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Abstract 

Study Objectives:  The aim of this study is to assess the performance of six different consumer wearable sleep-tracking devices, 
namely the Fitbit Charge 5, Fitbit Sense, Withings Scanwatch, Garmin Vivosmart 4, Whoop 4.0, and the Apple Watch Series 8, for 
detecting sleep parameters compared to the gold standard, polysomnography (PSG).

Methods:  Sixty-two adults (52 males and 10 females, mean age ± SD = 46.0 ± 12.6 years) spent a single night in the sleep laboratory 
with PSG while simultaneously using two to four wearable devices.

Results:  The results indicate that most wearables displayed significant differences with PSG for total sleep time, sleep efficiency, 
wake after sleep onset, and light sleep (LS). Nevertheless, all wearables demonstrated a higher percentage of correctly identified 
epochs for deep sleep and rapid eye movement sleep compared to wake (W) and LS. All devices detected >90% of sleep epochs (ie, 
sensitivity), but showed lower specificity (29.39%–52.15%). The Cohen’s kappa coefficients of the wearable devices ranged from 0.21 to 
0.53, indicating fair to moderate agreement with PSG.

Conclusions:  Our results indicate that all devices can benefit from further improvement for multistate categorization. However, the 
devices with higher Cohen’s kappa coefficients, such as the Fitbit Sense (κ = 0.42), Fitbit Charge 5 (κ = 0.41), and Apple Watch Series 8 
(κ = 0.53), could be effectively used to track prolonged and significant changes in sleep architecture.
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Statement of Significance

This study provides an updated evaluation of the performance of six popular consumer wearable sleep-tracking devices against 
the gold standard of polysomnography for sleep assessment. This research validates the performance of the sleep-tracking wear-
ables against the gold standard reference for measuring sleep and benefits from a relatively large sample size of 62 participants. 
The novelty lies in its comprehensive evaluation of multiple devices, offering clinicians and researchers a clear understanding of 
their accuracy and limitations.

Sleep is increasingly recognized as important for health and 
well-being [1]. In addition to this growing awareness, wear-
able devices for sleep tracking have gained immense pop-
ularity over the past few years [2]. Wearables are devices 
designed to measure various physiological parameters while 

worn on the body. Sleep-tracking devices are a growing 
trend in wearable health technology by providing users with 
detailed data on sleep architecture and hypnograms through 
their associated apps, offering insights into sleep stages and  
patterns [2, 3].
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Polysomnography (PSG) is the gold-standard method for objec-
tively assessing sleep. During PSG, signals of brain activity, eye 
movements, and muscle tone, as well as audio and video, are 
recorded, enabling classification of sleep stages in detail [4]. 
However, PSG may not be ideal for monitoring sleep in particular 
settings, as it is expensive, labor-intensive, and time-consuming; 
requires various equipment and technical and medical expertise; 
and is impractical for long-term use or in-home environment 
settings [5, 6]. In addition, applying and removing the sensors, 
organizing the patient administration, and thoroughly analyzing 
the data that PSG adds is quite labor-intensive for sleep experts. 
Besides applying and removing the sensors and possibly complet-
ing questionnaires and other administrative tasks, PSG requires 
an overnight stay in a sleep clinic or laboratory, which makes PSG 
time-consuming for both the sleep technicians and patients. Due 
to the inherent limitations of PSG, sleep-tracking wearables using 
an accelerometer and photoplethysmography (PPG) are being 
explored as a feasible alternative, largely due to their lower cost, 
convenience, and ability to measure sleep in both clinical and 
personal settings.

Accelerometers and PPG sensors monitor different move-
ment and physiological patterns throughout the night. 
Accelerometers are small electromechanical devices that 
measure acceleration along multiple axes (usually three axes: 
x, y, and z) to detect positional changes, turning over, or signif-
icant body movements during the night [7]. Due to the body 
movement variations specific to each sleep stage, accelerom-
eters can provide information about wakefulness and general 
sleep stages. However, they may tend to overestimate sleep due 
to poorly distinguishing between sleep and restful supine wake 
periods (eg, lying down while reading or watching television), 
or they could underestimate sleep due to potential body move-
ments during sleep being categorized as awakenings [7–10]. 
By combining an accelerometer with a PPG sensor in weara-
bles, a more comprehensive and accurate assessment of sleep 
could be provided. PPG sensors are a noninvasive technology 
using a light source and a photodetector at the surface of the 
skin to measure the volumetric variations of blood circulation 
and thus can be used to monitor heart rate, heart rate varia-
bility, blood flow, and blood oxygen levels [11, 12]. Due to the 
specific cardiovascular features of each sleep stage, PPG can 
provide more information about the sleep stages in addition 
to the accelerometer [3, 12]. The benefits of these sensors used 
in wearables include their low cost, noninvasive nature, and 
ability to provide continuous monitoring and real-time data. 
However, the readings of PPG can be affected by motion arti-
facts, skin pigmentation, or tissue thickness. In addition, they 
could be susceptible to environmental factors such as ambient 
light and temperature [13–15].

Although many researchers and clinicians have doubts 
about their accuracy in monitoring sleep, wearable sleep- 
tracking devices are widely used and becoming more technolog-
ically advanced, creating strong interest from researchers and  
clinicians for their possible use as alternatives to PSG.

While several studies have assessed the performance of con-
sumer sleep-tracking devices, continuous advancements in wear-
able technology involve the validation of newer models against 
PSG, the gold standard for sleep measurement [16–19]. In par-
ticular, devices such as the Fitbit Charge 5, Withings Scanwatch, 
Garmin Vivosmart 4, and WHOOP 4.0 have received limited 
independent validation in peer-reviewed studies utilizing PSG 
[3, 20–25]. Many previous investigations have focused on earlier 

models of these wearables or have relied on alternative reference 
methods [9, 22, 23].

For instance, Mouritzen et al. [20] conducted a validation study 
comparing the Garmin Vivosmart 4, against PSG, but only had a 
sample size of 18 participants. Stone et al. [21] also conducted a 
validation study of the Garmin Vivosmart 4 but used an ambu-
latory EEG monitor as a reference tool and had a sample size of 
only five participants. No validation studies were found for the 
Fitbit Charge 5. However, few studies were found that validated 
the Fitbit Charge 4 against PSG, but only with small sample sizes 
ranging from 2 to 37 participants [9, 22, 23].

Furthermore, the algorithms used by the wearable manu-
facturers lack transparency, hindering the understanding of 
their methodological strengths and limitations. To ensure these 
devices can be confidently adopted in clinical settings or for long-
term monitoring, performance validation of the newer wearable 
models is still needed.

Therefore, the aim of this laboratory-based study was to pro-
vide an updated evaluation of the performance of six wearable 
sleep-tracking devices—Fitbit Charge 5, Fitbit Sense, Withings 
Scanwatch, Garmin Vivosmart 4, Whoop 4.0, and Apple Watch 
Series 8—for assessing sleep. The wearables included in this 
study were chosen based on the following criteria: recent gen-
eration, good ease of use (affordable, unobtrusive, and sufficient 
battery life), and assessment of variables that could also be used 
for monitoring sleep, stress, fatigue, and sleepiness namely, heart 
rate, heart rate variability, stress indicator, and activity. To exam-
ine the performance, sleep measures derived from the wearable 
devices were compared to gold-standard measures derived from 
PSG [2].

Methods
All procedures contained herein were approved by the Ethics 
Committee of Antwerp University Hospital on April 3, 2023 (ref-
erence number 3126). Written consent was obtained from each 
participant prior to engagement.

Participants
Participants aged 18 years or older were selected irrespective of 
gender. No specific profile was selected, that is, both patients with 
suspected sleep apnea as well as healthy participants were selected 
for this study. Sixty-two adults participated in this performance 
study (52 males and 10 females; mean age ± SD = 46.0 ± 12.6 
years; mean body mass index [BMI] ± SD = 28.8 ± 5.6 kg/m2) with 
measurements of sleep parameters from one night of simultane-
ous PSG and wearable application.

The sample size for this study (n = 62) was determined based 
on a review of previous research on wearable performance for 
sleep measurements. Prior studies in this field have utilized 
smaller sample sizes of 2–12 participants [22–24]. While a few 
studies with moderately larger sample sizes (37, 53, and 35 par-
ticipants) were identified, we aimed to exceed these numbers to 
achieve a more robust and representative dataset [3, 9, 26]. By 
selecting a sample size of 62, we ensured a relatively large cohort 
to provide a robust dataset while maintaining a feasible study 
design within the constraints of in-lab PSG monitoring.

Procedure
PSG was performed overnight while participants were using two 
to four different sleep-tracking wearables. All PSGs were per-
formed in the Multidisciplinary Sleep Disorders Center of the 
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Antwerp University Hospital from April 2023 until August 2024. 
Participants arrived at the sleep center between 1:00 pm and 4:00 
pm and were immediately fitted with the PSG equipment. This 
allowed them sufficient time to acclimatize to both the monitor-
ing apparatus and the sleep laboratory environment. Participants 
were instructed to follow their usual bedtime routine and went to 
sleep at their habitual bedtime.

Wearables.
Six wrist-worn wearables containing an accelerometer and PPG 
were tested on the assessment of sleep, that is, Fitbit Charge 5, 
Fitbit Sense, Withings Scanwatch, Garmin Vivosmart 4, Whoop 
4.0, and Apple Watch Series 8. Each of the wearable devices 
applies their own separate set of proprietary algorithms to these 
data to assess various sleep metrics.

While data for sleep stages were measured directly by the 
wearable, wake after sleep onset (WASO) and sleep onset latency 
(SOL) were extracted directly from the analysis; total sleep time 
(TST) was calculated by subtracting the amount of WASO from 
the sleep period time (SPT). Sleep efficiency (SE) was calculated 
by dividing the TST by the SPT.

Each participant wore two to four wearable devices during the 
study, with no more than two devices worn per arm. Wearables 
were worn on both the left and right arm simultaneously to bal-
ance placement across participants. The specific number of devices 
worn depended on the participant’s comfort. Device placement was 
determined in set positions of which the order was rotated follow-
ing a predetermined schedule to ensure that no systematic bias was 
introduced by the position of a particular device.

Polysomnography.
Participants were fitted with sleep monitoring equipment for 
the PSG measurements by experienced sleep technicians. The 
montage included four channels of electroencephalography (C4-
M1, C3-M2, F4-M1, O2-M1) to assess brain activity, two electro- 
oculograms (left E1-M2 and right E2-M2) to assess eye  
movements, and electromyograms of the legs and chin to assess 
muscle tone. As part of the PSG, piezo belts and airflow sensors 
such as a thermistor and a nasal cannula were used to determine 
respiration. Lastly, video recordings and a microphone were used 
to verify body position, breathing and snoring sounds, and talking 
[27]. Sleep stages were scored according to American Academy 
of Sleep Medicine (AASM) criteria by a single technician to avoid 
interrater differences. Each 30-second epoch of time in bed was 
manually reviewed and scored as wake, stage 1, 2, or 3 non-rapid 
eye movement (REM) sleep (N1, N2, and N3) or REM sleep. The 
scored PSG records were subsequently used to determine the 
amount of time spent in any stage of sleep (total sleep time) and 
the amount of wake, N1, N2, N3 and REM.

Data analysis
The wearable sleep data were exported or viewed from the asso-
ciated wearable apps using the default settings. Descriptive sta-
tistics were calculated using Microsoft Excel (2024).

Epoch-by-epoch analysis.
An epoch-by-epoch analysis involved breaking down the con-
tinuous stream of sleep data of PSG into discrete time intervals 
called epochs [28]. Afterwards, each epoch was compared individ-
ually to the corresponding epoch generated by the wearables. To 
compare the wearable data files with the corresponding PSG data 
files, their resolutions were matched. As sleep staging is always 
assessed by 30-second epochs, wearable epochs were converted 
to match those of the PSG recordings. Thus, a 1-minute wearable 
epoch, for example, staged as light sleep (LS), was divided into two 
smaller epochs of 30 seconds, both staged as LS. This was done 
in accordance with previously performed comparative studies [3, 
16]. Wearable and PSG data were compared during the lights-out 
period (8 hours) of the PSG registration.

Comparing wearable performance with PSG was performed for 
both two-state categorization and four-state categorization. The 
two-state categorization allows the determination of (1) the sen-
sitivity for sleep, that is, the percentage of epochs the wearable 
correctly scored as sleep compared to PSG, and (2) the specificity 
for wake, that is, the percentage of epochs the wearable correctly 
scored as wake compared to PSG.

For four-state categorization, data are classified as one of 
12–16 types of sleep stages, based on the wearable’s and PSG’s 
scoring (Table 1).

Wearables’ LS was compared to PSG N1 + N2 sleep, wearables’ 
deep sleep (DS) to PSG N3 sleep, and wearables’ REM sleep to PSG 
REM sleep. In case of the Withings Scanwatch data, DS was com-
pared to PSG N3 + REM as this device combines both sleep stages.

Four-state categorization was used to determine all other var-
iables, along with their mean differences (bias), lower and upper 
limits of agreement (LoA), and whether the differences were sig-
nificant [3]. Statistical significance was set at a p-value of <0.05.

While data for sleep stages, WASO, and SOL were extracted 
directly from the epoch-by-epoch analysis, TST was calculated by 
subtracting the amount of WASO from the SPT. SE was calculated 
by dividing the TST by the SPT.

Cohen’s kappa coefficient.
In the case of wearable performance studies for sleep, Cohen’s 
kappa values are often used to assess the agreement between the 
wearable device’s sleep detection algorithm and a reference stand-
ard, such as PSG. In addition to the observed agreement between 
the devices, Cohen’s kappa values also take into account the pos-
sibility that the agreement comes by chance. The interpretation 

Table 1. Error matrices for classification of sleep stages comparing polysomnography and wearable devices

Wearable

PSG W LS DS REM sleep

Wake True W False LS False DS False REM

N1 + N2 False W True LS False DS False REM

N3 False W False LS True DS False REM

REM False W False LS False DS True REM

Abbreviations: DS, deep sleep; LS, light sleep; PSG, polysomnography; REM, rapid eye movement; W, wake.

D
ow

nloaded from
 https://academ

ic.oup.com
/sleepadvances/article/6/2/zpaf021/8090472 by H

asselt U
niversity user on 19 M

ay 2025



4 | Sleep Advances, 2025, Vol. 6, No. 2

of Cohen’s kappa values is often categorized as follows: values 
≤0 indicate no agreement, 0.01–0.20 indicate none to slight agree-
ment, 0.21–0.40 indicate fair agreement, 0.41–0.60 indicate mod-
erate agreement, 0.61–0.80 indicate substantial agreement, and 
0.81–1.00 indicate almost perfect agreement [29].

Bland–Altman plots.
The Bland–Altman analysis was employed to assess the agree-
ment between the continuous metrics measured by the wearable 
device, compared to PSG. This method allows for the identification 
of any mean difference (bias) and the estimation of the 95% LoA. 
To compare the data of TST, SE, SOL, WASO, wake (W), LS, DS, and 
REM from the PSGs with those of the wearables, a Bland–Altman 
plot was used. These plots highlight both systematic bias and var-
iability between methods, offering valuable insights into whether 
wearables consistently overestimate or underestimate specific 
parameters. The 95% LoA were calculated as the mean difference 
between the wearable and PSG measurements ± 1.96 times the 
standard deviation of the differences. This method allows to eval-
uate bias between mean differences of two different methods, and 
to estimate an interval in which 95% of the differences of the other 
method, compared to the first one, fall. This results in a scatter 
plot where the y-axis displays the difference between two paired 
measurements, while the x-axis displays the average of these two 
measures [3, 30, 31].

Additionally, the mean absolute error (MAE) and mean absolute 
percentage error (MAPE) were calculated. MAE provides a direct 
measure of the average magnitude of error, while MAPE contextual-
izes this error as a percentage of the observed values, allowing for a 
proportional understanding of the device’s performance [32].

Results
Missing data procedures
With each lab visit, the research staff carefully synced and 
charged all the wearable devices in order to capture sleep data 

on the devices. Despite these efforts, missing sleep data or partial 
data loss occurred more often than anticipated. Specifically, for 
the Garmin Vivosmart 4, data were available for 25 participants, 
while 18 participants had missing data. For the Apple Watch 
Series 8, data were available for 20 participants, with 15 missing 
datasets or partial data loss. In addition, no device malfunction 
or other concerns were observed that may be driving these data 
losses (Figure 1, Table 2).

Sleep parameters
The results for the different sleep parameter measures (TST, 
WASO, SE, and SOL) are shown in Tables 3–6. Corresponding 
Bland–Altman plots are shown in Figures 2–5.

The mean difference (bias) between the wearable devices, 
except Fitbit Charge 5, and PSG indicated that, on average, the 
wearables overestimated TST by 6.31–39.87 minutes compared 
to PSG. The Fitbit Charge 5 displayed a mean difference of −5.74 
minutes for TST compared to PSG, indicating an underestima-
tion of the TST by 5.74 minutes compared to PSG (Table 3). The 
bias for TST was not significant when measured by the Fitbit 
Charge 5 (p = 0.051) and the Fitbit Sense (p = 0.285). The wide 
LoA indicate that there is a considerable degree of variability in 
the differences between the wearable devices and PSG (Figure 2). 

Figure 1. Amount of sleep measurements per wearable.

Proportion of successfully captured vs. failed sleep data from wearable devices as a consequence of missing sleep data or partial sleep data loss.

Table 2. Amount of successfully captured vs. failed sleep data 
from wearable devices as a consequence of missing sleep data or 
partial sleep data loss

Successes Failures

Fitbit Sense 37 8

Fitbit Charge 5 39 4

Whoop 4.0 40 5

Withings Scanwatch 41 0

Garmin Vivosmart 4 25 18

Apple Watch Series 8 20 15
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This suggests that while the wearable devices such as the Fitbit 
Sense and the Fitbit Charge 5 generally agree with PSG, the wider 
LOA indicates that for some individuals, sleep parameters may 
be considerably different from PSG. For individuals with lower 
TST, the tendency to overestimate may arise from the wearable’s 
inability to accurately detect short wake episodes interspersed 
within sleep periods, leading to an inflation of the calculated 
sleep time. Conversely, for individuals with higher TST, underes-
timation may occur due to difficulties in distinguishing between 
periods of restful wakefulness and LS, especially during pro-
longed sleep durations, which can result in misclassification 
and a reduction in the reported TST [33]. The Apple Watch Series 
8 showed the most narrow LoA (−38.35 to 77.55 minutes) indi-
cating that the Apple Watch Series 8 showed the least amount 
of variability in the differences with PSG. MAE values for TST 
ranged from 27.75 minutes (Apple Watch Series 8) to 60.94 min-
utes (Withings Scanwatch). Lower MAE values, such as those 
observed with the Apple Watch and Fitbit Charge 5, suggest these 
devices are better at estimating total sleep duration compared 
to others like the Garmin Vivosmart 4 or Withings Scanwatch. 
The MAPE values further highlight the Apple Watch’s superior 
relative accuracy (6.5%), while devices with higher MAPEs may 
struggle with consistent performance across different sleep sce-
narios (Figure 2, Table 3).

Additionally, the Bland–Altman plots for TST showed no 
apparent pattern in the distribution of errors, suggesting that 

the magnitude of the discrepancies between wearable devices 
and PSG does not systematically vary across different TST values 
(Figure 2).

The mean differences between the wearable devices and PSG 
for WASO indicated that, on average, all the wearable devices 
significantly underestimated WASO by 12.38–47.94 minutes 
compared to PSG. The wide LoA, especially for the Fitbit Charge 
5 (−116.83 to 83.11 minutes) and the Whoop 4.0 (−112.03 to 73.73 
minutes) indicate that there is a considerable degree of varia-
bility in the differences between the wearable devices and PSG. 
The Apple Watch Series 8 (−74.76 to 32.31 minutes), the Garmin 
Vivosmart (−91.79 to 15.11 minutes), the Withings Scanwatch 
(−128.39 to 32.51 minutes), and the Fitbit Sense (−83.06 to 58.31 
minutes) showed the least wide LoA indicating that the degree of 
variability in the differences is smaller between these wearable 
devices with PSG. The MAE and MAPE for WASO revealed striking 
differences between devices. While devices like the Fitbit Sense 
and Apple Watch Series 8 had lower MAE values (26–27 minutes), 
others, such as the Garmin Vivosmart 4, showed extremely high 
MAPE values (eg, 1216.61%), indicating significant challenges in 
detecting wake periods after initial sleep onset (Figure 3, Table 
4).

The mean differences between the wearable devices and PSG 
for SE indicated that, on average, all the wearable devices signif-
icantly overestimated SE by 2.20 (p = 0.024) to 10.19% (p < 0.001) 
compared to PSG. The LoA showed a similar range between the 

Figure 2. Bland–Altman plots for device-derived and polysomnography (PSG)-derived measures of total sleep time (TST).

Bland–Altman plots showing the difference between the (A) Fitbit Sense, (B) Fitbit Charge 5, (C) Whoop 4.0, (D) Withings Scanwatch, (E) Garmin Vivosmart 4 
and (F) Apple Watch Series 8 and PSG plotted against the mean of both metrics for TST—positive values indicate devices overestimate relative to PSG, whereas 
negative values indicate devices underestimate relative to PSG. The plots depict the mean bias (solid line) and upper and lower limits of agreement (2 SDs from 
bias; dashed lines) for minutes of TST for the devices compared with PSG.
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different wearable devices indicating that the degree of variabil-
ity in the differences between the wearable devices and PSG is 
similar for all of the assessed devices. The relatively low MAEs 
(4.83–10.57%) and MAPEs (5.31–10.95%) for SE across devices indi-
cate that most wearables provide reasonably accurate estimates 
of overall sleep efficiency (Figure 4, Table 5).

For measuring SOL, no significant mean differences were 
shown by the Fitbit Sense (−4.35 minutes, p = 0.206), Fitbit 
Charge 5 (6.56 minutes, p = 0.212), Withings Scanwatch 
(6.59 minutes, p = 0.185), Garmin Vivosmart (2.84 minutes, 
p = 0.357), and Apple Watch Series 8 (1.88 minutes, p = 0.368) 
compared to PSG. Only the Whoop 4.0 showed a significant 
underestimation (−10.95 minutes, p = 0.006) for SOL compared 
to PSG. The wide LoA indicate that there is a considerable 
degree of variability in the differences between all the weara-
ble devices and PSG, suggesting that individual measurements 
differ significantly. In addition, SOL showed some of the larg-
est relative errors, with devices like the Whoop 4.0 and Garmin 
Vivosmart 4 exhibiting MAPEs of 451.96% and 159.43%, respec-
tively. These errors suggest that wearables face challenges in 
accurately capturing the transition from wakefulness to sleep 
(Figure 5, Table 6).

Epoch-by-epoch comparisons indicated quite high sensitiv-
ities (91.68%–96.27%). Specificity ranged between 29.39% and 
52.15%. The Cohen’s kappa values of the Fitbit Sense (κ = 0.42), 
Fitbit Charge 5 (κ = 0.41), and the Apple Watch Series 8 (κ = 0.53) 
indicate a moderate agreement between the device and PSG. The 
Cohen’s kappa values of the Whoop 4.0 (κ = 0.37), the Withings 

Scanwatch (κ = 0.22), and the Garmin Vivosmart 4 (κ = 0.21) indi-
cate a fair agreement between the device and PSG (Table 7).

Sleep stages
The results for the different sleep stage measures (W, LS, DS, and 
REM sleep) are presented in Tables 8–11. Corresponding Bland–
Altman plots are shown in Figures 6–9.

All the wearables displayed a significant underestimation of W 
compared to PSG (11.76–39.57 minutes). In addition, the MAE and 
MAPE values vary widely across devices. For example, the Fitbit 
Sense exhibits moderate MAE (29.62 minutes) and MAPE (51.08%), 
suggesting a reasonable accuracy for detecting wake durations.

In contrast, the Garmin Vivosmart 4 shows extremely high 
MAPE (1175.52%), highlighting poor reliability in measuring wake 
times. Devices like the Apple Watch Series 8 (MAE: 28.33 minutes, 
MAPE: 99.26%) offer slightly better results than Garmin but are 
still less accurate compared to the Fitbit models.

The Whoop 4.0, Withings Scanwatch, and Garmin Vivosmart 
4 showed wider LoA than the Fitbit Sense, Fitbit Charge 5, and 
the Apple Watch Series 8, indicating that the degree of variabil-
ity in the differences is larger for the Whoop 4.0, Scanwatch, and 
Garmin Vivosmart 4. This suggests that the individual measure-
ments of these devices could differ more than the measurements 
of the Fitbit Sense, Fitbit Charge 5, and the Apple Watch Series 8 
(Figure 6, Table 8).

LS was significantly underestimated by the Whoop 4.0 (28.54 
minutes, p = 0.008) and Withings Scanwatch (33.51 minutes, 
p = 0.002) and was significantly overestimated by the Fitbit 

Figure 3. Bland–Altman plots for device-derived and polysomnography (PSG)-derived measures of wake after sleep onset (WASO).

Bland–Altman plots showing the difference between the (A) Fitbit Sense, (B) Fitbit Charge 5, (C) Whoop 4.0, (D) Withings Scanwatch, (E) Garmin Vivosmart 4 and 
(F) Apple Watch Series 8 and PSG plotted against the mean of both metrics for WASO—positive values indicate devices overestimate relative to PSG, and negative 
values indicate devices underestimate relative to PSG. The plots depict the mean bias (solid line) and upper and lower limits of agreement (2 SDs from bias; 
dashed lines) for minutes of WASO for the devices compared with PSG.
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Sense (17.77 minutes, p = 0.032), Fitbit Charge 5 (16.58 minutes, 
p = 0.034), and the Apple Watch Series 8 (58.75 minutes, p < 0.001). 
The Garmin Vivosmart 4 showed no significant difference with 
PSG with an average difference of 5.80 minutes for LS (p = 0.395). 
The MAE and MAPE scores suggest a mixed performance among 
wearables. The Fitbit Charge 5 (MAE: 45.35 minutes, MAPE: 16.76%) 
outperforms others, indicating better precision in estimating LS.

The Garmin Vivosmart 4 and Withings Scanwatch have nota-
bly higher error (61.36% and 35.57%, respectively), reflecting less 
consistent outcomes.

The Whoop 4.0 (MAPE: 30.13%) performs reasonably well but 
still trails behind the Fitbit Charge 5 in LS accuracy (Table 9). The 
LoA are relatively wide for LS for all the wearable devices, and the 
differences are evenly distributed around the mean bias, with no 
apparent pattern. This suggests that the error between the wear-
able and PSG is consistent across different measurements (Figure 
7).

The Fitbit Sense and Fitbit Charge 5 did not display any sig-
nificant differences for DS and REM sleep compared to PSG. The 
Whoop 4.0 significantly overestimated both DS (31.49 minutes, 
p < 0.001) and REM sleep (15.28 minutes, p = 0.017), while the 
Apple Watch Series 8 significantly underestimated both DS (25.20 
minutes, p = 0.001) and REM sleep (13.38 minutes, p = 0.045). The 
Garmin Vivosmart 4 showed a significant overestimation for DS 
(44.44 minutes, p = 0.043), but no significant difference for REM 

sleep (14.42 minutes, p = 0.176) compared to PSG. The MAE and 
MAPE values for DS reflect significant challenges in wearable 
performance. While Fitbit devices demonstrate relatively lower 
MAPE (Sense: 18.05%, Charge 5: 16.76%), the Garmin Vivosmart 
4 (MAE: 79.76 minutes, MAPE: 61.36%) struggles considerably in 
accuracy. The performance for REM sleep detection is inconsist-
ent, with most devices showing high MAPE values. For instance, 
the Garmin Vivosmart 4 (MAE: 59.26 minutes, MAPE: 60.16%) and 
Apple Watch Series 8 (MAE: 26.03 minutes, MAPE: 52.58%) suggest 
limited reliability.

Fitbit devices provide slightly better results, with the Charge 5 
exhibiting a MAPE of 29.69%, indicating a moderate level of accu-
racy (Tables 10 and 11).

The LoA for both DS and REM sleep of the Garmin Vivosmart 4 
are notably wide (−199.30 to 288.18 minutes and −163.61 to 134.77 
minutes, respectively), indicating that the individual measure-
ments of the Garmin Vivosmart 4 differed significantly compared 
to PSG. No device malfunction or other concerns were observed 
that may be driving these results. The LoA for the other wearable 
devices are narrow compared to the LoA of the Garmin Vivosmart, 
indicating that for these wearables, the individual measurements 
differ less than those of the Garmin Vivosmart (Tables 10 and 11, 
Figures 8 and 9).

The measurements for DS of the Withings Scanwatch (encom-
passing both N3 sleep and REM sleep) showed a mean difference 

Figure 4. Bland–Altman plots for device-derived and polysomnography (PSG)-derived measures of sleep efficiency (SE).

Bland–Altman plots showing the difference between the (A) Fitbit Sense, (B) Fitbit Charge 5, (C) Whoop 4.0, (D) Withings Scanwatch, (E) Garmin Vivosmart 4 and 
(F) Apple Watch Series 8 and PSG plotted against the mean of both metrics for SE—positive values indicate devices overestimate relative to PSG, and negative 
values indicate devices underestimate relative to PSG. The plots depict the mean bias (solid line) and upper and lower limits of agreement (2 SDs from bias; 
dashed lines) for minutes of SE for the devices compared with PSG.
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Figure 5. Bland–Altman plots for device-derived and polysomnography (PSG)-derived measures of sleep onset latency (SOL).

Bland–Altman plots showing the difference between the (A) Fitbit Sense, (B) Fitbit Charge 5, (C) Whoop 4.0, (D) Withings Scanwatch, (E) Garmin Vivosmart 4 and 
(F) Apple Watch Series 8 and PSG plotted against the mean of both metrics for SOL—positive values indicate devices overestimate relative to PSG, and negative 
values indicate devices underestimate relative to PSG. The plots depict the mean bias (solid line) and upper and lower limits of agreement (2 SDs from bias; 
dashed lines) for minutes of SOL for the devices compared with PSG.

Table 3. Total sleep time (TST) (min) as assessed by polysomnography and wearable devices displayed as mean ± SD with associated 
biases and limits of agreement

Wearable n PSG, mean ± SD Wearable, mean ± SD Bias p-Value MAE MAPE Upper LoA Lower LoA

Fitbit Sense 37 421.04 ± 46.56 427.35 ± 75.22 6.31 0.285 35.23 42.08 137.32 −124.70

Fitbit Charge 5 39 408.37 ± 56.07 419.49 ± 51.14 11.12 0.051 31.24 7.81 92.50 −70.27

Whoop 4.0 40 409.95 ± 61.58 434.41 ± 72.64 24.46 0.010 50.31 12.61 150.01 −101.09

Withings Scanwatch 41 406.83 ± 52.33 446.70 ± 59.74 39.87 0.000 60.94 14.58 172.31 −92.58

Garmin Vivosmart 4 25 432.42 ± 47.64 470.86 ± 59.00 38.44 0.002 54.36 11.24 159.51 −82.63

Apple Watch Series 8 20 415.63 ± 46.20 435.23 ± 46.59 19.60 0.004 27.75 6.50 77.55 −38.35

Significant p-values (p < 0.05) are indicated by a bold font. Abbreviations: LoA, limits of agreement; MAE, mean absolute error; MAPE, mean absolute percentage 
error; PSG, polysomnography.

Table 4. Wake after sleep onset (WASO) (min) as assessed by polysomnography and wearable devices displayed as mean ± SD with 
associated biases and limits of agreement

Wearable n PSG, mean ± SD Wearable, mean ± SD Bias p-Value MAE MAPE Upper LoA Lower LoA

Fitbit Sense 37 53.92 ± 33.37 41.54 ± 17.49 −12.38 0.022 26.19 102.94 58.31 −83.06

Fitbit Charge 5 39 63.62 ± 52.44 46.76 ± 20.43 −16.86 0.023 29.91 70.31 83.11 −116.83

Whoop 4.0 40 60.74 ± 55.16 41.59 ± 52.02 −19.15 0.007 34.18 153.29 73.73 −112.03

Withings Scanwatch 41 64.43 ± 41.62 16.49 ± 17.37 −47.94 0.000 49.74 489.65 32.51 −128.39

Garmin Vivosmart 4 25 42.36 ± 29.36 4.02 ± 6.58 −38.34 0.000 38.34 1216.61 15.11 −91.79

Apple Watch Series 8 20 58.00 ± 42.65 36.78 ± 39.18 −21.23 0.001 26.48 229.12 32.31 −74.76

Significant p-values (p < 0.05) are indicated by a bold font. Abbreviations: LoA, limits of agreement; MAE, mean absolute error; MAPE, mean absolute percentage 
error; PSG, polysomnography.
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of 73.20 minutes when compared to the N3 and REM sleep meas-
urements of PSG. This indicates that the Withings Scanwatch 
significantly overestimates N3 and REM sleep by 73.20 minutes 
(p < 0.001) when compared to PSG. In addition, the wide LoA 
(−37.11 to 185.84 minutes) indicates that there is a considerable 
degree of variability in the differences between all the wearable 
devices and PSG (Table 10, Figure 8).

The Apple Watch Series 8 achieved the highest accuracy in 
identifying wake epochs, correctly classifying 52.15% of PSG W 
epochs, followed by the Fitbit Sense (48.80%), Fitbit Charge 5 
(47.67%), Whoop 4.0 (40.13%), Withings Scanwatch (31.09%), 
and Garmin Vivosmart 4 (27.64%). Common errors included 
misclassification of PSG W epochs as LS, with the Garmin 
Vivosmart 4 misclassifying 46.35% of W as LS, followed by the 
Withings Scanwatch (53.89%), Apple Watch Series 8 (42.10%), 
Fitbit Charge 5 (41.31%), Fitbit Sense (40.46%), and Whoop 4.0 
(44.12%).

For LS, the Apple Watch Series 8 showed the highest accu-
racy, correctly identifying 83.27% of PSG LS epochs. This was 
followed by the Fitbit Sense (73.30%), Fitbit Charge 5 (72.42%), 
Whoop 4.0 (61.99%), Garmin Vivosmart 4 (60.33%), and Withings 
Scanwatch (53.04%). Misclassification of other stages as LS 
was notable, particularly for N3 and REM sleep, with the Fitbit 

Sense misclassifying 39.76% of PSG N3 and 30.23% of PSG REM 
sleep as LS. Similarly, the Fitbit Charge 5 misclassified 37.25% 
of N3 and 30.48% of REM as LS, with similar trends observed 
across other devices.

The Whoop 4.0 performed best for identifying DS, correctly 
classifying 69.63% of PSG N3 epochs. This was followed by the 
Withings Scanwatch (66.74%), Fitbit Charge 5 (51.50%), Fitbit 
Sense (50.86%), Apple Watch Series 8 (50.66%), and Garmin 
Vivosmart 4 (47.46%). Misclassification of PSG N3 as LS occurred 
frequently, with rates of 47.73% for the Apple Watch Series 8, 
46.00% for Garmin Vivosmart 4, and between 22.50% and 41.13% 
for other devices.

Accuracy in identifying REM sleep epochs was highest for the 
Apple Watch Series 8, which correctly classified 68.57% of PSG 
REM epochs. Following this were the Whoop 4.0 (61.99%), Fitbit 
Sense (61.29%), Fitbit Charge 5 (59.96%), and Garmin Vivosmart 4 
(33.10%). Common errors included misclassifying REM as LS, with 
Garmin Vivosmart 4 and Fitbit Sense misclassifying 41.57% and 
30.23% of PSG REM as LS, respectively.

The Withings Scanwatch grouped stages N3 and REM as DS, 
with 66.74% accuracy for PSG epochs. Common misclassifications 
included PSG W as LS (53.89%), PSG N1/N2 as DS (41.13%), and 
PSG N3 or REM sleep as LS (27.69%) (Table 12).

Table 5. Sleep efficiency (SE) (%) as assessed by polysomnography and wearable devices displayed as mean ± SD with associated biases 
and limits of agreement

Wearable n PSG, mean ± SD Wearable, mean ± SD Bias p-Value MAE MAPE Upper LoA Lower LoA

Fitbit Sense 37 88.59 ± 7.20 90.79 ± 4.16 2.20 0.024 4.83 5.31 14.93 −10.54

Fitbit Charge 5 39 86.53 ± 11.0 89.92 ± 4.40 3.39 0.015 5.97 6.76 22.42 −15.64

Whoop 4.0 40 87.04 ± 11.64 91.14 ± 10.96 4.10 0.006 7.14 8.07 23.63 −15.42

Withings Scanwatch 41 86.28 ± 8.81 96.47 ± 3.62 10.19 0.000 10.57 10.95 27.36 −6.98

Garmin Vivosmart 4 25 90.95 ± 6.46 99.12 ± 1.44 8.17 0.000 8.17 8.26 19.97 −3.63

Apple Watch Series 8 20 87.80 ± 8.77 92.25 ± 8.08 4.44 0.001 5.53 6.14 15.40 −6.51

Significant p-values (p < 0.05) are indicated by a bold font. Abbreviations: LoA, limits of agreement; MAE, mean absolute error; MAPE, mean absolute percentage 
error; PSG, polysomnography.

Table 6. Sleep onset latency (SOL) (min) as assessed by polysomnography and wearable devices displayed as mean ± SD with 
associated biases and limits of agreement

Wearable n PSG, mean ± SD Wearable, mean ± SD Bias p-Value MAE MAPE Upper LoA Lower LoA

Fitbit Sense 37 27.30 ± 31.63 22.95 ± 26.09 −4.35 0.206 18.46 250.90 58.02 −66.72

Fitbit Charge 5 39 24.31 ± 25.38 30.87 ± 44.61 6.56 0.212 25.59 133.31 106.11 −92.99

Whoop 4.0 40 22.79 ± 25.83 11.84 ± 18.10 −10.95 0.006 15.30 451.96 40.57 −62.47

Withings Scanwatch 41 24.18 ± 23.77 30.77 ± 46.38 6.59 0.185 22.71 107.96 97.45 −84.28

Garmin Vivosmart 4 25 29.44 ± 33.69 32.28 ± 44.24 2.84 0.357 24.88 159.43 77.85 −72.17

Apple Watch Series 8 20 21.00 ± 13.17 22.88 ± 23.26 1.88 0.368 11.23 46.52 50.10 −46.35

Significant p-values (p < 0.05) are indicated by a bold font. Abbreviations: LoA, limits of agreement; MAE, mean absolute error; MAPE, mean absolute percentage 
error; PSG, polysomnography.

Table 7. Kappa, sensitivity, specificity, agreement of wearable devices compared to polysomnography

Wearable n Kappa, mean ± SD Sensitivity, mean ± SD (%) Specificity, mean ± SD (%)

Fitbit Sense 37 0.42 ± 0.14 93.33 ± 3.85 48.80 ± 20.67

Fitbit Charge 5 39 0.41 ± 0.15 91.68 ± 7.28 47.51 ± 17.37

Whoop 4.0 40 0.37 ± 0.16 93.58 ± 9.42 40.13 ± 23.55

Withings Scanwatch 41 0.22 ± 0.15 94.32 ± 10.94 31.09 ± 20.12

Garmin Vivosmart 4 25 0.21 ± 0.13 95.92 ± 6.10 29.39 ± 26.38

Apple Watch Series 8 20 0.53 ± 0.16 96.27 ± 4.57 52.15 ± 21.25
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Wrist positions
Overall, the kappa values of the different positions of the wrist 
were similar, ranging from 0.33 to 0.38, indicating moderate 
agreement between wearable measurements and the reference 
standard, regardless of wrist position. Sensitivity shows slight 
variation, with values such as 92.6% (left, lower position) and 95% 
(right, upper position). This suggests that certain positions may 
slightly enhance the detection of sleep/wake episodes. Specificity 
fluctuates, indicating differences in the accuracy of detecting 
wake states between positions.

The analysis showed that the performance of the wearables 
was quite similar across these wrist positions, with only minor 
variations observed in certain parameters such as TST and 
WASO. These variations were not substantial enough to indicate 
a meaningful impact of wrist position on overall performance. 
Thus, the findings suggest that the wearables performed consist-
ently regardless of wrist placement (Supplementary Table S1).

Discussion
This study assessed how well six different consumer wearable 
sleep-tracking devices detected sleep parameters compared to 
the gold standard, PSG.

All the wearable sleep-tracking devices, except the Fitbit 
Sense and the Fitbit Charge 5, significantly overestimated TST 
compared to PSG. For TST, wearable-based estimates are typ-
ically considered to be clinically satisfactory if the bias is less 
than 30 minutes [16]. Hence, even though the Apple Watch 
Series 8 displayed a significant overestimation of 19.60 minutes 
(p = 0.004) compared to PSG, the Apple Watch Series 8, as well 
as the Fitbit Charge 5 and Fitbit Sense, would be considered as 
clinically satisfactory for TST. The findings for WASO, SE, and SOL 
are consistent with many previous studies, which have similarly 
shown that wearables tend to overestimate SE and underesti-
mate wake [5, 16, 28, 34–37]. In line with these studies, our results 
indicate that all the wearables significantly overestimated SE by 
2.20% (p = 0.024) to 10.19% (p < 0.001), and significantly under-
estimated W (−11.76 to −39.57 minutes) and WASO (−12.38 to 
−47.94 minutes).

Although SE overestimations within a range of around 5% may 
be clinically acceptable for general wellness purposes, overesti-
mations exceeding 10% could lead to significant discrepancies 
[38].

In addition, minor inaccuracies for WASO may be tolera-
ble for healthy individuals. However, underestimations over 30 
minutes are generally not considered acceptable for clinical or 

Figure 6. Bland–Altman plots for device-derived and polysomnography (PSG)-derived measures of wake (W).

Bland–Altman plots showing the difference between the (A) Fitbit Sense, (B) Fitbit Charge 5, (C) Whoop 4.0, (D) Withings Scanwatch, (E) Garmin Vivosmart 4 and 
(F) Apple Watch Series 8 and PSG plotted against the mean of both metrics for W—positive values indicate devices overestimate relative to PSG, and negative 
values indicate devices underestimate relative to PSG. The plots depict the mean bias (solid line) and upper and lower limits of agreement (2 SDs from bias; 
dashed lines) for minutes of W for the devices compared with PSG.
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research-grade accuracy, as they could misinform about sleep 
fragmentation and overall sleep quality [39].

All wearable devices showed a sensitivity of >90% (ie, correct 
detection of sleep epochs). The Fitbit Sense (48.80%), Fitbit Charge 
5 (47.51%), and the Apple Watch Series 8 (52.15%) showed higher 
specificity (ie, detecting wake epochs) compared to the Whoop 4.0 
(40.13%), Withings Scanwatch (31.09%), and Garmin Vivosmart 
4 (29.39%). Low specificity is a common finding when validating 
devices that rely predominantly on actigraphy to estimate sleep 
[25, 40–42].

Our findings in this study indicate that most wearable 
sleep-tracking devices significantly underestimate WASO and W, 
and significantly under- or overestimate LS compared to PSG dur-
ing the same night. The detection of wake within sleep is diffi-
cult due to the similarity in movement between restful wake and 
sleep. Therefore, it is reasonable to suggest that the devices that 
are better at detecting wake within sleep, such as the Fitbit Sense 
and the Fitbit Charge 5, have refined their proprietary algorithms 
to improve wake detections. In addition, all the wearables use 
actigraphy and heart rate data which do not detect brief arousals 
or periods of LS as accurately as PSG’s monitoring of brainwaves 
and physiological signals. Our four-state categorization matrices 
also indicate that the main sources of error appear as misclassi-
fied PSG W, N3 sleep, and REM sleep as LS by the wearables. It is 
important to contextualize that LS makes up a significant portion 

of our total sleep time. On average, LS accounts for about 50%–
60% of a typical night’s sleep. During LS, people are less active but 
still exhibit some movement. In addition, in LS, heart rate and 
breathing slow down but at a lesser extent as in DS or REM sleep. 
Since LS occupies a middle ground in terms of both heart rate 
and movement, it can become a “default” classification for weara-
bles when there is uncertainty. Conservative algorithms are more 
likely to tend toward LS rather than overestimate critical stages 
like DS or REM when in doubt [8–10, 43–45]. Accordingly, all of our 
selected wearables tend to lean towards LS rather than DS or REM 
when classification is uncertain. Especially the Garmin Vivosmart 
4 exhibits a pronounced tendency to misclassify multiple sleep 
stages as LS. With 46.35% of PSG W and 46.00% of PSG N3 epochs 
classified as LS, the Garmin Vivosmart 4 shows a strong tendency 
to treat LS as a fallback classification when in doubt.

Similar to previous research, our results showed differences 
for the measurements of DS and REM sleep [3, 16, 35]. All the 
wearable sleep-tracking devices, except the Fitbit Sense and Fitbit 
Charge 5, indicated significant over- or underestimations for 
DS. For REM sleep, the Whoop 4.0 and the Apple Watch Series 8 
displayed a significant over- and underestimation compared to 
PSG, respectively. The Fitbit Charge 5, Fitbit Sense, and Garmin 
Vivosmart 4 showed no significant difference for measuring REM 
sleep compared to PSG. DS and REM sleep are generally measured 
more accurately by wearables due to their distinct physiological 

Figure 7. Bland–Altman plots for device-derived and polysomnography (PSG)-derived measures of light sleep (LS).

Bland–Altman plots showing the difference between the (A) Fitbit Sense, (B) Fitbit Charge 5, (C) Whoop 4.0, (D) Withings Scanwatch, (E) Garmin Vivosmart 4 and 
(F) Apple Watch Series 8 and PSG plotted against the mean of both metrics for LS—positive values indicate devices overestimate relative to PSG, and negative 
values indicate devices underestimate relative to PSG. The plots depict the mean bias (solid line) and upper and lower limits of agreement (2 SDs from bias; 
dashed lines) for minutes of LS for the devices compared with PSG.
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markers such as reduced heart rate and lack of physical move-
ment compared to W and LS. Nevertheless, even measurements 
of DS and REM sleep obtained through wearables are not without 
limitations and can exhibit inaccuracies relative to PSG due to, for 
example, movement artifacts, algorithmic limitations, or external 
factors [44, 46]. Accordingly, our results showed that all wearables 
demonstrate a higher percentage of correctly identified epochs 
for DS and REM sleep compared to W and LS.

The variability in MAE and MAPE highlights that not all wear-
ables are equally reliable for all sleep parameters. Devices like 
the Apple Watch Series 8 and Fitbit Charge 5 show more consist-
ent accuracy, particularly for sleep parameters like TST and SE, 
making them more suitable for general sleep tracking. In con-
trast, other devices, such as the Garmin Vivosmart 4 and Withings 
Scanwatch, exhibit significant errors in specific areas (eg, WASO 
and DS), limiting their applicability for precise sleep analysis. 
Moreover, high errors in SOL and certain sleep stages suggest that 
wearables still face challenges in accurately identifying transi-
tions and specific physiological states during sleep.

The analysis of the MAE and MAPE for sleep stage detection 
highlights considerable variability in performance among the 
wearables. Fitbit devices consistently exhibit moderate to high 
reliability, particularly in LS and REM detection. However, cer-
tain models, such as the Garmin Vivosmart 4, show substantial 

inaccuracies, particularly in W and DS measurements, as evi-
denced by their high MAPE values. These differences could be due 
to variations in sensor technology (eg, PPG, accelerometers) or 
algorithmic approaches.

The Cohen’s kappa coefficients of the wearable devices 
included in this study ranged from 0.21 to 0.53 when compared 
to PSG. The Cohen’s kappa values of the Fitbit Sense (0.42), Fitbit 
Charge 5 (κ = 0.41), and the Apple Watch Series 8 (κ = 0.53) indi-
cate a moderate agreement between the device and PSG. The 
Cohen’s kappa values of the Whoop 4.0 (κ = 0.37), the Withings 
Scanwatch (κ = 0.22), and the Garmin Vivosmart 4 (κ = 0.21) indi-
cate a fair agreement between the device and PSG.

However, it is crucial to contextualize the comparison of 
the wearables’ agreement with that of PSG, taking into consid-
eration that the scoring of PSG is subject to variability among 
technicians [47]. As reported by Danker-Hopfe et al. [29], the 
interrater reliability is substantial rather than almost perfect (κ 
= 0.75). Given this benchmark, the devices with higher Cohen’s 
kappa coefficients such as the Fitbits and Apple Watch Series 8 
appear to provide reasonable estimates of multistate sleep but 
need improvement to reach trained technician levels of agree-
ment. However, it is reasonable to suggest that the devices which 
perform better at estimating multistate sleep could offer valu-
able insights for monitoring long-term changes in sleep stages. 

Figure 8. Bland–Altman plots for device-derived and polysomnography (PSG)-derived measures of deep sleep (DS).

Bland–Altman plots showing the difference between the (A) Fitbit Sense, (B) Fitbit Charge 5, (C) Whoop 4.0, (D) Withings Scanwatch, (E) Garmin Vivosmart 4 and 
(F) Apple Watch Series 8 and PSG plotted against the mean of both metrics for DS—positive values indicate devices overestimate relative to PSG, and negative 
values indicate devices underestimate relative to PSG. The plots depict the mean bias (solid line) and upper and lower limits of agreement (2 SDs from bias; 
dashed lines) for minutes of DS for the devices compared with PSG.
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Therefore, a practical takeaway from this study is that devices 
with higher relative agreement for multistate sleep, such as 
the Fitbit Sense, Fitbit Charge 5, and Apple Watch Series 8, can 
be used to track prolonged and significant changes in sleep 
architecture.

While wearables do not replace PSG for clinical diagnosis, 
they offer a practical solution for longitudinal sleep monitor-
ing outside the laboratory, which can provide valuable supple-
mentary data for healthcare professionals. In research, reliable 
sleep tracking enables large-scale epidemiological studies on 
sleep and its impact on health, reducing reliance on costly and 
time-intensive PSG recordings. For personal use, wearables can 

help individuals gain insights into their sleep patterns, identify 
trends, and implement behavioral changes to improve sleep 
hygiene. However, the clinical utility of these devices depends 
on their accuracy in detecting sleep stages, as misclassifica-
tions may lead to misleading interpretations of sleep quality. 
Therefore, while some devices, such as the Fitbit Charge 5, Fitbit 
Sense, and Apple Watch Series 8, demonstrate clinically accept-
able accuracy for certain parameters, users should remain cau-
tious about relying on these devices for detailed sleep staging 
without validation against PSG.

While this study demonstrates that, for example, some wear-
able devices demonstrate clinically acceptable accuracy in 

Figure 9. Bland–Altman plots for device-derived and polysomnography (PSG)-derived measures of rapid eye movement (REM) sleep.

Bland–Altman plots showing the difference between the (A) Fitbit Sense, (B) Fitbit Charge 5, (C) Whoop 4.0, (D) Garmin Vivosmart 4 and (E) Apple Watch Series 
8 and PSG plotted against the mean of both metrics for REM sleep—positive values indicate devices overestimate relative to PSG, and negative values indicate 
devices underestimate relative to PSG. The plots depict the mean bias (solid line) and upper and lower limits of agreement (2 SDs from bias; dashed lines) for 
minutes of REM sleep for the devices compared with PSG.

Table 8. Wake (W) (min) as assessed by polysomnography and wearable devices displayed as mean ± SD with associated biases and 
limits of agreement

Wearable n PSG, mean ± SD Wearable, mean ± SD Bias p-Value MAE MAPE Upper LoA Lower LoA

Fitbit Sense 37 83.66 ± 42.08 66.28 ± 25.90 −17.38 0.006 29.62 51.08 61.90 −96.65

Fitbit Charge 5 39 94.78 ± 64.73 83.03 ± 53.45 −11.76 0.032 29.53 40.60 63.71 −87.22

Whoop 4.0 40 84.79 ± 57.13 60.29 ± 63.64 −24.50 0.010 50.20 215.32 100.69 −146.69

Withings Scanwatch 41 89.04 ± 47.13 49.46 ± 53.26 −39.57 0.000 60.65 320.52 91.01 −170.16

Garmin Vivosmart 4 25 75.20 ± 45.04 39.39 ± 49.14 −35.82 0.002 51.74 1175.52 71.76 −143.40

Apple Watch Series 8 20 76.38 ± 41.85 56.20 ± 44.23 −20.18 0.003 28.33 99.26 37.56 −77.91

Significant p-values (p < 0.05) are indicated by a bold font. Abbreviations: LoA, limits of agreement; MAE, mean absolute error; MAPE, mean absolute percentage 
error; PSG, polysomnography.
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measuring TST and SE and can accurately measure sleep stages 
such as DS and REM sleep, it is important to emphasize that these 
devices currently do not serve as replacements for PSG in clinical 
diagnoses since precise sleep staging is crucial for diagnosing and 
monitoring sleep disorders such as insomnia, sleep apnea, and 
narcolepsy. PSG remains the gold standard for sleep assessment, 
offering comprehensive data and analysis crucial for diagnosing 
sleep disorders. In research, reliable sleep tracking enables large-
scale studies on sleep and its impact on health, reducing reliance 
on costly and time-intensive PSG recordings. For personal use, 
wearables can provide valuable insights into an individual’s sleep 
architecture over time and could help identify subtle changes in 
sleep quality or architecture which could be supplementary data 
for healthcare professionals. However, it is still critical for users 
of wearable devices to be aware of the inherent margin of error 
and that the results may deviate from actual sleep states [17–19].

Limitations
A primary limitation of this study is that while participants wore 
the wearable sleep-tracking devices from late afternoon until the 

following morning (covering the period before, during, and after 
the PSG session), validating the performance of sleep parameters 
was restricted to the lights-out period corresponding to the PSG 
recording. Consequently, the limited sleep data captured by the 
wearable outside of the PSG-validated period could not be val-
idated against PSG and may affect the generalizability of the 
results to real-world sleep conditions. Secondly, future research 
would benefit from conducting wearable performance validation 
over multiple nights, as this would provide a more comprehen-
sive understanding of the wearables’ performance across various 
nights and sleep conditions. While wearables are designed to pro-
vide immediate insights, wearing them over multiple nights could 
improve data accuracy by allowing the devices to adapt to individ-
ual baseline patterns and to account for missing or (partial) data 
loss. Furthermore, using proprietary algorithms for sleep esti-
mation in wearable devices could diminish the consistency over 
time and across studies, since these algorithms are periodically 
updated. Longitudinal comparisons of sleep architecture may 
be affected, limiting the ability to assess long-term trends and 
changes reliably. Additionally, variations in algorithms between 
different devices can hinder cross-study comparisons, making 

Table 9. Light sleep (LS) (min) as assessed by polysomnography and wearable devices displayed as mean ± SD with associated biases 
and limits of agreement

Wearable n PSG, mean ± SD Wearable, mean ± SD Bias p-Value MAE MAPE Upper LoA Lower LoA

Fitbit Sense 37 261.11 ± 44.74 278.88 ± 47.51 17.77 0.032 48.58 18.05 128.62 −93.08

Fitbit Charge 5 39 265.67 ± 73.60 282.24 ± 73.31 16.58 0.034 45.35 16.76 124.28 −91.12

Whoop 4.0 40 266.65 ± 47.79 238.11 ± 62.30 −28.54 0.008 61.71 30.13 110.70 −167.77

Withings Scanwatch 41 262.57 ± 46.73 229.06 ± 63.34 −33.51 0.002 61.83 35.57 104.70 −170.17

Garmin Vivosmart 4 25 263.28 ± 48.35 269.08 ± 95.00 5.80 0.395 79.76 61.36 217.17 −205.57

Apple Watch Series 8 20 246.08 ± 41.12 304.83 ± 52.48 58.75 0.000 61.40 19.12 156.63 −39.13

Significant p-values (p < 0.05) are indicated by a bold font. Abbreviations: LoA, limits of agreement; MAE, mean absolute error; MAPE, mean absolute percentage 
error; PSG, polysomnography.

Table 10. Deep sleep (DS) (min) as assessed by polysomnography and wearable devices displayed as mean ± SD with associated biases 
and limits of agreement

Wearable n PSG, mean ± SD Wearable, mean ± SD Bias p-Value MAE MAPE Upper LoA Lower LoA

Fitbit Sense 37 68.84 ± 24.62 64.95 ± 29.51 −3.89 0.249 26.16 65.18 63.90 −71.69

Fitbit Charge 5 39 65.51 ± 27.02 63.32 ± 27.68 −2.19 0.339 26.14 51.00 62.04 −66.42

Whoop 4.0 40 60.59 ± 23.29 92.08 ± 32.32 31.49 0.000 36.51 53.01 93.08 −30.11

Withings Scanwatch 41 143.88 ± 40.15 217.07 ± 59.12 73.20 0.000 78.93 35.69 185.84 −37.11

Garmin Vivosmart 4 25 75.92 ± 22.07 120.36 ± 116.67 44.44 0.043 90.72 340.14 288.18 −199.30

Apple Watch Series 8 20 71.00 ± 24.72 45.80 ± 26.16 −25.20 0.001 31.20 160.65 36.06 −86.46

Significant p-values (p < 0.05) are indicated by a bold font. Abbreviations: LoA, limits of agreement; MAE, mean absolute error; MAPE, mean absolute percentage 
error; PSG, polysomnography.

Table 11. Rapid eye movement (REM) sleep (min) as assessed by polysomnography and wearable devices displayed as mean ± SD with 
associated biases and limits of agreement

Wearable n PSG, mean ± SD Wearable, mean ± SD Bias p-Value MAE MAPE Upper LoA Lower LoA

Fitbit Sense 37 87.88 ± 27.28 90.74 ± 32.97 2.86 0.302 25.11 28.30 67.97 −62.24

Fitbit Charge 5 39 88.35 ± 29.80 88.10 ± 31.55 −0.24 0.479 21.29 29.69 57.88 −58.23

Whoop 4.0 40 85.81 ± 31.53 101.09 ± 41.12 15.28 0.017 35.28 38.69 101.58 −71.03

Garmin Vivosmart 4 25 92.20 ± 27.61 77.78 ± 66.70 −14.42 0.176 59.26 60.16 134.77 −163.61

Apple Watch Series 8 20 101.48 ± 21.55 88.10 ± 32.71 −13.38 0.045 26.03 52.58 52.19 −78.94

Significant p-values (p < 0.05) are indicated by a bold font. Abbreviations: LoA, limits of agreement; MAE, mean absolute error; MAPE, mean absolute percentage 
error; PSG, polysomnography.
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it challenging to generalize findings or establish standardized 
benchmarks. Future research should address these challenges 
by advocating for greater transparency in algorithmic updates 
and exploring methods to standardize sleep measurement across 
devices.

A third limitation is the slight variation in data points across 
wearables, especially for the Garmin Vivosmart 4 and Apple 
Watch Series 8. The variation in data points is primarily due to 
the delayed acquisition of the Apple Watch Series 8 because of 
logistical restraints, and missing data or (partial) data loss. While 
these variations may introduce minor inconsistencies in direct 
comparisons, the overall trends and insights remain robust. 
Ensuring more balanced amount of datasets across devices in 
future research could enhance the precision of comparative anal-
yses and strengthen the generalizability of findings. Lastly, regard-
ing the participant sample, future studies should enhance the age 
range by including both younger and older individuals to capture 
a broader range of sleep architectures. Additionally, the study 
sample consisted of 52 males and 10 females, resulting in a gen-
der imbalance. This distribution reflects the demographic char-
acteristics of the patient population attending the sleep center 
during the recruitment period, which comprises a higher propor-
tion of males. Efforts were made to recruit female participants 

as well. However, the availability of eligible female subjects was 
limited. Furthermore, detailed data on participants’ specific skin 
tones and racial/ethnic backgrounds were not systematically 
collected. This is particularly relevant for technologies utilizing 
PPG, as skin tone can influence PPG accuracy and, consequently, 
the sleep estimates derived from wearable algorithms. While 
most participants were Caucasian and had lighter skin tones, the 
results can not be fully generalized to individuals with darker 
skin tones. Future studies should aim to recruit a more balanced 
sample to account for the variability in sleep architecture during 
the life span and to explore potential gender-specific differences 
in wearable device performance. In addition, skin tone and race/
ethnicity should be systematically collected to better understand 
the impact of these factors on wearable device performance.

This study included participants with as well as without sleep 
apnea, allowing for a larger sample size. After analyzing the per-
formance of the wearable between groups with different sleep 
apnea severity, it was seen that the agreement between the wear-
ables and PSG tend to decrease as sleep apnea severity increases. 
However, due to the unequal sample sizes between these groups 
(no sleep apnea: n = 27, mild sleep apnea: n = 18, moderate 
sleep apnea: n = 12, severe sleep apnea: n = 3, extremely severe 
sleep apnea: n = 2), definite conclusions regarding wearable 

Table 12. Error matrices for classification of sleep stages for each device compared to polysomnography (%)

Wake Light sleep Deep sleep REM

Fitbit Sense

PSG Wake 48.80 40.46 2.34 8.41

N1 or N2 7.73 73.30 9.33 9.63

N3 3.94 39.76 50.86 5.44

REM 6.04 30.23 2.44 61.29

Fitbit Charge 5

PSG Wake 47.67 41.31 4.55 6.47

N1 or N2 9.10 72.42 8.40 10.08

N3 9.20 37.25 51.50 2.05

REM 6.17 30.48 3.39 59.96

Whoop 4.0

PSG Wake 40.13 44.12 6.17 9.58

N1 or N2 7.04 61.99 14.82 16.14

N3 3.12 22.50 69.63 2.26

REM 6.94 26.63 4.44 61.99

Garmin Vivosmart 4

PSG Wake 27.64 46.35 11.86 14.15

N1 or N2 4.39 60.33 22.52 12.76

N3 2.88 46.00 47.46 3.66

REM 2.59 41.57 22.74 33.10

Apple Watch Series 8

PSG Wake 52.15 42.10 1.01 4.73

N1 or N2 5.73 83.27 4.25 6.74

N3 0.27 47.73 50.66 1.34

REM 1.62 29.51 0.30 68.57

Each row in the error matrix is the sleep stage annotated by PSG, while each column represents the sleep stage annotated by the wearable. Values in bold 
indicate agreement in classification of sleep staging between PSG and wearable. Abbreviations: PSG, polysomnography; REM, rapid eye movement.
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performance in individuals with varying apnea severity could not 
be drawn. Future studies with more balanced sample sizes for 
sleep apnea severity are mandatory to confirm and clarify these 
findings (Supplementary Table S2).

Lastly, the three-state classification system employed by the 
Withings Scanwatch, which consolidates REM sleep and DS into 
a single “deep sleep” category, differs significantly from the four-
state categorization used by the other wearables. This method-
ological discrepancy can have an impact on the findings when 
evaluating the performance of wearables. The aggregation of REM 
and DS by the Withings device may limit the comparability of its 
performance with other wearables that adhere to the four-state 
model.

Conclusion
This study highlights the varying accuracy of six consumer wear-
able devices in detecting sleep parameters compared to the gold 
standard, PSG. While some wearables, such as the Fitbit Sense, 
Fitbit Charge 5, and Apple Watch Series 8, demonstrate clini-
cally acceptable accuracy in measuring TST and SE, discrepan-
cies remain across other sleep metrics, including WASO, and the 
accurate differentiation of LS and W epochs. However, the higher 
Cohen’s kappa coefficients of the wearable devices, such as the 
Fitbit Sense, Fitbit Charge 5, and Apple Watch Series 8, suggest 
that these wearables could serve as effective tools for tracking 
general trends and long-term changes in sleep architecture

While wearables do not match PSG in clinical accuracy and 
should not replace it for diagnostic purposes, their accessibility, 
ease of use, and potential for real-time monitoring make them 
valuable for observing sleep patterns outside the sleep clinic. As 
wearables continue to evolve, these devices may offer increasingly 
valuable insights into sleep architecture and quality, especially 
when used to complement PSG assessments or track individual 
sleep trends over time. However, users must remain aware of the 
inherent inaccuracies in wearable data, as these devices do not 
replace PSG for clinical diagnoses. Future improvements in the 
wearable algorithms may further bridge the gap with PSG.

In addition, future research should focus on validating the 
performance of newer models and exploring the long-term impli-
cations of wearable data, aiming to enhance the reliability of 
these tools for tracking sleep health and their potential utility in  
(pre-)clinical monitoring settings.
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