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ABSTRACT
Exploratory data analysis workflows often use clustering algorithms to find groups of
similar data points. The shape of these clusters can provide meaningful information
about the data. For example, a Y-shaped cluster might represent an evolving process
with two distinct outcomes. This article presents flare-sensitive clustering (FLASC),
an algorithm that detects branches within clusters to identify such shape-based
subgroups. FLASC builds upon HDBSCAN*—a state-of-the-art density-based
clustering algorithm—and detects branches in a post-processing step using
within-cluster connectivity. Two algorithm variants are presented, which trade
computational cost for noise robustness. We show that both variants scale similarly
to HDBSCAN* regarding computational cost and provide similar outputs across
repeated runs. In addition, we demonstrate the benefit of branch detection on two
real-world data sets. Our implementation is included in the hdbscan Python package
and available as a standalone package at https://github.com/vda-lab/pyflasc.

Subjects Algorithms and Analysis of Algorithms, Data Mining and Machine Learning, Data
Science
Keywords Exploratory data analysis, Density-based clustering, Branch-hierarchy detection,
HDBSCAN*

INTRODUCTION
Exploratory data analysis (EDA)—i.e., searching for interesting patterns in data—is
ubiquitous in data science and knowledge discovery workflows. Detecting which groups of
similar observations exist is a common step in EDA. Typically, such groups are detected as
clusters. Several early clustering algorithms—such as kMeans and average-linkage
hierarchical clustering—rely on a minimum variance principle, restricting them to finding
clusters with convex shapes (Cormack, 1971; Campello et al., 2015). Density-based
clustering algorithms do not have this limitation (Campello et al., 2015). Informally, they
specify clusters as regions of high density separated by regions of lower density, allowing
them to capture cluster shapes. The shape of a cluster can reveal additional relevant
subgroups. For example, a Y-shaped cluster might represent an evolving process with two
distinct outcomes. Consequently, the branches in a cluster’s manifold—i.e., flares—can
represent meaningful subpopulations in datasets (see, e.g., Reaven & Miller, 1979; Lum
et al., 2013; Kamruzzaman, Kalyanaraman & Krishnamoorthy, 2018; Skaf &
Laubenbacher, 2022).

How to cite this article Bot DM, Peeters J, Liesenborgs J, Aerts J. 2025. FLASC: a flare-sensitive clustering algorithm. PeerJ Comput. Sci.
11:e2792 DOI 10.7717/peerj-cs.2792

Submitted 4 September 2024
Accepted 10 March 2025
Published 18 April 2025

Corresponding author
Jan Aerts, jan.aerts@kuleuven.be

Academic editor
Anwitaman Datta

Additional Information and
Declarations can be found on
page 26

DOI 10.7717/peerj-cs.2792

Copyright
2025 Bot et al.

Distributed under
Creative Commons CC-BY 4.0

https://github.com/vda-lab/pyflasc
http://dx.doi.org/10.7717/peerj-cs.2792
mailto:jan.�aerts@�kuleuven.�be
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2792
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/


Clustering algorithms generally cannot detect this type of subgroup because no gap
separates flares from their cluster. From a topological perspective, clustering algorithms
describe the connected components in a simplicial complex of the data (Carlsson, 2014): a
set of points, edges, and triangles that describe connectivity. Flares—i.e., branches in a
cluster’s manifold—are connected in the simplicial complex. In other words, there is a path
between data points in different branches that exclusively goes through data points ‘that lie
close together’. Therefore, they have a vanishing homology and cannot be detected as
persistent clusters.

Several flare-detection techniques have been proposed in topological data analysis
literature. For example, Carlsson (2014) proposed functional persistence to distinguish
flares from a data set’s central core. This technique quantifies data point centrality as the
sum of its distances. Central observations have lower distance sums than points towards
the extreme ends of the feature space. A manually controlled centrality threshold removes
the data’s core, separating branches from each other and making them detectable as
(density-based) clusters.

While Carlsson’s functional persistence can detect branches as clusters, the single
centrality threshold cannot describe how branches merge into each other as more central
points are included. The cluster hierarchy that a moving centrality threshold would form is
analogous to a density-contour tree (Hartigan, 1975) as used in Hierarchical DBSCAN*
(HDBSCAN*) (Campello et al., 2015) to replace Density Based Spatial Clustering of
Applications with Noise (DBSCAN)’s (Ester et al., 1996) density threshold. Instead of
describing which clusters exist over the density range, it models connectivity over
centrality, and its centrality-contour clusters correspond to branches rather than clusters.
We will refer to the centrality-contour tree as a branching hierarchy.

Extending functional persistence to construct branching hierarchies requires a process
that considers all centrality and distance thresholds, called bi-filtration. The centrality
controls how much of the core is retained to describe how branches grow and merge, and
the data point distances determine whether points are connected and form a cluster.
Algorithms for extracting persistent structures from bi-filtrations are computationally
expensive (Lesnick & Wright, 2022; Kerber & Rolle, 2021). Their resulting bi-graded
hierarchies are also complicated to work with, as they do not have a compact
representation (Carlsson, 2014) (research into usable representations is ongoing (Botnan
et al., 2022)), and existing visualisations are non-trivial (Lesnick & Wright, 2015; Scoccola
& Rolle, 2023). Alternative strategies simultaneously vary both dimensions in a
single-parameter filtration (Chazal et al., 2009); however, they remain computationally
expensive (Vandaele et al., 2021).

The present article presents an approach that efficiently computes branching
hierarchies and detects branch-based subgroups of clusters in unfamiliar data. Inspired by
Vandaele et al. (2021), we compute the branching hierarchies using graph approximations
of the data. This technique effectively replaces functional persistence’s manual centrality
threshold with a question: which data points should be connected in the approximation
graph? We will use HDBSCAN* (Campello, Moulavi & Sander, 2013; Campello et al.,
2015)—a state-of-the-art density-based clustering algorithm—to answer this question.
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Conceptually, our approach can be thought of as creating a sequence of subgraphs that
progressively include more and more central points and tracking the remaining connected
components. Interestingly, a similar method has been used by Li et al. (2017) to detect
actual branches in 3D models of plants.

Our main contribution is this flare detection approach, implemented as a
post-processing step in the HDBSCAN* implementations by McInnes, Healy & Astels
(2017; hdbscan: https://github.com/scikit-learn-contrib/hdbscan; fast_hdbscan: https://
github.com/TutteInstitute/fast_hdbscan) and as a stand-alone package (pyflasc: https://
github.com/vda-lab/pyflasc). We propose two types of approximation graphs that
naturally arise fromHDBSCAN*’s design and provide a practical centrality measure that is
computable in linear complexity. Combining density-based clustering and flare detection
into a single algorithm provides several attractive properties:

. The ability to detect clusters and their branches.

. Intuitive minimum cluster and branch size parameters rather than density and centrality
thresholds (McInnes & Healy, 2017).

. Low computational cost compared to multi-parameter persistence and other structure
learning algorithms.

. High branch-detection sensitivity and noise robustness by operating on HDBSCAN*-
clusters, thereby suppressing spurious noisy connectivity.

. Branch detection at multiple distance scales because each cluster has a separate
approximation graph.

We call the resulting algorithm flare-sensitive clustering (FLASC) and empirically
analyse its computational cost and stability on synthetic data sets to show that the flare
detection cost is relatively low. In addition, we demonstrate FLASC on two real-world data
sets, illustrating its benefits for data exploration.

The remainder of this article is organised as follows: The ‘Related Work’ section
provides a literature overview of related data analysis algorithms and describes the
HDBSCAN* algorithm in more detail. The ‘The FLASC Algorithm’ section describes how
FLASC builds on HDBSCAN* to detect branches within clusters and discusses the
algorithm’s complexity and stability. The ‘Experiments’ section presents our empirical
analyses demonstrating the algorithm’s computational complexity, stability, and benefits
for data exploration. Finally, the ‘Discussion’ and ‘Conclusion’ sections discuss our results
and present our conclusions. Portions of this text were previously published as part of a
preprint: Bot et al. (2024).

RELATED WORK
The purpose of our work is to detect branching structures within clusters. As such, our
work relates to manifold and structure learning algorithms in general. This section
provides an overview of clustering and related data analysis algorithms. In addition, we
introduce HDBSCAN*, the density-based clustering algorithm we build upon.
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Clustering algorithms
Clustering algorithms have been reviewed on many occasions. For example, Ezugwu et al.
(2022) list twelve other surveys to start their comprehensive review. A thought-provoking
1971 publication critically reviews clustering theory and practice, much of which remains
relevant today (Cormack, 1971). For example, Cormack (1971) explains that clustering
techniques are often based on conflicting ideas of what clusters are due to the absence of an
agreed-upon formal definition. Generally, clusters are described as groups of similar
observations dissimilar to others (Cormack, 1971; Xu & Wunsch, 2005; Ezugwu et al.,
2022). Whether clusters should be spherical or if “multidimensional amoebae” shapes are
acceptable was similarly contested at the time (Cormack, 1971).

Cormack’s categorisation of clustering algorithms is also still relevant. Generally,
clustering algorithms are divided into those that rely on a cluster hierarchy and those that
operate by optimising partitions (Xu & Wunsch, 2005; Ezugwu et al., 2022). Below, we
provide a brief overview of these categories. We refer to Xu &Wunsch (2005) and Ezugwu
et al. (2022) for more elaborate reviews of clustering research.

Hierarchical clustering
Hierarchical clustering algorithms are divided into agglomerative and divisive algorithms
(Cormack, 1971; Xu &Wunsch, 2005; Ezugwu et al., 2022). Agglomerative algorithms build
a dendrogram by successively merging the nearest points and the groups they create. The
similarity between groups is defined by a linkage criterion such as single, average,
complete, or ward linkage (Ward, 1963). We refer to Cormack (1971) for a detailed
explanation of these criteria and references to earlier works. Interestingly, single linkage
hierarchies are closely related to minimum spanning trees, allowing for more efficient
computation (Cormack, 1971) and interpretation in topological data analysis terms
(Carlsson, 2014). Divisive algorithms work in the opposite direction and look for
dissimilarity values at which groups separate.

Density-based clustering algorithms are related to hierarchical clustering because the
principles they rely on are inherently hierarchical (Hartigan, 1975). Density-based clusters
are already described in Cormack (1971) as high-density regions in data space separated by
low-density regions. Recent algorithms generally use density-contour clusters and density-
contour trees formalised by Hartigan (1975) (as explained by Campello et al., 2015). For
example, DBSCAN (Ester et al., 1996) defines clusters as connected components, where
points are connected if they are within a specified distance e of each other and have a
minimum number of neighbours within e. OPTICS (Ankerst et al., 1999) builds on
DBSCAN by creating a reachability plot for visualising density profiles. HDBSCAN*
(Campello et al., 2015; Campello, Moulavi & Sander, 2013) succeeds OPTICS by adapting
DBSCAN with Hartigan’s principles and evaluating the full density-contour tree. Recent
adaptations of these algorithms include block-guided DBSCAN (Xing & Zhao, 2024) and
an approach to extract hybrid DBSCAN–HDBSCAN* clusters from the HDBSCAN*
cluster hierarchy (Malzer & Baum, 2020).
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Partitional clustering
Partitional clustering algorithms interpret clustering as an optimisation problem. For
example, kMeans selects k initial cluster centres, which are then optimised to minimise the
distances between points and their assigned cluster (MacQueen, 1967). A popular
implementation (Pedregosa et al., 2011) supports the kMeans++ initialisation strategy
(Arthur & Vassilvitskii, 2006) and an efficient optimisation algorithm by Lloyd (1982).
Many variants of kMeans exist, such as kMediods (Park & Jun, 2009) and fuzzy c-Means
(Bezdek, Ehrlich & Full, 1984).

Genetic algorithms have also been proposed for clustering (Xu & Wunsch, 2005;
Ezugwu et al., 2022). They provide a search strategy inspired by evolution and natural
selection for optimisation problems in general. Genetic algorithms share common
drawbacks with search algorithms: they do not guarantee optimal solutions, are expensive
to compute, and tend to require careful tuning of their parameters to result in useful
solutions (Xu & Wunsch, 2005).

Other clustering algorithms
Many other clustering algorithms do not fit neatly into the hierarchical or partitional
categories. Spectral clustering is such an algorithm. It uses the eigenvectors of a Laplacian
matrix to project data into a space that reflects the data’s intrinsic structure (Belkin &
Niyogi, 2003). Damle, Minden & Ying (2019) show how clusters can be directly extracted
from this eigenvector space. Other dimensionality reduction algorithms—such as principal
component analysis (PCA) (Pearson, 1901; Hotelling, 1936) and Uniform Manifold
Approximation and Projection (UMAP) (McInnes, Healy & Melville, 2020)—are also used
as preprocessing steps for clustering (as in, e.g., Packer et al., 2019).

The recently proposed clustering by measuring local direction centrality (CDC)
algorithm by Peng et al. (2022) also does not fit into the previous categories. Instead, Peng
et al. (2022) refer to it as a “boundary-seeking” clustering algorithm. CDC computes a
direction centrality metric (DCM) measuring the spread of points’ k-nearest neighbours to
find boundaries between clusters. Intuitively, the neighbours of points within a cluster are
spread out, while the neighbours of points on the boundary mainly lie towards the cluster’s
centre. This idea has previously been used to summarise the structure of weighted graphs
(Vandaele, Saeys & De Bie, 2020). CDC considers the highest DCM points as boundary
points. A manual ratio parameter controls how many points form the boundary. Distances
to the nearest boundary point limit the connectivity used to extract clusters. CDC’s
advantage over density-based clustering is that it can separate clusters connected through a
few short edges (Peng et al., 2022).

Other algorithms are designed for tasks that require specific properties. For example,
Sun et al. (2024) propose TWStream, a three-way clustering algorithm for data streams.
Three-way clustering considers an addition boundary region indicating points with
uncertain cluster membership. Fuzzy clustering algorithms also provide uncertain cluster
memberships, allowing for observations that belong to multiple clusters (Xu & Wunsch,
2005; Ezugwu et al., 2022).
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Böhm et al. (2004) propose another specialised clustering algorithm called 4C. It extracts
points with linear correlations from density-based clusters. Consequently, 4C can detect
flares that are linearly correlated in data space. Tung, Xu & Ooi (2005) expand on 4C with
Curler, an algorithm that builds clusters with non-linear correlations from Gaussian
micro-clusters computed with expectation maximisation (EM) (Dempster, Laird & Rubin,
1977). While Curler can detect non-linear relationships, it is not designed to detect
branches in the micro-cluster graph it creates.

To our knowledge, no other clustering algorithm combines the benefits of FLASC with
the ability to detect branching structures in clusters. In particular, FLASC does not require
the number of clusters to be specified in advance, thereby avoiding a fundamental problem
in evaluating cluster validity (Xu & Wunsch, 2005). In addition, FLASC is robust to noise
and efficient to compute due to its reliance on HDBSCAN*. Furthermore, FLASC provides
stable results across repeated runs and different samples of the same underlying
distribution. Finally, FLASC can detect branches with points that are not linearly
correlated.

Structure learning
Many data types lie not just on a manifold but on a smooth, one-dimensional manifold.
Extracting such manifolds can be essential in unsupervised learning applications. For
example, road networks can be extracted from GPS measurements (Bonnaire, Decelle &
Aghanim, 2022), and cell developmental trajectories can be extracted from gene expression
data (Qiu et al., 2017; Vandaele, Saeys & De Bie, 2020). Algorithms for extracting such
structures are related to our work because the branch-based subgroups we are interested in
can be extracted from them by partitioning the data between their intersections (Chervov,
Bac & Zinovyev, 2020).

Most work on extracting smooth, one-dimensional manifolds is based on principal
curves: a smooth, self-consistent curve that passes through the middle of the data (Hastie
& Stuetzle, 1989). Techniques estimating principal curves, trees, or graphs are often based
on expectation maximisation (Dempster, Laird & Rubin, 1977) and optimise the
one-dimensional manifold directly (e.g., Bonnaire, Decelle & Aghanim, 2022; Mao et al.,
2017). Alternative approaches are more closely related to non-linear dimensionality
reduction (DR) algorithms that model the data’s structure as an undirected graph (e.g.,
Roweis & Saul, 2000; Tenenbaum, de Silva & Langford, 2000; Belkin & Niyogi, 2003; van
der Maaten & Hinton, 2008; McInnes, Healy & Melville, 2020). For example, Vandaele,
Saeys & De Bie (2020) use (manually) pruned minimum spanning trees over edges
weighted by their boundary coefficient to extract a graph’s backbone. Alternatively, Ge
et al. (2011) extract graph skeletons using a Reeb Graph. Reeb Graphs track connected
components’ existence, merges, and splits in level sets of a continuous function defined on
a manifold. Using geodesic distances to an arbitrary eccentric point as the continuous
function makes the Reeb Graph capture the manifold’s skeleton. Interestingly, Mapper—
an algorithm approximating Reeb Graphs (Singh, Memoli & Carlsson, 2007)—has also
been used for detecting branch-based subpopulations (Kamruzzaman, Kalyanaraman &
Krishnamoorthy, 2018).
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There are several similarities between these methods and our work. Like Vandaele,
Saeys & De Bie (2020), our approach detects tree-based branching hierarchies. Like Ge
et al. (2011), our approach is topologically inspired. Where they create a Reeb Graph, we
compute a join tree. The main difference between these methods and our work is their
goal. We aim to identify relevant branch-based subpopulations. Ge et al. (2011), Vandaele,
Saeys & De Bie (2020), and the expectation maximisation-based algorithms explicitly
model the data’s structure, necessitating a higher computational cost.

HDBSCAN*
HDBSCAN* is a state-of-the-art density-based clustering algorithm (Campello, Moulavi &
Sander, 2013; Campello et al., 2015). Informally, density-based clustering specifies clusters
as regions of high density separated by regions of lower density. This formulation does not
limit clusters to convex shapes and provides a natural way to separate noise points from
clusters. The algorithm is well suited for exploring unfamiliar data because HDBSCAN*
does not require the number of clusters or the distance between clusters to be specified in
advance.

Several studies have implemented and adapted the HDBSCAN* algorithm. McInnes &
Healy (2017) improved the algorithm’s computational performance by using space trees to
find the data points’ nearest neighbours and provided an efficient Python implementation
(McInnes, Healy & Astels, 2017). Stewart & Al-Khassaweneh (2022) created a Java
implementation with a novel prediction technique for unseen data points. Jackson, Qiao &
Xing (2018) presented an approximate HDBSCAN* algorithm that uses NN-descent
(Dong, Moses & Li, 2011) to find the nearest neighbours with fast distributed performance.
Malzer & Baum (2020) introduced a cluster selection distance threshold that effectively
creates a hybrid between DBSCAN’s (Ester et al., 1996) and HDBSCAN*’s cluster
selection, improving the algorithm’s performance on data sets with small clusters and a
large density variability. Neto et al. (2021) showed how relative neighbourhood graphs
(RNGs) (Toussaint, 1980) can be used to efficiently compute HDBSCAN* cluster
hierarchies for multiple min. cluster size values. Their follow-up work presented
MustaCHE, a visualisation tool for the resulting meta-cluster hierarchy (Neto et al., 2018).
To our knowledge, no previous study has adapted HDBSCAN* for detecting flares.

Because our work builds on HDBSCAN*, it is relevant to explain how the algorithm
works in more detail. The remainder of this section describes HDBSCAN* following
Campello et al. (2015)’s explanation. We refer the reader to McInnes & Healy (2017) for a
more formal, statistically motivated description.

The HDBSCAN* algorithm
HDBSCAN* is based on density-based clustering concepts pioneered by Wishart (1969)
and formalised by Hartigan (1975). We demonstrate these ideas using a 2D point cloud
adapted from McInnes, Healy & Astels (2022), shown in Fig. 1A. In general, let
X ¼ fx1; . . . ; xNg be a data set consisting of N feature vectors xð�Þ and a distance metric

dðxi; xjÞ. Then, HDBSCAN* estimates the density at point xi as (Campello et al., 2015):
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kkðxiÞ ¼ 1=jðxiÞ; (1)

where the point’s core distance jðxiÞ is the distance to its k-nearest neighbour.
Figure 1B illustrates the example’s density profile as contours in a height map. Density

contour clusters intuitively correspond to peaks in the density profile, for example, the
clusters indicated in colour in Fig. 1C. More formally, the density contour clusters at some
threshold kt are a collection of maximal, connected subsets in a level set fx j kðxÞ � ktg
(Hartigan, 1975). In other words, density contour clusters are the connected components
of points with a density higher than some threshold. Density contour trees capture the
hierarchy in which density contour clusters merge as the density threshold decreases. From
a topological perspective, density contour trees are a join tree of the data’s density profile.

Data sets generally do not have an inherent notion of connectivity between their data
points. Such connectivity is needed to determine whether two points are part of the same
density contour cluster at a threshold kt . HDBSCAN* solves this problem by considering
points to be connected if the distance between them is smaller than or equal to 1=kt . This
solution is possible because density is defined in terms of distance in Eq. (1). HDBSCAN*
uses a mutual reachability distance between points for this purpose, which is defined as
(Campello et al., 2015):

dmreachðxi; xjÞ ¼ max jðxiÞ; jðxjÞ; dðxi; xjÞ
� �

if xi 6¼ xj;
0 otherwise;

�
(2)

where the value of k, as used in j, is specified manually and acts as a smoothing factor for
the density estimation.

We can now recover the density contour tree using the mutual reachability distance to
provide connectivity. The edges that change the connectivity between density contour
clusters are exactly those edges in the data’s Minimum Spanning Tree (MST) (as cited in
Cormack, 1971). HDBSCAN* uses an MST to efficiently compute a single linkage
clustering hierarchy (Sibson, 1973). The resulting dendrogram is simplified using a
manually specified minimum cluster size mc to recover a condensed cluster hierarchy that
resembles the data’s density profile, as shown in Fig. 1D. From the root down, only the

Figure 1 Density-based clustering concepts behind HDBSCAN*. (A) A 2D example point cloud with
varying density adapted fromMcInnes, Healy & Astels’s (2022) online tutorial. (B) Density contours in a
height map illustrate the data’s density profile. Peaks in this density profile correspond to density contour
clusters. (C) Clusters extracted from the density profile by HDBSCAN* indicated in colour. (D) The
density contour tree describes how density contour clusters merge when considering lower density
thresholds. Full-size DOI: 10.7717/peerj-cs.2792/fig-1
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sides of a split containing more than mc points are considered to represent clusters. Sides
with fewer points are interpreted as “falling out of the parent cluster” (McInnes & Healy,
2017) or the cluster disappearing completely.

HDBSCAN* provides two strategies for selecting clusters from the condensed
hierarchy: the excess of mass (EOM) strategy and the leaf strategy (Campello et al., 2015).
The leaf strategy selects all leaf segments in the condensed hierarchy, typically resulting in
multiple small clusters. The EOM strategy maximises relative cluster stability while
preventing any data point from being a member of more than one selected cluster. A
cluster Cj’s relative stability rkðCjÞ is defined as Campello et al. (2015):

rkðCjÞ ¼
X

xi2Cj
k
Cj

k;maxðxiÞ � k
Cj

k;min; (3)

where k
Cj

k;maxðxiÞ is the density at which xi falls out of Cj or Cj separates into two clusters,
and kCi

k;min is the minimum density at which Cj exists. In other words, the stability of a
cluster is the sum of density ranges in which points are part of the cluster, corresponding to
the area of the cluster’s icicle in Fig. 1D. HDBSCAN*’s cluster selection epsilon parameter
can be used to specify a minimum persistence for EOM clusters (Malzer & Baum, 2020).

FLARE-SENSITIVE HDBSCAN*
Our work’s main contribution is a flare detection post-processing step for HDBSCAN*.
This section describes how the post-processing step works and integrates with
HDBSCAN* to form our FLASC algorithm (see Algorithm 1). FLASC starts by evaluating
a flat HDBSCAN* clustering, keeping track of the space tree used in HDBSCAN*
(McInnes, Healy & Astels, 2017; McInnes & Healy, 2017) to find nearest neighbours
efficiently. One noteworthy change fromMcInnes, Healy & Astels (2017) is that we give all
points the 0-label when a single cluster is allowed and selected, and the cluster selection
epsilon parameter (Malzer & Baum, 2020) is not used. This change enables FLASC to
better analyse branching structures in data sets that contain a single cluster. Then, a branch
detection step is performed for each selected cluster Cj, explained in more detail below.

The concepts behind density-based clustering can also be applied to detect branches
within clusters by using an eccentricity measure in place of density, as shown in Fig. 2.
Peaks in an eccentricity profile correspond to branches in the cluster, as shown in Figs. 2B
and 2C. We define eccentricity as the distance to the cluster’s centroid:

eðxiÞ ¼ dðxCj ; xiÞ; (4)

where xCj is the cluster’s membership-weighted average (Fig. 2A). This eccentricity
measure can be computed in OðNÞ. Comparable to density contour clusters, an
eccentricity contour cluster is a maximal, connected subset of points with an eccentricity
above some threshold fx j eðxÞ � etg. As in functional persistence (Carlsson, 2014),
eccentricity thresholds filter out cluster cores, which separates branches and makes them
detectable as connected components.

Like HDBSCAN*, we need connectivity between data points to determine whether two
points are part of the same eccentricity contour cluster at a threshold et . In FLASC, we
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provide two solutions based on the cluster’s density scale in the form of cluster
approximation graphs G

Cj

k : the full approximation graph and the core approximation
graph. Both graphs contain a vertex for each point in the cluster xi 2 Cj but differ in which
edges they include.

The full approximation graph adds all edges with dmreachðxi; xlÞ � d
Cj
max, where d

Cj
max is

the longest distance in the cluster’s minimum spanning tree (MST). The resulting graph
accurately describes the connectivity within the cluster at the density where the last point
joins the cluster. The space tree constructed by HDBSCAN* is used to retrieve these edges
efficiently.

The core approximation graph adds all edges with dmreachðxi; xjÞ � maxfjðxiÞ;jðxjÞg to
the cluster’s MST. The resulting graph accurately describes all connectivity represented by

Algorithm 1 A high-level overview of the FLASC algorithm.

1: function FLASC(X; d)

▹ X is a dataset with N feature vectors xð�Þ and d is a distance metric dðxi; xjÞ.
2: evaluate HDBSCANðX; dÞ and store its internal data structures.

3: for each detected cluster Cj do

4: compute the eccentricity eðxiÞ for all xi 2 Cj.

5: extract the cluster approximation graph G
Cj

k .

6: compute the single linkage clustering hierarchy of G
Cj

k

7: simplify the clustering hierarchy using a minimum branch size mb.

8: extract labels and probabilities for a ‘flat’ clustering.

9: end for

10: combine the cluster and branch labels and probabilities.

11: return the membership labels and probabilities.

12: end function

Figure 2 Density-based clustering concepts behind FLASC. (A) A within-cluster eccentricity e(xi) is
defined for each point xi in cluster Cj based on distances to the cluster’s membership weighted average
shown by the pentagon mark. (B) The cluster’s eccentricity profile visualised as contours on a height map.
Peaks in the profile correspond to branches in the cluster. (C) Branches extracted from the cluster by
FLASC indicated in colour. The cluster’s centre is given its own label. (D) The eccentricity contour tree
describes how branches merge when considering lower eccentricity thresholds.

Full-size DOI: 10.7717/peerj-cs.2792/fig-2
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the MST. This graph can be seen as the cluster’s subgraph from the k-nearest neighbour
graph over the entire data set. HDBSCAN* already extracted these edges when the core
distances were computed, so this approach has a lower additional cost.

We can now recover the eccentricity contour tree as if it were a density contour tree by
applying HDBSCAN*’s clustering steps to the cluster approximation graph with its edges
weighted by minfeðxiÞ; eðxlÞg. This weighting ensures an edge has the eccentricity of the
least eccentric point it connects. Specifically, we use the Union-Find data structure from
McInnes & Healy (2017) to construct a single linkage dendrogram. The resulting hierarchy
is simplified using a minimum branch size mb to recover the condensed branching
hierarchy shown in Fig. 2D.

HDBSCAN*’s EOM and leaf strategies compute branch labels and membership
probabilities from these condensed hierarchies. Points that enter the filtration after the
selected branches have connected—i.e., points with the noise label—are given a single
non-noise label representing the cluster’s centre. Finally, the cluster and branch labels are
combined. By default, points in clusters with two or fewer branches are given a single label
because two branches are expected in all clusters, indicating the outsides growing towards
each other. The label sides as branches parameter can be used to turn off this behaviour
and separate the ends of elongated clusters in the labelling. The cluster and branch
probabilities are combined by taking their average value (Fig. 3A).

Other labelling and probability combinations are possible. For example, the cluster and
branch probability product more strongly emphasises the outsides of the branches
(Fig. 3B). As in McInnes, Healy & Astels (2017), FLASC supports computing branch
membership vectors that describe how strongly a point xi 2 Cj belongs to each branch
Bb � Cj. These membership values are based on the geodesic distances in the cluster

approximation graph G
Cj

k : dgeoðrBb ; xiÞ, where rBb is the branch’ root, i.e., the point closest
to the branch’s membership-weighted average xBb . The branch membership vectors can be
used to label central points by the closest branch root, as in Fig. 3C. Alternatively, a
softmax function can be used to convert dgeoðrBb ; xiÞ into the membership probabilities:

pðxi;BbÞ ¼ ecbðxi;BbÞ=tP
Bl2Cj

ecbðxi;BlÞ=t ; (5)

where cbðxi;BbÞ ¼ 1=dgeoðrBb ; xiÞ and t is a temperature parameter (Fig. 3D).
Low persistent branches can be ignored using a branch selection persistence parameter,

analogous to HDBSCAN*’s cluster selection epsilon parameter (Malzer & Baum, 2020). As
branches do not necessarily start at zero centrality, branch selection persistence describes
the minimum eccentricity range rather than a single eccentricity threshold value. The
procedure that applies the threshold simplifies the condensed branch hierarchy until all
leaves have a persistence larger than the threshold.

Stability
Stability is an important property of algorithms, indicating that their output differs only
slightly when the input changes slightly. Two notions of stability are relevant for FLASC:
(1) the algorithm has to provide similar results when run repeatedly on (different) samples
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of an underlying distribution, and (2) the detected branch hierarchies have to represent the
clusters’ underlying topology accurately. The deterministic density-based design of FLASC
provides stability in the first sense.

Vandaele et al. (2021) analysed the second notion of stability for graph-based branch
detection, explaining that the graph approximation should accurately represent the
underlying shape and the graph-based centrality function should accurately describe the
points’ centrality in a cluster’s metric space ðCj; dmreachÞ. For the normalised centrality used
by Carlsson (2014), Vandaele et al. (2021) show that the bound on the bottleneck distances
between true and empirical persistence diagrams is tight if the metric distortion induced by
the graph and its maximum edge weight are small.

Both the full and core cluster approximation graphs used by FLASC satisfy the low
maximum edge weight requirement, as their largest edge weight is the minimum mutual
reachability distance required for all points in the cluster to be connected in the graph.
Additionally, the metric distortion should be small as only edges in the local
neighbourhood of data points are included because the clusters do not contain noise
points.

Our eccentricity function (Eq. (4)) also meets Vandaele et al.’s requirement to be a
c-Lipschitz-continuous function when considered over the cluster centrality graph’s edges:

jmaxfeðxiÞ; eðxjÞg �maxfeðxkÞ; eðxlÞgj � c dmreachðxi; xlÞ; (6)

where c is a constant describing the continuity, ðxi; xjÞ 2 G
Cj

k , ðxk; xlÞ 2 G
Cj

k , and the
mutual reachability between xi and xl is the largest of the four points. This property,
however, does not guarantee that the detected hierarchy accurately represents the cluster’s
topology because Eq. (4) is sensitive to an interplay between the cluster’s shape and the
position of its centroid. Consider, for example, a U-shaped cluster. Topologically, this
cluster is equivalent to an I-shaped cluster. Equation (4), however, will contain two local
eccentricity maxima and three local eccentricity minima because the centroid is located
between the U-shape’s arms. As a result, the detected branching hierarchy is
indistinguishable from a Y-shaped cluster. We aim to show that the current approach
strikes a good balance between computational cost and stability in the experiments
presented in the next section.

Figure 3 Different ways to combine cluster and branch membership probabilities. The cluster and
branch probability (A) average and (B) product are visualised with desaturation. (C) Points labelled by
the geodesically closest branch root—i.e., the point closest to the branch’s weighted average—and
desaturated as in (A). (D) Weighted branch membership for the orange branch is visualised by trans-
parency. Branch memberships are computed from the traversal distance to the branch’s root.

Full-size DOI: 10.7717/peerj-cs.2792/fig-3
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Computational complexity
The algorithm’s most computationally expensive steps are constructing the full cluster
approximation graphs and computing their single linkage hierarchies. Naively, the
worst-case complexity for creating a cluster approximation graph is Oðn2cÞ, where nc is the
number of points in the cluster. Usually, the average case is much better because the
approximation graphs are rarely fully connected. After all, HDBSCAN*’s noise
classification limits the density range within the clusters. Furthermore, the space tree
re-used from the HDBSCAN* clustering step provides fast asymptotic performance for
finding the graph’s edges. The exact run-time bounds depend on the data properties. They
are challenging to describe (as explained inMcInnes & Healy, 2017). However, an average
complexity proportional to Oðne logNÞ is expected, where ne is the number of edges in the
approximation graph. Computing single linkage hierarchies from the cluster centrality
graphs is possible in OðneaðneÞÞ using the Union-Find implementation from McInnes,
Healy & Astels (2017) (a is the inverse Ackermann function). LikeMcInnes &Healy (2017),
we feel confident that FLASC achieves sub-quadratic complexity on average, which we
demonstrate in the ‘Experiments’ section.

EXPERIMENTS
This section presents two synthetic benchmarks and two exploration use cases on
real-world data sets to demonstrate FLASC’s properties. The first benchmark compares
FLASC’s branch detection ability to other clustering algorithms and demonstrates that
FLASC provides similar output for different samples of the same underlying distribution.
The second benchmark compares FLASC’s computation cost to other clustering
algorithms to show that the branch-detection post-processing step is computationally
cheap compared to the initial clustering step. Finally, the two exploration use cases
demonstrate how detecting branch-based subgroups and branch hierarchies can help
understand the structure of real-world datasets.

Branch detection ability
This first synthetic benchmark compares the branch detection ability of several clustering
algorithms. The benchmark is designed to answer the following research question: how
well can FLASC detect branches compared to other clustering algorithms?

Six algorithms with Python implementation were selected from different clustering
algorithm categories: HDBSCAN* (Campello, Moulavi & Sander, 2013;McInnes & Healy,
2017) represents density-based clustering algorithms and serves as a baseline; Single
Linkage Clustering (SLINK) (Sibson, 1973) represents hierarchical clustering algorithms;
kMeans (MacQueen, 1967; Lloyd, 1982; Arthur & Vassilvitskii, 2006) represents partitional
clustering algorithms; Spectral clustering (Damle, Minden & Ying, 2019) represents
graph-based clustering algorithms; and CDC (Peng et al., 2022) represents
boundary-seeking clustering algorithms4.

We expect that kMeans, Spectral clustering, CDC, and FLASC will be able to detect
branching structures to varying degrees. In contrast, we expect SLINK and HDBSCAN*
will struggle due to the lack of low-density regions separating the branches from the

4 There was no ready-to-use Python
implementation for CDC at the time of
testing. However, the publicly available
code from Peng et al. (2022), while not
optimised, was easy to integrate in our
benchmark.
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clusters. The following two subsections explain how the data for this benchmark was
generated and how we measured the algorithms’ branch detection accuracies, respectively.

Datasets
The datasets for this benchmark contain four star-shaped clusters and uniformly
distributed noise points (Fig. 4). Each star is parameterised by its number of branches (3, 4,
5, 10), branch lengths (1:8, 2:3, 2:0, 3:5), noise levels (0:2, 0:2, 0:02, 0:1), and points per
branch (40, 150, 20, 100). The stars were generated and positioned in 2D. Branches were
evenly spread and contain points exponentially spaced from the centre outwards, ensuring
density is highest at the stars’ centres and lowest at the branch ends. This configuration
prevents the branches from reliably containing local density maxima. Normally distributed
noise (l ¼ 0) was added to the points in 2, 8, or 16 dimensions. The noise level was
converted to a standard deviation r ¼ nr

ffiffiffiffiffiffiffiffi
1=d

p
to correct for the number of dimensions d.

Uniformly distributed noise points were added to simulate outliers. The number of
uniform noise points was 5% of the clean data set size. All structure is present in the first
two dimensions. The additional dimensions contain only noise.

Figure 4 Clusters found by the algorithms using optimal parameter values (Table 1) in (A) 2D, (B)
8D, and (C) 16D. Note that all structure is contained in the first two dimensions, the other dimensions
contain only noise. Colour indicates the detected clusters. Hues are repeated when more than 20 clusters
are detected, so points with the same colour in different parts of the data can represent different clusters.
The CDC implementation only supports 2D data. Full-size DOI: 10.7717/peerj-cs.2792/fig-4
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Evaluation and settings
Five data sets were sampled in 2D, 8D, and 16D to evaluate the algorithms. A grid search
was used to find optimal parameter values for each algorithm, ensuring they are compared
on their best performance. For SLINK, Spectral clustering, and kMeans, the number of
clusters was evaluated between 4 and 27 in six linear steps, with 23 being the true number
of subgroups in the data. Spectral clustering was evaluated with QR factorisation to extract
clusters from the eigenvalues (Damle, Minden & Ying, 2019). For CDC, the ratio
parameter was evaluated between 0:5 and 0:95 in five linear steps. CDC’s num. neighbours
and FLASC and HDBSCAN’s min. samples were evaluated between 2 and 20 in six linear
steps. FLASC and HDBSCAN’s min. cluster size was evaluated between 20 and 100 in ten
exponentially spaced steps. FLASC’s min. branch size was evaluated between 3 and 50 in
ten linear steps. FLASC and HDBSCAN’s cluster selection method was evaluated with both
the EOM and leaf strategies. FLASC’s branch selection method was set to the value of
cluster selection method. Finally, FLASC was evaluated with the full and core cluster
approximation graphs.

The resulting data point labels were stored for each evaluation and used to compute the
Adjusted Rand Index (ARI) (Hubert & Arabie, 1985). ARI values describe the agreement
between ground truth and assigned labels adjusted for chance. We selected the parameter
values that maximised the average ARI over all five data sets. Table 1 shows the selected
optimal parameter values for each algorithm.

Results
Figure 4 shows which clusters the algorithms detected with their optimal parameters
(Table 1). The figure also lists the average ARI scores over the five generated data samples.
Only FLASC achieved ARI scores greater than 0:61 and assigned each branch to a distinct
group. The other algorithms achieved ARI scores lower than 0:36. SLINK and
HDBSCAN* assigned whole stars to single groups, thereby not detecting most branches.
CDC, kMeans, and Spectral clustering did assign multiple groups to the stars, but these
groups did not correspond to the branches. Some groups spanned multiple branches, and
some branches were given multiple groups. Generally, these findings agree with our
expectation that clustering algorithms struggle to detect branches as clusters and highlight
the benefit FLASC brings for detecting this type of pattern.

Next, we explore FLASC’s parameter sensitivity using results from the 2D grid search.
Figure 5 shows the average ARI curves for the min. samples (k), min. cluster size (mc), and
min. branch size (mb) parameters. The curves do not show the optimal performance that
can be reached by combining the best parameter values—as indicated by the black crosses
—because the averages are computed over five data samples and the evaluated (non-
optimal) values for the other parameters. Instead, the curves summarise how performance
changes by varying the parameters, indicating the algorithm’s sensitivity. Shaded areas
around the curves indicate a 95% confidence interval around means.

The average ARI curve for min. samples is shown in Fig. 5A. The curve contains a peak
around k ¼ 10, slightly higher than the optimal value of k ¼ 6. This pattern indicates that
too large values of k reduce the algorithm’s performance. Generally, k should be set so that
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the k-closest neighbours of points within clusters are noticeably closer than the k-closest
neighbours of noisy points between clusters. Higher values reduce variation and peaks in
the modelled density profile, leading to larger clusters. In addition, higher values increase
connectivity in the cluster approximation graphs, which reduces the algorithm’s sensitivity
to branches. As a result, we tend to set k between 2 and 25.

The curves for min. cluster size and min. branch size are shown in Figs. 5B and 5C,
respectively. For these parameters, the averages were computed with k ¼ 6. Both
parameters show stable performance once they reach a large enough value to exclude noisy

Table 1 Optimal parameter values per algorithm as found by the grid search described in the
‘Evaluation and settings’ sub-section.

Algorithm Parameter Dimensions

2 8 16

FLASC Approximation graph Core Core Core

Cluster selection method Leaf Leaf Leaf

Min. samples (k) 6 6 2

Min. cluster size (mc) 70 100 84

Min. branch size (mb) 10 8 14

HDBSCAN* Cluster selection method EOM EOM Leaf

Min. samples (k) 2 20 2

Min. cluster size (mc) 20 20 58

CDC Num. neighbours (k) 2 N/A N/A

Ratio 0.61 N/A N/A

kMeans Num. clusters 27 27 27

SLINK Num. clusters 27 27 27

Spectral Num. clusters 27 23 18

Note:
These parameter values were used to compare the algorithms in this benchmark. The CDC implementation only
supports 2D data.

Figure 5 Average ARI curves for FLASC’s main parameters as achieved in the 2D parameter grid
search: (A) min. samples, (B) min. cluster size, and (C) min. branch size. The ARI averages were
computed over five repeated runs and the evaluated (non-optimal) values for the other parameters. As a
result, the averages do reach the optimal performance indicated by the black crosses. Shaded areas around
the curves indicate 95% confidence intervals around the means. The legend indicates the colour and
stroke used to encode the full and core approximation graphs and EOM and leaf cluster selection stra-
tegies. Full-size DOI: 10.7717/peerj-cs.2792/fig-5
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clusters (mc > 50) and branches (mb > 3). Similarly, both parameters should not be set too
large, as that would exclude true clusters and branches (mb < 37). Generally, these
parameters should be set to the smallest sizes one is interested in finding. The exact sizes
vary on a case-by-case basis and may require some domain knowledge to deduce. When
larger thresholds are used, the cluster and branching hierarchies contain fewer and larger
leaf clusters. So, these parameters can fine-tune clustering results when using the leaf
selection strategy.

The different cluster approximation graphs and cluster selection methods have similar
curves in Fig. 5. We provide the following guidelines for tuning these parameters. The core
cluster approximation graph is appropriate when clusters span large density ranges or
contain branching structures at multiple densities. The full approximation graph is more
suitable for finding branches at the lowest density within a cluster. The leaf selection
strategy works well for finding all density peaks in the data. It tends to find many smaller
clusters and can indicate many points as noise. The EOM strategy is more suitable for
finding larger clusters containing multiple density peaks. The additional selection
parameters can filter out low-persistent clusters and branches when needed.

Finally, we explore FLASC’s practical stability in the sense of its output similarity on the
five sampled datasets. The output similarity is explored through unweighted average
positions of the detected groups. We refer to these positions as the groups’ centroids. For
each ground-truth centroid, we selected the closest centroid FLASC detected with its
optimal parameters (Table 1). The centroids are shown in Fig. 6, with the black crosses
indicating the ground-truth centroids and the coloured dots indicating their closest
detected centroid. The 95 percentile distance to the closest detected centroid is shown as a
line to indicate the centroids’ spread and describe the variation in FLASC’s output.
Generally, the detected centroids are located close to the ground-truth centroids, and the
95 percentile distances are considerably smaller than the longest branches.

Computational performance
Now, we turn to the computational performance. This second synthetic benchmark is
designed to answer the following research question: how does FLASC’s compute cost
compare to other clustering algorithms?

The algorithms selected in the previous benchmark are compared on their run time
scaling over the data set size and number of dimensions. Given the challenges in accurately
benchmarking computational performance (Kriegel, Schubert & Zimek, 2017), we limit this
comparison to the trends in run time scaling over data set size and number of dimensions
for specific implementations. The following two subsections explain how the data for this
benchmark was generated and how we measured the algorithms’ compute cost.

Datasets

A Gaussian random walk process was used to generate data sets that contain non-trivially
varying densities and branching structures in a controlled environment. For a space with d
dimensions, c uniform random starting points were sampled in a volume that fits five times
the number of to-be-generated clusters. Then, five 50-step random walks were sampled
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from each starting point. Every step moved along one of the dimensions with a length
sampled from a normal distribution (l ¼ 0, r ¼ 0:1). The resulting point clouds have
more varied properties than the Gaussian blobs used in a run-time comparison of
HDBSCAN* (McInnes & Healy, 2017). Note that the number of (density-based) clusters in
each point cloud may differ from the number of starting points c due to possible overlaps
or sparse regions in the random walks. This data generation process also ensures that
structure is present in all d dimensions, reducing the space trees’ effectiveness in
accelerating HDBSCAN* and FLASC. Consequently, the detected scaling trends do not
overestimate the algorithms’ performance.

Evaluation and settings
The random walk data sets were generated with varying numbers of dimensions (2, 8, 16)
and starting points (2 to 800 in 10 exponentially spaced steps). Ten data sets were sampled
for each parameter combination, resulting in 300 point clouds.

The algorithms were compared using Python implementations: HDBSCAN* version
0.8.405 (McInnes, Healy & Astels, 2017); kMeans, SLINK and Spectral clustering from
Scikit-Learn version 1.5.2 (Pedregosa et al., 2011); and FLASC version 0.1.36. The CDC
implementation is included in FLASC’s repository.

HDBSCAN* and FLASC were evaluated with min. samples k ¼ 5, min. cluster size
mc ¼ 100, min. branch size mb ¼ 20. These parameter values allow the algorithms to find
clusters and branches that are slightly smaller than how they are generated. kMeans,
SLINK, and Spectral clustering were evaluated with k ¼ c, effectively attempting to recover
one cluster for each starting point. CDC was configured to use k ¼ 10 and a ratio of 0:1.
Multiprocessing support was turned off for all algorithms to better describe the algorithms’
intrinsic complexity.

Time measurements were performed with a 5:4 GHz AMD R7 7700X processor. Each
algorithm was evaluated on each data set once, recording the run time and number of
detected clusters. The smallest data set for which an algorithm required more than 30 s was

Figure 6 Output similarity of FLASC with optimal parameters (Table 1) on the five data samples in (A) 2D, (B) 8D, and (C) 16D. Unweighted
average positions (centroids) for the ground truth groups are indicated by black crosses. The closest centroids FLASC detected are drawn as coloured
dots for each ground truth group. The 95 percentile distance between the ground truth centroids and their closest detected centroids is shown as a
line in an annotation in the bottom right of each plot. The lines indicate that the detected centroids’ spread is considerably smaller than the largest
branch lengths. Full-size DOI: 10.7717/peerj-cs.2792/fig-6

5 HDBSCAN* was evaluated at commit
2fada32 containing changes to be
included in version 0.8.41.

6 FLASC was evaluated at commit
9e9cb13 containing changes to be
included in version 0.1.4.
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recorded for each number of dimensions. Larger data sets were not evaluated for those
algorithms.

Results
Figure 7 shows the measured run times in seconds over the data set size and number of
dimensions. Quadratic regression lines are drawn to visualise the algorithms’ scaling
behaviour. The shaded areas around each line indicate the regression’s 95% confidence
interval.

There are several patterns of note in Fig. 7. CDC and Spectral clustering show the
steepest quadratic scaling trends in all evaluated dimensions. SLINK exhibits a shallower
quadratic scaling trend. kMeans achieved the shallowest scaling trend in all three
conditions. HDBSCAN* and both FLASC variants regression lines fall between SLINK and
kMeans. In the two dimensional case, their trends are most similar to kMeans. As more
dimensions are added, their trends approach SLINK’s trend. This pattern is expected
because this dataset is designed to challenge the algorithms’ use of space trees to accelerate
the clustering process.

The difference in compute time between the two FLASC variants and HDBSCAN* is
small compared to the total compute time, indicating that the branch detection
post-processing step is relatively cheap compared to the initial HDBSCAN* clustering
step, making it a viable option in practical data analyses workflows.

Use case: diabetes types
Next, we present a data exploration case in which identifying branch-based subgroups is
essential to understand the data. Reaven & Miller (1979) attempted to clarify a
“horseshoe”-shaped relation between glucose levels and insulin responses in diabetes
patients. Three of the metabolic variables they measured were very informative in a 3D
scatterplot, showing a dense core with two less-dense branches, which they considered
unlikely to be a single population. Seeing that plot was instrumental in their understanding
of the data (Miller, 1985).

Figure 7 Benchmark run times (s) over the data set size and number of dimensions: (A) 2D, (B) 8D,
and (C) 16D. The algorithms’ scaling trends are visualised by quadratic regression lines relating compute
time to the number of points. The shaded areas around each line indicate the regression’s 95% confidence
interval. Full-size DOI: 10.7717/peerj-cs.2792/fig-7
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More recently, Singh, Memoli & Carlsson (2007) used the same data set to demonstrate
how Mapper visualises these flares without manually specifying which dimensions to plot.
Their analysis leveraged the flares’ lower density, allowing them to be detected with a
density-based lens function instead of a centrality measure. In general, though, local
density minima do not always relate to branches, especially for data sets with multiple
branching clusters.

In this use case, we show how FLASC can detect the branching pattern in this data set
and classify the observations by their branch without manually extracting the flares from a
visualisation.

Evaluation and settings

The data set—obtained from Andrews & Herzberg (1985)—contains five variables
describing 145 subjects: the relative weight, the plasma glucose level after a period of
fasting, the steady-state plasma glucose response (SSPG), and two areas under a curve—
one for glucose (AUGC) and one for insulin (AUIC)—representing the total amount
observed during the experimental procedure described in Reaven & Miller (1979). All five
variables were z-score normalised and used to compute the Euclidean distance between
subjects.

Both FLASC and HDBSCAN* were evaluated on the normalised data set. FLASC was
tuned to find a single cluster with multiple branches by setting min. samples k ¼ 5, min.
cluster size mc ¼ 100, min. branch size mb ¼ 5, and enabling allow single cluster.
HDBSCAN* was tuned to find multiple clusters with min. samples k ¼ 5 and min. cluster
size mc ¼ 10.

Results
Figure 8 shows the detected subgroups encoded using colour on the 3D scatterplot.
FLASC’s classification distinguishes the branches from the central core (Fig. 8A). The
algorithm also finds a low-persistent flare representing the central core’s bottom. This flare
could be ignored by specifying a persistence threshold. In contrast, HDBSCAN*’s
classification does not find the branches (Fig. 8B). Instead, it finds part of the left branch as
a small low-persistent cluster and merges most of the right branch with the central core.

This case study demonstrated how FLASC detects branch-based subgroups that do not
contain local density maxima without having to specify the relevant features in advance or
extract the subgroups visually. Practically, FLASC would have made it easier for
researchers to detect the three groups in this data set, which was relevant for understanding
diabetes and its causes.

Use case: cell development
Finally, we demonstrate a use case where detecting a branch hierarchy is important for
understanding the data set. Specifically, we analyse a cell development atlas for the C.
Elegans—a small roundworm often used in biological studies—by Packer et al. (2019).
They analysed gene expressions in C. Elegans embryos to uncover the trajectories along
which cells develop. Broadly speaking, this data set describes what happens in cells as they
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develop from a single egg cell into all the different tissues within fully grown C. Elegans
worms.

After pre-processing, the data set appears to contain clusters and branching structures
when viewed in a 3D projection (Packer et al., 2019). In this use case, we demonstrate that
FLASC’s branch hierarchy provides interesting information about the data set’s structure
even when the main subgroups can be detected as clusters.

Evaluation and settings
The data and pre-processing scripts were obtained from Monocle 3’s (Cao et al., 2019)
documentation (Pliner, Kouhei & Trapnell, 2022). The pre-processing stages normalise the
data, extract the 50 strongest PCA components, and correct for batch effects using
algorithms from Haghverdi et al. (2018).

HDBSCAN* was evaluated on the pre-processed data with an angular distance metric
because its optimised code path does not support the cosine distance metric. HDBSCAN*
was tuned to find multiple clusters with min. samples k ¼ 5 and min. cluster size mc ¼ 50.

FLASC was evaluated on a 3D UMAP (McInnes, Healy &Melville, 2020) projection that
denoised the data set. Using three instead of two dimensions reduces the chance of branch
overlaps in the embedding. UMAP used the angular distance metric to find 30 nearest
neighbours. The disconnection distance parameter was set to exclude the 16-percentile least
dense points detected by HDBSCAN*, thereby preventing shortcuts across the data’s
structure. The largest connected component in the resulting UMAP graph was projected to
3D while varying the repulsion strength to avoid crossings and ensure connected
structures remained close. The same layout procedure was used to project the graph to 2D
to visualise the data.

FLASC was tuned to detect the branching hierarchy of the dataset as a single cluster by
selecting min. samples k ¼ 3, min. cluster size mc ¼ 500, min. branch size mb ¼ 50,
enabling allow single cluster. Branches were detected using the core cluster approximation
graph and selected using the leaf strategy.

Figure 8 Subgroups detected by (A) FLASC and (B) HDBSCAN* shown in a 3D scatterplot over the
area under the plasma glucose curve (AUGC), the area under the insulin curve (AUIC), and the
steady state plasma glucose response (SSPG) from Reaven & Miller (1979). Grey points were classi-
fied as noise. Full-size DOI: 10.7717/peerj-cs.2792/fig-8
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Results
Figures 9A and 9B show 2D UMAP projections of the data. Data points are coloured to
indicate the detected clusters and branches, respectively. There are two main differences
between the branches and the clusters. Firstly, two regions where branches merge are
detected as clusters, namely clusters 10 and 14. These regions do not have a distinct branch
label but are identifiable in the branch hierarchy (Fig. 9D). Secondly, only branch 13 was
not detected as a cluster in this dataset, indicating that the branches represent regions with
high local density. Considering that the branches correspond to developmental end-states,
it is unsurprising that local density maxima occur within them. One could imagine that the
variation in gene expression is higher during development and that fully developed cells
are observed more frequently. Both scenarios could cause these local density maxima.

More interesting are the differences between the cluster and branch hierarchies. Figures
9C and 9D visualise these hierarchies as an icicle plot. These designs are adapted from
McInnes, Healy & Astels (2017) to indicate the selected branches and clusters using colour
and a label. Segment widths encode the number of points in the tree below the segment.
The hierarchies highlight that while HDBSCAN* detects the branches as clusters, it does
not capture the trajectories. For example, the hierarchy does not reflect that clusters 0 and
1 connect to the whole data set through cluster 10. FLASC’s branch hierarchy, on the other

Figure 9 Results for the single cell gene expression use case using 50 dimensional pre-processed data
from Packer et al. (2019). (A) 2D UMAP projection (McInnes, Healy & Melville, 2020) coloured by
HDBSCAN* clusters detected in the pre-processed data. (B) The same projection coloured by FLASC
branches detected from a 3D UMAP projection. (C) and (D) show cluster and branch hierarchies,
respectively. The icicle plots were adapted from McInnes, Healy & Astels (2017) to indicate selected
clusters with colour and labels. Full-size DOI: 10.7717/peerj-cs.2792/fig-9
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hand, more closely resembles the data’s shape. For example, the hierarchy describes the
embedding’s left and right sides with five and six branches, respectively. Generally,
branches that merge into the cluster near each other are also close in the branch-condensed
tree. The branch-condensed tree captures only the most eccentric connection for branches
connected to multiple other branches in the cluster approximation graph.

This use case demonstrated that FLASC’s branch hierarchy provides information about
the data’s shape that may not be obvious from cluster hierarchies. In addition, we found it
beneficial to suppress noisy connectivity using dimensionality reduction techniques when
detecting branches.

DISCUSSION
Two synthetic benchmarks and two real-world use cases were performed to demonstrate
FLASC and its properties. We start our discussion by providing remarks for each
benchmark and use case.

The first benchmark compared FLASC to other clustering algorithms in their ability to
detect branches that do not contain a density maximum. The benchmark quantified
performance using the Adjusted Rand Index (ARI) (Hubert & Arabie, 1985) and explored
FLASC’s output similarity on samples of the same underlying distribution. Of the
evaluated algorithms, only FLASC reliably detected the branches, indicated by ARI scores
greater than 0:60. Spectral clustering and kMeans were the only other algorithms to reach
ARI scores above 0:30. However, these algorithms have practical limitations for
exploratory data analysis workflows. For example, both require specifying the number of
clusters a priori, which is challenging for unfamiliar data. In addition, spectral clustering is
computationally expensive, and kMeans can produce different results on repeated runs.
FLASC does not have these limitations, as demonstrated by the centroid spread (Fig. 6)
and the second benchmark.

This first benchmark could be expanded to investigate how well FLASC deals with
unequal branch lengths. The weighted average data point—and eccentricity measure as a
result—may not accurately reflect the centre of such clusters. Consequently, FLASC’s
branch hierarchy will be a less accurate representation of the underlying topology but
should still detect the branches. Monocle 3 (Qiu et al., 2017) deals with this problem by
manually selecting the centre point in a 2D projection (Pliner, Kouhei & Trapnell, 2022).
Other eccentricity measures discussed below could also improve FLASC’s performance in
such cases.

The computational performance benchmark demonstrated that FLASC’s
computational cost scales similarly to HDBSCAN*. Additionally, their scaling trends
become more similar with more dimensions. kMeans provides even quicker run times but
is limited in usability due to its lower stability and predefined number of clusters. The other
evaluated algorithms were not competitive in terms of run time. The benchmark provides a
pessimistic view of FLASC and HDBSCAN* for practical use because multiprocessing was
turned off, and the data was designed to be challenging for the space trees that accelerate
these algorithms. On the other hand, extracting the full cluster approximation graph can be
more expensive than reported for clusters that span larger density ranges.
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The diabetes types use case demonstrated a real-world dataset in which branches that
are not detectable as density-based clusters represent meaningful groups in the data.
FLASC is designed to detect such branches without knowing they exist a priori or manually
extracting them from a visualisation. The cell development use case showed how FLASC
behaves on a more complex data set. Here, the groups were detectable by both FLASC and
HDBSCAN*. FLASC still benefits exploration because its branch hierarchy describes the
data’s shape. Structure learning algorithms, as described in Section ‘Related Work—
Structure Learning’, can provide even more information about the data’s shape at more
computational costs.

FLASC’s practical value
As demonstrated by the cell development use case, the argument that branches are not
detectable as clusters only applies when they do not contain local density maxima.
Subpopulations tend to have some location in feature space where observations are more
likely. These locations are detectable as local density maxima, allowing data points
surrounding them to be classified as a particular cluster. If one is only interested in the
existence of subgroups, then FLASC only provides a benefit on datasets where relevant
subgroups are sparse (e.g., the diabetes types use case). If one is also interested in the
clusters’ shapes, then FLASC’s branch hierarchy provides information that cannot be
extracted from a cluster hierarchy. We envision FLASC as a valuable tool for exploring
unfamiliar data, providing guidance into which subpopulations exist and informing
follow-up questions. Knowing that a cluster may represent multiple subgroups can be very
relevant.

Alternative eccentricity metrics
The presented FLASC algorithm uses a geometric distance-to-centroid metric to describe
how eccentric data points are within a cluster (Fig. 2A, Eq. (4)). An interesting alternative
is an unweighted geodesic eccentricity, which measures path lengths between each data
point and the cluster’s root point in the cluster approximation graph. Here, the root point
can be chosen as the data point closest to the cluster’s centroid, as we did for the
branch-membership vectors (Fig. 3). Such a geodesic eccentricity would agree with the
notion that distances in high dimensional data may not accurately reflect distances along
the intrinsic structure of a data set, which was one of the motivations for Reversed Graph
Embeddings (Mao et al., 2017). It would also be closer to the maximum shortest-path
centrality metric used by Vandaele et al. (2021).

Several trade-offs between the geometric and geodesic eccentricity metrics made us
choose the geometric one:

. Computing the geodesic eccentricity is more expensive because it requires an additional
traversal over the entire cluster approximation graph. The extra cost, however, should be
low compared to other parts of the algorithm.

. The resolution of the unweighted geodesic eccentricity is lower, as it expresses the
number of edges to the root point. As a result, zero-persistent branches are more likely to
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occur. In addition, it reduces the detectability of small branches that are well connected.
On the other hand, that can be seen as beneficial noise suppression. In addition, the
branch selection persistence parameter becomes more interpretable and would represent
the traversal depth of a branch in the approximation graph.

. The cluster’s centroid may lie outside the cluster, resulting in a root point and
eccentricity values that do not accurately describe its centre. For example, imagine a
U-shaped cluster. The centroid would lie in between the two arms, and the root would lie
in one of the arms. As a result, the geodesic metric would find one smaller and one larger
branch rather than two equal branches. On the other hand, the geometric eccentricity
finds the two branches and the connecting bend as three separate groups. Confusingly, it
also contains two regions with a local eccentricity maximum, which FLASC gives a single
label. Placing the root at an arbitrary eccentric location, as in Ge et al. (2011), avoids this
issue but necessitates a different interpretation of the branch hierarchy and membership
probability.

FLASC’s general process can also be used with measures that capture other aspects than
eccentricity. At its core, FLASC consists of two filtrations, one to determine the
connectivity between data points and one to analyse a signal on the resulting graph. The
process would then describe how many distinct local minima (or maxima) of the measure
exist within the clusters. The resulting interpretation does not have to relate to the cluster’s
shape. For example, one could use the boundary coefficient (Vandaele, Saeys & De Bie,
2020) or direction centrality metric (Peng et al., 2022) to create an efficient and principled
boundary-seeking clustering algorithm.

One could even interpret FLASC as two applications of HDBSCAN*: one over the
density and one over the eccentricity. This perspective raises a possible improvement to the
algorithm by translating the mutual reachability concept to the centrality metric. The idea
of ‘pushing away points in low-density regions’ can also be applied to the centrality,
emphasising the centrality difference between the centre and branch ends. Additionally,
smoothing the centrality profile by incorporating neighbouring values could improve the
algorithm’s robustness to noise. The additional computational cost should be low, as
points’ neighbours are already known when the centrality is computed. Another way to
improve noise robustness could be to implement themutual k-nearest neighbour approach
Dalmia & Sia (2021) used to improve cluster separation in UMAP projections. It would
provide a subgraph of the core approximation graph that better reflects the cluster’s
connectivity in high dimensional data sets. We leave evaluating these ideas for future work.

Visually summarising data’s shape
A strength of Mapper (Singh, Memoli & Carlsson, 2007) and Reversed Graph Embeddings
(Mao et al., 2017) is that they can summarise the data’s shape using intuitive visualisations.
While FLASC’s branch-condensed tree provides some information about the clusters’
shapes, interpreting the shape is not trivial. Studying how well two-dimensional layouts of
FLASC’s cluster approximation graphs work as shape summarising visualisations would be
an interesting future research direction. These graphs directly encode the connectivity used

Bot et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2792 25/31

http://dx.doi.org/10.7717/peerj-cs.2792
https://peerj.com/computer-science/


by the algorithm. Another benefit is that—unlike in Mapper—all (non-noise) data points
are represented in the graphs once. Directly visualising the graphs, however, probably does
not scale to larger sizes in terms of computational cost for the layout algorithm and visual
interpretability. Ways to summarise the networks would have to be found, which could be
based on kMeans centroids like in Reversed Graph Embeddings (Mao et al., 2017), local
density maxima in the cluster, or a Reeb-Graph approach similar to Ge et al. (2011).

CONCLUSION
We presented the FLASC algorithm that combines HDBSCAN* clustering with a
branch-detection post-processing step. We have shown that the algorithm can detect
branch-based subgroups that do not contain local density maxima in real-world data
without specifying features of interest or manually extracting the branches from a
visualisation. In addition, we demonstrated that branching hierarchies found by FLASC
can provide information about the data’s shape that is not present in HDBSCAN*’s cluster
hierarchy. Two synthetic benchmarks demonstrated FLASC’s branch detection ability and
indicated FLASC’s computational performance scales similarly to HDBSCAN*.
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