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Abstract: We investigate the entanglement and non-locality between specific spectral compo-
nents of continuous variable two-mode squeezed mixed states, identifying their limits. These
spectral components are selected from output modes using filters commonly employed in op-
tomechanical systems. Both entanglement and non-locality reach their peak when the filters are
identical. However, increasing the degree of input squeezing while applying non-identical filters
disrupts both entanglement and non-locality, leading to a bell-shaped pattern. Additionally, we
provide precise boundaries for entanglement and non-locality. Furthermore, we also evaluate the
squeezing of two-mode hybrid quadrature as a measure of entanglement, thereby demonstrating
how it remains analogous to logarithmic negativity. Combined with the filter, the population of
two-mode squeezed thermal light influences the angle of a maximally squeezed hybrid quadrature.
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1. Introduction

Entanglement is a fundamental aspect of the establishment of quantum mechanics which plays a
critical role in understanding the Einstein-Podolsky-Rosen (EPR) measurement paradox [1,2].
It had been the key resource in quantum information processing [3], quantum computation [4],
quantum teleportation [5], and quantum meterology including gravitational wave (GW) detector
[6]. It quantifies the quantum correlation between continuous-variable states. Gaussian states
have mainly been in use for the generation, manipulation, and application of continuous variable
entangled states [5,7], and therefore, it remained in the intensive interest of the community.

A profound feature of quantum measurement on hybrid systems is its local realism [1,2], which
has extensively been used in the field of quantum information science. The test of quantum
non-locality versus local realism still remains a gray area to explore. In this context, Bell’s
inequality has been considered as a satisfactory condition that all local hidden variables follow
[8–10]. Several types of Bell’s inequalities have been explored so far to test quantum nonlocality
[11,12]. All cases use two-body correlation functions as key elements which have been extracted
from the two measurement variables at distant places.

The quantum correlated states are generated by using the correlations between a system
and ancilla modes, such as two output ports of a beamsplitter [13], signal and idler generated
through spontaneous parametric down-conversion process (PDC) [14] usually by using Kerr
non-linear systems [15,16], atomic and cavity modes in cavity quantum electrodynamics [17–19].
The entanglement reveals information about the correlation between two systems, which also
ensures that the measurement of an observable on one system collapses overall wavefunction
into a definite state. In all two-mode entangled states, squeezing is observed as an inevitable
phenomenon. In fact, in the case of systems with two-mode squeezing (TMS), the squeezing
variance can be used as the entanglement criteria [18,20]. The squeezing of a quantum state
refers to the reduction of fluctuation of a quadrature below the fluctuation of a coherent/vacuum
state, which is known as the standard quantum limit (SQL). In the case of TMS, a combination of
quadratures can be squeezed, whereas the indevidual modes may not necessarily be squeezed.
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The correlations between the spectral components of PDC-generated single-mode squeezing
have been studied and applied before, especially in optomechanical systems [17–19]. However,
the quantum correlation between the spectral components of the modes of two-mode squeezed
entangled lights has not been studied so far, which is, therefore, the main motivation of this
article. Entangled sources are of great interest to the quantum optics community because of their
broad range of applications, even in GHz microwave sensing and communication; for example,
in the case of microwave quantum illumination [21] and heterodyne quantum sensing [22]. The
two-mode squeezed vacuum (TMSV) states generated by the PDC process have shown that their
spectral components have non-trivial quantum correlations. The frequency sensitive filters can
play a crucial role in such experiments. Besides, the presence of thermal noise and reduction
of quantum efficiency are the common phenomenon observed in quantum channels. Therefore,
it could be an interest to the community to see how the filters impose limitations on quantum
communication and sensing in a noisy environment. Experimentally, conditional states have
been generated through quantum correlations of multi-mode twin-beam states [14,23]. Also,
an effort was made on time-frequency modes [24] and in general, multimode quantum optics
[25], one can see that, even though a general framework to deal with multi mode quantum state is
established, they do not deal with filtered TMSV.

In real experimental situations, TMSV faces decoherence due to the presence of a thermal
environment. The decoherence and thermalization dynamics of TMSV were studied before by
analyzing relative entanglement entropy [26,27]. Also, the dynamical behavior of entanglement
during thermalization of TMSV to become a two-mode squeezed thermal (TMST) light is well
studied before in [28]. The TMSV is observed to lose its non-local behavior through decoherence
under thermal environment [8]. Besides, it was realized before that the region of entanglement
remains unchanged even though the detection efficiency drops [28]. Even though the interaction
of the thermal environment on the TMSV is well studied, the impact of the filter has never been
tested so far which we discuss in this article.

Optical filters are often used to pick up a preferable range of frequency bands from the outputs
of quantum systems. In this article, we considered two different types of optical filters, e.g. step
and exponential filters. Step filters have already been used before to study the quantum correlation
between the modes of optomechanical systems [18,19]. The exponential filters have been used
before to analyze the time-dependent physical spectrum of light [29] and also in controlling
output entanglement in feedback-controlled optomechanical systems [17].

One can witness the entanglement through homo/heterodyne measurement of two-mode hybrid
quadrature variance. Two-mode quadrature squeezing has proven before to be an equivalence
of logarithmic negativity which is a popular measure of entanglement [18,20,30]. Besides,
homodyne detection techniques to perform the quadrature phase amplitude measurement, provide
quantum correlation which is a platform for testing Bell inequality efficiently [9,10]. The analysis
enables highlights the loopholes in optical experiments as the violation of Bell’s inequality
should be taken into care.

Earlier we studied thermalization dynamics of entanglement and non-locality of filtered
two-Mode squeezed states for two-mode squeezed thermally decohereted field and thermally
decohereted two-mode squeezed vacuum [31]. However, in this article we focus on its steady
state behavior rather than thermalization dynamics. Therefore, we pick two-mode squeezed
thermal field only and drop the thermal decoherence of TMSV, as it ends up into a thermal state
loosing its squeezing. We inspect the impact of optical quantum efficiencies on filtered two mode
squeezing. Investigation of steady state behavior of thermalized TMS state has more scope of
applicability in experimental point of view, rather than its time dynamics. Beside entanglement,
we also study squeezing of maximally optimized quadrature which has also been another indicator
of entanglement, as it is a experimentally estimable quantity. While determining that, we show
together with the filter, how the the population of TMS thermal light influences the angle of a



Research Article Vol. 33, No. 9 / 5 May 2025 / Optics Express 18711

maximally squeezed hybrid quadrature. We also determined mixedness of the state to analyze
the discrepancy between entanglement and non-locality.

The article is composed as follows. In Sec. II, we discuss the theory of how the filter
manipulates the nature of TMSV. We also discuss the impact of detection efficiency in this
section. Afterwards, in Sec. III we considered a TMST light to investigate the impact of
thermal population along with filter on entanglement. For experimental realization, we quantify
entanglement through the squeezing of hybrid quadrature, where we also see how the temperature
controls the squeezed quadrature.

2. Filter on TMSV

2.1. Input TMSV

Entangled TMS is typically generated using non-linear optical crystal (z) through the PDC
process. Considering r as the amplitude of the input squeezing and fixing the arbitrary phase to
be π/2, the squeezed Bogliubov modes can be represented as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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phase quadratures of the multimode bosonic input modes of the bipartite system idler (I) and signal
(S), respectively. Details of the PDC process and the generation of TMSV are shown in Fig. 1(A),
where the input beams are directed to the non-linear crystal (z). az
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Accepting optical losses before the light enters into the filter, we obtain the modified input field,
on which the filter applies, as⎡⎢⎢⎢⎢⎣
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where Xvac
I,S , Yvac

I,S are the vacuum amplitude and phase noise operators correspond to the systems I
and S, respectively, and ηI,S are their corresponding optical quantum efficiencies.

2.2. Filtered output modes

From the continuous field, one can define and extract many independent optical modes (also,
shown in Fig. 1(A)), by selecting different time intervals. Filters on the input select a time interval
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Fig. 1. Block diagram of the detection of filtered TMSV: (A) TMSV is generated using
the parametric down-conversion (PDC) process. Optical filters are applied on two-mode
squeezed output before being detected at D. (B) Two-mode homodyne detection and the
spectral modes are combined with weightage. LO is the local oscillator.

to extract independent output optical modes

aK,L
I,S (t) =

∫ t

−∞
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I,S (t

′) (3)

where hK,L(t) are the filter function of the K, Lth output modes of the bipartite systems I
and S, respectively. The regular output field (without filter) follows the correlation function:
[aout
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Transforming the filtered output mode, given in Eq. (3) in the frequency domain, one obtains
the generalized expression for the field as

ãK,L
I,S (ω) =

√
2πh̃K,L(ω) ãout
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where h̃k(ω) are the Fourier transform of the filter function, which also satisfies the orthogonality
relation ∫ ∞
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Here, we choose two different types of explicit sets of filter functions that follow such
orthogonality. The type-I is a step filter function, given by

hK,L(t) =
Θ(t) − Θ(t − τI,S)
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where Θ is a Heaviside step function.
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The functions give a set of independent optical modes, distributed around the central frequencies
(ΩK,L). τI,S are the time duration of corresponding systems I and S. Therefore, τ−1

I,S are the
spectral width of the filters which are related to the mode frequencies as

ΩK −ΩK±n = ±n
2π
τI

and ΩL −ΩL±n = ±n
2π
τS

, n integer (8)

Such filter functions had been in use before in [18,19] for filtering out the output modes of
optomechanical systems.

The Fourier transform of the filter function in Eq. (7), can be expressed for different frequency
intervals as
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The central frequencies (ΩK,L) are allowed to vary by an integer multiple of 2π/τI,S.
The type-II consists of an exponential filter function, given by
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which has frequency spectral distribution in Fourier space
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The periodicity of this filter function remains the same as Eq. (8). Such exponential filters have
been used before in [17,29] to analyze the time-dependent spectrum of light in optomechanical
systems.

2.3. Stationary correlation matrix

To determine the correlation matrix, we need to determine the quadratures of the filtered output.
For both the step and exponential filters, an infinite number of mutually independent output
quadratures can also be defined, by tuning their frequencies and bandwidths. However, in the
case of two-mode squeezing, the filtered quadratures can be determined as⎡⎢⎢⎢⎢⎣
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and the dimensionless amplitude and phase quadrature operators of the outputs of the bipartite
systems are defined by XK,L

I,S (r; t) = (aK,L
I,S (r; t) + aK,L

I,S (r; t)†)/
√

2, YK,L
I,S (r; t) = −i(aK,L

I,S (r; t) −

aK,L
I,S

†
(r; t))/

√
2. Following Eq. (12), in the frequency domain, the filtered quadratures can be

calculated as ⎡⎢⎢⎢⎢⎣
X̃K,L

I,S (r;ω)
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where T̃(t) is the Fourier transformed matrix of TK,L(t) given in Eq. (13).
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One can obtain the correlation matrix of V(r) at a time t, with the elements
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Likewise Eq. (15), by selecting the elements for the squeezing factor +r, we obtain the
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Taking into account optical quantum efficiencies (ηI,S), the elements of the steady state
correlation matrix for each mode of the filtered output of the bipartite system are

DI = (1 + 2ηI sinh2 r), (18a)

DS = (1 + 2ηS sinh2 r), (18b)

C11 = −C22 =
√
ηIηSKf sinh(2r), (18c)

C12 = C21 = 0, (18d)

where the element Kf can be determined as

Kf =
sin [τ(ΩK −ΩL)]
√
τIτS(ΩK −ΩL)

for Type-I step filters: Eq. (7)
(19a)

=
2√τIτS(τI + τS)

τ2
I τ

2
S (ΩK −ΩL)2 + (τI + τS)2

for Type-II exponential filters: Eq. (10)
(19b)

where τ = min[τI , τS]. The value of Kf drops down from its unit value when the filters are not
identical, i.e., ΩK ≠ ΩL and τI ≠ τS, for both the types of filters.
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2.4. Two-mode entanglement and squeezing

The entanglement between two parties can be witnessed by determining the quantity [30]

EN = max[0,− ln 2ν−], (20)

where

ν−=

√︄
Σ(V) +

√︁
Σ(V)2 − 4 det(V)

2
(21)

where Σ(V) = (det VI + det VS − 2 det Vcorr)

We visualize how the entanglement between the filtered outputs of the bipartite system changes
with filter parameters in Fig. 2. Firstly, we vary filter frequencies for both the parties, maintaining
linewidth unchanged in Fig. 2(a), and observe the entanglement to be maximized when the
central frequencies match (ΩK = ΩL) for both the types of filters. It also shows a drastic drop
in the entanglement when the central frequencies mismatch (ΩK ≠ ΩL). This happens due to
disruption of coherent transfer of the output light through the filter. Similarly, the entanglement
also shows to be maximized when the bandwidth matches (τI = τS) in Fig. 2(b) and drops down
with mismatch, which is also caused by the imbalanced transfer of output state through the
filter. Anticipating that, however, interestingly we see, unlike central frequencies, the region
of entanglement becomes wider with the increment of time duration (τI,S), i.e., the decrement
of spectral width. The phenomenon can easily be justified from the fact that, in the case of
the larger (τI,S), the linewidth of the filter becomes narrower, which therefore ensures a smaller
probability of frequency mismatch and the greater the entanglement. Besides, we observe a
difference between type-I and type-II filters, i.e., compared to the type-I filter, the region of
entanglement becomes narrower for the variation of central frequencies and wider for the variation
of bandwidths for the type-II filter. The impact of filter frequencies and their bandwidths can
simply be taken into account with the factor Kf given in Eq. (19).

The mismatch of frequencies and bandwidths eventually decreases Kf given in Eq. (19).
Figure 3(I) shows how the entanglement increases initially and decreases further with the
increment of input degree of squeezing (r), making a bell shape. The entanglement shows to
have an upper cutoff limit for the input degree of squeezing squeezing

(︂
EN(r ≥ rEN

ucf ) = 0
)︂
, which

is determined by Kf as
tanh(rEN

ucf ) = Kf . (22)

Figure 3(a,I) shows the bell shape becomes narrower and the entanglement is also observed to
destroy with the decrement of Kf from its unit value. Therefore, the upper cutoff shrinks with the
mismatch of filter parameters. It remains unchanged irrespective of optical quantum efficiencies
(ηI,S), even though the entanglement between the filtered output modes has shown to have a
significant dependency on them (Fig. 3(b,I)). Earlier, it was realized that the entangled state
always remains entangled irrespective of detection efficiency [28]. The phenomenon remains
unchanged even after applying filer on output, as the entanglement is seen to be robust against
the decrement of detection quantum efficiency. However, the entanglement was reduced with
the reduction of detection efficiency, also shown in Fig. 3(b,I). The entanglement reaches its’
maximum for the input squeezing rEN

max, where

tanh(2rEN
max) =

⎛⎜⎜⎜⎜⎜⎜⎝

√︄
4ηIηSK2

f

(︃
2ηIηS + (ηS + ηI)

√︃(︂
1 − K2

f

)︂
ηIηS − ηIηSK2

f

)︃
(︃
2ηIηS + (ηS + ηI)

√︃(︂
1 − K2

f

)︂
ηIηS

)︃ ⎞⎟⎟⎟⎟⎟⎟⎠
. (23)
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Fig. 2. Entanglement between filtered outputs for the variation of parameters of (a) central
frequencies for τI = τS = 2Ω−1

K ) (b) filter linewidths for ΩL = ΩK ), for (I)step filter and (II)
exponential filter. Fixed parameter is r = 1. White lines indecate the boundary and maxima
of entanglement.

rEN
max can be maximized when the condition ηI = ηS satisfies. In that situation, the entanglement

profile becomes uniformly bell-shaped and the maximum is obtained at rEN
max =

1
2 rEN

ucf .
Since, we start with a TMSV and entanglement encourages to investigate the two-mode

squeezing between two party filtered quadratures. The filtered arbitary composite quadrature
operator (angle ϕI and ϕS, respectively) of the two-party system for the output is

XKL(φIφS)
IS =

1
√

2
(e−iφI aK

I + eiφI aK
I
†
+e−iφSaL

S + eiφSaL
S
†
). (24)

We evaluate the fluctuation of the two-party filtered quadrature operator:

Sq(XKL(φIφS)
IS ) =

1
2
⟨{XKL(φIφS)

IS , XKL(φIφS)
IS }⟩ (25)

The maximally squeezed quadrature is realized for ϕI + ϕS = π. The squeezing becomes
maximum for the value of r:

tanh(2rSQ
max) =

2√ηIηSKf

ηI + ηS
. (26)
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Fig. 3. Entanglement (I) and maximally optimized squeezing (II) between filtered outputs
for the variation of parameters: (a) Kf and r for fixed optical quantum efficiencies ηI =
0.9, ηS = 0.98, and (b) ηS and r for fixed Kf = 0.95 and ηI = 0.9. Black lines stand for the
maximal entanglement and squeezing, and white lines indecate the boundary of entanglement
and SQL.

The squeezing of the hybrid quadrature disappears as the fluctuation (Sq) rises above the SQL,
when the input squeezing increases to rSQ

ucf = 2rSQ
max . Note that the cutoff limit of squeezing (rSQ

ucf )

is dependent on optical quantum efficiencies, and therefore different than rEN
ucf . Both limits match

together only when the quantum efficiencies match (ηI = ηS).
Squeezing and entanglement are two very related concepts, as we know that the squeezing

variance can be used as entanglement criteria [18,20]. The squeezing variance is estimated for
the hybrid quadratures constructed with a weighted mixture of the output photocurrent as shown
in Fig. 1(B). The weighted quadrature is

XKL(φIφS)
IS(µIµS)

=
1√︂
µ2

I + µ
2
S

[︃
µIeiφI aK

I + µIe−iφI aK
I
†
+ µSeiφSaL

S + µSe−iφSaL
S
†

]︃
(27)

where µI , µS are the weight parameters introduced as the scaling of two systems, considered to
be real and positive.

Adapting the balance between weights, we obtain maximal squeezing (see Appendix A)

Sq(XKL
IS )optimized = 1+ (ηI + ηS) sinh2(r) − sinh(r)

√︂
4ηIηSK2

f cosh2(r) + (ηI − ηS)2 sinh2(r) (28)
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The maximally optimized squeezing of the two-mode hybrid quadrature shows a behavior
similar to entanglement, which can be visualized in Fig. 3(II). The plots also show the boundary
where the squeezing goes beyond SQL, lies the same with the entanglement limits as it is seen in
Fig. 3(I). The optimized two-mode squeezing is observed to be maximized at r = rEN

max. One can
obtain two modes squeezing below SQL till r ≤ rEN

ucf ; outside which, the fluctuation can not be

suppressed below SQL. At this limit the weight ratio becomes µI
µS
=
√︂

ηS
ηI

.

2.5. Purity of state

The entanglement becomes necessary and sufficient criteria of non-locality for pure states.
However, in the case of mixed states, it is not true, and therefore, it is essential to investigate
the purity of the states. The purity of states are determined from their density matrix [32]. The
Gaussian states are characterized by their Wigner function, which is expressed by

W(uM) =
1

π2
√︁

det[V(r)]
exp

[︃
−

1
2

uM
TV(r)−1uM

]︃
, (29)

where uM = [QI , PI , QS, PS]
T is the common vector of the fluctuation of two modes. The purity

of the state (ρ) is measured by

Tr[ρ2] =
π2

4

∫
R

W2(um)dum (30)

which gives

Tr[ρ2] =
1

|C2
11 + C2

12 − DIDS |
(31)

which is unit valued for vacuum and TMSV, clearly indicating pure states. However, non-identical
filters on output destroy the purity, observed in Fig. 4(a). The mixness of the state is also observed
to increase with the decrement of detection quantum efficiency (Fig. 4(b)). Unlike entanglement,
in both cases, the purity is always observed to reduce with the increment of input squeezing (r).

Fig. 4. Purity of the TMSV as a function of r, for (a) fixed optical quantum efficiencies
ηI = 0.9, ηS = 0.98, and (b) fixed Kf = 0.95 and ηI = 0.9.

2.6. Quantum non-locality

Quantum nonlocality of two-party entangled continuous variables is a natural interest of
measurement. A given state is considered to be non-local when it violates Bell’s inequality. The
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Bell’s inequality is defined to be |B|max ≤ 2 using maximum value of the Bell’s function (B),
which can be expressed in terms of Wigner functions as [8,33]

B =
π2

4
[︁
W(u00

M ) +W(u01
M )W(u10

M ) − W(u11
M )

]︁
(32)

where umn
M = [Qm

I , Pm
I , Qn

S, Pn
S]

T . Such type of Bell’s inequality was first described by Clauser,
Horne, Shimony and Holt [11]. In quantum mechanics, joint probability distributions are often
been expressed using the Q-function or Wigner function. Therefore, the Wigner function has
always remained to be useful to test quantum non-locality. Even though violation of all possible
Bell’s inequalities are not necessary criteria of being nonlocal; in the case of TMS states, violation
of Bell’s inequality confirms non-locality [33,34].

Quantum mechanically, the field is considered to be nonlocal when |B|max reaches above 2
and the non-locality gets stronger as |B|max becomes larger. We determine |B|max numerically
for the non-identical filters in Fig. 5. Likewise entanglement or squeezing profile, we observe
the Bell function to drop down with the initial degree of squeezing (r). Also, the region of
nonlocality reduces rapidly with the reduction of Kf from its unit value (Fig. 5(a)). However,
unlike entanglement, even in the case of identical filters, the region of non-locality is limited
concerning the initial degree of squeezing. Besides, we also realize from Fig. 5(b) that the
region of non-locality reduces with the reduction of output quantum efficiency, which is a distinct
difference compared to the entanglement profile in Fig. 3(b). Overall, the region of quantum
non-locality appears to lie within the territory of entanglement, which can be justified by the
mixedness of states.

Fig. 5. The maximal value of Bell function as a function of (a) Kf and r for ηI = 0.9, ηS =
0.98, and (b) ηS and r by fixing ηI = 0.9, Kf = 0.95. White lines indecate the boundary of
non-locality.

For pure states the violation of Bell inequalities occurs if and only if the state is entangled.
However, for mixed states, entanglement is necessary but not sufficient to ensure the violation
of Bell inequality [35] . The investigation of purity of the state appears in this context while
studying the violation of Bell’s inequality to compare with entanglement limits.

3. Two mode squeezed thermal state

3.1. Entanglement and squeezing

We furthermore considered TMST light to study the impact of filters on it. The basic block
diagram is given in Fig. 6. Such states, even though have already been studied before in [27,28],
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the impact of filter on squeezed output have not been investigated. Adding up filters given in
Eqs. (7), (10) into the model of squeezed thermal states, gives us interesting features to be studied.
The effective thermal population of the multimode input light is controlled by the temperature and
the frequencies that we are interested in. Previously, we have analyzed the dynamical evolution
of the filtered TMS state throughout thermalization in [31]. Therefore, in this article we focus on
steady state behavior only to find its’ limits of entanglement, squeezing and non-locality. The
elements of the correlation matrix of the Eq. (17) gives

DI = B + A cosh(2r) (33a)

DS = −B + A cosh(2r) (33b)

C11 = −C22 = AKf sinh(2r) (33c)

C12 = C21 = −BLf sinh(2r), (33d)

where the elements A, B and Lf are given by

A = nI + nS + 1, B = nI − nS, (34a)

Lf =
1 − cos (τ (ΩK −ΩL))
√
τIτS (ΩK −ΩL)

for Type-I step filters: Eq. (7)

=
2(τIτS)3/2(ΩK −ΩL)

τ2
I τ

2
S (ΩK −ΩL)2 + (τI + τS)2

for Type-II exponential filters: Eq. (10)

(34b)

where τ = min[τI , τS] and κI and κS are the rates of dissipation, nI , and nS are the thermal quanta
of their corresponding reservoir for the systems I and S, respectively. Since the entanglement
limits have not been changed due to optical efficiencies, we have chosen the detection efficiency
to be fixed and maximized for this section of the article. One can always determine the steady
state correlation matrix and find the Eq. (17) for a situation when the reservoir is a vacuum.

Fig. 6. Block diagram of the generation and detection of filtered TMS thermal light. The
only difference with Fig. 1 is the input source is replaced by a thermal light.

In the case of thermally populated reservoirs, the entanglement at steady state shows to
have both upper and lower cutoff limits for the input squeezing parameters (rEN

ucf ≥ r ≥ rEN
lcf ),
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representing separability condition. Both the upper and lower limits are determined as

cosh(2rEN
ucf ) =

A +
√︃(︂

A2
(︂
K2

f − 1
)︂
+ B2L2

f

)︂ (︂
A2K2

f + B2
(︂
L2

f − 1
)︂
+ 1

)︂
+ A2

A2
(︂
1 − K2

f

)︂
− B2L2

f

(35a)

cosh(2rEN
lcf ) =

A −

√︃(︂
A2

(︂
K2

f − 1
)︂
+ B2L2

f

)︂ (︂
A2K2

f + B2
(︂
L2

f − 1
)︂
+ 1

)︂
+ A2

A2
(︂
1 − K2

f

)︂
− B2L2

f

(35b)

The steady-state entanglement between two filtered modes has been plotted in Fig. 7 for
(a) identical filters (ΩK = ΩL) and (τI = τS), and therefore Kf = 1 and Lf = 0, and for (b,I)
non-identical filters: ΩK ≠ ΩL and τI ≠ τS resulting Kf<1 and Lf>0. As witnessed from the
Eq. (35), the upper limit of squeezing factor (rEN

ucf ) blows up for the perfect homodyne detection
when the filters are identical. However, one can anticipate a lower limit of the input degree
of squeezing even in case of identical filters or no filters applied on outputs (Fig. 7(a)). The
entanglement declines with the increment of thermal populations of the reservoirs. This moreover
ensures an extension of the lower cutoff (rEN

lcf ) in both the cases Fig. 7(a) and (b). Besides, the
upper cutoff (rEN

ucf ) is observed to shrink down with thermal populations in case of non-identical
filters in Fig. 7(b) which can be anticipated from Eq. (35). The entanglement is maximized for
the input squeezing parameter (rEN

max) when

cosh(2rEN
max) =

√︃
A2B2

(︂
L2

f − 1
)︂
+ A4K2

f√︃(︂
A2K2

f + B2L2
f

)︂ (︂
A2

(︂
1 − K2

f

)︂
− B2L2

f

)︂ (36)

While estimating two-mode squeezing, the maximally squeezed quadrature is realized for
ϕI + ϕS = π − ζ , where ζ = arctan( BLf

AKf
). One can notice that the squeezing angle shifts with

the change in the thermal population of the initial thermal light and the filter parameters. The
thermal population can be dependent on the temperature and the frequency of interest. The
angle of the filtered quadratue remains unchanged to the initial squeezing angle (i.e. ζ = 0)
only when the thermal population of both the reservoirs matches (n1 = n2) or two filters are
identical (Lf = 0). The angle of the maximally squeezed quadrature is plotted in Fig. 7(c) where
the squeezed quadrature exhibits a clear dependence on thermal population.

The squeezing of the filtered arbitrary composite quadrature Sq(XKL(φIφS)
IS ) given in Eq. (24)

shows to have boundaries of the lower (rSQ
lcf ) and upper (rSQ

ucf ) cutoff limits within which the
squeezing goes below SQL, where

tanh(rSQ
lcf ) =

√︂
A2K2

f + B2L2
f −

√︂
A2K2

f − A2 + B2L2
f + 1

A + 1
(37a)

tanh(rSQ
ucf ) =

√︂
A2K2

f + B2L2
f +

√︂
A2K2

f − A2 + B2L2
f + 1

A + 1
. (37b)

The squeezing hits the standard quantum limit. The squeezing reaches to its maximum for
rSQ
max, where

tanh(2rSQ
max) =

1
A

√︂
A2K2

f + B2L2
f (38)
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Fig. 7. Entanglement of the filtered outputs for (a) identical filters: Kf = 1, Lf = 0
which shows the lower entanglement boundary of (r). Entanglement (b,I), maximally
optimized squeezing (b,II) and Maximally squeezed hybrid quadrature as a function of
thermal population nI (c) for non-identical filters Kf = 0.95, Lf = 0.095 which gives both
the lower and upper limits of entanglement. Black lines stand for the maximal entanglement
and squeezing, and white lines indecate the boundary of entanglement and SQL. For all the
cases nS = 0.8 and the optical quantum efficiencies (ηI,S) are considered to be 1.

In case of weighted quadratures (XKL(φIφS)
IS(µIµS)

) defined in Eq. (27), accepting the optimized weight
(see Appendix A), the maximally squeezed quadrature becomes

Sq(XKL
IS )optimized = A cosh(2r) −

√︂
sinh2(2r)

(︁
A2K2 + B2L2)︁ + B2 (39)

The lower and upper cutoff boundaries of the input squeezing are obtained to be (rEN
lcf ) and

(rEN
ucf ) determined in Eq. (35), for the maximally optimized squeezed quadratures within which

the squeezing goes beyond SQL. The lower and upper cutoff borders are exhibited in Fig. 7(b,II),
where we see the region of squeezing follows exactly same to the region of entanglement in
Fig. 7(b,I), and therefore, reduces with the increment of thermal population. Also, one can obtain
maximum squeezing for the value of input squeezing rEN

max given in Eq. (36).

3.2. Purity of the state

As we discussed before, in case of pure states, entanglement ensures non-locality, which is
not true for a mixed state. For mixed states, entanglement is necessary but not sufficient for
non-locality, which therefore, motivates to determine the purity of the TMST state. We estimate
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the purity of the TMST light in Fig. 8 and notice that the purity of the state goes down with an
increasing thermal population. However, the purity remains unchanged with increasing input
squeezing for identical filters. Furthermore, it is also observed that the purity is destroyed with
increasing input squeezing when the filters are non-identical.

Fig. 8. Purity of the TMS thermal state as a function of r are represented by thick solid lines
for fixed Kf = 0.95, Lf = 0.095 and nS = 0.8. Thin dashed lines represent purity of that
state without/idetical filters (Kf = 1, Lf = 0). All optical quantum efficiencies are fixed to 1.

Fig. 9. The maximal value of Bell function as a function of nI and r for idential filters in
(a), and (b) non-identical filters: Kf = 0.95, Lf = 0.095. Both the cases nS = 0.01. The
optical quantum efficiencies (ηI,S) are always considered to be 1. White lines indecate the
boundary of non-locality.

3.3. Quantum non-locality

We determine the region of quantum non-locality for the TMS thermal state in Fig. 9. Following
entanglement limits, in the case of identical filters, Fig. 9(a) only exhibits a lower boundary
of non-locality. Anticipating that, however, unlike Fig. 7(a), the boundary of nonlocality in
Fig. 9(a) seems to reach a plato of the input thermal population, while increasing initial degree
of squeezing (r). Besides, following entanglement limits in Fig. 7(b), the non-locality seems
to show an upper limit for non-identical filters in Fig. 9(b), leaving a tiny region for non-local
measurements. Moreover, the observation concludes that the region of quantum non-locality
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ensures entanglement, but the entanglement does not ensure non-locality, which can be justified
from the mixness of the state. Rapid destruction of non-locality due to the influence of thermal
bath was witnessed before in [8], however, the impact of filter has not been discussed, which is
primarily covered here.

4. Conclusion

We investigated the impacts of filters on TMS (Two-Mode Squeezed) states in noisy environment.
We found that entanglement is maximized when the filters are identical. The coherent transfer of
TMS state through filters only happens when the filtering process is perfectly balanced. For non-
identical filters, entanglement decreases with increased input squeezing, creating a bell-shaped
curve. We identified the conditions under which entanglement is maximized and determined
the cutoff limits. Our findings show that the region of entanglement remains unchanged with
variations in detection efficiency, even after applying filters.

In our study of TMST (Two-Mode Squeezed Thermal) light, we observed that entanglement is
robust against thermal population. As a complementary measure to logarithmic negativity, we
determined the TMS of optimized quadratures, which can be experimentally measured through
homodyne or heterodyne detection. The SQL (Standard Quantum Limit) boundaries and maximal
squeezing follow the entanglement profile, serving as direct measurements of corresponding
logarithmic negativity [18]. The temperature of thermal light, along with the non-identicality of
filters, affects the angle of maximally squeezed quadrature. Non-identical filters ensure that the
state is mixed. Following the entanglement profile, we also realized that filters limit the non-local
measurement of the filtered output. However, unlike entanglement, the region of non-locality
decreases with reduced detection efficiency [8–10]. Importantly, because the states are mixed,
Bell inequality is violated only if the state is entangled. Therefore, while entanglement has
proven to be necessary, it is not sufficient for non-locality.

Optical filters have been used before in optomechanical systems to pick up spectral components
[17–19]. Therefore, our analysis of filtered TMS states could be useful in the execution of
experiments on hybrid optomechanical systems, which could be used, for example, in GW
metrology [6]. Also, uses of two-mode entangled quantum states and the practice of heterodyne
detections are quite common even in microwave quantum communication and sensing [21,22].
Besides, we often experience the presence of thermal noise and the reduction of quantum
efficiency in quantum channels. The interaction of the thermal environment with TMSV has
already been studied before [8,26–28]. Therefore, it is necessary to take into account the filters
that impose limitations in noisy quantum channels. Unlike the thermalization dynamics of the
filtered TMS states studied previously in [31], we study its steady-state behavior here, which
is of more experimental importance. In general, quantum-correlated conditional states have
shown immense potential in quantum information and communication [3–5]. Moreover, the
destruction of entanglement and non-locality at higher degrees of input squeezing leads us to
conclude that generating a highly squeezed two-mode state may not always be beneficial for
multimode quantum optical experiments [24,25].

A. Optimization of maximally squeezd quadrature

We estimated the parameter space here where the fluctuation of hybrid quadrature can reach
beyond SQL. The fluctuation of a maximally squeezed weighted quadrature is

Sq(XKL
IS(µIµS)

) =
1

µ2
I + µ

2
S

[︃
µ2

I DI + µ
2
SDS − 2µIµS

√︂
C2

11 + C2
21

]︃
(40)
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The optimized weight ratio for which the squeezing is maximum

µI

µS
=

DS − DI +
√︂

4C2
11 + 4C2

12 + D2
I − 2DIDS + D2

S

2
√︂

C2
11 + C2

12

(41)

The generalized phase matching relation for the maximally squeezed quadrature does not
change as it was in the case of the TMS thermal state (ϕI + ϕS = π − ζ , where ζ = arctan( BLf

AKf
)).

Accepting the optimized weight ratio, the maximal TMS quadrature gives

Sq(XKL
IS(µIµS)

)|optimized =
1
2
(DI + DS −

√︂
4C2

11 + 4C2
12 + (DI − DS)2) (42)

A.1. Maximally squeezd TMSV quadrature

The minimized fluctuation of the hybrid quadrature Sq(XKL(φIφS)
IS(µIµS)

) at ϕI + ϕS = π can further be
optimized for the ratio of weights

µI

µS
=

√︂
4ηIηSKf

2 + (ηI − ηS)2 tanh2(r) + (ηS − ηI) tanh(r)

2Kf
√
ηIηS

. (43)

Figure 10(a) shows how the squeezing of maximum squeezed quadrature varies with the change
of Kf and the ratio µI/µS. Based on that, we optimized maximal squeezing (which is plotted by
black lines) which remains to be µI/µS>1 for ηS>ηI . The weight ratio reduces approaching to
be unit valued when Kf increases to 1. We also determined how the squeezing varies with the
change of r and the ratio µI/µS in Fig. 10(b), and realized an opposite phenomenon, that the
weight ratio for the maximally optimized squeezing increases from its unit value when r increases.
We also estimated the borderline where the squeezing goes beyond the SQL for both the cases .

Fig. 10. Squeezing of two parties filtered output for the variation of (a) the weight ratio
µI/µS vs Kf when r = 1 and (b) µI/µS vs r when Kf = 0.95. The fixed optical quantum
efficiencies ηI = 0.6, ηS = 0.9. Black lines stand for the maximal of squeezing, and white
lines indecate the boundary of SQL.
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A.2. Maximally squeezd TMS thermal quadrature

In case of weighted quadratures (XKL(φIφS)
IS(µIµS)

) defined in Eq. (27), the squeezing Sq(XKL(φIφS)
IS(µIµS)

) is
maximized for the weight ratio

µI

µS
=

√︃
sinh2(2r)

(︂
A2K2

f + B2L2
f

)︂
+ B2 − B

sinh(2r)
√︂

A2K2
f + B2L2

f

(44)

We visualize how the combined quadrature variance changes with the variation of the thermal
population in Fig. 11(b-I) and input squeezing factor in Fig. 11(b-II). The ratio reduces with the
increment of the thermal population (nI) and the weights become equal when the population
matches (nI = nS). Furthermore, we also realize the weights approach towards equality with the
increment of input squeezing, which can also be hinted from the Eq. (44). In both cases, we also
determined the boundaries beyond which the squeezing below SQL disappears.

Fig. 11. Squeezing of two parties filtered output for the variation of (a) the weight ratio
µI/µS vs nI when r = 1 and (b) µI/µS vs r when nI = 0.3. For both the cases nS = 0.8,
Kf = 0.95 and Lf = 0.095 are the fixed parametrs and the optical quantum efficiencies (ηI,S)
are considered to be 1. Black lines stand for the maximal of squeezing, and white lines
indecate the boundary of SQL.
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