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1. Introduction - Problem statement - Proposed solution

Many activity based models specify locations at the traffic analysis zone (TAZ) resolution. In city scale travel mod-
els and especially when investigating slow and station-based shared modes (e.g. in a MaaS context) or co-traveling
(e.g. carpooling), a finer grained spatial resolution is required. Spatially uniform and independent sampling of ad-
dresses for activity locations may lead to overestimation of travel duration/distance in large TAZs. We propose a TAZ
to street address based disaggregator that first generates a choice set of schedule variants and then selects the final
candidate according to a user specified criterion. Activity addresses are not sampled independently but in the context
of the predicted schedule. The proposed tool does support several choice generators and selectors. This paper de-
scribes how the technique has been applied to The Netherlands using a zoning having a large variety in TAZ size. The
schedule selector is based on a neural network based classifier trained on daily travel duration reported in a household
travel survey.
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Abstract

Many activity based models specify locations at the traffic analysis zone (TAZ) resolution. In city scale travel models and for
MaaS predictions, a finer grained spatial resolution may be required. An artificial neural network was used to classify predicted
daily schedules based on the total travel duration using a household travel survey. We propose a TAZ to street address based
disaggregator that first generates a choice set of schedule variants and then selects the final candidate according to the schedule
specific probability weight function delivered by the classifier coefficients. This paper describes how the technique has been applied
to The Netherlands. It shows that realistic schedules are produced using a zoning having a large variety in TAZ size.
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2. Literature overview

Few models predict travel at street address (facility) level. Most papers operating at TAZ level do not discuss the
properties of the zoning in terms of geographical area, number of inhabitants or economic and mobility parameters.
This may be due to the availability of only a single dataset at a particular level of spatial detail (e.g. statistical sectors).
On the other hand, many papers use spatially uniform sampling for TAZ to address disaggregation.

2.1. Street address based travel predictors

SACSIM [7, 8] is an activity based model using a temporal resolution of 30[min] and spatial resolution of parcel
level for the predicted episodes. Work and school location are simulated for each individual. Hence, persons are
assigned a parcel (street address) before the travel prediction starts. For work, school and primary tour destination
locations, first the TAZ is sampled and then the parcel. Intermediate destinations are sampled in a similar way but
more contextual constraints do apply in that case.

Schedule prediction (including adaptation) and schedule execution are simulated in an integrated way by ADAPTS
and TRANSIMS [? 10]; this requires position information to be exchanged between the tools.

SimMobility consists of a long term (LT) simulator, a mid term (MT) simulator which contains a pre-day activity
based predictor of daily schedules and a short term (ST) simulator which simulates actual movements on the road [2].
The SimMobilityST model receives trip-chains and activity-schedules from SimMobilityMT as inputs and can alter
these by rerouting and activity timing adaptation. The spatial resolution for activity locations is the building postcode
[13]. This is a 6-digit postal code made up of the sector code (two digits) and the delivery point (4 digits). 1

Setup of a MATSim model for Baoding (China) is discussed in [22]. The modeled universe is very small. All
locations for shopping, leisure, work, education and home are modeled individually in an activity-based schedule
predictor which directly exports street addresses. However, the experiment covers an unrealistically small toy model
and the design may suffer from combinatorial explosion.

[19] discusses the creation of travel plans to feed a MATSim model for São Paulo, Brazil. The eqasim pipeline [9]
is used to create travel demand. Prototype plans extracted from household travel surveys are assigned to individuals
by hot-deck-matching [9]. Travel demand is given in origin destination commute matrices. Primary locations (home,
work) are determined together based on the OD matrix and sampled from the address databases. Locations for other
activities are sampled in a next stage.

[15] builds a MATSim model for Vienna and focuses on multi-modal trips. Activity locations are specified by
coordinates (as opposed to zones). The authors mention the problem of finding skewed distributions for travel distance
by randomly selecting locations in districts. The authors developed a spatial disaggregation algorithm to overcome
that problem.

2.2. TAZ based travel predictors

[17] uses the Kutter model (Berliner PersonenverkehrsModell) to generate MATSim plans. The Kutter model pro-
vides activity chains defining tours in which locations are TAZs and where activity type and mode are specified.

[16] discusses travel demand modeling for Berlin using both a macroscopic model (VISUM) and a microscopic
model (MATSim). Data are extracted from an household travel survey (HTS) specifying the home location at statistical
zone level along with an activity chain including location, travel start/end times, mode and personal attributes. In order
to generate daily travel plans for MATSim, activity locations need to be determined. Home locations are distributed
inside the zones according to additional land use information on block level detail. The paper does not mention details
about disaggregation.

[24] describes an experiment that uses daily activity plans generated by CEMDAP based on parameters estimated
for Los Angeles (the ‘estimation context’), transforms these into plans for Berlin inhabitants (‘application context’)
and calibrates the model using CADYTS and traffic counts for the Berlin region. The experiment aims to show that
parameters for the entire daily plan can be determined in this way. The synthetic population is generated starting from

1 https://en.wikipedia.org/wiki/Postal codes in Singapore
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Berlin data. Each working and/or studying agent is assigned several potential work/university locations based on a
given OD matrix. As a consequence, each such agent can select between plans having different locations. CADYTS is
used to force agents to select plans consistent with the given traffic counts. The neighbourhood where the work/school
is located in the zone (extracted from the OD matrix) is sampled at random. CEMDAP is executed: it predicts the
TAZ for other activities (i.e. different from home, work, school). A random location again is sampled in the TAZ. The
papers do not mention details about position sampling.

[14] describes a travel demand and MATSim based assignment model. Home and mandatory activities locations are
assigned first. Locations for discretionary activities are assigned at TAZ level based on travel impedance (distance)
and attraction. In a subsequent step microscopic coordinates in the TAZ are assigned; details about position sampling
are not provided.

Albatross [3] (covering The Netherlands) and the decision tree based FEATHERS 0 described in [6] (covering
Flanders, Belgium) predict travel between TAZs. FEATHERS 0 has been applied to the Flemish area of 13, 625[km2]
using a statistical sectors (approximately 10000) [4, 5] and at a more coarse level using nearly 2400 zones. The recent
FEATHERS 4 version predicts travel demand between TAZs using discrete choice modeling. It has been applied to
The Netherlands using 7700 TAZs [12]. Both models use impedance matrices for trip distance and duration between
TAZs. The matrices have been pre-computed on a loaded network by skimming after traffic assignment.

[1] builds a MATSim model for Flanders starting from FEATHERS 0 predictions and using the CRAB database of
Flemish addresses2. Each apartment in a building has its own address. The building type (purpose, function) however
is not specified in the CRAB database. First, each household is assigned an address drawn from the set of addresses
in the TAZ containing the household home location. This is done by means of sampling from a uniform distribution.
Addresses that have not been assigned as home addresses are used as ‘reusable’ (shared) addresses for shops, schools,
companies, etc.

[23] focuses on methodological aspects that need attention when integrating the daily schedule predictor FEATH-
ERS 0 with MATSim. Address disaggregation is done by sampling from the CRAB database using a uniform dis-
tribution. The following problems need attention. First, information is lost when the tools are used in an iterative
loop because of the different levels of spatial resolution used and because agent identities are not transferred between
both tools. Second, the objective functions (i) RUM (random utility maximization) in FEATHERS 0 on one hand and
(ii) scoring in MATSim on the other hand should be verified to be compatible in order to avoid MATSim to converge
to a state that is not compatible with the FEATHERS 0 prediction.

TASHA is an activity based model of the computational process type. It is able to handle ride sharing among
members of a household. One of the development objectives for TASHA is to not require more data than classical
4-step models. [18] states that the activity generation model is based on random draws of activity attributes from 262
observed joint probability distribution functions of frequency, start time and duration. Persons have given home, work
and school locations. The locations of home and the usual places of work/school are given as model inputs. The activity
location choice for other activities is based on a series of entropy models. In TASHA an activity location is specified
only to the level of a zone (TAZ). TASHA uses euclidean distance between TAZ centroids [21] as trip distance.

Our paper contributes to the travel demand modeling research by proposing a technique that samples addresses in
the context of a travel plan and not independently.

3. Principle of Operation

The method presented in this research replaces the one reported in [11]. The disaggregation technique consists of
two steps: (i) travel duration classifier (travDurClassifier) and (ii) TAZ-to-address disaggregation (tazToAddrDisAggr).

3.1. Travel Duration Classifier

The proposed method is based on travel duration (as opposed to travel distance) because the time budget for travel
is historically more stable than the distance driven (BREVER-law) [20]. Hence, we assume that it is less sensitive to
travel management policies. Sensitivity of travel demand to policies constitutes the core of our research.

2 https://overheid.vlaanderen.be/informatie-vlaanderen/producten-diensten/centraal-referentieadressenbestand-crab
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Using an household travel survey (HTS) we construct a classifier that predicts the 15[min] bin that contains the
total daily travel time reported by the respondents (ODiN, in The Netherlands, OVG in Flanders). The classifier is a
simple multilayer perceptron (artificial neural network, ANN). It is trained on observations available from the HTS.

Attributes extracted from the HTS as predictors are: gender, age, educationLevel, carAvailable (boolean indicator),
holiday (reported in HTS), nTrips (number of trips), travelDur (discretized total travel duration, 24 bins of 15[min]
each). Values for these properties are available in the FEATHERS predictions too.

The ANN has 6 input features, 4 hidden layers of width=5 with a ReLU and a softmax output layer. The hyperpa-
rameters have been determined experimentally. The model is trained on 94208 observations and ran for 200 epochs.
The test accuracy is only 14.60% and obviously a consequence of the deliberately chosen small bin size.

The coefficients of the softmax layer are interpreted as the probability for the schedule to have a total daily travel
duration belonging to that bin. It provides a probability weight function (PWF) for the total travel duration (which is
independent of the prediction models used in FEATHERS).

Each TAZ based schedule generated by FEATHERS is submitted to the ANN in prediction mode. Instead of retain-
ing a single value (the predicted travel duration bin), we associate the vector of coefficients of the softmax layer as a
PWF to the schedule. Figure 2a shows the PWF for a particular schedule.

3.2. Addresses

A set of addresses each having one or more purpose labels (e.g. residence, industry, office, . . . ) is used. Each
address belongs to exactly one TAZ used by FEATHERS. Each building purpose label is mapped to zero or more
activity types known by the schedule predictor. This results in a general relation specifying which addresses in each
TAZare available for each activity type.

Address use is either exclusive (e.g. for home) or shared (e.g. for shopping) for a given activity type. Addresses for
exclusive use are assigned first.

Address-purpose pairs are subdivided into two subsets: stable and volatile. Stable addresses do not change while
considering different schedule variants. For a given individual, all stable addresses are fixed in the initialisation stage
(e.g. school address). Volatile addresses may change during the course of the address reassignment stage.

3.3. TAZ to Address Disaggregator

The tazToAddrDisAggr operates by combining a schedule variant generator with a variant selector. Several gen-
erators and selectors are available to the tazToAddrDisAggr user.

A schedule predicted by a TAZ based predictor specifies activity locations as TAZs (zones, hence collections of
addresses). A variant generator in tazToAddrDisAggr creates specific schedule variants by sampling an address for
each volatile location. The resulting disaggregated schedule variants are used to populate a choice set of N (typically
100) schedules. For each schedule in the choice set, the total travel duration is computed.

In this paper we discuss the combination of

• a generator for which the total number of sampled addresses over all variants is given. In order to create a
variant, the generator first samples the TAZs in the schedule for which to find a new address using the number of
candidate addresses in the respective TAZs as a weight. Only in the selected TAZs new addresses are sampled.
This avoids frequent resampling the same addresses in TAZs having few candidates.

• a selector that uses the PWF defined in Section 3.1.

The disaggregator has no complete freedom since the predictor specified the TAZs where the activities will take
place. The prediction induces constraints on travel distance (between TAZs) and hence on travel duration. This means
that not the complete domain of the PWF is available to the selector. After the required number N of schedule variants
have been generated, it is known which bins in the classifier domain have not been used. An adjusted PWF is created
by re normalisation of the used bins only.

The PWF can be modulated by a temperature concept (same as used in large language models). The PWF is
raised to the power 1/T where T is a non-negative temperature value and then renormalized. The lower the chosen
temperature, the lower the entropy. Near zero temperature corresponds to the case where the value having the largest
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Fig. 1: Heterogeneous zoning for The Netherlands.

probability will be chosen. Near infinite temperature is equivalent to uniform sampling from the choice set. The effect
of temperature is shown in Figure 2.

4. Datasets for Location (TAZ) to position (address) disaggregation

For the Dutch model the BAG dataset is used. It specifies for each address in the country (i) the coordinates, (ii) a
set of building function (purpose) labels along with (iii) municipality and other administrative data. Multiple addresses
may be assigned to the same building (apartments).

5. Results discussion for the Dutch model

Results for the Dutch model are discussed below.
A map showing the heterogeneous zoning is shown in Figure 1. Such zoning allows to assess to evaluate effects of

address TAZ to address disaggregation.
In order to evaluate results, we explicitly distinguish intraZonal end interZonal trips. The origin and destination

of an intraZonal (interZonal) trip belong to the same (different) TAZs.
In the TAZ based travel demand prediction we define a zone to be large if and only if more than 1/3 of the predicted

trips is intraZonal as explained in [11]. All other zones are called regular zones. The UTN2 project contains regular
zones covering the study area and large zones (surrounding the study area). A pure intraZonal (interZonal) travel
plan contains intraZonal (interZonal) trips only.

Two models are combined: FEATHERS (TAZ based travel demand predictor) and tazToAddrDisAggr (spatial dis-
aggregator). Hence most results depend on properties of both tools. It is worth noting that the travel distance and dura-
tion for pure intraZonal trips (which occur mostly in large TAZs) the chosen addresses are independent of FEATHERS
sub-models. Therefore, the travel related properties of pure intraZonal schedules depend on the tazToAddrDisAggr
only.

The tazToAddrDisAggr was used to generate a 10% population fraction to feed the countrywide MATSim model.
No spatial filtering (used to generate data for city scale models) was applied. The population fraction contains 1.4
million individuals.

Figure 2b shows the average of the PWFs computed over all schedules (individuals) for three different values of
the temperature. The red bars show values for temperature = 1. The blue bars correspond to temperature = 1/4 and
the yellow bars correspond to temperature = 4.

Figure 3 shows histograms for the total daily travel time expressed in minutes for the countrywide Dutch popula-
tion. The vertical axis shows relative occurrence values. The left histogram applies to the travel duration predicted by
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(a) PWF for a randomly chosen predicted schedule.
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(b) Average PWF computed over all schedules.

Fig. 2: Probability weight functions for the total daily travel duration. Each bin Ci represents 15[min] (the range of the diagrams covers 6[hours]).
The probability values for temperature = 1 correspond to the softmax weights of the ANN.
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Fig. 3: Distribution of daily total travel duration in minutes: all predicted schedules. Left: FEATHERS (TAZ resolution), Center: FEATHERS-
tazToAddrDisAggr tool chain (address resolution), Right: ODiN observation.

FEATHERS. The central histogram applies to the values derived by tazToAddrDisAggr from the FEATHERS predic-
tion by disaggregating TAZs to addresses. The rightmost histogram shows the travel duration directly extracted from
ODiN observations. The predictions seem to underestimate the total daily travel duration.

Figure 4 compares histograms for the total travel duration distribution in three different subsets of the disaggregated
schedules generated by tazToAddrDisAggr. The left histogram applies to the subset of pure interZonal schedules. For
each trip the origin and destination TAZs are different and predicted by FEATHERS which imposes constraints on
the options available to tazToAddrDisAggr. The histogram in the center applies to all pure intraZonal schedules.
The travel duration is predicted solely by tazToAddrDisAggr. The rightmost histogram applies to pure intraZonal
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Fig. 4: Distribution of daily total travel duration in minutes. Left: Pure interZonal (countrywide, FEATHERS prediction). Center: Pure intraZonal
(countrywide, tazToAddrDisAggr prediction). Right Pure intraZonal (large zones, tazToAddrDisAggr prediction).

schedules for large zones only. In such zones there are plenty of options where to execute an activity. Uniformly
sampling locations independently may lead to unrealistic total daily travel duration (and distance). It must be noted
that this histogram is based on 6873782 schedules whereas the central one applies to 7174849 schedules. Hence, the
intraZonal travel in the central diagram is dominated by the large TAZs.

Figure 5 considers the total daily travel duration for pure intraZonal schedules in large TAZs. All histograms do
apply to the same subset of schedules. The leftmost (L) histogram applies to the FEATHERS predictions. The other
histograms apply to tazToAddrDisAggr predictions for temperature values 0.25, 1 and 4 respectively.

6. Conclusion - Future research

The schedule variant generator/selector concept used in tazToAddrDisAggr results in schedules for which the
distribution of the total daily travel duration is realistic.

The comparison of the distributions for FEATHERS and tazToAddrDisAggr predictions on one hand a ODiN
observations on the other hand suggests the need to search for the cause of the underestimation.

The ANN training and prediction can be improved by integrating additional person and travel properties such as
household income category and the use of a company car (who pays the travel cost?).

Considering pure intraZonal schedules for large zones allows to eliminate the effect of the location choice sub-
models in the TAZ based schedule predictor. This suggests future research by evaluating the schedules in huge TAZs
in order to find out whether the proposed technique can support replacement of TAZ based location choice models.
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References

[1] Adnan, M., Outay, F., Ahmed, S., Brattich, E., di Sabatino, S., Janssens, D., 2021. Integrated agent-based microsimulation framework for
examining impacts of mobility-oriented policies. Personal and Ubiquitous Computing 25, 205–217. URL: https://doi.org/10.1007/
s00779-020-01363-w, doi:10.1007/s00779-020-01363-w.

[2] Adnan, M., Pereira, F.C., Azevedo, C.M.L., Basak, K., Lovric, M., Raveau, S., Zhu, Y., Ferreira, J., Zegras, C., Ben-Akiva, M., 2016. SimMo-
bility: A multiscale integrated agent-based simulation platform, in: Transportation Research Board 95th Annual Meeting (10/01/16 - 14/01/16),
Transportation Research Board, Washington, DC, USA. URL: https://eprints.soton.ac.uk/390938/.

[3] Arentze, T.A., Timmermans, H.J.P., 2004. A learning-based transportation oriented simulation system. Transportation Research Part B:
Methodological 38, 613 – 633. URL: http://www.sciencedirect.com/science/article/pii/S0191261503000948, doi:10.1016/
j.trb.2002.10.001.

[4] Bao, Q., Kochan, B., Bellemans, T., Janssens, D., Wets, G., 2014. Geographical Extension of the Activity-based Modeling Frame-
work FEATHERS. Procedia Computer Science 32, 774–779. URL: https://www.sciencedirect.com/science/article/pii/

S1877050914006905, doi:10.1016/j.procs.2014.05.490.
[5] Bao, Q., Kochan, B., Shen, Y., Creemers, L., Bellemans, T., Janssens, D., Wets, G., 2018. Applying FEATHERS for Travel Demand Analysis:

Model Considerations. Applied Sciences 8. URL: https://www.mdpi.com/2076-3417/8/2/211, doi:10.3390/app8020211.
[6] Bellemans, T., Kochan, B., Janssens, D., Wets, G., Arentze, T., Timmermans, H.J., 2010. Implementation Framework and Development

Trajectory of FEATHERS Activity-Based Simulation Platform. Transportation research record 2175, 111–119.
[7] Bowman, J., Bradley, M., Gibb, J.A., 2006. The Sacramento activity-based travel demand model: estimation and validation results.
[8] Bradley, M., Bowman, J.L., Griesenbeck, B., 2010. SACSIM: An applied activity-based model system with fine-level spatial and temporal res-

olution. Journal of Choice Modelling 3, 5–31. URL: https://www.sciencedirect.com/science/article/pii/S1755534513700277,
doi:10.1016/S1755-5345(13)70027-7.

[9] Hörl, S., Balac, M., 2021. Introducing the eqasim pipeline: From raw data to agent-based transport simulation. Procedia Computer Science
184, 712–719. URL: https://www.sciencedirect.com/science/article/pii/S1877050921007274, doi:https://doi.org/10.
1016/j.procs.2021.03.089.

[10] Javanmardi, M., 2012. Integration of the ADAPTS Activity-Based Model and TRANSIMS.
[11] Knapen, L., Adnan, M., Bellemans, T., 2023. Location disaggregation for zone based travel plans. Procedia Computer Science 220, 283–

290. URL: https://www.sciencedirect.com/science/article/pii/S1877050923005720, doi:https://doi.org/10.1016/j.
procs.2023.03.037.

[12] Knapen, L., Adnan, M., Kochan, B., Bellemans, T., van der Tuin, M., Han, Z., Snelder, M., 2021. An Activity Based integrated approach to
model impacts of parking, hubs and new mobility concepts, in: Procedia Computer Science, Elsevier, Warsaw, Poland. pp. 428–437. doi:10.
1016/j.procs.2021.03.054.



Luk Knapen  et al. / Procedia Computer Science 257 (2025) 737–745 745

[13] Lu, Y., Adnan, M., Basak, K., Pereira, F., Carrion, C., Saber, V.H., Loganathan, H., Ben-Akiva, M., 2015. SimMobility Mid-Term Simulator: A
State of the Art Integrated Agent Based Demand and Supply Model, in: Transportation Research Board 94th Annual Meeting, Transportation
Research Board, Washington, DC, USA. URL: https://trid.trb.org/view/1338341.

[14] Moeckel, R., Kuehnel, N., Llorca, C., Moreno, A.T., Rayaprolu, H., 2020. Agent-Based Simulation to Improve Policy Sensitivity of Trip-
Based Models. Journal of Advanced Transportation 2020, 1902162. URL: https://doi.org/10.1155/2020/1902162, doi:10.1155/
2020/1902162. publisher: Hindawi.

[15] Müller, J., Straub, M., Richter, G., Rudloff, C., 2022. Integration of Different Mobility Behaviors and Intermodal Trips in MATSim. Sustain-
ability doi:10.3390/su14010428.

[16] Neumann, A., Balmer, M., Rieser, M., 2012. Converting a Static Macroscopic Model Into a Dynamic Activity-Based Model to Analyze Public
Transport Demand in Berlin, International Association for Travel Behaviour Research.
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