoCA) scores 
in T2DM patients. However, no significant improvements 
were seen in the MMSE, trail making test part B, or Stroop 
colour and word test [83].

Wang et al. (2023) tested the effect of outdoor aero-
bic dancing on hippocampal volume and cognition in 
82 T2DM patients. The patients were divided into a 
control group and a training group. After one year of 
endurance training, they found significantly increased 
MMSE and MoCA scores in the training group com-
pared to the control group, suggesting that endurance 
exercise can improve cognitive function in T2DM 
[84].

Animal Studies  Also animal studies show a predomi-
nantly positive effect of endurance exercise training on 
cognition. Shekarchian et al. (2023) found that streptozo-
tocin- and high fat diet-induced diabetic C57BL/6 J mice 
that received 4  weeks of swimming training scored sig-
nificantly better on tests for working, spatial, and recogni-
tion memory compared to non-exercising diabetic mice 
[99]. Another study showed that swimming training for 
12 weeks in streptozotocin-nicotinamide-induced type 2 
diabetic rats improved exploratory behaviour, locomotor 
activity, passive avoidance memory, and non-spatial cog-
nitive memory compared to their sedentary counterparts. 
However, this improvement was found to be insignificant 
[98].

The Morris water maze test has oftentimes been used 
to demonstrate the effect of endurance exercise on cogni-
tion in animal models of T2DM. In this test, the animal 
is placed in a circular swimming pool where a platform 

Table 1  TESTEX characteristics of included human studies

√ = fulfilled, X = not fulfilled, 1 = Eligibility criteria specified, 2 = Randomisation specified, 3 = Allocation concealed, 4 = Groups similar at baseline, 5 = Blinding of 
assessor, 6 = Outcome measures assessed in 85% of patients, 6a = adherence > 85%, 6b = adverse events reported, 6c = exercise attendance reported, 7 = Intention-
to-treat analysis, 8 = Between-group statistical comparisons reported, 8a = between-group statistical comparisons reported for primary outcome measure of interest, 
8b = between-group statistical comparisons reported for at least one secondary outcome measure, 9 = Point measures and measures of variability for all reported 
outcome measures, 10 = Activity monitoring in control groups, 11 = Relative exercise intensity remained constant, 12 = Exercise volume and energy expenditure

1 2 3 4 5 6 6a 6b 6c 7 8 8a 8b 9 10 11 12 Total

Leischik et al. [82] √ √ √ √ X X / / / X √ √ √ √ X X X 7/15

Ploydang et al. [83] √ √ √ √ X √ √ √ X √ √ √ √ √ X X √ 11/15

Wang et al. [84] √ √ √ √ √ X / / / X √ √ √ √ √ X X 9/15

Zhao et al. [85] √ √ √ X √ √ X √ √ √ √ √ √ √ X √ √ 12/15

Yamamoto et al. [86] √ √ X √ X √ √ √ √ X √ √ √ √ X X X 9/15

Teixeira et al. [87] √ √ X √ X X / / / √ √ √ √ √ √ √ √ 10/15

Silveira-Rodrigues et al. [88] √ X X √ X √ X X √ √ √ √ √ √ √ √ √ 10/15

Espeland et al. [89] √ √ X √ √ √ X √ √ X √ √ √ √ X X X 9/15

Silveira-Rodrigues et al. [90] √ X X √ X X / / / X √ √ √ √ X √ √ 7/15

Ghodrati et al. [91] √ √ X √ X √ √ X X X √ √ √ √ X √ √ 9/15

Martinez-Velilla et al. [92] √ √ √ √ √ √ √ √ X √ √ √ √ √ √ X X 12/15

Callisaya et al. [93] √ √ √ √ √ √ √ √ √ √ √ √ √ √ X X X 12/15

Ghahfarrokhi et al. [94] √ √ √ √ √ √ √ √ √ √ √ √ √ √ X X √ 13/15

Chen et al. [95] √ √ X √ √ √ √ √ √ √ √ √ √ √ X X X 11/15

Cai et al. [96] √ X X √ X √ √ √ X X √ √ √ √ X X X 7/15

Liu et al. [97] √ √ √ √ √ X / / / X √ √ X √ X X √ 8/15
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is hidden somewhere under the water surface. After 
a few practice rounds, the time it takes the animal to 
find the platform, and the length of the path that is fol-
lowed, are measured. These measures give an indication 
of spatial learning and memory [104]. For example, one 
study looked into the effect of 4  months of both light 
and moderate intensity treadmill running on memory 
in pre-symptomatic Otsuka-Long-Evans-Tokushima 
fatty (OLETF) rats. Before the exercise intervention, the 
OLETF rats spent considerably less time in the quadrant 
area where the platform was located during the learn-
ing phase, compared to control Long-Evans Tokush-
ima (LETO) rats. After the intervention, both exercise 
intensities showed to have improved memory function 
in the OLETF rats, since both escape latency and swim 
length were shortened [100]. Lang et al. (2020) also used 
the Morris water maze test to test the effect of 8 weeks 
of moderate-intensity treadmill exercise on memory in 
T2DM mice. The exercising T2DM mice showed a sig-
nificantly reduced escape latency on day 4–5 compared 
to the non-exercising T2DM mice, and their number 
of platform crossings significantly increased over time 
[101]. Another similar study was performed where the 
effect of 4  weeks of moderate-intensity treadmill run-
ning in OLETF rats was investigated. They found that 
both swim path length and escape latency of the exercis-
ing OLETF rats were reduced at trials on days 2–4, and 
that their time spent in the platform area significantly 
improved after the exercise intervention [102]. Another 
study by Shima et al. (2023) assessed the effect of 4 weeks 
of light-intensity running on a forced exercise wheel bed 
in obese-hyperglycemic (ob/ob) mice. However, here they 
did not find an effect of exercise on the swim distance, 
escape latency, or speed. They did find that the times of 
crossing the target platform during the probe test in the 
exercised ob/ob mice did not differ significantly from that 
in the control C57BL/6 mice, and that it was greater than 
in the sedentary ob/ob mice, but not significantly [103].

Based on these studies, endurance exercise training 
conducted for 40–60 min, 3 times per week seems to ena-
ble cognitive improvements in T2DM patients. Especially 
memory shows to be sensitive to endurance exercise-
induced improvement. However, two out of four human 
studies discussed here only found significant improve-
ments in MoCA and/or MMSE scores. Since the MMSE 
and MoCA were designed as screening tools to diagnose 
mild cognitive impairment (MCI) [105, 106], they cannot 
be considered very reliable for detecting changes in cog-
nitive function.

Resistance Exercise Training
Human Studies  The beneficial effect of resistance exer-
cise on cognition in T2DM patients was shown by Zhao 
et  al. (2022). They examined the effect of 12  months of 
power training on executive function, attention/speed, 
memory, and global cognition in older adults with T2DM, 
and aimed to determine whether there is an association 
between cognitive improvements and improvements 
in muscle strength, body composition, and/or endur-
ance. 103 patients were divided into a power training 
group or a sham low-intensity group that performed the 
same exercises as the power training group, but without 
added weight. Cognition of both groups improved over 
time, with increased scores in the Trails A, Trails B, word 
list recall, and word list memory. In addition, improved 
memory was associated with both increased skeletal mus-
cle mass and reduced body fat mass, and improvement in 
Trails B minus A in the power training group was asso-
ciated with increases in knee extension strength [85]. 
Yamamoto et  al. (2021) failed to find similar results. In 
their study, 60 T2DM patients aged 72.9 ± 2.4 years were 
divided into a control group, a resistance training group, 
and a resistance training group with leucine (an amino 
acid promoting muscle synthesis) supplementation. The 
training groups performed daily bodyweight resistance 
exercises and exercises with elastic bands every day at 
home, for a total period of 48 weeks. Cognitive function 

Table 2  CAMARADES characteristics of included animal studies

√ = fulfilled, X = not fulfilled, 1 = Published in peer-reviewed journal, 2 = Control of temperature, 3 = Randomisation, 4 = Allocation concealed, 5 = Blinding of assessors, 
6 = No anaesthetics with marked intrinsic properties, 7 = Use of animals with diabetes, 8 = Sample size calculation, 9 = Compliance with regulatory requirements, 
10 = Statement regarding conflict of interest

1 2 3 4 5 6 7 8 9 10 Total

Parsa et al. [98] √ √ √ X √ √ √ X √ √ 8/10

Shekarchian et al. [99] √ √ √ X X √ √ X X √ 6/10

Jesmin et al. [100] √ √ √ X X √ √ X X √ 6/10

Lang et al. [101] √ √ √ √ √ √ √ X √ √ 9/10

Shima et al. [102] √ √ √ X X √ √ X √ √ 7/10

Shima et al. [103] √ √ X X X √ √ X √ √ 6/10
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was assessed by means of the MMSE at baseline and after 
the intervention period. The MMSE score in the con-
trol group was significantly decreased to 27.5 ± 2.6 after 
48 weeks, while the score in the training groups had not 
significantly changed. This caused the MMSE score at 
48 weeks to be significantly higher in the training groups 
than in the control group [86].

Both studies suggest a positive effect of resistance 
exercise training on cognition in T2DM, with machine-
based resistance exercise training being the most 
effective. However, a sufficient number of studies to draw 
a definite conclusion is lacking. Moreover, the study 
of Yamamoto et  al. only assessed cognitive function 
by means of the MMSE, limiting the information on 
cognitive function, and thus the reliability of the results.

Endurance Versus Resistance Exercise Training
Human Studies  To determine the exercise modality 
most effective in improving cognition in T2DM, some 
studies compared the effect of endurance and resistance 
exercise training. Teixeira et  al. (2029) investigated the 
effect of either endurance or resistance exercise on cogni-
tive function in T2DM patients or patients with arterial 
hypertension. The patients were randomised into a resist-
ance exercise group or an endurance exercise group. Both 
groups exercised at moderate intensity for 12 weeks. Cog-
nitive function was assessed before and after the inter-
vention by means of the mental test and training system 
(MTTS), consisting of the cognitrone (attention and con-
centration), the determination test (reaction time), and 
the visual pursuit test (selective attention). The group with 
both T2DM and hypertension, but not the group with 
only hypertension, showed a significantly improved per-
formance in the cognitrone, but no significantly improved 
reaction time. No differences were observed between the 
endurance and resistance exercise group. These results 
show that both endurance and resistance exercise are 
capable of increasing attention and concentration in 
T2DM patients with arterial hypertension [87].

This study shows that endurance and resistance 
exercise training have a comparable positive effect 
on cognitive function in T2DM, however, additional 
evidence confirming these results is needed.

Combined Endurance and Resistance Exercise Training
Human Studies  Several studies have explored the effect 
of combined exercise training, consisting of both resist-
ance and endurance exercise, sometimes in combina-
tion with flexibility or balance exercises, on cognition in 
T2DM patients. One study found significantly improved 
inhibitory control, working memory, cognitive flexibility, 
and attention after 8 weeks of combined exercise training 
in T2DM patients, compared to a control group [88]. The 

same research team also examined the effect of 8 weeks 
of combined exercise on plasma BDNF levels, executive 
function and long-term memory in T2DM patients. They 
observed significantly improved executive function fol-
lowing the combined exercise, while BDNF levels were 
not found to be significantly changed [90]. Espeland et al. 
(2027) conducted an exploratory analysis of data from 
the Lifestyle Interventions and Independence for Elders 
(LIFE) trial, which was a randomised controlled clinical 
trial of exercise intervention consisting of walking, resist-
ance training, and flexibility exercises in sedentary non-
demented T2DM patients and healthy subjects. Cognitive 
function was tested at baseline and 2 years after randomi-
sation. They found that cognitive function, more spe-
cifically global cognitive function and delayed memory, 
significantly improved in the diabetic participants of the 
intervention group only, suggesting a beneficial effect of 
combined training on cognition in T2DM [89]. Addition-
ally, one study determined the effect of 12 weeks of com-
bined exercise training, consisting of endurance, resist-
ance, and balance exercises, on cognition in women with 
T2DM. Cognition was tested by means of the MoCA, the 
digit symbol substitution test, and the forward digit span 
test. After the 12-week intervention, the exercise group 
scored significantly higher on the MoCA compared to the 
control group, and, with an increase of 3.1, improved sig-
nificantly compared to baseline. However, neither of the 
groups showed improvement in the other tests [91].

In a study by Martinez-Velilla et al. (2021), 103 acutely 
hospitalised elderly T2DM patients were randomised 
to an exercise group or a control group. Cognitive 
function was assessed by means of the MMSE at baseline 
and at discharge. The exercise intervention consisted 
of a combination of resistance, balance, and walking 
exercises. The median length of stay, and thus of the 
intervention, was 8  days. There was no difference in 
MMSE score between both groups at baseline. However, 
after the intervention, the exercise group scored on 
average 1.6 points higher than the control group (23.7 
vs. 22.1), which was found to be significant [92]. In 
addition, a pilot study looked into the effect of 6 months 
of a progressive endurance- and resistance-training 
program on the brain and cognition in T2DM. 50 T2DM 
patients were randomised into an intervention group 
and a control group. The intervention group performed 
6  months of endurance and progressive resistance 
training. The control group received upper and lower 
limb stretching of light intensity and a gentle movement 
program, which were performed in the same volume, 
frequency and setting as in the intervention group. The 
intervention group showed improved hippocampal and 
total brain volumes, improved white matter integrity, and 
less decline in white matter volume. They also showed a 
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better global cognitive score, and better performance on 
the Digit Symbol Coding Test, Rey Complex Copy test, 
Stroop C-D, Trail Making Test A and B, Hopkins verbal 
learning test (intermediate and recognition scores), and 
Controlled Oral Word Association Test compared to 
the control group [93]. Another pilot study examined 
the effect of 6  weeks of high-intensity low-volume 
(HIFT) vs. low-intensity high-volume (LIFT) functional 
training on cognition in cognitively impaired elderly 
T2DM patients. The HIFT group exercised three times 
a week at 100–120% of the lactate threshold, while the 
LIFT group exercised five times a week at 70–75% of 
the lactate threshold. The MMSE was used to diagnose 
cognitive impairment (MMSE ≤ 23). Processing speed, 
learning, memory, and attention were assessed by means 
of the Symbol Digit Modalities Test (SDMT), California 
Verbal Learning Test Second Edition (CVLT-II), Brief 
Visuospatial Memory Test-Revised (BVMT-R), and 
Stroop tests respectively. After the intervention, MMSE, 
Stroop, SDMT, CVLT-II and BVMT-R scores had 
improved significantly in the HIFT group, while only 
MMSE and Stroop scores had improved significantly 
in the LIFT group. However, the only cognitive score 
change that was significantly different from the control 
group that did not receive an exercise intervention, was 
the change in Stroop scores in the HIFT group [94].

All included studies suggest a positive effect of 
combined exercise training on cognitive function in 
T2DM.

Other Types of Exercise
Human Studies  Besides the well-known exercise forms 
such as running and cycling, some studies have explored 
the effect of unconventional exercise training on cogni-
tion in T2DM.

For example, one study compared the effect of 36 weeks 
of Tai Chi Chuan, a mind–body exercise, and 36  weeks 
of fitness walking on global cognitive function in T2DM 
patients. Both interventions significantly increased 
MoCA scores, with a significantly larger effect of Tai 
Chi Chuan compared to fitness walking. At 24  weeks 
and 36  weeks, the Weschler memory quotient (MQ), 
digit symbol substitution test, and trail making test part 
B scores also improved significantly more in the Tai Chi 
Chuan group than in the control group. At 36 weeks, the 
MQ scores even improved significantly more in the Tai 
Chi Chuan group compared to the fitness walking group 
[95].

The effect of low-intensity Qigong exercise on cognitive 
function in older T2DM patients was also investigated 
[96]. Qigong is an ancient Chinese exercise for mind–
body integration and is often used in the prevention and 

treatment of chronic metabolic diseases [107]. The par-
ticipants in the exercise group practiced Kinect-based 
Kaimai-style Qigong for 12  weeks. Based on MMSE 
scores at baseline and after the intervention, the Qigong 
group showed significant improvements in cognitive 
function compared to the control group [96].

These findings suggest that unconventional exercise, 
often involving the mind to a larger extent than 
conventional exercise, can contribute to improved 
cognition in T2DM.

Reviewing Targets and Mediators of the Effect of Exercise 
Training on the Brain in T2DM
To understand why certain exercise trainings cause 
cognitive improvement in T2DM, and others do not, 
there is a need for studies investigating the underlying 
biomedical mechanisms of the effect of exercise on the 
brain and cognition in T2DM. The following section 
discusses such studies, and aims to identify the different 
targets and mediators involved.

AD‑Related Pathological Markers: Amyloid β Peptides 
and Hyperphosphorylated Tau
Increasing evidence and literature points to converging 
pathways and pathogenetic processes in T2DM and AD. 
Here we focus on studies showing effects on amyloid β 
and tau in T2DM due to exercise training. We refer to 
extensive reviews regarding T2DM and AD for further 
reading [24, 108, 109].

Leptin  Several studies have indicated that exercise 
is negatively associated with cerebral amyloid β and 
hyperphosphorylated tau in T2DM, and contributes to 
memory maintenance [110, 111]. The aspartyl protease 
β-site AβPP-cleaving enzyme 1 (BACE1) is responsible 
for catalysing the rate-limiting step of amyloid β produc-
tion. It has been shown that the adipocytokine leptin 
reduces BACE1 activity and expression, thereby limiting 
the production of amyloid β [112, 113]. This is supported 
by Rezaei et  al. (2023), who suggested leptin as a pos-
sible mediator of exercise-induced prevention of mem-
ory impairment in T2DM after finding elevated serum 
and hippocampal levels of this hormone together with 
decreased hippocampal levels of BACE1, amyloid β and 
hyperphosphorylated tau after 8 weeks of HIIT training 
in T2DM rats [114].

GSK3β  The maintenance of cognitive function in exer-
cising T2DM rats treated with dexamethasone, demon-
strated by De Sousa et  al. (2020), was according to the 
authors presumably mediated by the observed lesser inhi-
bition of the activation of hippocampal IRS-1 and higher 
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concentration of GSK3β phosphorylated on serine-9 (Ser-
9) [115]. GSK3β is namely inactivated by Ser-9 phospho-
rylation [116], which prevents GSK3β activation, and sub-
sequently tau phosphorylation and associated neurotoxic 
effects [117, 118]. Accordingly, Rezaei et  al. (2023) also 
found decreased hippocampal GSK3β dephosphorylation 
together with decreased hippocampal levels of amyloid β 
and phosphorylated tau in HIIT-trained T2DM rats [114]. 
GSK3β plays an important role in neurodegeneration in 
T2DM. Both glucolipotoxicity and insulin resistance 
contribute to GSK3β overactivation, leading to β-catenin 
phosphorylation and subsequent proteasomal degrada-
tion. This results in the inhibition of the expression of 
reactive oxygen species (ROS) scavenging enzymes, which 
leads to more oxidative stress and consequently the dis-
ruption of mitochondrial structure, function and axonal 
trafficking. Moreover, GSK3β overactivation also stimu-
lates tau hyperphosphorylation, leading to microtubule 
destabilisation and thus disruption of axonal mitochon-
drial trafficking, as well as to a decrease in mitochondrial 
complex I and thus impaired energy production [118]. By 
inhibiting the activation of GSK3β through Ser-9 phos-
phorylation, exercise could thus contribute to the preven-
tion of cognitive decline in T2DM.

Adiponectin  In the study of Rezaei et  al. (2023), the 
T2DM rats showed decreased serum and hippocampal 
levels of insulin and adiponectin at baseline, as well as 
decreased levels of insulin receptors, adiponectin recep-
tors and AMPK in the hippocampus, and increased 
hippocampal GSK3β and hyperphosphorylated tau. 
HIIT training counteracted these findings. Both serum 
insulin and adiponectin were significantly increased by 
HIIT, as well as the levels of hippocampal insulin and 
adiponectin receptors. HIIT training also increased 
hippocampal AMPK phosphorylation, and decreased 
hippocampal tau phosphorylation and GSK3β dephos-
phorylation. The authors suggest that the increased 
levels of adiponectin can contribute to the preservation 
of hippocampal volume and function through the stim-
ulation of synaptic plasticity, as it has been shown by 
Pousti et al. (2018) and Weisz et al. (2017) respectively 
that adiponectin modulates synaptic plasticity in the 
hippocampal dentate gyrus and regulates hippocampal 
synaptic transmission [114, 119, 120]. Another study 
shows memory and learning impairments together with 
reduced AMPK phosphorylation and increased GSK3β 
activation in adiponectin-knockout mice [121], sug-
gesting that the neuroprotective effects of adiponectin 
are mediated via AMPK phosphorylation and GSK3β 
inactivation, which is in line with the study of Rezaei 
et  al. (2023). The exercise-induced decreased GSK3β 
Ser-9 dephosphorylation means that there is a higher 

ratio of inactive, phosphorylated GSK3β, preventing 
tau phosphorylation. In addition, the adiponectin-
mediated AMPK phosphorylation could also be neuro-
protective by inhibiting the inflammatory response of 
microglia to amyloid β [122].

Brain Volume
Several studies have demonstrated that exercise 
increases hippocampal volume in T2DM patients. 
One study showed that a higher step count, measured 
over 7  days, was associated with a larger hippocampal 
volume in T2DM patients [66]. In addition, one 
year of endurance training in T2DM patients with 
normal cognition significantly increased hippocampal 
volume, and prevented a decline in MMSE and MoCA 
scores. Hippocampal volume in the training group 
was significantly increased compared to baseline, as 
well as compared to the control group [84]. Another 
study showed a higher hippocampal CA1 and CA3 
neuronal density in diabetic Sprague–Dawley (SD) rats 
after 6  weeks of exercise on a running wheel, probably 
contributing to the observed improved cognitive 
function [123]. Similarly, a pilot study in which T2DM 
patients performed 6 months of a progressive endurance- 
and resistance-training program showed improved 
hippocampal and total brain volumes, improved white 
matter integrity, and less decline in white matter volume 
in the intervention group compared to the control group 
[93].

Neuronal Survival
BDNF  BDNF is one of the most important neurotrophic 
factors. By binding the TrkB receptor, it regulates and pro-
motes cell survival, neuroplasticity, and neurogenesis in 
the central nervous system [124, 125]. As already men-
tioned previously, BDNF plays an important role in the 
effect of exercise on cognitive function. A study investigat-
ing the effect of 4 weeks of swimming training on working, 
spatial, and recognition memory in diabetic C57BL/6  J 
mice, shows that higher PA is associated with increased 
hippocampal and prefrontal BDNF levels, together with 
an improvement in all memory aspects [99]. Similarly, 
Jesmin et  al. (2022) showed significantly increased hip-
pocampal BDNF levels together with improved memory 
function in OLETF rats after 4 months of endurance exer-
cise [100]. This shows that also under diabetic conditions, 
BDNF is an important mediator of exercise effects on cog-
nition.

Another study looked into the effect of 12  weeks 
of swimming training on BDNF/TrkB signalling and 
apoptosis in the cerebral cortex of male diabetic 
C57BL/6JNarl mice. The exercised diabetic mice showed 
less neural apoptosis compared to the control diabetic 
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mice, accompanied by an increased activity of the BDNF/
TrkB signaling pathway, and a decreased activity of the 
Fas/FasL-mediated and mitochondria-initiated apoptotic 
pathways. These findings indicate that exercise promotes 
neuronal survival in diabetic mice through the BDNF 
pathway [126].

Neuroplasticity and Neurogenesis
One study determined the effect of 7 weeks of treadmill 
exercise on neuroblast differentiation in the subgranular 
zone of the dentate gyrus (SZDG) in Zucker diabetic 
fatty (ZDF) rats and Zucker lean control (ZLC) rats. At 
23 weeks old, the rats started to exercise for 7 weeks at 
12-16  m/min. Compared to the non-exercising groups, 
the neuroblasts of both the exercising diabetic and 
exercising control rats showed a significant increase in 
tertiary dendrites. However, the number of neuroblasts 
only increased in the control rats. This shows that 
endurance exercise in diabetic rats can stimulate 
neuroplasticity, but not necessarily neuroproliferation 
[127]. A similar study tested the effect of 5  weeks of 
treadmill exercise on cell differentiation and proliferation 
in the SZDG of the same ZDF rat model. Proliferation was 
detected by means of the proliferation marker Ki67, and 
progenitor differentiation into neurons was detected by 
means of the differentiation marker doublecortin (DCX). 
In this study, the rats started exercising at 6  weeks old, 
and ran at 22  m/min. Compared to the sedentary ZDF 
rats, the exercised rats showed a significant increase in 
Ki67 positive cells and DCX-immunoreactive structures, 
indicating both increased proliferation and increased 
differentiation [128]. This confirms that exercise can 
stimulate neuronal differentiation in the diabetic 
SDZG, as shown by Hwang et  al. (2010) [127]. The fact 
that, this time, exercise was able to stimulate neuronal 
proliferation as well, might indicate that exercise has to 
be performed at a certain intensity rather than a certain 
volume to achieve this effect.

BDNF  Increased hippocampal BDNF levels in combina-
tion with increased dendritic spine density on the second-
ary and tertiary dendrites of dentate granule neurons were 
found after voluntary wheel running in db/db mice [129]. 
This suggests that BDNF contributes to exercise-induced 
neuroplasticity in diabetic mouse models.

PI3K/Akt and  AMPK/SIRT1  It was demonstrated that 
endurance exercise can upregulate synaptic plasticity-
associated proteins in the hippocampus of T2DM rats, 
presumably via the activation of PI3K/Akt/mTOR and 
AMPK/SIRT1 signalling pathways and inhibition of the 
NFκB/NLRP3/IL-1β signalling pathway [130]. Under 
non-diabetic conditions, the PI3K/Akt/mTOR pathway is 

activated by insulin, resulting in the formation of dendritic 
spines and excitatory synapses in hippocampal neurons 
[131]. In T2DM, insulin resistance prevents this activa-
tion, contributing to reduced synaptic plasticity. Exercise 
thus could, to a certain extent, take over this role of insu-
lin. The aforementioned BDNF also activates the PI3K/
Akt pathway, constituting another mediator of the exer-
cise-induced increase in synaptic plasticity-associated 
proteins [124]. Activation of the AMPK/SIRT1 pathway, 
on the other hand, contributes to synaptic plasticity by 
increasing insulin sensitivity and glucose uptake, regulat-
ing BDNF expression, promoting neuronal survival, etc. 
[132–136]. During exercise, AMPK activates SIRT1, after 
which SIRT1 deacetylates PGC-1α, resulting in its activa-
tion. PGC-1α is important for mitochondrial remodelling 
and biogenesis, contributing to synaptic plasticity [137]. 
Its activation leads to the upregulation of FNDC5, which 
in turn crosses the BBB and upregulates hippocampal 
BDNF expression [124].

Another study also found an increase in the synaptic 
plasticity proteins synaptophysin (SYN) and N-methyl-
D-aspartate receptor (NMDAR) in the prefrontal cortex 
of diabetic SD rats after 4  weeks of treadmill training. 
They demonstrated that endurance exercise increased 
the level of phosphorylated PI3K, suggesting an increased 
activity of the PI3K/Akt pathway, and increased insulin 
sensitivity. In addition, they found a slight increase in the 
phosphorylation and a slight decrease in the acetylation 
of FOXO1, which is a transcription factor that promotes 
NF-kB activity and consequently the expression of 
proinflammatory factors. FOXO1 phosphorylation 
enables its cytoplasmic retention and thus prevents the 
transcription of its target inflammatory genes [138]. 
Since FOXO is a target of Akt, the increased PI3K/Akt 
activity might be the cause of the increased FOXO1 
phosphorylation [139]. Nuclear NF-kB acetylation was 
found to be decreased as well in the rats that performed 
endurance exercise, reducing its DNA binding and 
transcriptional activity [138, 140]. These findings were 
confirmed by a study showing that 8 weeks of moderate 
intensity treadmill exercise in diabetic C57BL/ 6 mice 
improves cognitive dysfunction and increases the release 
of BDNF through the activation of the SIRT1/PGC-1α/
FNDC5/BDNF pathway [101].

Cerebral Blood Flow
Zhao et  al. (2023) investigated the effect of a 2-month 
moderate-intensity exercise program on brain 
oxygenation in sedentary older T2DM patients with 
cognitive impairment. They also looked into the effect of 
the exercise program on the hemodynamic responses to 
the Mini-Cog test, which assesses short-term memory 
and visuo-constructive abilities. The exercise program 



Page 12 of 29Vandersmissen et al. Sports Medicine - Open           (2025) 11:42 

consisted of a combination of endurance and resistance 
exercise. They found that the exercise program improved 
the very low-frequency oscillations (< 0.05 Hz) during the 
Mini-Cog test, as assessed by near-infrared spectroscopy. 
Since very-low frequency oscillations are crucial for 
small-vessel function, this indicates that combined 
exercise has the power to improve cerebral vascular 
function in T2DM. In addition, the exercise program 
significantly reduced the oxyhemoglobin activation in the 
right superior frontal region during the Mini-Cog test, 
thereby reducing the overactivation usually observed in 
T2DM [141].

Glycometabolism
Lactate  Since dysregulated peripheral glycometabo-
lism is a hallmark of T2DM, Shima et al. (2017) hypoth-
esised that hippocampal glycometabolic dysfunction 
might contribute to memory impairment in T2DM [102]. 
As it has already been demonstrated in healthy animals 
that moderate exercise enhances memory function and 
hippocampal glycogen levels [142, 143], they wanted to 
determine if this was also the case in a T2DM animal 
model. At baseline, OLETF rats had higher hippocam-
pal levels of glycogen and lower MCT2 expression com-
pared to LETO control rats. They also showed impaired 
memory. After 4 weeks of treadmill running, the OLETF 
rats showed even higher hippocampal glycogen levels, 
in addition to normalised hippocampal MCT2 expres-
sion together with improved memory function. Since 
MCT2 is an important lactate transporter, this suggests 
that lactate plays a key role in the effect of exercise on 
glycometabolism and memory in T2DM [102]. In line 
with this, it was demonstrated that 4 months of treadmill 
running prevented the progression of cognitive decline 
in presymptomatic OLETF rats through improved hip-
pocampal MCT2 expression, again confirming the role 
of lactate in the positive effect of exercise on cognition 
[100]. Another study by Shima et al. (2023) showed the 
same effect in an advanced stage T2DM mouse model. 
Ob/ob mice were subjected to 4 weeks of light-intensity 
exercise. The exercise program resulted in improved hip-
pocampal MCT2 levels, accompanied by improved hip-
pocampal memory retention [103]. As Soya et al. (2019) 
mention in their review discussing these findings, the 
upregulated MCT2 levels enable an increased uptake of 
L-lactate into neurons, where it can serve as an energy 
substrate, and act as a signalling molecule to induce the 
expression of neuroplasticity genes, eventually contrib-
uting to the increased memory function observed in 
these studies [144].

Inflammation
As inflammation is a very broad process, involving many 
different players, we would like to emphasize again that 
the pathways and mediators discussed in this review are 
only the ones that clearly have been shown to be involved 
in the effect of exercise on the brain in T2DM. For more 
information about the involvement of inflammation in 
T2DM, and the effect of exercise on it, we refer to more 
exhaustive reviews [78, 145].

AMPK/SIRT1  The AMPK/SIRT1 pathway is not only 
important for rescuing cognitive function by increas-
ing BDNF levels, but also by counteracting inflamma-
tion. Treadmill exercise in diabetic C57BL/ 6 mice for 
8 weeks reduced activation of hippocampal proinflam-
matory microglia M1, as well as the hippocampal lev-
els of proinflammatory factors IL-1β, IL-6, TNF-α, and 
increased the expression levels of anti-inflammatory 
factors IL-10, TGF-β1. This co-occurred with an acti-
vation of the SIRT1/NF-κB pathway, which is known 
to be responsible for counteracting inflammation, sug-
gesting the importance of this pathway in exercise-
mediated anti-inflammatory actions in T2DM [101]. 
A different study also reported a reduction in hip-
pocampal IL-1β and TNF-α, accompanied by cognitive 
improvement, after T2DM SD rats performed 6 weeks 
of endurance exercise on a running wheel. However, 
although we can assume that the AMPK/SIRT1 path-
way is involved here as well, the authors did not elab-
orate on the pathways responsible for the observed 
reduction in pro-inflammatory factors [123].

Insulin Resistance
T2DM-associated insulin resistance is not only 
present in the periphery, but also in the brain, where 
it contributes to the cognitive deficits observed 
in T2DM patients via multiple mechanisms [132, 
146–148]. For example, insulin resistance and the 
consequent hyperinsulinemia have been associated 
with increased tau hyperphosphorylation, increased 
deposition together with reduced breakdown of 
amyloid β, dysfunctional IGF-1 receptors (IGFRs), 
etc. This all contributes to neurodegeneration and 
cognitive impairment [146]. Studies have shown 
that the insulin-sensitising effect of exercise is also 
manifested in the brain, which gives exercise the 
power to prevent or decrease these cognitive deficits 
[58, 149]. One possible way in which this effect of 
exercise could be mediated, is by the aforementioned 
decrease in TNF-α. TNF-α activates JNK, which 
is a kinase that causes insulin resistance via serine 
phosphorylation of IRS-1 [78, 150]. IRS-1 is important 
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for the signal transduction of insulin, ultimately 
leading to glycogen synthesis and glucose transporter 
4 (GLUT-4) translocation. Serine phosphorylation 
of IRS-1 inhibits this insulin signal transduction and 
thus results in insulin resistance [151–153]. It could 
thus be hypothesised that by decreasing TNF-α, 
exercise could increase insulin sensitivity in the brain.

GLP‑1  Park et al. (2019) investigated the effect of resist-
ance exercise training on GLP-1R levels in the hypothal-
amus of OLETF rats. The exercise training comprised 
12 weeks of ladder climbing. As a result of the resistance 
training, the rats showed increased levels of hypothalamic 
GLP-1R mRNA, protein kinase A (PKA), protein kinase 
B (PKB), glucose transporter 2 (GLUT-2), and decreased 
hypothalamic levels of protein kinase C-iota (PKC-ι) [154]. 
All these findings point in the direction of improved gly-
caemic control. PKB, also known as Akt, plays an impor-
tant role in the PI3K/Akt pathway downstream of the IR, 
as mentioned before in this review [23, 27, 130]. PKA, on 
the other hand, is essential for the regulation of metabo-
lism and triglyceride storage [155, 156], while PKC-ι is 
known to cause metabolic abnormalities in T2DM [157, 
158]. GLP-1R, the main focus of this study, is a main 
receptor involved in T2DM. It is responsible for lower-
ing blood glucose levels by, among other things, stimulat-
ing insulin secretion and suppressing glucagon secretion 
[159]. In addition, GLP-1R has been suggested to play a 
neuroprotective role in diabetes-related neurodegenera-
tion by increasing insulin sensitivity [160]. Moreover, a 
different study has shown that recombinant human GLP-1 
can reduce oxidative stress by activating PKA, which was 
found to be elevated in the study of Park et al. (2019), and 
by inhibiting PKC, which was found to be decreased, ulti-
mately reversing diabetic nephropathy [161]. The increase 
in GLP-1 mRNA found by Park et al. (2019) thus indicates 
decreased oxidative stress and increased insulin sensitiv-
ity in the T2DM rats after resistance exercise training.

Mitochondrial Function
Mitochondrial dysfunction is an important contributor 
to T2DM pathology [162, 163]. Multiple studies have 
already demonstrated mitochondrial dysfunction in the 
T2DM brain, where it contributes to neurodegeneration 
and cognitive dysfunction [164, 165]. It is also known 
that exercise positively influences mitochondrial function 
[166–168]. Studies show that exercise can restore 
mitochondrial function in the muscle of T2DM patients 
[169–172]. However, little is known about the effect 
of exercise on mitochondrial function in the brain in 
T2DM.

Insulin Sensitivity  One study investigated the effect of 
endurance exercise training in combination with met-
formin on mitochondrial function in male C57BL/6  J 
mice with brain insulin resistance induced by a high-
fat diet. They observed that the mitochondria in brain 
regions rich in insulin receptors produced less ATP 
and showed reduced activity of oxidative enzymes. 
The mice also showed elevated ROS production and 
reduced activity of antioxidant enzymes, accompanied 
by higher rates of mitochondrial fission, and accumu-
lation of damaged mitochondrial proteins. Endurance 
exercise training together with metformin improved 
insulin sensitivity. This resulted in reduced ROS emis-
sion, less hippocampal mitochondrial fission, less 
mitochondrial protein oxidation, and increased ATP 
production in astrocytes and primary cortical neurons. 
The reduction in ROS emission and increased ATP 
production were counteracted by intranasal adminis-
tration of the insulin receptor antagonist S961, proving 
that these mitochondrial ameliorations were mediated 
by increased insulin sensitivity [173]. Since metformin 
was also administered in this study, the observed 
effects are not fully attributable to exercise, however, it 
is clear that metformin and exercise have a synergistic 
effect, and that exercise can certainly be an added value 
in the treatment of T2DM.

The figure below (Fig. 2) gives an overview of the inter-
play between all mediators and pathways previously 
mentioned.

Discussion
In the systematic part of this review, 22 studies 
investigating the effect of exercise training on cognition 
in T2DM were included. Although mixed results 
were found, most studies (18 out of 22) demonstrated 
a significant positive effect of exercise training on 
cognition, which is consistent with findings of previous 
reviews on this topic [72, 73].

7 out of 10 studies investigating the effect of 
endurance exercise training were able to show 
cognitive improvement, indicating the effectiveness 
of this training modality. Leischik et  al. showed that 
endurance exercise as simple as walking is already 
successful in improving cognition in T2DM [82]. 
However, this was not confirmed by Liu et  al., who 
could not find any significant cognitive improvements 
after a 3-month walking intervention [97]. A small 
sample size and a short follow-up period were 
mentioned as possible reasons for the lack of a 
significant effect. However, sample size, duration of 
the exercise intervention, and frequency and length 
of the individual exercise sessions were comparable 
to the study of Leischik et  al., where significant 
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improvements were seen. This might suggest that 
the walking intensity in the study of Leischik et  al. 
was more optimal, although this information was not 
disclosed.

Out of the two studies investigating the effect of 
resistance exercise on cognition in T2DM, one study 
failed to show cognitive improvement. This lack of 
effect could be due to the limited cognitive tests, or due 
to the absence of machine-based power training in this 
exercise intervention. Additional studies are required to 
clarify this.

The study of Teixeira et al. comparing endurance exer-
cise training to resistance exercise training found similar 
results for both exercise forms. This suggests that exer-
cise interventions in T2DM patients aimed at improv-
ing cognition do not have to be limited to one type of 
exercise, and can be adapted to the patient’s capacities. 
However, since only one study directly comparing these 
exercise modalities was identified, this conclusion should 
be interpreted with caution.

In addition, all included studies investigating the effect 
of combined (endurance + resistance (+ flexibility/bal-
ance)) exercise training were able to show significant 

Fig. 2  Schematic representation of mediators and targets involved in the effect of exercise training on the brain in T2DM. Sharp blue arrows 
indicate stimulation. Blunt blue arrows indicate inhibition. Black arrows indicate increase or decrease. A red cross indicates a mediator’s 
inability to exert an effect due to previous inhibition of said mediator. Aβ = amyloid β; AMPK = AMP-activated Protein Kinase; ATP = Adenosine 
Triphosphate; BDNF = Brain-Derived Neurotrophic Factor; FNDC5 = Fibronectin type III Domain-Containing protein 5; FOXO1 = Forkhead 
box protein O1; GLP-1R = Glucagon-Like Peptide 1 Receptor; GSK3β = Glycogen Synthase Kinase-3 beta; IRS-1 = Insulin Receptor Substrate 1; 
IL-1β = Interleukin 1beta; IL-6 = Interleukin 6; MCT2 = Monocarboxylate Transporter 2; mTOR = mammalian Target Of Rapamycin; Nf-κB = Nuclear 
Factor kappa-light-chain-enhancer of activated B-cells; PGC-1α = Peroxisome proliferator-activated receptor Gamma Coactivator 1-alpha; 
PI3K = Phosphoinositide 3-Kinase; PKA = Protein Kinase A; PKC = Protein Kinase C; p-tau = phosphorylated tau; ROS = Reactive Oxygen Species; 
Sirt1 = Sirtuin 1; TNF-α = Tumor Necrosis Factor alpha
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cognitive improvements. Being in line with the exercise 
recommendations of the American College of Sports 
Medicine for older adults [174], this finding favours com-
bined exercise to reach cognitive improvement in T2DM.

Finally, tai chi chuan and Kaimai style Qigong showed 
to improve cognition in T2DM. The beneficial effect of 
these exercise forms might be attributed to the fact that 
they are motorically more complex, and require a more 
extensive involvement of the mind.

Based on this review, one can thus conclude that 
both endurance and resistance exercise training, as well 
as exercise training involving the mind, are effective 
at improving cognition in T2DM. Combined exercise 
training is presumably most desirable, although studies 
comparing combined exercise training to endurance 
or resistance exercise training alone are lacking. It 
also seems that regarding resistance exercise training, 
machine-based power training is more effective in 
improving cognition than body weight exercises and 
exercises with elastic bands, but additional evidence is 
required.

The beneficial effect of exercise on cognitive function in 
T2DM was confirmed by previous reviews on this topic 
[73, 79]. A meta-analysis by Cai et al. found a significant 
positive effect of exercise on global cognitive function in 
older adults with T2DM, without a significant influence 
of intervention modality or duration [73]. In contrast, 
several reviews could not conclude a significant positive 
effect of exercise on cognition in T2DM [71, 74]. Four 
out of the six studies included in the systematic review 
of Zhao et  al. found significant benefits of exercise for 
some aspects of cognition in adults with type 2 diabetes, 
insulin resistance or impaired glucose tolerance, but only 
26% of the cognitive outcomes were significant across 
all studies [71]. Also Cooke et  al. found no significant 
effect of exercise on executive function or memory after 
conducting a meta-analysis of 6 studies on the effect of 
exercise on cognition in T2DM. [74]. These contradictory 
results emphasize the need for additional qualitative 
studies on this topic.

The mechanisms underlying cognitive improvement 
following exercise in T2DM have been explored in the 
second, narrative part of this review. Both the AMPK/
Sirt1 pathway and PI3K/Akt/mTOR pathway have 
been identified as key players. The studies included 
in this review show that exercise-mediated activation 
of these pathways leads to beneficial brain changes in 
T2DM, such as increased neuroplasticity, brain volume, 
synaptic plasticity, dendritic spines, insulin sensitivity, 
mitochondrial remodelling and biogenesis, and ATP 
production, as well as decreased inflammation, oxidative 
stress, and amyloid β and p-tau production. BDNF, 
lactate, leptin, adiponectin, GSK3β and GLP-1 were 

identified as the most important factors mediating these 
changes. Although other factors such as IGF-1 have been 
suggested to play a role in the positive effect of exercise 
on cognition [175], no studies in T2DM have directly 
demonstrated this. Much more research is needed to 
identify the full spectrum of involved mediators and 
pathways, investigate interactions between different cell 
types, etc. In addition, it needs to be considered that 
the majority of the studies described in this review were 
conducted in rodents, and are yet to be confirmed in 
humans.

This review has various limitations that could interfere 
with the reliable interpretation of its findings. First of 
all, the fact that the studies included in this review use 
a variety of cognitive tests, makes it difficult to compare 
the different studies. Moreover, several studies merely 
use the MMSE or MoCA to test cognition, which are 
diagnostic tools designed to screen for MCI, and not to 
detect (subtle) changes in cognition [105, 106]. There 
is a need for a standardised cognitive test battery in 
T2DM to increase the comparability of future studies 
and draw more reliable conclusions. In addition, the age, 
medication use, and ethnicity of the patient population 
varied across studies. Since cognition is heavily 
influenced by age [176], and medication use [177, 178] 
and genetics [68] strongly affect the response to exercise, 
comparability of the included studies may have been 
limited by these inconsistencies. Regarding the narrative 
part of this review, an important limitation is that only 
studies directly demonstrating an involvement of certain 
mediators in the effect of exercise training on the brain 
in T2DM have been considered. This means the present 
review is a non-exhaustive presentation of the involved 
mediators and pathways. Finally, publication bias might 
have skewed the results of this review towards a positive 
effect of exercise on cognition in T2DM.

In order to define an exercise program that is 
specifically tailored to cognitive improvement in T2DM, 
future studies should directly compare exercise of 
different intensities and volumes, as well as different 
exercise modalities. In addition, as already mentioned, a 
standardised cognitive test battery should be used that is 
most sensitive to picking up exercise-induced cognitive 
changes in T2DM. Furthermore, medication use, disease 
stage, age, and genetics should be taken into account.

Conclusion
Overall, it can be concluded that exercise has a positive 
influence on cognition and brain structure in T2DM. 
There are few studies that fail to find a positive correlation 
between exercise training and cognition in T2DM, which 
can often be attributed to a small sample size or a limited 
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cognitive test battery. From this review, we can assume 
that resistance and endurance exercise training have 
similar effects on cognition in T2DM, with resistance 
exercise training seemingly requiring machine-based 
exercises. We can also conclude that unconventional 
exercise training involving the mind, such as tai chi, is 
capable of inducing cognitive improvements as well. 
However, since the cognitive tests and exercise training 
programs used in studies investigating the effect of 
exercise on cognition in T2DM is so diverse, it is difficult 
to compare these studies and draw a definite conclusion 
on the best exercise program for cognitive improvement 
in T2DM. Future studies should focus on using a 
standardised cognitive test battery, and comparing 
similar exercise training interventions where only one 
parameter (intensity/duration/frequency/…) differs.
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