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Abstract
We study the recently-proposed hyperbolic approximation of theKorteweg-deVries equation
(KdV). We show that this approximation, which we call KdVH, possesses a rich variety of
solutions, including solitary wave solutions that approximate KdV solitons, as well as other
solitary and periodic solutions that are related to higher-order water wave models, and may
include singularities.Weanalyze a class of implicit–explicitRunge–Kutta timediscretizations
for KdVH that are asymptotic preserving, energy conserving, and can be applied to other
hyperbolized systems. We also develop structure-preserving spatial discretizations based on
summation-by-parts operators in space including finite difference, discontinuous Galerkin,
and Fourier methods. We use the entropy relaxation approach to make the fully discrete
schemes energy-preserving. Numerical experiments demonstrate the effectiveness of these
discretizations.
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1 Introduction

The Korteweg-de Vries equation (KdV)

∂tη + η∂xη + ∂3xη = 0 (1)

is a widely studied model for water waves and perhaps the simplest known nonlinear inte-
grable partial differential equation (PDE) [54]. A hyperbolic approximation of KdV, referred
to herein as KdVH, has been proposed recently [4]:

∂t u + u∂xu + ∂xw = 0 , (2a)

τ∂tv = (∂xv − w) , (2b)

τ∂tw = −(∂xu − v) . (2c)

here τ > 0 is referred to as the relaxation parameter. When τ → 0 (referred to as the
relaxation limit), formally one obtains v → ux andw → uxx so that (2a) becomes equivalent
to (1) with u → η.

Similar hyperbolic approximations have been proposed for a number of other dispersive
nonlinear wave equations [2, 3, 12, 13, 19, 23, 24, 28, 29, 41] as well as other classes of
PDEs [18, 20, 27, 39, 49, 52]. A general approach to such approximations has been given in
[36]. The KdVH system (2) was proposed with the idea of facilitating the implementation
of accurate nonreflecting boundary conditions in an approximation of the KdV Eq. [4]. In
that work, the authors also briefly analyzed the dispersion relation, hyperbolic structure,
and one class of traveling wave solutions. They presented numerical solutions obtained with
2nd-order operator splitting in time and a 2nd-order MUSCL scheme in space.

In this work we further study the structure and numerical discretization of the KdVH sys-
tem (2). In Sect. 2 we perform a more complete study of traveling wave solutions of KdVH.
The KdV equation admits soliton solutions of arbitrary large height and speed. Nevertheless,
such waves beyond a certain height are known to be unphysical [10]. The KdVH system
imposes a maximum speed on such soliton-like waves and therefore avoids, at least quali-
tatively, this non-physical aspect of the KdV model (see further discussion in Sect. 2). We
will also see that the KdVH system has traveling waves that are related to solutions of the
Camassa-Holm system [11], in which solutions are known to propagate at finite speed in a
certain sense [14].

Given the many special properties of KdV (1), it is natural to ask whether or to what extent
they are preserved by (2). It is also desirable to develop numerical discretizations of (2) that
preserve this structure at the discrete level. In Sect. 3, we develop high-order accurate time
and space discretizations that are asymptotic preserving and that exactly preserve a quadratic
invariant.We present results on asymptotic preservation for Implicit–explicit (ImEx) Runge–
Kutta methods under a range of assumptions. In Sect. 4 we present numerical examples
that support the theoretical results and demonstrate the effectiveness of this approach for
approximating solutions of the KdV Eq. (1).

The new contributions of the present work include:

– Characterization of the limits of soliton-like traveling wave solutions;
– Identification and analysis of other traveling wave solutions, including some with no

counterpart in KdV but that seem to be related to other water wave models;
– Efficient ImEx time integration methods that are provably asymptotic preserving and

asymptotically accurate;
– Energy-preserving full discretizations based on summation-by-parts operators in space

and entropy relaxation in time.

123



Journal of Scientific Computing           (2025) 103:90 Page 3 of 37    90 

2 TravelingWave Solutions of KdVH

In this section we study traveling wave solutions of the KdVH system, focusing first on waves
that approximate KdV solitons in Sect. 2.1 and then on a variety of other classes of traveling
waves in Sect. 2.2. The calculations in this section were performed using the Python packages
NumPy [30], SciPy [53], and Matplotlib [31].

2.1 KdV-Soliton-LikeWaves

The soliton solutions of the KdV Eq. (1) take the form

η(x, t) = 3c sech2
(√

9c(x − ct)

6

)
. (3)

The parameter c, which controls the width, amplitude, and speed of these waves, can take any
positive value. Thus, the KdV equation possesses traveling wave solutions with arbitrarily
large velocity.1 This is perhaps not surprising, since the phase velocity of small perturbations
is also unbounded with respect to the wavenumber, for the KdV equation.

Now we turn to the KdVH system. To find traveling wave solutions, we apply the ansatz

u = ũ(x − ct) v = ṽ(x − ct) w = w̃(x − ct) (4)

and we furthermore assume that each dependent variable tends to a constant as |ξ | := |x −
ct | → ∞. Then from (2) we obtain the ordinary differential equation (ODE) system

− cũ′ + w̃′ + ũũ′ = 0 (5a)

− cτ ṽ′ = ṽ′ − w̃ (5b)

− cτw̃′ = −ũ′ + ṽ. (5c)

We integrate the first equation and assume that ũ, w̃ tend to zero for large |x − ct | in order
to determine the constant of integration. We substitute the result into the other two equations
above to obtain the system

ũ′ = 1

1 + cτ(ũ − c)
ṽ (6a)

ṽ′ = 1

1 + cτ
(c − ũ/2)ũ. (6b)

As depicted in Fig. 1, this system has two equilibrium points: (ũ, ṽ) = (0, 0) and (ũ, ṽ) =
(2c, 0). For τ−1 > c2, the origin is a hyperbolic point, while the other equilibrium is always
a center, with

H(ũ, ṽ) = ṽ2

2
− ũ2

1 + cτ

(
−cτ

8
ũ2 + 3c2τ − 1

6
ũ + c

(
1 − c2τ

)
2

)

as a first integral of the system. The system has a homoclinic connection (along the level
set H(ũ, ṽ) = 0), corresponding to a solitary wave. Figure1 shows the phase portrait of the
system (6), along with a solitary wave solution obtained by numerically integrating (6). This
structure is essentially the same as that found when studying traveling wave solutions of the

1 In addition to the soliton solutions, there also exist periodic traveling wave solutions of KdV with any
positive velocity.
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Fig. 1 Phase portrait of the KdVH traveling wave system (6) with wave speed c = 1 and relaxation parameter
τ = 2/5. The homoclinic orbit, shown in blue, begins and ends at the saddle point (0, 0), corresponding to a
solitary traveling wave solution. These waves tend to KdV solitons in the limit τ → 0. Note the presence of
a line singularity, where the denominator in (6a) vanishes

KdV equation, and the homoclinic orbit tends to a KdV soliton as τ → 0. Even though the
relaxation parameter is not very small for the case plotted here, one can easily see that for
this solution v ≈ ux and w ≈ vx .

In order to compute these solitary waves more accurately, we use a Petviashvili-type
algorithm [1]. We rewrite (6) as a single second-order ODE for ũ. Differentiating (6a) gives

ṽ′ = (1 + cτ(ũ − c))ũ′′ + cτ(ũ′)2.

Substituting this in (6b), we obtain after some simplification

(1 − c2τ)ũ′′ + cτ ũũ′′ + cτ(ũ′)2 = ũ
c − ũ/2

1 + cτ
.

This can be further rewritten as

−ũ′′ + c

(1 + cτ)(1 − c2τ)
ũ = 1

(1 + cτ)(1 − c2τ)

ũ2

2
+ cτ

1 − c2τ

(
ũũ′)′

. (7)

Note that as τ → 0, (7) formally converges to

−ũ′′ + cũ = ũ2

2
,

the equation satisfied by traveling waves of the KdV equation. Next we write 7) in the form
Lũ = N (ũ), where the linear operator is given by L = −D2 + c

(1+cτ)(1−c2τ)
I , (with D

the derivative operator); and the nonlinear operator is defined as N (ũ) = 1
(1+cτ)(1−c2τ)

ũ2
2 +

cτ
1−c2τ

(
ũũ′)′. Next we discretize, approximating the derivative operator D using Fourier

spectral differentiation. Then we iteratively solve the system

Lu[k+1] = m
(
u[k])2 N (

u[k]) , k = 0, 1, 2, . . .
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Fig. 2 Comparison of the analytical soliton solution (3) (denoted by η0(x)) of the KdV equation and the
numerical solitary waves (denoted by uKdVH : τ ) for the KdVH system with different relaxation parameters τ

and c = 1
3 . The solutions of the KdVH system converge to the exact solutions of the KdV equation as τ → 0,

which is clearly evident

where u[0] is an initial guess and m(un) = 〈Lun ,un〉
〈N (un),un〉 is the stabilizing factor.

Choosing the domain [−30π, 30π ] with 29 spatial grid points, we compute the soli-
tary waves of the KdVH system for three different values of the relaxation parameter: τ =
1.0, 0.5, 0.1 using the Petviashvili algorithm.We iterate until the residual ‖Lu[k]−N (u[k])‖∞
is approximately machine precision (for IEEE 64-bit floating point numbers). Figure2 dis-
plays the resulting numerical KdVH solitary waves and the corresponding KdV soliton (3).
We see that the KdVH solitary waves converge to the soliton as τ → 0.

The KdVH system also possesses periodic traveling waves with finite period (not shown
here), which tend to the well-known cnoidal solutions of the KdV equation as τ → 0.

However, this does not fully describe the dynamics of the system (6). Notably, for c2 >

τ−1, the origin is not a saddle; instead the eigenvalues of the Jacobian are purely imaginary.
Correspondingly, there is no homoclinic connection originating from the origin. Furthermore,
as can be seen in the left plot of Fig. 1, system (6) becomes singular when ũ is chosen such
that the denominator of (6a) vanishes. These observations hint at the existence of other, quite
different traveling waves, which we study in the next section.

2.2 Other TravelingWave Solutions

It turns out that the KdVH system admits a much larger set of traveling wave solutions, some
of which seem to be related to other dispersive water wave models. To investigate general
traveling waves, we note from (4) that such a wave with speed c must satisfy

vt + cvx = 0

wt + cwx = 0.
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These two equations stem from the representation of traveling waves, and are as such inde-
pendent of the actual form of the KdVH equation. Subsituting−cvx and−cwx , respectively,
for vt and wt , respectively, into (2b) and (2c), one obtains

v = ux − αwx (8a)

w = (1 + α)vx , (8b)

where α = cτ .
Substituting vx in (8b) through uxx−αwxx , derived from (8a), we end upwith the equation

w + α(1 + α)wxx ≡ (
I + α(1 + α)∂2x

)
w = (1 + α)uxx . (9)

Together with the requirement that w is a smooth function that vanishes at x = ±∞, this
constitutes a well-posed problem inw and hence allows for a unique solutionw as a function
of the right-hand side. The spatial derivative of said function is given by

wx = (
I + α(1 + α)∂2x

)−1
uxxx . (10)

Substituting in (2a), we obtain the dispersive equation

ut + uux + (1 + α)(I + α(1 + α)∂2x )
−1uxxx = 0,

or equivalently (upon multiplication by (I + α(1 + α)∂2x ))

ut + uux + (1 + α)uxxx + α(1 + α)(uxxt + 3uxuxx + uuxxx ) = 0. (11)

As α → 0 we formally recover the KdV equation, as expected, and if we apply the ansatz
(4) we find an ODE system equivalent to (6). Indeed, this analysis is in a sense equivalent
to that of (4)–(6) above, but it is revealing since (11) involves the same set of terms as the
integrable Camassa-Holm and Degasperis-Procesi equations. It is not possible to transform
(11) exactly into either of those systems (see [15, Dfns. 1–2],2), but it is natural to expect that
traveling wave solutions of KdVH may include waves that are similar in nature to solutions
of the Camassa-Holm or Degasperis-Procesi equations, and in fact this is the case.

Some examples of these traveling waves are shown in Fig. 3a–d. These include waves with
arbitrarily large positive speed, as well as left-going solitary waves that have very nearly the
shape of

√
sech x , quite different from KdV solitons. Furthermore, they include sharply-

peaked solutions that are homoclinic connections originating from a point on the line of
singularity. These solutions have no counterpart in solutions of KdV but seem to be related
to solutions of the Degasperis-Procesi or Camassa-Holm equations.

Remark 1 For cτ > 0 (i.e., for right-going solutions of KdVH), the coefficient of uxxt in
(11) is positive. This may seem problematic, since the linearization of (11) is ill-posed in this
case. However, it should be remembered that not all solutions of (11) are solutions of (2); we
additionally require that there exist a consistent solution of (8), which is equivalent to

v + α(1 + α)vxx = ux

w + α(1 + α)wxx = (1 + α)uxx .

In experiments we have conducted (not shown here), these waves are not observed to
spontaneously emerge from general initial data, even if the initial data is not well-prepared.
However, using any of these traveling wave solutions as initial data, we observe that they are
dynamically stable for long times.

2 However, (11) does belong to the class of equations described in [15, Prop. 2] which approximate the
Serre-Green-Naghdi equations.
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Fig. 3 Traveling wave solutions of the KdVH equation. These solutions have no counterpart in KdV solutions.
Waves in the top row travel to the right at a speed greater than what is possible for soliton-like traveling waves.
Waves in the bottom row travel to the left. The bottom-right solitary wave has nearly (but not quite) the shape
(5/3)

√
sech(5x/3) − 1, which is plotted for comparison. Note the presence of a line singularity, where the

denominator in (6a) vanishes

Remark 2 The KdVH system can be written as a hyperbolic balance law

qt + F ′(q)qx = S(q). (12)

The eigenvalues of the flux Jacobian F ′(q) evaluated at u = 0 are −τ−1,±τ−1/2. Notice
that the greatest eigenvalue +√

1/τ coincides precisely with the maximum speed of the
soliton-like traveling waves from the previous section.

3 Asymptotic-Preserving and Energy-Conserving Numerical
Discretization

In this section we develop structure-preserving discretizations for the KdVH system (2),
focusingprimarily on ImExRunge–Kutta (RK)methods.Letqn = [un, vn, wn]T andqn+1 =
[un+1, vn+1, wn+1]T denote the numerical approximation of the solution at time tn and
tn+1 = tn + Δt , respectively. Starting from the solution qn at time tn , an ImEx-RK method
applied to the system

qt = f (q) + g(q)

123



   90 Page 8 of 37 Journal of Scientific Computing           (2025) 103:90 

computes the approximate solution at time tn+1 as

q(i) = qn + Δt

⎛
⎝ i−1∑

j=1

ãi j f (q
( j)) +

i∑
j=1

ai j g(q
( j))

⎞
⎠ , i = 1, 2, . . . , s , (13a)

qn+1 = qn + Δt

⎛
⎝ s∑

j=1

b̃ j f (q
( j)) +

s∑
j=1

b j g(q
( j))

⎞
⎠ . (13b)

This method can be compactly represented by the following Butcher tableau:

c̃̃c̃c̃c̃c̃c̃c̃c̃c Ã

b̃̃b̃bT

ccc A

bbbT
, (14)

where the matrix Ã = (ãi j ) ∈ R
s×s represents the explicit part, A = (ai j ) ∈ R

s×s represents
the implicit part, and the vectors c̃̃c̃c, b̃̃b̃b, ccc, and bbb are in Rs . The choice of the splitting between
the functions f and g is a key element of the schemes introduced below.

3.1 Asymptotic-Preserving Time Discretization

The KdVH system (2) includes both convective and algebraic terms that depend on the
relaxation parameter τ and become arbitrarily stiff as τ → 0. To deal with this stiffness we
include the stiff terms in g, to be integrated implicitly. Our goal is to obtain accurate numerical
solutions for all values of τ . In particular we seek a numerical discretization that tends to a
consistent discretization of KdV as τ → 0; this is known as an asymptotic-preserving (AP)
scheme [9, 33]. In the rest of this section, we investigate the AP property for different classes
of ImEx schemes. In Sect. 4 we provide numerical tests that confirm the theoretical results.

The AP schemes provide an efficient methodology for solving multi-scale relaxation
problems. We denote the continuous problem (2) with the parameter τ as Pτ , and its limiting
problem, which reduces to the KdV equation, as P0. For the development of AP schemes,
it is sufficient to focus initially on time discretization, leaving space continuous for now,
with suitable spatial discretization to be adopted later. To this end, we denote by Pτ

h the
numerical discretization of the continuous problem Pτ , where h represents the discretization
parameters. For instance, h = Δt denotes the time step in a problem that is continuous
in space, or h = (Δt,Δx) in the fully discrete case. The AP property guarantees that for
fixed discretization parameters h, the scheme Pτ

h provides, in the limit τ → 0, a consistent
discretization of the limit problem P0, denoted by P0

h . This relationship is summarized
in Fig. 4. Our primary focus in this section is on the limit Pτ

h → P0
h of the numerical

discretizations, althoughwewill also comment on the convergence of themethods for h → 0.
The AP property can be defined in general as follows:

Definition 1 We say the numerical discretization Pτ
h is AP if the limiting discretization

P0
h = limτ→0 Pτ

h is a consistent and stable discretization of the continuous limit model P0.

The AP property does not ensure that the scheme retains its order of accuracy in the stiff
limit τ → 0; for that we use the term asymptotically-accurate (AA).

Definition 2 The numerical discretization Pτ
h is AA if the local truncation error of Pτ

h with
respect to Pτ is the same as that of P0

h with respect to P0.
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Fig. 4 A schematic illustration of
the AP property [32]

The design of an AP ImEx scheme requires careful selection of the terms to be integrated
implicitly or explicitly. It might seem most natural to separate the hyperbolic terms from the
algebraic (source) terms, but this turns out not to provide the AP property. Here we propose
a different splitting that facilitates the construction of AP schemes. Namely, we integrate
explicitly only the nonlinear convective term, and integrate implicitly all of the remaining
(linear) terms: ⎛

⎝u
v

w

⎞
⎠

t︸ ︷︷ ︸
=qt

=
⎛
⎝−uux

0
0

⎞
⎠

︸ ︷︷ ︸
= f (q)

+
⎛
⎝ −wx

1
τ
(vx − w)

1
τ
(−ux + v)

⎞
⎠

︸ ︷︷ ︸
=g(q)

. (15)

Although the term wx may not seem to be stiff, recall that in the relaxation limit it approx-
imates the stiff third-derivative term. Also, including this term in g ensures that the system
qt + gx = 0 is strictly hyperbolic, which is an important property with respect to stability
[50, 55].

Given this splitting, we will next establish the AP property for some ImEx RK methods.
To do so, we use the following specification of the AP property:

Definition 3 We say an ImEx RK method (13) applied to the splitting (15) of the KdVH
system is AP for the u-component if un+1 → ηn+1 for τ → 0, where ηn+1 is the numerical
solution of the KdV equation with splitting

ηt = −ηηx︸ ︷︷ ︸
= f (η)

−ηxxx︸ ︷︷ ︸
=g(η)

(16)

and the same ImEx RK method. We say it is AP for the auxiliary components v and w if
vn+1 → ηn+1

x and wn+1 → ηn+1
xx for τ → 0.

We now establish the AP property and provide sufficient conditions for the AA property
for our proposed splitting of the KdVH system using two classes of additive Runge–Kutta
(ARK) methods — type I (also known as type A) and type II (also known as type CK) [9].
An ImEx-RK method is classified as type I if the matrix A ∈ R

s×s is invertible. An ARK
method is of type II if a11 = 0, in which case it can be written as

0 0
ˆ̃ĉ̃ĉ̃c ˆ̃ã̂ã̂a ˆ̃A

ˆ̃b1 ˆ̃b̃̂b̃̂bT

0 0
ĉ̂ĉc â̂âa Â

b̂1 b̂̂b̂bT
. (17)
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here ˆ̃ĉ̃ĉ̃c, ˆ̃ã̂ã̂a, ˆ̃b̃̂b̃̂b, ĉ̂ĉc, â̂âa, and b̂̂b̂b are vectors in Rs−1, ˆ̃b1 and b̂1 are scalars in R, and ˆ̃A, Â are matrices
inR(s−1)×(s−1), where Â is assumed to be invertible and lower-triangular, so that the method
is diagonally implicit.

This analysis, depending on the method class, involves two additional conditions [9]. An
ImEx-RK method is said to be globally stiffly accurate (GSA) if

ãsi = b̃i and asi = bi , i = 1, 2, . . . , s. (18)

Thus, the implicit part is stiffly accurate (SA) and the explicit part has a first-same-as-last
(FSAL) structure.

The initial data for KdVH (2) is said to be well-prepared if v(x, 0) = Du and w(x, 0) =
D2u. Here D = ∂x in the present section, where we consider solutions continuous in space.
For a fully discrete scheme, D should be replaced by the discrete derivative used in the
scheme.

The proofs and results below are similar to those in the literature for other classes of
relaxation systems [9]. However, the relaxation system considered here, with the specific
splitting (15), differs in such a way that the AP property cannot be deduced directly from
previous results.

We now present the following results regarding the AP and AA properties of type I
methods:

Theorem 1 An ImEx-RK method of type I applied to the splitting (15) of the hyperbolic
approximation of the KdV equation is always AP for the u-component. For such a method,
in the stiff limit τ → 0, we have

un+1 − η(tn+1) = O(Δt p) , (19)

where p is the order of the ImEx-RK method. Furthermore, if the method is assumed to be
globally stiffly accurate, it is also AP for the auxiliary components v and w. In the stiff limit
τ → 0, we have

vn+1 − ηx (tn+1) = O(Δt p) and wn+1 − ηxx (tn+1) = O(Δt p) . (20)

Proof Let us denote by uuu = [u(1), u(2), . . . , u(s)]T , vvv = [v(1), v(2), . . . , v(s)]T , and www =
[w(1), w(2), . . . , w(s)]T the vectors of stage-solution components for the variables u, v, and
w, respectively, and let eee = [1, 1, . . . , 1]T be the vector of ones inRs . For the KdVH system
with the splitting (15), the Eq. (13a) in component form becomes

uuu = uneee + Δt
(
Ã(−uuuuuux ) + A(−wwwx )

)
, (21a)

vvv = vneee + Δt

τ
A(vvvx − www) , (21b)

www = wneee + Δt

τ
A(−uuux + vvv) . (21c)

Similarly, the final update of the solution can be written in components as

un+1 = un + Δt
(
b̃̃b̃bT (−uuuuuux ) + bbbT (−wwwx )

)
, (22a)

vn+1 = vn + Δt

τ
bbbT (vvvx − www) , (22b)

wn+1 = wn + Δt

τ
bbbT (−uuux + vvv) . (22c)
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We assume there exist Hilbert expansions for un , vn , and wn :

un = un0 + τun1 + τ 2un2 + · · · , vn = vn0 + τvn1 + τ 2vn2 + · · · ,

wn = wn
0 + τwn

1 + τ 2wn
2 + · · · , (23)

and for the stage vectors uuu, vvv, andwww of the stage solution components:

uuu = uuu0 + τuuu1 + τ 2uuu2 + · · · , vvv = vvv0 + τvvv1 + τ 2vvv2 + · · · ,

www = www0 + τwww1 + τ 2www2 + · · · .

We insert these expansions into the stage equations and compare the leading-order terms
in the powers of τ . The leading-order terms in the expansions for the stage Eqs. (21b) and
(21c) yield:

O (
τ−1) :

{
A ((vvv0)x − www0) = 000 ,

A (−(uuu0)x + vvv0) = 000 .

Since A is invertible, it follows that

vvv0 = (uuu0)x and www0 = (vvv0)x . (24)

The leading-order term in the expansion of (21a) gives

O (
τ 0

) : uuu0 = un0eee + Δt
(
− Ãuuu0(uuu0)x − A(www0)x

)
.

Using vvv0 = (uuu0)x andwww0 = (vvv0)x in the previous equation, we obtain

uuu0 = un0eee + Δt
(
− Ãuuu0(uuu0)x − A(uuu0)xxx

)
. (25)

Using the Eq. (24) in the leading-order term of the solution update for the first equation
yields:

un+1
0 = un0 + Δt

(
−b̃̃b̃bTuuu0(uuu0)x − bbbT (uuu0)xxx

)
. (26)

In the limit as τ → 0 the numerical scheme becomes:

uuu0 = un0eee + Δt
(
− Ãuuu0(uuu0)x − A(uuu0)xxx

)
,

un+1
0 = un0 + Δt

(
−b̃̃b̃bTuuu0(uuu0)x − bbbT (uuu0)xxx

)
.

This is precisely the numerical scheme obtained from the time-stepping method (14) of type
I when applied to the KdV equation ηt = −ηηx − ηxxx , where the term −ηηx is treated
explicitly and the term −ηxxx is treated implicitly. Thus, we also have un+1 − η(tn+1) =
O(Δt p), where p is the order of the ImEx-RK method.

In addition if the method is GSA then we can prove the AP property for the auxiliary
variables v andw. To prove this, we use the Eqs. (21b) and (21c). By utilizing the invertibility
of A, we obtain the following:

Δt

τ
(vvvx − www) = A−1 (

vvv − vneee
)

,

Δt

τ
(−uuux + vvv) = A−1 (

www − wneee
)

.
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Inserting these expressions into the update rules for the auxiliary components, (22b) and
(22c), we obtain:

vn+1 = vn + bbbT A−1 (
vvv − vneee

) = bbbT A−1vvv +
(
1 − bbbT A−1eee

)
vn ,

wn+1 = wn + bbbT A−1 (
www − wneee

) = bbbT A−1www +
(
1 − bbbT A−1eee

)
wn .

Since the method is assumed to be GSA, the stiff accuracy of A implies that bbbT A−1 =
[0, 0, . . . , 1] in R

s , hence 1 − bbbT A−1eee = 0. Using this information, we obtain:

vn+1 = bbbT A−1vvv = v(s) ,

wn+1 = bbbT A−1www = w(s) .

In the limit as τ → 0, we have vn+1
0 = v

(s)
0 and wn+1

0 = w
(s)
0 . Using Eq. (24), we

can express vn+1
0 = (u(s)

0 )x and wn+1
0 = (u(s)

0 )xx . By the GSA property of the scheme,

it follows from Eqs. (25) and (26) that u(s)
0 = un+1

0 , which leads to vn+1
0 = (un+1

0 )x and
wn+1
0 = (un+1

0 )xx . This establishes the AP property of the type I ImEx-RK method for the
auxiliary components. In the stiff limit τ → 0, the following error estimates hold for the v

and w components:

vn+1 − ηx (tn+1) = O(Δt p) and wn+1 − ηxx (tn+1) = O(Δt p).

�

Remark 3 Without the GSA assumption in Theorem 1, the AP property is obtained only for
the u-component. In this case, the auxiliary variables may not remain on the manifold of
equilibria, which could lead to a degradation in their accuracy. However, this does not affect
the order of accuracy of the u-component.

We now consider ImEx-RK methods of type II and prove the AP property for these
methods. Before establishing the results for a general method in this class, we first examine
the asymptotic-preserving property of the simple type II method ARS(1,1,1) when applied
to the splitting (15). The ARS(1,1,1) method updates the solution from time step tn to tn+1

as follows:

qn+1 = qn + Δt f
(
qn

) + Δtg
(
qn+1) ,

where the components of the update are given by:

un+1 = un + Δt
(−ununx − wn+1

x

)
, (31a)

vn+1 = vn + Δt

τ

(
vn+1
x − wn+1) , (31b)

wn+1 = wn + Δt

τ

(−un+1
x + vn+1) . (31c)

Wenow insert theHilbert expansions (23) into the updating equations and analyze the leading-
order term in the expansions in terms of τ . The leading-order terms in expansions ofEqs. (31b)
and (31c) yield

O (
τ−1) : wn+1

0 = (vn+1
0 )x and vn+1

0 =
(
un+1
0

)
x

.
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The Eq. (31a) implies

O (
τ 0

) : un+1
0 = un0 − Δtun0(u

n
0)x − Δt

(
wn+1
0

)
x

.

Using wn+1
0 = (vn+1

0 )x and vn+1
0 = (un+1

0 )x in the previous equation, we obtain

un+1
0 = un0 − Δtun0(u

n
0)x − Δt

(
un+1
0

)
xxx

,

un+1
0 − un0

Δt
+ un0(u

n
0)x +

(
un+1
0

)
xxx

= 0 ,

which, in the limit τ → 0, is the discretization of the originalKdVequation by theARS(1,1,1)
method. This proves the AP property of the ARS(1,1,1) method for the splitting (15). To
prove the AP property for a general ImEx-RK method of type II, we require an additional
assumption of well-preparedness of the initial data. The well-preparedness of the initial data
for our system, following [9], is given by

v0 = u0x + O(τ ) and w0 = u0xx + O(τ ). (32)

For a general ImEx-RK method of type II, we prove the following result:

Theorem 2 A globally stiffly accurate ImEx-RK method of type II, applied to the splitting
(15) of the hyperbolic approximation of the KdV equation, together with the well-prepared
initial data (32), is AP for all components u, v, and w. Furthermore, in the stiff limit τ → 0,
the following error estimates apply to all components:

un+1−η(tn+1)=O(Δt p), vn+1−ηx (tn+1)=O(Δt p), and wn+1−ηxx (tn+1)=O(Δt p) ,

where p is the order of the ImEx-RK method.

Proof Let qn = [un, vn, wn]T and qn+1 = [un+1, vn+1, wn+1]T denote the numerical
approximations to the true solution at time tn and tn+1 = tn + Δt , respectively. Starting
from the solution qn at time tn , an ImEx-RK method of type II (17) applied to the system

qt = f (q) + g(q)

computes the approximate solution at time tn+1 as

q(1) = qn , (33a)

q(i) = qn + Δt

⎛
⎝ ˆ̃ai1 f (qn) +

i−1∑
j=2

ˆ̃ai j f
(
q( j)

)
+ âi1g(q

n) +
i∑

j=2

âi j g
(
q( j)

)⎞
⎠ ,

i = 2, 3, . . . , s , (33b)

qn+1 = qn + Δt

⎛
⎝ ˆ̃b1 f (qn) +

s∑
j=2

ˆ̃b j f
(
q( j)

)
+ b̂1g(q

n) +
s∑

j=2

b̂ j g
(
q( j)

)⎞
⎠ . (33c)

Using the notation qqq = [q(2), q(3), . . . , q(s)]T , the identity matrix I in R
3×3, and the vector

of ones eee in R
s−1, this can be written compactly as

qqq = eee ⊗ qn + Δt
( ˆ̃ã̂ã̂a ⊗ f (qn) +

( ˆ̃A ⊗ I
)
f (qqq) + â̂âa ⊗ g(qn) +

(
Â ⊗ I

)
g(qqq)

)
, (34a)

qn+1 = qn + Δt

(
ˆ̃b1 f (qn) +

(
ˆ̃b̃̂b̃̂bT ⊗ I

)
f (qqq) + b̂1g(q

n) +
(
b̂̂b̂bT ⊗ I

)
g(qqq)

)
. (34b)
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Let us denote by uuu = [u(2), u(3), . . . , u(s)]T , vvv = [v(2), v(3), . . . , v(s)]T , and www =
[w(2), w(3), . . . , w(s)]T the vectors of stage-solution components for the variables u, v, and
w, respectively. For the KdVH system with the splitting (15), the Eq. (34a) in component
form becomes

uuu = uneee + Δt
(( − ununx

) ˆ̃ã̂ã̂a + ˆ̃A(−uuuuuux ) − wn
x â̂âa + Â(−wwwx )

)
, (35a)

vvv = vneee + Δt

τ

(
(vnx − wn)â̂âa + Â(vvvx − www)

)
, (35b)

www = wneee + Δt

τ

(
(−unx + vn)â̂âa + Â(−uuux + vvv)

)
. (35c)

Similarly, the final update of the solution can be written in components as

un+1 = un + Δt

(
ˆ̃b1(−ununx ) + ˆ̃b̃̂b̃̂bT (−uuuuuux ) + b̂1(−wn

x ) + b̂̂b̂bT (−wwwx )

)
, (36a)

vn+1 = vn + Δt

τ

(
b̂1(v

n
x − wn) + b̂̂b̂bT (vvvx − www)

)
, (36b)

wn+1 = wn + Δt

τ

(
b̂1(−unx + vn) + b̂̂b̂bT (−uuux + vvv)

)
. (36c)

We assume there exist Hilbert expansions (23) for un , vn , and wn and similar expansions for
the stage vectors uuu, vvv, andwww of the stage solution components:

uuu = uuu0 + τuuu1 + τ 2uuu2 + · · · , vvv = vvv0 + τvvv1 + τ 2vvv2 + · · · ,

www = www0 + τwww1 + τ 2www2 + · · · .

We insert these expansions into the stage equations and compare the leading-order terms
in the powers of τ . The leading-order terms in the expansions for the stage Eqs. (35b) and
(35c) yield:

O (
τ−1) :

{(
(vn0 )x − wn

0

)
â̂âa + Â ((vvv0)x − www0) = 000 ,(−(un0)x + vn0

)
â̂âa + Â (−(uuu0)x + vvv0) = 000 .

The well-prepared initial data at time tn implies that vn0 = (un0)x and wn
0 = (vn0 )x . Since Â

is invertible, it follows that

vvv0 = (uuu0)x and www0 = (vvv0)x . (37)

The leading-order term in the expansion of (35a) gives

O (
τ 0

) : uuu0 = un0eee + Δt
(
−un0(u

n
0)x

ˆ̃ã̂ã̂a − ˆ̃Auuu0(uuu0)x − (wn
0 )xâ̂âa − Â(www0)x

)
.

Using vvv0 = (uuu0)x ,www0 = (vvv0)x , and the well-preparedness of the initial data at time tn in the
previous equation, we obtain

uuu0 = un0eee + Δt
(
−un0(u

n
0)x

ˆ̃ã̂ã̂a − ˆ̃Auuu0(uuu0)x − (un0)xxxâ̂âa − Â(uuu0)xxx
)

. (38)

The solution update for the first equation in the leading-order term becomes:

un+1
0 = un0 + Δt

(
− ˆ̃b1un0(un0)x − ˆ̃b̃̂b̃̂bTuuu0(uuu0)x − b̂1(u

n
0)xxx − b̂̂b̂bT (uuu0)xxx

)
. (39)
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In the limit as τ → 0, we have un = un0 and uuu = uuu0, so the numerical scheme becomes:

uuu0 = un0eee + Δt
(
−un0(u

n
0)x

ˆ̃ã̂ã̂a − ˆ̃Auuu0(uuu0)x − (un0)xxxâ̂âa − Â(uuu0)xxx
)

,

un+1
0 = un0 + Δt

(
− ˆ̃b1un0(un0)x − ˆ̃b̃̂b̃̂bTuuu0(uuu0)x − b̂1(u

n
0)xxx − b̂̂b̂bT (uuu0)xxx

)
.

This is precisely the numerical scheme obtained from the time-stepping method (17) when
applied to the KdV equation ηt = −ηηx − ηxxx , where the term −ηηx is treated explicitly
and the term −ηxxx is treated implicitly. It is important to note that, in order to preserve
this result at the subsequent time step, the auxiliary components must remain well-prepared.
Therefore, we must project vn+1 and wn+1 onto the corresponding equilibrium manifolds.
To achieve this, we utilize the GSA property of the method. Since the method is assumed to
satisfy the GSA property, it follows that:

vn+1 = b̂̂b̂bT Â−1vvv = v(s) ,

wn+1 = b̂̂b̂bT Â−1www = w(s) .

In the limit as τ → 0, we have vn+1
0 = v

(s)
0 and wn+1

0 = w
(s)
0 . Using Eq. (37), we can

express vn+1
0 = (u(s)

0 )x and wn+1
0 = (u(s)

0 )xx . By the GSA property of the scheme, it follows

from Eqs. (38) and (39) that u(s)
0 = un+1

0 , which leads to vn+1
0 = (un+1

0 )x and wn+1
0 =

(un+1
0 )xx . This establishes the AP property, and the error estimates for all components follow

trivially, thereby proving the AA property of the method. �
Remark 4 Note that the well-preparedness of the initial data is assumed at time tn . This
is justified by the fact that if the initial condition is well-prepared, as given by (32), then
Theorem 2 for n = 0 ensures that the solution is well-prepared for the step n = 1. Hence,
by an induction argument, the auxiliary components will remain on the local equilibrium for
all subsequent times. Additionally, note that the GSA property is necessary to guarantee that
the auxiliary variables lie on the local equilibrium manifolds, which ensures the accuracy of
the u-components and, consequently, the auxiliary components.

3.2 Energy-Conserving Spatial Semidiscretization

As a completely integrable nonlinear PDE, the KdV equation possesses an infinite set of
conserved quantities, can be derived from a Lagrangian or Hamiltonian formalism, and
possesses soliton solutions that are related to certain symmetries. Here we review these
properties and related properties of the KdVH system.

Consider the Lagrangian

L = −φtφx

2
− (φx )

3

6
− φxφxxx

2
.

The corresponding Euler-Lagrange equation is

φxt + φxφxx + φxxxx = 0 .

Introducing the variable η = φx , we obtain the KdV Eq. (1).
As noted in the appendix of [4], theKdVHsystem (2) can also be derived from a variational

principle, starting from the augmented Lagrangian

L̂ = −φtφx

2
− φ3

x

6
− φxχx − τ

χtχx

2
− τ

ψtψx

2
+ ψ2

x

2
+ ψχx . (42)
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The corresponding Euler-Lagrange equations are

φxt + φxφxx + χxx = 0 ,

τψxt − ψxx + χx = 0 ,

τχxt + φxx − ψx = 0 .

Setting u = φx , v = ψx , and w = χx , we recover the hyperbolized system (2).
Similarly, the KdVH system (2) can be expressed as a Hamiltonian PDE; the Hamiltonian

is obtained from the augmented Lagrangian (42) using the Legendre transformation. This
yields the Hamiltonian density:

H(φ, ψ, χ, φx , ψx , χx ) = ∂ L̂

∂φt
φt + ∂ L̂

∂ψt
ψt + ∂ L̂

∂χt
χt − L̂

= φ3
x

6
+ φxχx − ψχx − ψ2

x

2
.

In terms of u, v, and w, this is

H(u, v, w) =
∫ xR

xL

(
u3

6
+ uw − wF(v) − v2

2

)
dx , (44)

where

F(v)(x, t) =
∫ x

xL
v(y, t)dy .

Then the KdVH system can be expressed in the form qt = J δH(q) where q = [u, v, w]T
and

δH(q) =
⎡
⎣ u2

2 + w

−v + F(w)

u − F(v)

⎤
⎦ J =

⎡
⎣−∂x

− ∂x
τ

− ∂x
τ

⎤
⎦ , (45)

the KdV hyperbolized system (2) can be expressed in the Hamiltonian PDE form qt =
J δH(q).

The first three conserved quantities of the KdV Eq. (1) are∫
η dx (mass), (46a)∫
1

2
η2 dx (energy), (46b)∫ (
2η3 − η2x

)
dx (Whitham). (46c)

For the KdVH system, it can be verified that the mass is conserved but the other nonlinear
invariants are not exactly conserved. However, the system conserves a modified energy:

I (u, v, w) =
∫ xR

xL

(
u2

2
+ τ

v2

2
+ τ

w2

2

)
dx , (47)

which satisfies −qx = J δ I (q) and hence we obtain the relative equilibrium structure of the
Hamiltonian PDE [21, 22]. Thus, this modified energy is a conserved quantity of the KdVH
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system (2). It can also be easily verified that the modified energy given in (47) is a conserved
quantity of the system by checking that

d I

dt
=

∫ xR

xL
(uut + τvvt + τwwt ) dx

=
∫ xR

xL
(u(−uux − wx ) + v(vx − w) + w(v − ux )) dx

=
∫ xR

xL

(
−

(
u3

3

)
x

− (uw)x +
(

v2

2

)
x

)
dx

= 0 .

Formally, the modified energy (47) converges to the KdV energy for τ → 0.
Conservation of the modified energy (47) of KdVH and the original energy (46) of KdV

can be shown using integration by parts and a split form of the nonlinear term, similar to
Burgers’ equation [48, Eq. (6.40)]. Alternatively, the chain rule can be used. However, the
chain rule does not have a discrete equivalent in general [43]. Thus, we use the first approach
andmimic integration by parts discretely using summation-by-parts (SBP) operators [25, 51].
In this article, we only need periodic SBP operators; see [46] and references cited therein for
several examples and details.

Definition 4 A periodic first-derivative SBP operator consists of a grid xxx , a consistent first-
derivative operator D, and a symmetric and positive-definite matrix M such that

MD + DT M = 0. (48)

The operator D is skew-symmetric with respect to the mass matrix M . In other words, the
product MD is skew-symmetric in the usual sense. In particular, yyyT MDyyy = 0 for any vector
yyy. We will use this property several times to analyze energy conservation and refer to it as
the SBP property (48).

We will also use upwind operators following [40].

Definition 5 A periodic first-derivative upwind SBP operator consists of a grid xxx , consistent
first-derivative operators D±, and a symmetric and positive-definite matrix M such that

MD+ + DT−M = 0,
1

2
M(D+ − D−) is negative semidefinite. (49)

For upwind SBP operators, the arithmetic average D = (D+ + D−)/2 is an SBP oper-
ator [40]. The semidiscretizations using SBP operators use a collocation approach, i.e., all
nonlinear operations are performed pointwise. For example, uuu = (

u(xxxi )
)N
i=1 is the vector

of the values of the function u at the grid points and uuu2 = (
u(xxxi )2

)N
i=1. We will only use

diagonal-norm operators, i.e., operators with diagonal mass/norm matrix M .

Example 1 First-order accurate periodic first-derivative finite difference SBP operators are
given by
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D+ = 1

Δx

⎛
⎜⎜⎜⎜⎜⎝

−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
...

. . .
...

0 0 · · · −1 1
1 0 · · · 0 −1

⎞
⎟⎟⎟⎟⎟⎠ , D− = 1

Δx

⎛
⎜⎜⎜⎜⎜⎝

1 0 · · · 0 −1
−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
...

. . .
...

0 0 · · · −1 1

⎞
⎟⎟⎟⎟⎟⎠ ,

D = D+ + D−
2

= 1

2Δx

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · −1
−1 0 1 · · · 0
0 −1 0 · · · 1
...

...
...

. . .
...

1 0 · · · −1 0

⎞
⎟⎟⎟⎟⎟⎠ ,

M = Δx I,
(50)

where Δx is the grid spacing and I is the identity matrix. The central SBP operator D is
actually second-order accurate. Moreover,

D+DD− = 1

Δx3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 1/2 0 . . . 0 −1/2 1
1 0 −1 1/2 . . . 0 0 −1/2

−1/2 1 0 −1 . . . 0 0 0
0 −1/2 1 0 . . . 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . 0 −1 1/2
1/2 0 0 0 . . . 1 0 −1
−1 1/2 0 0 . . . −1/2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(51)

is a second-order accurate approximation of the third derivative.

Using the split-form discretization of the nonlinear term together with an upwind dis-
cretization of the third derivative leads to the semidiscretization

∂tηηη + 1

3

(
Dηηη2 + ηηηDηηη

) + D+DD−ηηη = 000 (52)

of the KDV Eq. (1).

Theorem 3 The semidiscretization (52) conserves the discrete counterparts

111T Mηηη ≈
∫

η,
1

2
111T Mηηη2 ≈ 1

2

∫
η2 (53)

of the linear and quadratic invariant (46) of the KdV Eq. (1) if periodic diagonal-norm
upwind SBP operators with the same mass matrix M are used.

Proof The linear invariant is conserved since

∂t111
T Mηηη = 111T M∂tηηη = −1

3
111T MDηηη2 − 1

3
111T MηηηDηηη − 111T MD+DD−ηηη

= −1

3
111T MDηηη2 − 1

3
ηηηT MDηηη − 111T MD+DD−ηηη

= +1

3
111T DT Mηηη2 − 1

6
ηηηT MDηηη + 1

6
ηηηT DT Mηηη + 111T DT−MDD−ηηη = 0.

(54)
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In the second line, we have used that the mass matrix M is diagonal. The SBP properties are
used in the third line. Please note that we have used the SBP property (48) for half of the term
− 1

3ηηη
T MDηηη. The final step follows from consistency of the derivative operators (D111 = 000)

and the symmetry of M . Finally, we obtain

∂t111
T Mηηη2 = ∂t

(
ηηηT Mηηη

) = 2ηηηT M∂tηηη, (55)

where we have used that M is diagonal. Then, we have

1

2
∂t111

T Mηηη2 = −1

3
ηηηT MDηηη2 − 1

3
ηηηT MηηηDηηη − ηηηT MD+DD−ηηη

= −1

3
ηηηT MDηηη2 − 1

3
(ηηη2)T MDηηη + ηηηT DT−MDD−ηηη = 0,

(56)

where we have again used the SBP properties (48) and (49) in the last line and the fact that
yyyT MDyyy = 0, i.e., that MD is skew-symmetric in the usual sense. �

Next, we consider the semidiscretization

∂tuuu + 1

3

(
Duuu2 + uuuDuuu

) + D+www = 000,

∂tvvv + 1

τ
(−Dvvv + www) = 000,

∂twww + 1

τ
(D−uuu − vvv) = 000

(57)

of the KdVH system (2).

Theorem 4 The semidiscretization (57) conserves the discrete counterparts

111T Muuu ≈
∫

u,
1

2
111T M

(
uuu2 + τvvv2 + τwww2) ≈ 1

2

∫ (
u2 + τv2 + τw2) (58)

of the linear and quadratic invariant (47) of the KdVH system 2 if periodic diagonal-norm
upwind SBP operators with the same mass matrix M are used.

Proof Conservation of the linear invariant follows as in the proof of Theorem3. The quadratic
invariant is conserved since

1

2
∂t111

T M
(
uuu2 + τvvv2 + τwww2) = uuuT M∂tuuu + τvvvT M∂tvvv + τwwwT M∂twww

=−1

3
uuuT MDuuu2− 1

3
uuuT MuuuDuuu−uuuT MD+www+vvvT MDvvv−vvvT Mwww−wwwT MD−uuu + wwwT Mvvv

= −1

3
uuuT MDuuu2 − 1

3
(uuu2)T MDuuu − uuuT MD+www + vvvT MDvvv + wwwT DT+Muuu = 0,

(59)
where we have used that M is diagonal and the SBP properties, in particular the skew-
symmetry of MD. �

Formally taking the limit τ → 0, the semidiscretization (57) of the KdVH system (2) con-
verges to the semidiscretization (52) of the KdV Eq. (1). Moreover, the quadratic invariant
of the KdVH semidiscretization converges to the quadratic invariant of the KdV semidis-
cretization. We can use this to prove fully-discrete counterparts of Theorems 1 and 2. Thus,
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we introduce the splitting

∂t

⎛
⎝uuu

vvv

www

⎞
⎠

︸ ︷︷ ︸
∂tqqq

=
⎛
⎝− 1

3

(
Duuu2 + uuuDuuu

)
000
000

⎞
⎠

︸ ︷︷ ︸
f (qqq)

+
⎛
⎝ −D+www

1
τ
(Dvvv − www)

1
τ
(−D−uuu + vvv)

⎞
⎠

︸ ︷︷ ︸
g(qqq)

. (60)

Theorem 5 An ImEx-RK method of type I applied to the splitting (60) of the semidiscrete
hyperbolic approximation of the KdV equation is always AP for the uuu-component. Further-
more, if the method is assumed to be globally stiffly accurate, then it is also AP for the
auxiliary components vvv andwww.

Theorem 6 A globally stiffly accurate ImEx-RKmethod of type II, applied to the splitting (60)
of the semidiscrete hyperbolic approximation of the KdV equation, along with well-prepared
initial data, is asymptotic-preserving for all the components uuu, vvv, andwww.

The proofs of Theorems 5 and 6 are analogous to the proofs of Theorems 1 and 2. Thus,
we omit them here.

3.3 Fully-Discrete Energy Conservation via RK Relaxation

To extend energy conservation from the semidiscrete to the fully-discrete level, we utilize
the entropy relaxation Runge–Kutta technique [35, 45, 47]. This approach modifies standard
RK methods to conserve a single invariant for ODE systems. Applications of this entropy
relaxation approach in ImEx time integration for conserving single or multiple invariants
have been explored in [6, 7, 38]. Here, we focus on conserving a single invariant at the fully-
discrete level using ImEx RK methods. The energy-conserving spatial semidiscretization of
the KdVH or the original KdV equation reduces the problem to an ODE system for q ∈ R

m ,
given by

qt = f (q) + g(q), q(0) = q0,

with the energy invariant denoted by I (q). Using an ImExmethod (13), we require I (qn+1) =
I (qn) = I (q0) at the discrete level. However, standard methods generally do not satisfy
I (qn+1) = I (qn). To address this, the entropy relaxation approach introduces a scalar entropy
relaxation parameter, γn , modifying the solution update as

q(tn + γnΔt) ≈ qn+1
γn

= qn + γnΔt
(
qn+1 − qn

)
,

with γn chosen to satisfy the nonlinear scalar equation

I
(
qn+1
γn

)
= I (qn).

Under certain mild conditions, γn = 1 + O(Δt p−1) exists and can be determined at each
time step for a general nonlinear invariant I , where p is the order of the ImEx method [35,
45]. For specific invariants, such as energy represented by a solution norm, explicit formulas
for γn are available [35, 45]. For an ImEx RKmethod with Butcher coefficients given in (14),
the explicit formula for γn is given by

γn =
−2

〈
qn, Δt

∑s
j=1

(
b̃ j f j + b j g j

)〉
〈
Δt

∑s
j=1

(
b̃ j f j + b j g j

)
, Δt

∑s
j=1

(
b̃ j f j + b j g j

)〉 , (61)
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where f j = f (q( j)) and g j = g(q( j)), are the function evaluations of f and g at the j th
stage solution q( j). By constructing the entropy relaxation parameter, the modified solution
preserves the invariant of the semidiscretized system, thereby ensuring the preservation of
the invariant in the fully-discrete numerical scheme.

In the numerical experiments below, this entropy relaxation technique is used only where
indicated in Sect. 4.2 and not at all in Sect. 4.1.

4 Numerical Experiments

In this section, we present the numerical results that validate the effectiveness and accuracy
of the proposed methods for solving the KdVH system. We study solutions involving one
or two solitons; a step-like initial condition leading to a dispersive shock wave has already
been studied in [4]. We have implemented the numerical methods in Julia [5]. The spatial
semidiscretizations and the Petviashvili method use SBP operators provided by the package
SummationByPartsOperators.jl [44], wrapping FFTW [26] for Fourier methods. We use
CairoMakie.jl [16] to visualize the results. The code to reproduce all numerical experiments
is available in our reproducibility repository [8].

4.1 Numerical Tests of Asymptotic Preservation

We begin by comparing the solution of the KdV equation with those of the KdVH system for
different values of τ . Specifically, we consider the KdV and the KdVH system on the domain
[xL , xR] × (0, T ] = [−40, 40] × (0, 80] with periodic boundary conditions. We consider
approximation of the soliton solution of the KdV equation:

η(x, t) = A sech2
(√

3A(x − ct)

6

)
. (62)

We use well-prepared initial data, meaning that we set u(x, 0) = η(x, 0), vvv(0) = D−ηηη(0)
andwww(0) = DD−ηηη(0), where D± and D are upwind SBP derivative operators.

We discretize the spatial derivatives in both the KdV and KdVH equations using periodic
FD SBP operators with N = 28 grid points. The semi-discrete system is integrated in time
using the type II ARK method ARS(4,4,3) with a time step size of Δt = 0.01. With these
fixed spatial and temporal parameters, Fig. 5 illustrates the convergence of theKdVH solution
to that of the KdV equation as the relaxation parameter τ decreases.

To quantitatively validate the AP property of the schemes developed in Sect. 3.1, we
examine the �2 norm induced by the mass/norm matrix M of the SBP operator used in space
of the differences uuu−ηηη, vvv −D−ηηη, andwww−DD−ηηη, where uuu, vvv, andwww represent the solutions
of the fully discretized KdVH system, andηηη is a numerical solution of the KdV equation. For
the numerical solutions of both the KdV and KdVH equations, we use spatial discretization
based on periodic SBP operators on the domain [−40, 40] with 210 grid points. Below, we
present the asymptotic errors for various ImEx time integrators, with four methods from each
of type I and type II. In all cases, the time integrators use a fixed step size Δt = 0.005, and
all errors are computed with respect to the numerical solution of the KdV equation at the
final time t = 16.67.
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Fig. 5 Comparison of the solution of the KdV Eq. (1) (denoted by η(x, 80)) and its hyperbolic approximation
(2) (denoted by ‘uKdVH : τ ’) at time t = 80. In all cases, the solution is computed using a spatial discretization
based on periodic SBP operators and the ARK method ARS(4,4,3) in time. The numerical solutions of the
KdVH system converge to the numerical solution of the KdV equation as τ → 0

Table 1 Asymptotic errors and estimated orders of convergence (EOC) for the variables uuu, vvv, and www when
integrating the KdVH system using the SSP2-ImEx(2,2,2) method

τ ||uuu − ηηη||2 EOC uuu ||vvv − D−ηηη||2 EOC vvv ||www − DD−ηηη||2 EOCwww

1.00e−01 3.77e+00 3.13e+00 3.61e+00

1.00e−03 5.35e−02 0.92 4.47e−02 0.92 5.55e−02 0.91

1.00e−05 5.37e−04 1.00 8.96e−03 0.35 1.63e−02 0.27

1.00e−07 5.37e−06 1.00 9.51e−03 −0.01 1.69e−02 −0.01

1.00e−09 5.39e−08 1.00 9.52e−03 −0.00 1.69e−02 −0.00

The �2 norms of the errors are calculated relative to the numerical solution of the KdV equation, ηηη

4.1.1 AP Results for Type I ImEx-RK Methods

We begin with type I methods, denoted by NAME(sE , sI , p), where the triplet (sE , sI , p)
specifies the number of stages in the explicit part (sE ), the number of stages in the implicit
part (sI ), and the overall order (p) of the ImEx-RK method.

First, we consider a second-order type I method, denoted by SSP2-ImEx(2,2,2), as defined
in Table 10. This method has an implicit part that is not SA and an explicit part that is not
FSAL, meaning it is not GSA. However, the overall method is L-stable [9]. Table 1 presents
the asymptotic errors in different variables. The scheme exhibits linear convergence of uuu as
τ → 0, confirming the AP property for the uuu-component, while for the variables vvv and www,
we do not observe the AP property of the method. This observation is in agreement with
Theorem 1 and Remark 3, since this method does not have the GSA property.

We now examine another second-order type I method, SSP2-ImEx(3,3,2), as defined
in Table 11. This method has an implicit part that is SA and an explicit part that does
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Table 2 Asymptotic errors and estimated orders of convergence (EOC) for the variables uuu, vvv, and www when
integrating the KdVH system using the SSP2-ImEx(3,3,2) method

τ ||uuu − ηηη||2 EOC uuu ||vvv − D−ηηη||2 EOC vvv ||www − DD−ηηη||2 EOCwww

1.00e−01 3.77e+00 3.13e+00 3.61e+00

1.00e−03 5.35e−02 0.92 4.88e−02 0.90 6.31e−02 0.88

1.00e−05 5.36e−04 1.00 4.92e−04 1.00 6.46e−04 0.99

1.00e−07 5.36e−06 1.00 1.23e−05 0.80 2.61e−05 0.70

1.00e−09 5.38e−08 1.00 1.20e−05 0.01 2.62e−05 −0.00

The �2 norms of the errors are calculated relative to the numerical solution of the KdV equation, ηηη

Table 3 Asymptotic errors and estimated orders of convergence (EOC) for the variables uuu, vvv, and www when
integrating the KdVH system using the AGSA(3,4,2) method

τ ||uuu − ηηη||2 EOC uuu ||vvv − D−ηηη||2 EOC vvv ||www − DD−ηηη||2 EOCwww

1.00e−01 3.80e+00 3.16e+00 3.63e+00

1.00e−03 5.93e−02 0.90 5.44e−02 0.88 7.12e−02 0.85

1.00e−05 5.94e−04 1.00 5.50e−04 1.00 7.32e−04 0.99

1.00e−07 5.94e−06 1.00 5.49e−06 1.00 7.30e−06 1.00

1.00e−09 5.96e−08 1.00 7.93e−08 0.92 9.60e−08 0.94

The �2 norms of the errors are calculated relative to the numerical solution of the KdV equation, ηηη

not satisfy FSAL, which means it does not satisfy the GSA property. However, the overall
method remains L-stable due to the SA property of the implicit part [9]. Table 2 shows the
asymptotic errors for different variables. The convergence for the uuu variable demonstrates
linear convergence as τ → 0, indicating the AP property for the uuu-component. Additionally,
compared to the SSP2-ImEx(2,2,2) method, the SSP2-ImEx(3,3,2) method shows improved
convergence for the algebraic variables vvv and www, despite both methods lacking the GSA
property.We hypothesize that this improvement arises because the SSP2-ImEx(3,3,2)method
only violates the FSAL property.

Now we consider a second-order type I method AGSA(3,4,2) given in Table 12 that
satisfies the GSA property. Table 3 shows that we obtain AP properties for all the variables
uuu, vvv, andwww, supporting our theoretical results for type I methods with the GSA property.

To test a high-order method of type I, we consider a third-order L-stable type I method
SSP3-ImEx(3,4,3) given in Table 13, which is neither SA in the implicit part nor FSAL in
the explicit part. Since this method does not possess the GSA property, we only expect the
AP property in the uuu-component, as shown in Table 4.

4.1.2 AP Results for Type II ImEx-RK Methods

In this section, we present the quantitative asymptotic errors for different type II meth-
ods. First, we consider a second-order ARS(2,2,2) method (in Table 14) and a third-order
ARS(4,4,3) method (in Table 15), both of which are type II methods that satisfy the GSA
property.We simulate the semi-discretized systemwith well-prepared initial data and present
the asymptotic errors in Tables 5 and 6, respectively, for these twomethods. The convergence
rates in these tables illustrate the AP property for all the components with these two methods,
as expected according to our theoretical results.
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Table 4 Asymptotic errors and estimated orders of convergence (EOC) for the variables uuu, vvv, and www when
integrating the KdVH system using the SSP3-ImEx(3,4,3) method

τ ||uuu − ηηη||2 EOC uuu ||vvv − D−ηηη||2 EOC vvv ||www − DD−ηηη||2 EOCwww

1.00e−01 3.77e+00 3.13e+00 3.60e+00

1.00e−03 5.34e−02 0.92 4.88e−02 0.90 6.25e−02 0.88

1.00e−05 5.36e−04 1.00 3.73e−03 0.56 7.22e−03 0.47

1.00e−07 5.36e−06 1.00 3.82e−03 −0.01 6.80e−03 0.01

1.00e−09 5.38e−08 1.00 3.83e−03 −0.00 6.81e−03 −0.00

The �2 norms of the errors are calculated relative to the numerical solution of the KdV equation, ηηη

Table 5 Asymptotic errors and estimated orders of convergence (EOC) for the variables uuu, vvv, and www when
integrating the KdVH system using the ARS(2,2,2) method

τ ||uuu − ηηη||2 EOC uuu ||vvv − D−ηηη||2 EOC vvv ||www − DD−ηηη||2 EOCwww

1.00e−01 3.77e+00 3.13e+00 3.61e+00

1.00e−03 5.35e−02 0.92 4.88e−02 0.90 6.31e−02 0.88

1.00e−05 5.36e−04 1.00 4.89e−04 1.00 6.30e−04 1.00

1.00e−07 5.36e−06 1.00 4.89e−06 1.00 6.30e−06 1.00

1.00e−09 5.38e−08 1.00 5.01e−08 0.99 6.44e−08 1.00

The �2 norms of the errors are calculated relative to the numerical solution of the KdV equation, ηηη

Table 6 Asymptotic errors and estimated orders of convergence (EOC) for the variables uuu, vvv, and www when
integrating the KdVH system using the ARS(4,4,3) method in time and an upwind FD method in space

τ ||uuu − ηηη||2 EOC uuu ||vvv − D−ηηη||2 EOC vvv ||www − DD−ηηη||2 EOCwww

1.00e−01 3.76e+00 3.13e+00 3.60e+00

1.00e−03 5.34e−02 0.92 4.88e−02 0.90 6.31e−02 0.88

1.00e−05 5.36e−04 1.00 4.89e−04 1.00 6.31e−04 1.00

1.00e−07 5.36e−06 1.00 4.89e−06 1.00 6.31e−06 1.00

1.00e−09 5.38e−08 1.00 5.23e−08 0.99 6.50e−08 0.99

The �2 norms of the errors are calculated relative to the numerical solution of the KdV equation, ηηη

To demonstrate that the analysis of the properties is not limited to finite differencemethods
in space, we have also considered a DG method in space. The results for the ARS(4,4,3)
method with a DG method using polynomials of degree 3 with 28 elements are presented in
Table 7. We obtain similar results for Fourier pseudospectral methods, which are not shown
here.

Tables 8 and 9 present the asymptotic errors for two methods: the third-order
ARK3(2)4L[2]SA (in Table 16) and the fourth-order ARK4(3)6L[2]SA (in Table 17) of
type II, as proposed by Kennedy and Carpenter [34]. Both methods do not have the GSA
property, but their implicit parts are SA. The simulations are performed with well-prepared
initial data, and the convergence rates shown in the tables indicate that we consistently obtain
the AP property for the uuu-component. It appears that we observe linear convergence rates for
the algebraic variables within a certain range of τ values, as shown in the table, particularly
for higher-order ImEx methods. This behavior surpasses the guarantees provided by the the-
oretical results for such methods. The observed effect is attributed to the use of a sufficiently
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Table 7 Asymptotic errors and estimated orders of convergence (EOC) for the variables uuu, vvv, and www when
integrating the KdVH system using the ARS(4,4,3) method in time and a DG method in space

τ ||uuu − ηηη||2 EOC uuu ||vvv − D−ηηη||2 EOC vvv ||www − DD−ηηη||2 EOCwww

1.00e−01 3.76e+00 3.13e+00 3.60e+00

1.00e−03 5.34e−02 0.92 4.88e−02 0.90 6.31e−02 0.88

1.00e−05 5.36e−04 1.00 4.89e−04 1.00 6.31e−04 1.00

1.00e−07 5.36e−06 1.00 4.89e−06 1.00 6.31e−06 1.00

1.00e−09 5.36e−08 1.00 6.20e−08 0.95 6.39e−08 1.00

The �2 norms of the errors are calculated relative to the numerical solution of the KdV equation, ηηη

Table 8 Asymptotic errors and estimated orders of convergence (EOC) for the variables uuu, vvv, and www when
integrating the KdVH system using the ARK3(2)4L[2]SA method

τ ||uuu − ηηη||2 EOC uuu ||vvv − D−ηηη||2 EOC vvv ||www − DD−ηηη||2 EOCwww

1.00e−01 3.77e+00 3.13e+00 3.60e+00

1.00e−03 5.34e−02 0.92 4.88e−02 0.90 6.32e−02 0.88

1.00e−05 5.36e−04 1.00 4.90e−04 1.00 6.37e−04 1.00

1.00e−07 5.36e−06 1.00 1.27e−05 0.79 2.69e−05 0.69

1.00e−09 5.38e−08 1.00 1.24e−05 0.01 2.71e−05 −0.00

The �2 norms of the errors are calculated relative to the numerical solution of the KdV equation, ηηη

Table 9 Asymptotic errors and estimated orders of convergence (EOC) for the variables uuu, vvv, and www when
integrating the KdVH system using the ARK4(3)6L[2]SA method. The �2 norms of the errors are calculated
relative to the numerical solution of the KdV equation, ηηη

τ ||uuu − ηηη||2 EOC uuu ||vvv − D−ηηη||2 EOC vvv ||www − DD−ηηη||2 EOCwww

1.00e−01 3.77e+00 3.13e+00 3.60e+00

1.00e−03 5.34e−02 0.92 4.88e−02 0.90 6.31e−02 0.88

1.00e−05 5.36e−04 1.00 4.89e−04 1.00 6.31e−04 1.00

1.00e−07 5.36e−06 1.00 4.89e−06 1.00 6.31e−06 1.00

1.00e−09 5.38e−08 1.00 4.97e−08 1.00 6.35e−08 1.00

The �2 norms of the errors are calculated relative to the numerical solution of the KdV equation, ηηη

small time step in the simulation. However, with a larger time step, we observe that the AP
property manifests only in the uuu-component, not in the algebraic variables.

4.1.3 Asymptotic-Accuracy Property

The various classes of ImEx methods employed in the numerical experiments presented here
have been proven to satisfy the AP and AA properties for hyperbolic relaxation systems, as
established in [42]. Analogous results hold for the relaxation system considered in this study,
as demonstrated in Sect. 3.1. In this section, we numerically investigate the AA property for
different classes of ImEx methods with two values of the relaxation parameter, capturing
distinct regimes of the relaxation limit. Specifically, we select τ ∈ {10−5, 10−9} and demon-
strate error convergence for each τ using five methods: AGSA(3,4,2), SSP3-ImEx(3,4,3),
ARS(2,2,2), ARS(4,4,3), and ARK3(2)4L[2]SA.
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For all experiments, we use an 8th-order periodic first-derivative upwind SBP operator
with N = 210 spatial grid points on the domain [−40, 40] for spatial semi-discretization. The
error convergence for the components uuu, vvv, andwww at t = 4.8 is illustrated in Fig. 6. The error
at the final time is computed relative to reference solutions of the KdVH system denoted by
uPuPuP , vPvPvP , andwPwPwP , where uPuPuP is obtained using a Petviashvili-type method on a fine spatial grid

with 211 grid points. The reference solution for the auxiliary variable wPwPwP = cuPuPuP − uPuPuP
2

2 is
derived by integrating (5a), and vPvPvP = D−uPuPuP − cτD−wPwPwP is obtained by using (5c).

In accordance with our theoretical results, the methods AGSA(3,4,2), ARS(2,2,2) and
ARS(4,4,3) confirm the AA property for all components. The method SSP3-ImEx(3,4,3)
exhibits the AA property for the uuu-component only but not for the auxiliary components,
aligning with theoretical predictions. Additionally, we observe the AA property for the uuu-
component with the ARK3(2)4L[2]SA method, despite this property not being theoretically
guaranteed for this method, a behavior similar to its AP property.

4.2 Numerical Tests of Energy Conservation

It is well-known that integrating the KdV equation with an energy-conserving numerical
scheme results in linear error growth over time, whereas a non-conservative method leads
to quadratic error growth [17]. This distinction makes conservative methods superior for
maintaining solution accuracy over long time intervals. The KdVH system has a modified
energy that is conserved, and as the relaxation parameter τ → 0, this energy converges to that
of the KdV equation. We aim to examine the effect of numerically conserving this modified
energy on error propagation in the KdVH system across different values of τ . To achieve this,
we use an energy-conserving spatial semi-discretization combined with a relaxation Runge–
Kutta approach, specifically designed to preserve one or more invariants of the system. For
error computation in the KdVH system, we use the analytical solution (or a highly accurate
numerical solution) of the KdV equation as the reference.

Considering the spatial domain [−40, 40] with 28 grid points and an 8th-order finite-
difference operator for derivatives, we integrate the energy-conserving semi-discretized
KdVH system up to a final time of 333.34 using the ARK method ARS(4,4,3), with and
without entropy relaxation. In each case we start the time stepping with a fixed time step
Δt = 0.05. Errors at each time step are computedwith respect to the analytical solution of the
KdV equation, and Fig. 7 presents the error growth profiles for four values of τ . Each panel
in the figure includes reference error growth curves for the KdV equation, demonstrating
linear versus quadratic error growth for conservative versus non-conservative methods. For
smaller τ values, we observe similar behavior in error growth for the KdVH system, while
for larger τ values, this behavior becomes less evident. Expected linear and quadratic error
growth behaviors for conservative and non-conservative methods, respectively, are observed
only when τ is sufficiently small. Additionally, as τ decreases, the error growth curves for
the KdVH system converge toward those of the KdV system.

To examine the effects of energy conservation using different ImEx integrators for the
KdVH system with different values of the relaxation parameter τ with a more challenging
solution, we consider the KdV equation and the hyperbolized systemwith a 2-soliton solution
given by

u(x, t) = −12(β1 − β2)
(
β2 csch2(ξ2) + β1 sech2(ξ1)

)
(√

2β1 tanh(ξ1) − √
2β2 coth(ξ2)

)2 . (63)

123



Journal of Scientific Computing           (2025) 103:90 Page 27 of 37    90 

Fig. 6 Error convergence for variables uuu (top row), vvv (middle row), and www (bottom row) for two relaxation
parameters. The reference solutions uPuPuP , vPvPvP , and wPwPwP are obtained using a Petviashvili-type method and
a periodic first-derivative SBP operator. The methods AGSA(3,4,2), SSP3-ImEx(3,4,3), ARS(2,2,2), and
ARS(4,4,3) exhibit the expected AA property for all components, whereas ARK3(2)4L[2]SA demonstrates
the AA property for the uuu-component, which is beyond our guaranteed theoretical results
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Fig. 7 Error growth profiles for the KdVH system up to time t = 333.34 for four values of the relaxation
parameter τ . Each subplot compares the numerical solutions with the analytical solitary wave solution of the
KdV equation. For smaller τ , linear error growth characteristic of conservative methods is observed. As τ

decreases, the error growth curves for the KdVH system converge towards those of the KdV system

where β1 = 0.5, β2 = 1, ξ1 =
√

β1(x−2β1t)√
2

, and ξ2 =
√

β2(x−2β2t)√
2

. In this case, we consider

the domain [−60, 100] with 210 grid points and employ an 8th-order energy-conserving
finite-difference operator for spatial semidiscretization. We integrate the energy-conserving
semidiscretized systems for both the KdV equation and the KdVH system with τ = 10−3

and τ = 10−5 from t = −20 to t = 50 using different time-stepping methods, both with and
without entropy relaxation. We initialize the simulation from a negative time to capture the
soliton interaction occurring at t = 0. Consequently, when plotting error growth over time
on a log-log scale, the time axis is shifted by the starting time. For time integration, we use
AGSA(3,4,2), ARS(4,4,3), and ARK4(3)6L[2]SA, with initial time steps Δt = 0.02, 0.1,
and 0.5, respectively.

Figure8 presents the error growth profiles for the three methods with two values of τ . At
each time step, the error is computed relative to the analytical 2-soliton solution given by (63).
For eachmethod, the time-stepping approachwith entropy relaxation exhibits improved error
growth compared to its corresponding baseline method. Notably, all methods display a dip
in the error growth profile during soliton interaction, consistent with previous observations
[7, 17]. Furthermore, as τ decreases, the error growth curves progressively converge toward
those of the KdV system.

123



Journal of Scientific Computing           (2025) 103:90 Page 29 of 37    90 

Fig. 8 Error growth profiles for the KdVH system with two values of the relaxation parameter τ , computed
from t = −20 to t = 50 using three different ImEx methods. Each subplot compares the numerical solutions
with the analytical 2-soliton solution of the KdV equation. ImEx methods with entropy relaxation exhibit
improved error growth compared to their corresponding baseline methods. Furthermore, as τ decreases, the
error growth curves for the KdVH system converge toward those of the KdV system
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Fig. 9 Error growth profiles for the KdVH system with τ = 10−2 up to time t = 333.34. The left panel shows
the error growth by SSP2-IMEX(2,2,2) with and without entropy relaxation, while the right panel shows the
error growth by ARS(2,2,2). In each case, the numerical solution is compared with the numerically obtained
exact solution of the KdVH system

So far, we have examined the error growth over time by measuring the solution error of
the KdVH system with respect to the analytical solution of the KdV equation. Now, given
a particular value of τ , we focus on the KdVH system itself and compare its numerical
solution with the numerically obtained exact solution of the KdVH system, computed using
the Petviashvili method. The Petviashvili method is applied over the domain [−40, 40] with
210 grid points to obtain numerically exact solitary wave solutions for the KdVH system
with τ = 10−2. For the numerical solution, we semi-discretize the KdVH using an 8th-
order upwind finite difference approximation with 28 grid points, resulting in a modified
energy-preserving semidiscretization. Figure9 shows the error growth for twodifferent ImEx-
RK methods: SSP2-IMEX(2,2,2), a type I method, and ARS(2,2,2), a type II method. All
time integrations are initialized with a time step of Δt = 0.05. Both methods exhibit the
expected linear and quadratic error growth over time when integrated with and without
entropy relaxation.

5 Conclusions

Given the increasing interest in hyperbolic approximations to dispersive nonlinear wave
equations, it is of great interest to understand the dynamics of these hyperbolic models and
develop structure-preserving numerical discretizations for them. Here we have carried out
this work in relation to the hyperbolized KdV system.

One of our principal findings is that the dynamics of the KdVH system, studied here
primarily in terms of traveling waves, is in a sense richer than that of the original KdV
equation, and includes additional classes of solitary and periodic waves including some with
lower regularity. A more extensive investigation of these solutions, along the lines of [37],
would be very interesting. Furthermore, the resemblance of (11) and its solutions to higher-
order water wave models suggests that there may be a deeper connection between KdVH and
such models.

The asymptotic-preserving discretizations developed herein provide essential guarantees
for numerical solutions of KdVH, since in practice one uses a finite value of the relaxation
parameter τ . Numerical results of asymptotic preservation and asymptotic accuracy presented
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herein support our theoretical results, with some ImEx methods by Kennedy and Carpenter
of type II [34] producing results that outperform theoretical predictions, suggesting the need
for further investigation to fully understand this behavior. Energy preservation ensures that
solutions of KdVH remain closer to those of KdV for longer times. It would be of interest to
investigate the existence of higher-order modified invariants of KdVH and their numerical
preservation.

Appendix

A Type I ImExmethods

A.1 SSP2-ImEx(2,2,2)

Table 10 Tableau for the
2nd-order L-stable type I
ImEx-RK method: the explicit
part is not FSAL, the implicit part
is not SA, hence not GSA, with
γ = 1 − 1√

2

0 0 0 γ γ 0

1 1 0 1 − γ 1 − 2γ γ

1/2 1/2 1/2 1/2

A.2 SSP2-ImEx(3,3,2)

Table 11 Tableau for the
2nd-order L-stable type I
ImEx-RK method: the explicit
part is not FSAL, the implicit part
is SA, hence not GSA

0 0 0 0 1/4 1/4 0 0

1/2 1/2 0 0 1/4 0 1/4 0

1 1/2 1/2 0 1 1/3 1/3 1/3

1/3 1/3 1/3 1/3 1/3 1/3

A.3 AGSA(3,4,2)

Table 12 Tableau for the
2nd-order type I ImEx-RK
method: the explicit part is
FSAL, the implicit part is SA,
hence GSA

0 0 0 0 0 c1 c1 0 0 0

c̃2 c̃2 0 0 0 c2 a21 a22 0 0

c̃3 ã31 ã32 0 0 c3 a31 a32 a33 0

1 b̃1 b̃2 b̃3 0 1 b1 b2 b3 γ

b̃1 b̃2 b̃3 0 b1 b2 b3 γ
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The coefficients in the table are c2 = ã21 = −139833537
38613965 , c1 = 168999711

74248304 , ã31 = 85870407
49798258 ,

γ = a22 = 202439144
118586105 , ã32 = −121251843

1756367063 , a33 = 12015439
183058594 , b̃2 = 1

6 , b̃3 = 2
3 , a31 = −6418119

169001713 ,
a21 = 44004295

24775207 , ã32 = −748951821
1043823139 , b2 = 1

3 , b3 = 0, b̃1 = 1−b̃2−b̃3, and b1 = 1−γ −b2−b3.

A.4 SSP3-ImEx(3,4,3)

Table 13 Tableau for the 3rd-order L-stable type I ImEx-RKmethod: the explicit part is not FSAL, the implicit
part is not SA, hence not GSA

0 0 0 0 0 α α 0 0 0

0 0 0 0 0 0 −α α 0 0

1 0 1 0 0 1 0 1 − α α 0

1/2 0 1/4 1/4 0 1/2 β η 1/2 − β − η − α α

0 1/6 1/6 2/3 0 1/6 1/6 2/3

where α = 0.241694260788, β = 0.0604235651970, and η = 0.12915286960590.

B Type II ImExmethods

B.1 ARS(2,2,2)

Table 14 Tableau for the
ARS(2,2,2) method: the explicit
part is FSAL, the implicit part is
SA, hence GSA, with coefficients
γ = 1 − 1√

2
and δ = 1 − 1

2γ

0 0 0 0 0 0 0 0

γ γ 0 0 γ 0 γ 0

1 δ 1 − δ 0 1 0 1 − γ γ

δ 1 − δ 0 0 1 − γ γ

B.2 ARS(4,4,3)

Table 15 Tableau for the ARS(4,4,3) method: the explicit part is FSAL, the implicit part is SA, hence GSA

0 0 0 0 0 0 0 0 0 0 0 0

1/2 1/2 0 0 0 0 1/2 0 1/2 0 0 0

2/3 11/18 1/18 0 0 0 2/3 0 1/6 1/2 0 0

1/2 5/6 −5/6 1/2 0 0 1/2 0 −1/2 1/2 1/2 0

1 1/4 7/4 3/4 −7/4 0 1 0 3/2 −3/2 1/2 1/2

1/4 7/4 3/4 −7/4 0 0 3/2 −3/2 1/2 1/2
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