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A B S T R A C T

Severe second-degree ‘partial thickness’ and third-degree ‘full thickness’ burns are characterized by damage to 
the dermal layer of the skin. In the dermis, specialized cells called fibroblasts play a crucial role in wound 
healing. These cells produce collagen, a protein that provides strength and structure to the skin. After burn 
injury, fibroblasts migrate to the injured area and start producing and depositing collagen to help repair the 
damaged tissue. While contraction is essential for closing the wound, it can also result in scar contraction 
(contractures), especially in more severe burns. This contraction creates stresses on the skin, which can deteri
orate the mobility of joints near the burn.

This article overviews the most recent research results in computer simulations of scar contraction after burns.

1. Introduction

People often died from burns in the past; however, nowadays, more 
people survive severe burns because care has improved considerably in 
recent decades. Since many people survive the burn, there is currently 
more focus on improving the quality of life of people with burns. 
Therefore, burn care often aims to prevent or inhibit scar contractures 
and hypertrophy. In severe burns, it might be necessary to apply skin 
grafting, where the patient’s undamaged skin is used to (partly) cover 
the burned parts of the patient’s body.

The risk and degree of developing scar contractures and hypertro
phic scars may be influenced by factors like the size and depth of the 
burn, the location of the burn on the body, individual factors such as 
genetics, and individual wound care. Therefore, under- standing how 
skin responds physiologically to severe burns is essential for improving 
and optimizing burn care. Developing insights about the physiological 
evolution of burned skin is, therefore, very important. Such an under
standing can only emerge if observations substantiate the developed 
theory. These observations can be clinical (in vivo); however, well- 

controllable experimental laboratory observations (in vitro) are also 
important. Since such observations include trends and patterns, it is 
essential to describe them quantitatively. The theory thus contains 
quantitative relations between various biological parameters. These 
relations are represented in mathematical relations that can occur in the 
form of algebraic equations or in terms of random processes. It is often 
unclear how, when, why, to what extent, and where specific biological 
processes occur; therefore, random (stochastic) processes are used in 
mathematical models. Combining mathematical relationships forms a 
mathematical model that can explain specific trends and make pre
dictions. This modeling is often done in technological, financial, and 
eco- nomic sciences, but also for weather forecasting and, nowadays, in 
biomedicine.

Each mathematical model is constructed to compute and reproduce 
certain trends and outcomes. For example, in the current context, the 
aim is the degree of skin contraction over time. Since computations use 
numbers, every mathematical model will also need input parameters 
(input variables), and with this input, one computes the output variables 
of interest. There is much variation in the physiological properties of 
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patients; therefore, there is an enormous uncertainty in the dermal 
evolution after a burn. One wonders, for example, why one patient de
velops a severe contracture while another does not. For the modeling, 
this uncertainty is expressed in patient-specific values of the input pa
rameters, which then give a patient-specific set of output variables. A 
significant challenge here is that many of the input variables for the 
patient are unknown and need to be better or more consistently docu
mented in the literature. After all, measurements always contain un
certainty or a margin of error. The error is often assumed to be 
statistically distributed according to a normal (Gaussian) distribution. 
The assumption for a Gaussian distribution results from the fundamental 
Central Limit Theorem from statistics, which states that the mean of 
independently identically distributed stochastic variables increasingly 
resembles a normal distribution as the number of samples increases. 
That is why it is impossible to give a reliable prediction based on the 
classical models, and hence, it is necessary to include uncertainty in the 
modeling. This inclusion of uncertainty can also be seen in weather 
forecasts. A typical example is the so-called ‘plume’ for the long-term 
weather forecast. This plume is based on 51 simulations in which 
different models are used, and the models are subjected to minor vari
ations in the input parameters. This strategy results in several simulated 
output scenarios, which estimate the probabilities of certain weather 
types.

To address this uncertainty, mathematical models are used to predict 
the evolution of skin after a severe burn injury. The idea is to implement 
different surgical treatments in the modelling to estimate the quantita
tive impact of different treatments on the evolution of post-burn skin. 
This opens the door to finding optimal treatments that aim to maximize 
patients’ quality of life by minimizing the extent of hypertrophy and 
contracture. The computational framework provides the burn-treating 
community with an experimental tool that is an alternative to animal 
models. Animal skin typically behaves significantly differently from 
human skin, and with the in-silico framework, an ethical alternative is 
provided. The uncertainty in input values as a result of patient-to-patient 
variations necessitates the probabilistic and statistical assessment of the 
results from the simulations in terms of maximized probability of suc
cessful treatment.

In this article, we will outline the biophysical background of skin 
evolution, describe key model developments, and place all this in the 
context of clinical practice.

2. Biophysical background

Skin consists of three main layers: epidermis, dermis, and subcutis, 
each with specific functions[1,2]. The outermost layer, the epidermis, 
contains specialized cells called keratinocytes and forms a tight barrier 
against external factors. The dermis layer underneath the epidermis 
consists of a network of extracellular matrix, mainly collagen and elastic 
fibers, providing strength and elasticity to the skin. The dermis also 
contains blood vessels, nerves, immune cells, hair follicles, and sweat 
glands. The deepest layer in the skin is the subcutis, which mainly 
consists of adipose tissue, providing energy storage and insulation, and 
forms the interface between the skin, organs, and muscles. In a severe 
burn, i.e., second-degree ‘partial thickness’ and third-degree ‘full 
thickness’ burns, at least the (entire) dermis is damaged, meaning that 
the extracellular matrix (collagen), blood vessels (capillaries), and 
epidermis must be regenerated[3,4]. In the dead, damaged skin, con
taminants (pathogens) and bacteria are cleared by immune cells, 
including neutrophils and macrophages. The burned skin contains sub
stances (e.g., tissue plasminogen activators) that break down the burned 
skin and/or fibrin. Subsequently, the macrophages, which act like 
‘generals’ in the immune system, secrete, among others, transforming 
growth factor β (TGF-β) captured by fibroblasts in the dermis[5,6]. This 
growth factor stimulates fibroblasts to migrate to the damaged region 
and produce, and deposit collagen so the wound can close and the re
generated skin regains its integrity and firmness. Furthermore, the 

macrophages also secrete vascular endothelial growth factor (VEGF), 
which attracts the endothelial cells. The endothelial cells are the back
bone of small blood vessels. As a result of VEGF, the endothelial cells 
migrate to the damaged region and create a new blood vessel network 
(neovascularization/angiogenesis). So far, only the two growth factors 
(TGF-β and VEGF) stimulating fibroblasts and endothelial cells have 
been described. In reality, there are many different growth factors, each 
of which has its function. It is unknown which growth factors, exactly 
how many circulate in skin and body, and which behavioral patterns 
they influence in body cells. Furthermore, if all growth factors are 
known, the mathematical model would be prohibitively complicated 
because of the excessive size of the mathematical problem. Poor 
knowledge of input values would further increase the amount of un
certainty. Hence, a very complicated, detailed mathematical model is 
not necessarily a useful model.

In the presence of specific growth factors and because of local ten
sions in the immediate environment of fibroblasts, fibroblasts can 
differentiate into myofibroblasts. Myofibroblasts exert relatively high 
tensile forces and produce collagen at a relatively high rate[7,8]. 
However, the collagen these cells produce differs from the collagen 
undifferentiated fibroblasts. The fibroblasts produce the collagen char
acteristic for undamaged (embryonic) skin, the so-called type I collagen. 
The collagen produced by myofibroblasts is the so-called type III 
collagen. The production of this collagen by the myofibroblasts is much 
faster than that of type I collagen. This provisional collagen quickly 
provides the skin with integrity. However, it also leads to topographical 
changes in the skin. In addition, this type of collagen has different me
chanical properties (type III collagen fibers are thinner and less durable 
than type I collagen fibers).

At about the same time, the epidermis is regenerated. It is known that 
there is communication between the different cell types, the so-called 
‘keratinocyte-fibroblast crosstalk’, responsible for the closure of the 
epidermis and regeneration of the dermis[9]. However, the way this 
communication is processed is not completely clear. The basement mem- 
brane separates the dermis from the epidermis. Once the epidermis has 
been restored, the wound is closed, and clinicians refer to the damage as 
a scar instead of a wound. This new scar tissue has a different structure 
than undamaged skin; therefore, residual stresses will remain in the scar 
tissue and its immediate vicinity even once the myofibroblasts have died 
by apoptosis[10]. While the collagen regenerates, the endothelial cells 
regenerate the circulatory system. In the long term, type III collagen is 
replaced by type I collagen. However, the last-mentioned (remodeling) 
process can take years.

As noted earlier, myofibroblasts exert tensile forces that cause the 
scar tissue to contract. This contraction creates tension in the scar tissue 
and the surrounding tissue. The damaged area is then subject to 
contraction. The stresses, in turn, may enhance further differentiation of 
fibroblasts to myofibroblasts. Hence, a chain reaction may occur. 
Mathematical modeling aims to quantitatively understand the under
lying biophysical processes and predict possible scenarios that occur 
after a burn. An example of such a scenario is a scar contracture.

3. A description of the mathematical models

Many mathematical formulations that simulate physical phenomena 
are based on conservation laws. One can think of classical physical laws 
such as mass, energy, or momentum conservation. These relations are 
then typically expressed in so-called partial differential equations, and 
these models can be applied on a larger scale, in the scale of centimeters 
or decimeters. These types of models are called continuous-scale or 
macro-scale models. A continuous-scale example is morphoelasticity, 
widely used in biological modeling to describe elastic growth. In 
contrast to elastic deformations, morphoelasticity describes skin defor
mation as plastic. This model consists of partial differential equations 
representing conservation laws for momentum, chemokine, (myo)fi
broblasts, and collagen. It includes migration (by chemotaxis and 
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random walk), cell proliferation (cell growth and division), cell differ
entiation, cell death, and the production and decay of collagen and 
chemokine. Furthermore, it includes tensions, inertia, and cell forces in 
the tissue, as well as changes in microstructure that result in permanent 
deformation. This model is discussed in detail in [11,12], and the gen
eral equations are shown in the Appendix.

In order to use the model for the simulation of the biophysical pro
cess, one has to approximate the solution to the partial differential 
equations. Alternative models are used for modeling on smaller scales, 
such as millimeter scales or even smaller ones. In these alternative 
models, one models cells as individual entities (agents) that are involved 
in particular biological processes such as cell division or cell traction. 
These small (micro)-scale models are no longer purely based on partial 
differential equations. Some of these models even include the defor
mation of cells that takes place during migration. An example of this 
type of micro-scale modeling can be found in [13], which models how 
cells migrate through narrow curved channels. This model is then used 
to describe how cancer cells migrate to another part of the body and thus 
cause cancer to metastasize (spread). In models where many cells are 
treated, the geometry of the cells is often taken constant during simu
lation [14]. These models are comparable to the so-called particle 
models that are used in computational physics.

Furthermore, the tensile forces exerted by the cells in their imme
diate vicinity are included in the models. This model type cannot be 
applied on a large macro scale since the simulations require too much 
computing power. In particular, if one wants to quantify the uncertainty 
in a statistically sound manner, this type of model is not yet applicable 
on a macro scale.

The microscale models contain many random processes since, in 
large colonies, it is unknown whether and when individual cells divide, 
differentiate, or die. It is not known how they migrate because the tissue 
always contains unpredictable inhomogeneities, and the behavior of 
cells is, to some extent, unpredictable. Therefore, processes such as cell 
division, differentiation, cell death, and migration are modeled as 
random processes, meaning that inherent to this model formulation, 
uncertainty will occur in the outcome space. We are also interested in 
the mathematical analysis of the transition between small and large- 
scale models. This transition is also known as upscaling. The research 
in upscaling is done in two ways. On the one hand, the transition is 
proved rigorously with mathematical principles from functional analysis 
based on averaging compositions of regularized localized point sources 
and forces (mathematically by using Dirac delta distributions) and, for 
example, using the hydrodynamic limit. On the other hand, statistical 
procedures, such as machine learning or alternative regression proced
ures, are applied to sets of microscale parameters by averaging the re
sults obtained from computer simulations. Both methods should lead to 
obtaining mathematical relationships of cell densities, traction forces, 
and other quantities that describe cell behavior. The first mathematical 
steps were taken in [15].

Numerical techniques approximate the solution of mathematical 
problems, particularly partial differential equations. In these tech
niques, the differential equations are converted into algebraic equations. 
In order to maintain optimal freedom in geometry in numerical ap
proximations, the finite element method is often used, which in turn is 
combined with time integration methods to solve the problem over time. 
The principle behind the finite element method is that the computa
tional area is divided into discrete points where one approximates the 
solution of the partial differential equations. Furthermore, the problem 
often contains non-linearities, so additional numerical so-called fixed 
point techniques must be used to estimate the solution using successive 
approximations (called iterating). We have described this in more detail 
in [16]. Furthermore, the model has been mathematically examined for 
stability (i.e., the extent to which small perturbations in the data affect 
the final computational results) in [17,18].

4. Handling the uncertainty

As noted earlier, many input parameters in the mathematical models 
are subject to variations from patient to patient. In addition, many input 
parameters need to be better documented in the literature, where con
tradictory values are often found. Since measurements always contain 
unpredictable errors, measured quantities are modeled as random var
iables. Therefore, (the average of) a measured quantity is often 
expressed in terms of a (95 %) confidence interval. A 95 % confidence 
interval expresses that the likelihood is 95 % for the value of the 
measured parameter to have a value within this interval. In any case, 
this variability creates uncertainty that affects the model’s outcomes. 
Since the values of the input parameters impact the results from the 
mathematical model, it is necessary to consider this uncertainty. After 
all, a single simulation only provides a possible scenario (This principle 
is similar to flipping a coin only once, where one toss only results in a 
head or a tail. Flipping the coin only once cannot be used to determine 
whether the coin is fair.), in which this scenario only forms a point in the 
output space (mathematically, one should speak of the set of outcomes, 
however, in this manuscript, we deal with these probabilistic concepts 
more loosely). Hence, the probability of occurrence of this scenario is, in 
fact, zero, which can be seen as follows. Represent the continuous 
outcome space as a line segment with length H, say between x  = 0 and 
x  = H, or the interval (0, H). We used the word continuous here in the 
following sense: suppose that ω ∈ (0, H) is a possible event in the 
outcome space. Then for each (arbitrary) ∊ > 0, but sufficiently small 
such that the interval (ω − ∊, ω + ∊) is contained within the interval (0, 
H), all points within the interval (ω − ∊, ω + ∊) are also possible events. 
Then, there are infinitely many points on this line interval. All these 
points correspond to an event. According to Laplace’s definition of 
probability for events that are all equally probable, we suppose that the 
total number of possible events is given by N, then the probability of 
each single event, say ω is given by 

P(ω) = 1
N

(1) 

We mentioned earlier that an interval has infinitely many points; 
hence, N is unbounded. Dividing by an infinite number gives a zero. 
Hence, the probability of each single event is zero. For the statistical 
gourmet, we note that this assumes a statistically uniform distribution 
for simplicity of presentation. In practice, the assumption of uniformity 
of the statistical distribution has proved to be a poor starting point. 
Therefore, we have to change this assumption in the real calculations. 
However, the conclusion for this part remains the same, and hence, for 
the sake of the illustration of our argument, we keep on using unifor
mity. To consider the probability of a single simulation, let us take the 
length of the interval to zero (since we take a point as an interval of 
length zero). In other words, h is sent to zero. Let P(G) be the probability 
of event G; then this means that P(a ≤ x ≤ a + h) → 0 if h → 0. Therefore, 
the probability of this outcome is equal to zero, meaning that a single 
simulation is insignificant. We will, therefore, have to perform large 
numbers of simulations to estimate the mean outcome, spread, and 
statistical distribution. This large number of simulations is needed even 
if the only objective is to delineate the outcome space (outcome 
collection) and to estimate the probabilities of certain scenarios (to be 
regarded as subsets of the outcome collection), hence allowing us to 
estimate the probability that a contracture is more severe than a certain 
threshold value.

From an arithmetic point of view, statistical distributions are 
assumed for the input parameters. The a priori statistical distributions 
are then estimated based on data from the literature or based on (intu
itive) arguments. Furthermore, several simulations are performed, in 
which the input parameters are sampled from the statistical distribu
tions that they follow. A (single) scenario is then computed, and the idea 
is that this procedure is done repeatedly. This principle fits within the so- 
called Monte Carlo method. The output parameters are analyzed once 
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the Monte Carlo simulations have been done. It is possible to determine 
correlations between the output parameters and between the output and 
input parameters. In this way, one gains insight into the reciprocal de
pendencies. One can, for example, compute the covariance matrix be
tween input and output parameters and carry out the so-called Proper 
Orthogonal Decomposition (POD) to determine which linear relation
ships of components correlate mostly with each other. The POD, also 
called Principal Component Analysis, is based on Singular Value 
Decomposition, which can be interpreted mathematically as a ‘trans
formation of data on principal axes’. In this way, one can describe the 
data; thus, data compression (by filtering out the components with small 
correlations) can be obtained, which can be easily handled and stored. 
Through the computations, the output can also be treated statistically by 
putting the results in a histogram, which provides graphical insight into 
the statistical distribution of the output parameters. One can then sta
tistically test whether the outcome follows a certain probability distri
bution. For example, the output data can also be used to estimate the 
probability that the wound will contract by more than a certain per
centage. On the other hand, one can use the so-called Kernel Density 
Method to formulate a numerical-algebraic expression for the proba
bility distribution of an outcome parameter. Subsequently, improved 
estimates can be constructed through bootstrapping (sampling (draws) 
from the obtained numerical-algebraic probability distribution) for 
various statistical variables (such as variance and mean, amongst 
others). In any case, the uncertainty causes the modeler a significant 
amount of work, translating into computer-intensive computations that 
can take a very long time and require a heavy computer infrastructure. 
These high computational costs are undesirable in a clinical setting. How 
we deal with this will be discussed in the next section.

5. Artificial intelligence to speed up computations

Artificial intelligence is the idea that a computer can perform deci
sive and inferential tasks that humans normally do. These tasks can be, 
for instance, recognizing patterns, such as faces or spoken (written) 
words, raising verdicts, or reproducing numbers from given data. The 
process of making the computer or machine capable of performing these 
tasks is referred to as machine learning. As mentioned, the (numerical) 
computation times can be excessively long. Since clinicians prefer quick 

results without a heavy computer infrastructure, it is necessary to look 
for fast alternatives. Artificial intelligence can provide a platform for 
such a fast alternative. The algorithmic infrastructure for this alternative 
is based on a neural network. Using this neural network, one simulates 
the model, which in itself already provides a simulation for reality. This 
neural network forms a tool to quickly reproduce the simulations from 
the more complex (numerical) model. In turn, bundling neural network 
simulations can be used to estimate specific statistical parameters 
randomly (i.e., with samples).

The idea of a neural network can be explained as follows. We 
consider a network with an input and output parameters layer. Suppose 
the complex mathematical model contains 25 input parameters; then, 
the input layer consists of 25 input nodes. Moreover, suppose we are 
interested in simulations over 365 days; then, the output layer consists 
of 365 nodes. This output layer, in turn, depends on the number of 
variables we want to examine. However, for convenience, we will as
sume that only a single output parameter is analyzed at different times 
(days). One uses so-called hidden layers between this input and output 
layer, which all contain a certain number of nodes. At each node, in
formation comes in from all nodes from the layer in front of it (except the 
input layer). The information is algebraically processed through a so- 
called transfer function in which the coefficients are called weights 
and biases. Then, the processed information is passed to all nodes in the 
next layer (except the output layer). The idea of a neural network and its 
principle is shown in Fig. 1. The neural network relates a set of input 
values to a set of output values by evaluating a sequence of algebraic 
expressions. The algebraic operations, referred to as transfer functions, 
are characterized by coefficients, which, in turn, are referred to as 
weights and biases. A random set of weights and biases in the transfer 
functions relates the input set to a random output set. Based on the re
sults from the complex mathematical model, the idea is to estimate the 
values of the coefficients in the transfer functions (weights and biases) to 
obtain the results of optimally describing a complex mathematical 
model. This estimation is called training the neural network model. 
Subsequently, the optimal configuration of the network is also sought. 
This optimal configuration then reflects on the number of nodes per 
hidden layer and the number of hidden layers in the network.

All in all, training and optimizing a neural network can be seen as an 
advanced regression procedure from a statistical perspective. A trained 

Fig. 1. Schematic representation of a feed-forward neural network. One can see the input layer, hidden layers, and output layer. Information flows from left to right. 
Information entering a node is algebraically processed and passed to all nodes in the next layer (to the right of the node).
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and optimized neural network can mathematically be considered an 
advanced interpolation or mapping routine. Our results show that a 
spectacular computational acceleration can be achieved [19]. Because 
these computations are so much faster than the computations with the 
complex mathematical model, we expect this to be the way to integrate 
simulations into medical practice.

However, it should be noted that the machine learning models are 
limited in the sense that if one changes the mathematical model, then 
one has to redo the training of the neural network and associated 
configurational optimization. There are also important limitations on 
the validity of results if input values fall outside the network training set 
limits.

6. Clinical-social and future perspective

Mathematical modeling offers many possibilities for predicting how 
the skin will develop over time. In addition, the mathematical model (in 
silico model) can replace or reduce the number of laboratory animals 
needed to perform tests. We hope that in the future, we will make a tool 
for the practitioner that can provide guidelines in advance for the 
treatment that should be implemented. This idea is our long-term 
objective; hence, much work remains. Our models are unique in the 
literature since we combine the mechanics with shrinkage and change of 
skin structure, which in turn is coupled with a biochemical model for 
cells, growth factors (chemokines), and collagen.

The current model describes clinical observations very neatly. 
However, the model is not complete yet. In a future model, we want to 

implement the different types of collagen and integrate the functioning 
of the immune system into the current model. This implementation will 
mimic the complexity in reality even more. We feel a certain reluctance 
to add more complexity to the models since more complex models also 
imply the need for additional input parameters and, in this way, intro
duce more uncertainty. After all, it is unclear how various links between 
sub-processes occur and what parameter values should be used for this 
purpose. A complex model is, therefore, not always a good model.

6.1. Bridging the gap: Towards enhanced clinical utility

On the other hand, we also see that the models are still limited 
because only a few treatment methods can be included in the compu
tational models. To address this matter, future research will focus on 
incorporating crucial surgical interventions such as debridement, skin 
grafting, and splinting. These interventions are essential for managing 
burn injuries, with debridement removing damaged tissue, skin grafting 
replacing lost epidermal skin, and splinting aiding in proper healing and 
function.

Incorporating these treatments into our model poses a significant 
challenge, requiring careful consideration of how to represent them 
mathematically. For example, debridement could be modeled by 
modifying initial conditions for chemokine concentrations, skin grafting 
by adding a source term for grafted keratinocytes and collagen, and 
splinting by adjusting mechanical boundary conditions.

By incorporating these extensions, our model will be able to predict 
the impact of surgical timing, optimize graft characteristics, and 

Fig. 2. A schematic representation of integrating the mathematical model and the neural network in clinical practice. For example, with a relatively long 
computation time, the mathematical model predicts the degree of contraction regarding scar size versus time for many simulations with sampling from probability 
distributions for the patient and burn data. After training the neural network based on the mathematical model results and, in addition, accurate (follow-up) data, the 
neural network reproduces these results in a relatively short computation time, providing the practitioner with an estimated probability distribution of 
various scenarios.
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evaluate splinting strategies. Ultimately, these advancements will 
enable more accurate predictions of patient outcomes and inform clin
ical decision-making, providing surgeons with a valuable tool to 
compare predicted outcomes of different interventions, identify patients 
at higher risk of complications, and make more informed decisions 
tailored to each patient’s unique needs.

6.2. The role of artificial intelligence

We also see that there is still much work to be done in the artificial 
intelligence framework, which has proven to be a necessary tool to 
facilitate a probabilistic approach to the outcomes of the simulated 
scenarios. Here, multidimensional cases with more complex wound 
geometries must be dealt with, and further experiments may be con
ducted with so-called physics-informed networks.

When these concepts have been further developed, the idea is that a 
practitioner can scan the burn wound, for example, using laser Doppler 
imaging (LDI). This scan includes the shape (geometry) of the injury. It 
gives a picture of the amount of blood flowing through the blood vessels 
in the burned area, which helps predict the wound healing time and 
indirectly gives information about the severity of the injury. This scan 
must, of course, be performed non-destructively on a patient. After all, 
the patient should not be bothered by it. In general, such a scan contains 
(much) noise. Image processing is required to filter out the noise. 
Alternatively, it is possible to resort to artificial intelligence here as well. 
Of course, we must always test whether the artificial intelligence-based 
results have been obtained with input data within the domain of the 
training set. The idea is then that the obtained scan is used as an initial 

condition for the simulations with the neural network model mimicking 
the mathematical model. The practitioner should then quickly see a 
histogram of the intensity of the expected skin contraction (and any 
other variables of interest). We also want to include the treatments so 
the practitioner finds the optimal treatment according to the model. The 
idea is shown schematically in Fig. 2.

Of course, we still have to deliver a considerable effort and be 
modest. Practitioners are often experienced physicians who know very 
well from their observations and colleagues what the most likely sce
narios are. Therefore, a clinician should always maintain skepticism 
regarding model results. Common sense must always come first, and 
model results can never be blindly adopted. In addition, the model 
predicts probabilities in specific scenarios. We must remember that 
improbable events can happen. In other words, the (almost) impossible 
can happen! Hence, common sense must prevail despite the modeling 
efforts and the beauty of mathematical modeling.
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Appendix. Mathematical model equations

This paper discusses mathematical models at continuous and macro scales. While the main text focuses on the conceptual understanding of these 
models, this appendix provides a glimpse into the underlying mathematical equations for interested readers.

Continuous-Scale Example: Morphoelasticity The continuous-scale model, exemplified by morphoelasticity (plastic skin deformation), is 
represented by the following system of equations: 

ρt

(
Dv
Dt

+ v[∇ • v]
)

= ∇ • σ + f, in Ω, t > 0,

Dε
Dt

+ εskw(∇v) − skw(∇v)ε + (tr(ε) − 1 )sym(∇v) = − αε, in Ω, t > 0,

v(x, t) = 0, on ∂Ω, t > 0.

(2) 

In these equations, ρt denotes the total mass density of the dermal tissues, σ represents the viscoelastic relationship for the Cauchy stress tensor, f is 
the body force exerted by myofibroblasts pulling on the extracellular matrix, and α is a non-negative constant controlling tissue recovery. When α = 0, 
the tissue fully recovers to its original shape.

and volume once the force is removed. Furthermore, the term Dy
Dt =

∂y
∂t +v • ∇y is the material derivative, accounting for changes in a property y over 

time.
These equations describe v, the velocity of points within the computational domain (including both damaged and healthy tissue) due to 

contraction, and ε, the effective strain, a local measure of the difference between the current tissue configuration and a virtual equilibrium config
uration.

Essentially, Equation (2) can be thought of as an advanced version of Newton’s law (F = m • a). It describes how forces exerted by cells cause the 
tissue to move and de- form. The second equation describes how the tissue’s microstructure changes due to cell forces and collagen production.

While not shown here, the complete mathematical model includes additional equations governing other essential components of the tissue. These 
are the collagen density (de- scribes the amount of collagen present in the tissue), the (myo)fibroblast density (de- scribes the concentration of cells 
responsible for wound contraction), and the signaling molecule concentrations (describes the concentration of chemical signals that influence cell 
behavior). These equations, along with detailed explanations and analyses, can be found in the references cited in the main text [11,12].

Note: A deep understanding of these equations is not necessary to grasp the main concepts of the paper. This appendix serves as a resource for 
readers interested in exploring the mathematical underpinnings of the discussed models.
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