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 A B S T R A C T

Both the fields of Process Mining (PM) and Visual Analytics (VA) aim to make complex phenomena 
understandable. In PM, the goal is to gain insights into the execution of complex processes by analyzing 
the event data that is captured in event logs. This data is inherently multi-faceted, meaning that it covers 
various data facets, including spatial and temporal dependencies, relations between data entities (such as 
cases/events), and multivariate data attributes per entity. However, the multi-faceted nature of the data has 
not received much attention in PM. Conversely, VA research has investigated interactive visual methods for 
making multi-faceted data understandable for about two decades. In this study, we bring together PM and VA 
with the goal of advancing towards Visual Process Analytics (VPA) of multi-faceted processes. To this end, 
we present a systematic view of relevant (VA) data facets in the context of PM and assess to what extent 
existing PM visualizations address the data facets’ characteristics, making use of VA guidelines. In addition to 
visualizations, we look at how PM can benefit from analytical abstraction and interaction techniques known 
in the VA realm. Based on this, we discuss open challenges and opportunities for future research towards 
multi-faceted VPA.
1. Introduction

Processes play an important role in business, industry, and sci-
ence. Process Mining (PM) [1], a subfield of Business Process Man-
agement [2], aims to support the understanding and optimization of 
processes through the structured analysis of event logs containing data 
that these processes emit during their execution. This encompasses 
a variety of analysis goals such as understanding the most frequent 
execution variants (i.e., the happy path), identifying and removing 
anomalous process executions, as well as detecting and mitigating 
process bottlenecks. Yet, the analysis is typically challenging because 
the data analyzed in PM are usually large and complex, containing 
semantically rich information about many process artifacts. As deriv-
ing actionable insights from many complex process artifacts requires 
human expertise and reasoning [3], Visual Analytics appears to be a 
particularly useful approach to support PM analyses [4].

Visual Analytics (VA), defined as ‘‘the science of analytical reasoning 
facilitated by interactive visual interfaces’’ [5], aims to support the 
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understanding of large and complex data by combining the advantages 
of interactive visualization, automatic computation, and human domain 
knowledge [6]. Tackling analysis complexity, VA differentiates funda-
mental data facets, including time (T), space (S), relationships (R), and 
attributes (A) [7]. By considering data facets, VA can provide dedicated 
visualizations to analyze multi-faceted data through (a combination 
of) lenses, each focusing on the characteristics of an individual data 
facet [8,9]. In this way, complex analyses can be broken down into 
simpler analytical tasks regarding temporal and spatial dependencies, 
connectivity between data entities, and their associated multivariate 
attributes, which together support a comprehensive understanding.

In PM, it is common to visualize event logs and the underlying 
processes they represent to facilitate interactive exploration, analysis, 
and presentation [10–12], often using visualizations such as Directly-
Follows Graphs (DFGs) [13] that show the control flow. However, these 
visual representations are frequently developed without considering 
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Fig. 1. Process model describing the normative behavior of the running example process using the Business Process Model and Notation (BPMN) formalism. cb
established design principles, guidelines, and best practices from VA. 
Instead, proven visualization workhorses, such as node-link diagrams, 
scatter plots, or histograms, are being used without adapting them 
to the different process artifacts and their associated data facets. As 
a result, the way VA is currently applied in PM contexts often fails 
to realize its full potential and, hence, much of VA’s solution space 
remains under-explored for PM purposes [14].

Therefore, we propose moving towards Visual Process Analytics
(VPA) of multi-faceted processes. The goal of this paper is to investigate 
how PM practice can benefit from integrating established research on 
multi-faceted VA, resulting in multi-faceted VPA. To this end, we explore 
how to obtain VPA solutions that are tailored to the data facets that are 
or can be of importance in process analyses.

We approach this by first reviewing the fundamental data facets 
that are commonly addressed in VA and which mechanisms VA typi-
cally uses to support multi-faceted visualizations. Then, we systemat-
ically identify current PM visualizations and compare them with VA 
guidelines and principles.

Our work makes the following contributions:

• it provides a systematic overview of VA data facets and their 
relevance in PM;

• it identifies and systematically reviews existing visualizations of 
practical relevance in PM;

• it categorizes popular PM visualizations in terms of VA concepts;
• it discusses research challenges and opportunities – such as ab-
stractions and interactivity – to further enhance PM.

The remainder of this paper is structured as follows. The paper 
starts with providing relevant background information on PM and VA 
in Section 2 and discusses their common ground in terms of their input 
data. In Section 3, a systematic view focusing on the visual part of VA 
is discussed. Based on identified VA data facets that are relevant to 
PM, we review and categorize existing PM visualizations and identify 
which marks, visual channels, and tasks are involved with each. Next, 
we identify potential shortcomings, blind spots, and under-explored 
designs in Section 4. Subsequently, we provide opportunities to further 
enhance PM visualizations through additional analytical and interactive 
means from the VA realm. Section 5 positions our work in relation to 
other studies on this topic. A summary concludes this work in Section 6.

2. Background

In this section, we provide background information on PM, describe 
the relevant data (i.e. the event log), and introduce and discuss the use 
of VA.

2.1. Process mining

Process mining (PM) is concerned with the development of tools 
and techniques that generate insights into the execution of business 
processes based on event data [1]. As such, common artifacts used in 
PM are the event data on one hand and process models on the other hand. 
2 
The latter refers to models of the possible executions of the process, 
presented in some modeling notation.

Consider, for example, Fig.  1, which depicts a process model de-
scribing an expense reporting process. The process model describes that 
the Create Travel Report activity needs to be executed first, followed by 
the Attach Receipts activity. After this, either the report is directly sent 
to the travel administration (Send Report, for amounts below or equal 
to $1000), or a detailed itinerary is added to the report (Add Itinerary, 
for amounts above $1000). After the itinerary is added, the report is 
submitted for approval. When the travel report gets rejected, it should 
be revised. The example process always ends with a confirmation.

A wide variety of PM techniques has been developed, all acting on 
the interplay of event data and process models, but serving different 
tasks. Traditionally, three main PM tasks are distinguished: process 
discovery, conformance checking, and process enhancement [1]. Recently, 
van der Aalst [15] introduced three additional tasks: comparative, pre-
dictive, and action-oriented PM, which we group into the task analytics
for brevity and genericity.

Process Discovery. In process discovery, the main goal is to discover
a process model based on (noisy) recorded event data. As such, 
a process discovery algorithm typically takes an event log as 
input and yields a process model as output. As a consequence, 
all theoretically possible orderings of the activities are not part 
of the event log, and, therefore, the process discovery algorithm 
needs to be able to generalize over the input data seen. The 
main challenge of process discovery is to model the presence of 
concurrency, interchangeability of activities, and activity loops, 
all from imperfect possibly noisy data.

Conformance Checking. In conformance checking, the main goal is 
to assess whether the real-world process (as reflected by the 
event data) conforms or deviates from a reference process model 
describing the intended process behavior. Both event data and a 
process model typically serve as input for conformance checking 
techniques; the output can vary, i.e., ranging from a single 
number indicating the conformance value to a more diagnostic-
oriented conformance checking artifact.

Process Enhancement. In process enhancement, the overall goal is to 
enhance existing process models with information captured in 
event data. A typical example is to extend the process model 
with information on measures such as throughput time. This can 
be done to, for example, highlight bottlenecks in the process. 
As such, the typical input of process enhancement techniques is 
similar to conformance checking, i.e., event data and a process 
model. The output is a (visually) enhanced version of the process 
model containing additional information.

Analytics. Analytics groups the more detailed tasks of performance 
analysis, comparison, prediction, and action-oriented PM. Perfor-
mance analysis uses event data to evaluate process performance, 
for instance, in terms of frequencies, time or costs. Comparison 
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Table 1
Simple event log describing recorded process behavior for an expense report process. 
The event log captures at what point in time an activity was executed for a specific 
case.
 Event ID Case ID Activity Timestamp  
 1 1 Create Travel Report 26-04-2024 9:40 AM  
 2 1 Attach Receipt 26-04-2024 9:42 AM  
 3 1 Send Report 26-04-2024 9:43 AM  
 4 2 Create Travel Report 26-04-2024 10:21 AM 
 5 2 Attach Receipt 26-04-2024 10:27 AM 
 6 2 Add Itinerary 26-04-2024 10:35 AM 
 7 2 Send Report 26-04-2024 10:42 AM 
 8 2 Revise Travel Report 26-04-2024 5:25 PM  
 9 2 Add Itinerary 27-04-2024 9:45 AM  
 10 2 Send Report 27-04-2024 9:53 AM  
 11 1 Receive Confirmation 27-04-2024 11:13 AM 
 12 1 Close Report 27-04-2024 11:14 AM 
 13 2 Receive Confirmation 28-04-2024 11:18 AM 
 14 3 Create Travel Report 29-04-2024 11:22 AM 
 15 3 Attach Receipt 29-04-2024 11:28 AM 
 ⋮ ⋮ ⋮ ⋮

leverages multiple event logs to enable the identification of 
differences in the process flow, performance, etc. between, for 
example, time periods, customer segments or organizational 
branches. Prediction encompasses techniques to make process-
related predictions, e.g., the next activity that will be performed 
for an ongoing case, based on historical event data. Finally, 
action-oriented PM uses event data to trigger immediate ac-
tions within a process. A common PM task is the exploration of 
different aspects not directly related to one of the three main 
tasks above (e.g. data exploration, what-if scenarios, resource 
utilization, etc.). We group these exploration-oriented tasks in 
the analytics category.

2.2. Data description

Event data used in PM are typically recorded by modern information 
systems such as SAP ERP.1 They accurately record the different actions 
performed by users interacting with the system in their underlying 
databases. The recorded event data is then transformed into an event 
log. Note that the creation of an event log takes up a significant amount 
of time and typically involves an iterative process where recorded 
actions are added, fine-tuned, and abstracted, to come to a final set 
that enables analysis [16].

Consider, for example, Table  1, which depicts a (simplified) event 
log related to the expense reporting process introduced earlier. Every 
row in the table refers to an event, i.e., the recording of an execution 
of some activity relevant to a specific business process supported by the 
information system. The identifier of the event is stored in the Event 
ID-column, whereas the identifier of the instance of the corresponding 
business process is stored in the Case ID-column.

The first event (i.e., with identifier 1), describes the execution of 
the business activity Create Travel Report, relevant to an instance of 
the process, i.e., an expense report with identifier 1. The event was 
executed on April 26th of 2024, at 9:40 AM. Observe that the events 
with identifiers 2, 3, 11, and 12 took place later in time and are tied to 
the same expense report with identifier 1. This relates to the temporal 
order data facet. Typically, events store many additional data attributes 
(e.g., resource information, cost information, etc.), which relate to the 
attributes data facet. Similarly, the database may also store additional 
data attributes for the instances of the business process at hand (e.g., in 
this case, the amount of the expense report). For simplicity, we omitted 
these details from the example dataset.

1 https://www.sap.com/products/erp.html
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2.3. Visual analytics

Visualization involves transforming data into images using graphi-
cal elements that amplify users’ cognitive capabilities and enable them 
to observe, explore, and interact with their data for visual knowledge 
discovery [17].

In general, visualization is concerned with creating interactive visu-
alizations for both physical and non-physical data. This paper focuses 
on visualizations for non-physical, abstract data (such as event se-
quence data and process models). At the core, two main elements play 
a role: representation and interaction. Many design models [18] and 
interaction techniques [7] for the creation of effective interactive visu-
alizations exist. Section 4.2 further elaborates on how the interaction 
techniques from VA can additionally enhance multi-faceted PM.

The field of VA expands interactive visualizations. The focus is less 
on developing novel representations and interaction techniques, but 
rather on supporting users in the analytical sense-making process. As 
such, VA is a multi-disciplinary field of research that is defined as the 
science of analytical reasoning facilitated by interactive visual inter-
faces [5]. VA combines automated analysis techniques with interactive 
visualizations for an effective understanding, reasoning, and decision-
making based on large and complex datasets [6]. It is important to 
note that VA focuses on the integration of human decision-making with 
automated data analysis methods, perfectly coinciding with the process 
analyst who performs, for example, process discovery or conformance 
checking analyses to better understand the process, or make decisions 
regarding how and where to optimize. By exploiting a human-in-the-
loop approach, VA enables the incorporation of domain knowledge to 
steer the automated methods and the analytical process [19], e.g., a 
combination of domain knowledge and automated process discovery 
might result in a better process map compared to a fully automated 
one.

In this paper, we mainly focus on the analysis and categorization of 
existing PM visualizations (i.e., representations) according to different
data facets. A visual representation (also referred to as idiom) can be 
described by four elements: data, marks, visual channels, and tasks [18].

Data. The data behind the chart. For example, are the data attributes 
categorical or quantitative, and how many of them are used in 
the chart? Additionally, the data element describes what the
main data facet is (e.g., temporal, spatial, relationships, or other) 
and what the supporting facets are. We define the data facets 
relevant to PM and elaborate on them in Section 3.1.

Marks. The visual elements that are used to represent a data item 
(e.g., points, lines, glyphs).

Visual channels. The channels encode different data values on the 
marks (e.g., position, size, color). They are also related to the
effectiveness principle, where different visual channels are inter-
preted and perceived with different levels of accuracy. There-
fore, it is important that the most important attribute (the main 
data facet) is encoded with the most effective visual chan-
nel [18]. Decreasingly important facets can then be matched 
with less effective channels. For an analysis of the effectiveness 
ranking of visual channels, the reader is referred to Cleveland & 
McGill [20] and Heer & Bostock [21].

Tasks. The tasks to be supported by the visualization (e.g., discover 
trends, outliers, understand distribution). In this paper, we clas-
sify the main PM tasks at a high level as discovery, conformance 
checking, enhancement, and analytics (cf. Section 2).

With these four elements, a visual representation can be described 
such that visual designers can reason about the effectiveness of a 
visualization and the encodings that are used. For example, the pro-
cess model shown in Fig.  1 can be described as follows. Discovery, 

https://www.sap.com/products/erp.html
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conformance checking, enhancement and analytics are PM tasks that are 
commonly supported by a BPMN process model. The data represented 
are categorical event sequences (the event log), with time (temporal 
order) as the primary data facet and relationships as the secondary 
facet; the marks are rectangles to represent activities, a diamond to 
represent operators, circles to represent begin and end states, and 
lines to represent relationships. Here, the visual channel shape is used 
to encode the semantic meaning of the visual elements. The main 
visual channels used are horizontal and vertical positions to encode the 
relationships (topologically sorted from left to right). As the primary 
data facet, temporal order, is encoded with the most effective visual 
channel (position), resulting in what can be considered an effective 
visualization. The next section elaborates on the data facets.

3. Systematic view for integrating PM and VA

In this section, we present a systematic view of the integration of 
PM and VA. Section 3.1 discusses data facets that are known in VA and 
are or can be relevant in PM. Section 3.2 explores the combination of 
multiple facets in visualizations. Section 3.3 presents an overview of 
commonly used PM visualizations, which we classify in terms of data 
facets, marks, channels, and tasks in Section 3.4.

3.1. Data facets

Data can be multivariate, come from multiple sources, and involve 
multiple modalities. In VA, the terms multi-faceted data or data facets 
have been used to refer to the representation of heterogeneous data [8,
9]. A data facet relates to a particular interpretation or perspective of 
the data. Similar to how data types in programming languages decide 
about the interpretation of bits and bytes, data facets give semantic 
meaning to the quantitative and qualitative data values under investi-
gation. VA generally distinguishes four fundamental data facets [7], of 
which some are prevalent in PM, while others remain less frequently 
used:

Time (T) is an intricate dimension [22] and an omnipresent data 
facet in PM. Event data and process models typically include 
this facet. As shown earlier, event logs are commonly used to 
capture processes that comprise activities that take place in 
a certain chronological order. These processes are represented 
as sequences of events that occur over a period of time. The 
example in Table  1 relates events to timestamps, which enable 
a quantitative interpretation of time. For example, temporal dis-
tances can be calculated, as is typically done when inspecting 
arrival rates. In other scenarios, time might be of qualitative
nature, meaning that only temporal ordering of events is defined 
but not distances.

Space (S) can be associated with processes or process artifacts. This 
data facet would represent the 2D or 3D location where an 
event occurs, typically in geo-space. For instance, the location 
at which events occur in a production process can indicate 
potential areas to improve the process as long distances between 
stations at which subsequent activities are performed can cause 
delays. Also, in domains such as healthcare and warehousing, 
this facet can be of interest. Although space is highly relevant 
as a data facet in VA, it is not (yet) often seen in current PM 
practice.

Relationships (R) describe link structures between data entities,
where the links may span networks (graphs) or hierarchies 
(trees). While time and space describe the when and the where 
of data entities, relationships capture their logical or physical 
connectivity. Fig.  1 provides an example of a process model 
where the activities, such as Attach Receipt and Send report, 
are entities, and the directed arcs are relationships between 
4 
Fig. 2. Data facets and their relevant characteristics. cb

these entities spanning a graph. Fig.  2 provides more examples 
about what can constitute an entity. Note that our relationships 
data facet is not to be confused with the formal mathematical 
definition of relations.

Attributes (A) add context or provide further information about
events and process artifacts. Attributes can be either given or 
derived via computational analysis methods. The domain of 
attributes is relevant, and they can be qualitative (nominal or 
ordinal) or quantitative (discrete or continuous). For example, 
the customer ranking (given, ordinal), country of destination 
(given, nominal), ordered items count (derived, discrete), or 
total order volume (derived, continuous) can all be attributes 
in a goods delivery process.

Fig.  2 outlines the individual data facets as discussed before, and 
Fig.  3 shows a Venn diagram of all possible combinations of data 
facets that may be relevant in the context of VPA. The individual 
combinations are typically associated with distinct categories of data, 
such as temporal data, spatio-temporal data, or multi-faceted graphs, 
which play an important role in VA research.

3.2. VA for multiple data facets

In VA, dedicated subfields exist that focus on the visual representa-
tion and analysis of particular data facets: time-oriented visualization 
for T [23], geo-visualization for S [24], graph visualization for R [25], 
and multivariate data visualization for A [26]. The more facets a dataset 
has, in general, the more complicated the visualization becomes (see, 
for example, Hadlak et al. [9] for multi-faceted graphs).

The challenge of visualizing multi-faceted data lies in finding a 
visual encoding (marks and channels) that effectively communicates 
the relevant data facets (given the task). As there is only a limited 
set of visual channels, not all relevant data can usually be encoded 
in a single representation. Instead, multi-faceted visualizations need 
to make a compromise: particular data facets can be encoded in full 
detail, while others can only be indicated or hinted at. This also implies 
that different visual representations are required, each highlighting a 
particular data facet while only hinting at selected remaining facets.

To obtain well-balanced visual representations of multi-faceted 
data, a two-step approach design procedure can be followed [7]:

1. First, a base representation is defined for the primary data 
facet whose depiction will govern the overall display. Using 
the effectiveness principle [18], the most important data element 
should be selected as the primary facet, and will often be visually 
represented with position as highest ranked visual channel.

2. Second, additional data facet(s) will be incorporated into the 
base representation with other (less accurate) visual channels, 
such as color, size, orientation, or shape.
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Fig. 3. Overview of data facets and how their combinations lead to different categories 
of data. cb

Source: Adapted from [7].

This general VA design process can also be used in the context of 
PM. In what follows, we look at typical PM visualizations, first through 
the lens of PM and then through the lens of multi-faceted VA.

3.3. Inventory of popular PM visualizations

The PM literature describes a wide variety of visualizations that 
are created or used as a part of a PM analysis. To identify the most 
commonly used PM visualizations, a set of recently published PM case 
studies has been reviewed. This subsection outlines the methodology 
used to identify and select case studies, followed by an overview of the 
identified visual representations.

3.3.1. PM case study selection
To inventorize the most commonly used PM visualizations, we 

identify published PM case studies from three sources. Firstly, publicly 
available Business Process Intelligence Challenge2 (BPIC) reports were 
collected. In these reports, academics and practitioners present the 
result of a PM analysis on real-life data. We selected 21 BPIC reports for 
further analysis, distributed over 2015− 2020, i.e. the most recent BPIC 
editions. The selection process followed three steps: only reports that 
were publicly accessible were considered, submissions from academic 
and professional teams were prioritized, and a subset was chosen with a 
focus on the use of visualizations in the report. Secondly, PM case study 
papers that discuss real-life PM applications were collected. To identify 
such papers, we queried Web of Science to select papers with ‘‘case 
study’’ and ‘‘process mining’’ in the abstract. To complement the timeline 
of the BPIC reports and ensure coverage of recent visualizations, we 
focused on papers published in the last 5 years (2020 − 2024). All 
identified articles (122) were screened. When a paper met at least 
one exclusion criterion, the paper was excluded from our subsequent 
analysis. The following criteria were used:

• the article does not contain PM visualizations;
• the article focuses on the development of a new PM (related) 
computational method;

• the article focuses on the optimization of a new PM algorithm.

Finally, we used Reinkemeyer’s textbook [27] on PM applications 
as a third source, as it provides a collection of PM case studies from 
various businesses. All case studies in the book were screened using 
the previously described exclusion criteria.

In sum, we used 21 BPI challenge reports, 48 PM case study papers 
and 5 case studies from Reinkemeyer [27] to analyze the most com-
monly used PM visualizations from the last decade. This resulted in 
74 papers in total. A complete list of the selected case studies can be 
consulted in Appendix.

2 https://www.tf-pm.org/competitions-awards/bpi-challenge
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Table 2
Visual representation (sub-)categories and associated occurrence frequencies as iden-
tified in the screening of 74 PM case studies. Relative frequencies at the category 
level represent the distribution across categories, while relative frequencies within 
a category represent the frequency distribution of the subcategories within a single 
category. Process-mining-specific visualizations are italicized.
 Visual representation Absolute freq. Relative freq. 
 Chart-based 201 47.07%  
 Bar-chart 100 49.75%  
 Line-graph 48 23.88%  
 Dotted chart 27 13.43%  
 Box-plot 8 3.98%  
 Pie-chart 8 3.98%  
 Area chart 4 1.99%  
 Bubble chart 1 0.50%  
 Heatmap 4 1.99%  
 XmR-chart 1 0.50%  
 Network-based 190 44.50%  
 Process map 134 70.53%  
 Node-link 31 16.32%  
 Petri net 13 6.84%  
 BPMN 11 5.79%  
 Sankey diagram 1 0.53%  
 Matrix-based 14 3.28%  
 Process matrix 14 100%  
 Hierarchy-based 14 3.28%  
 Decision tree 4 28.57%  
 Process tree 3 21.43%  
 Classification tree 2 14.29%  
 Dendrogram 2 14.29%  
 Organizational chart 2 14.29%  
 Treemap 1 7.14%  
 Timeline-based 8 1.87%  
 Variant diagram 6 75%  
 Process time-line 2 25%  
 Map-based 0 0.00%  

3.3.2. Visualization categorization
The 74 selected case studies contained 427 PM visualizations that 

were coded using ATLAS.ti. In this visualization categorization, we fo-
cus on the visualization techniques themselves rather than the specific 
content these visualizations may represent. The categories that were 
used to code the visualizations stem from the survey paper of Guo 
et al. [28], which categorize and survey visualization techniques for 
event sequence analysis. We slightly adapted the categorization to the 
PM context. Due to the strict focus of Guo et al. on event sequences, 
model-based process representations were not present in their proposed 
classification; therefore, we replace the specific ‘Sankey’ category with 
a more generic network-based category allowing for the inclusion of 
visualizations of process models (including Sankey diagrams).

We further added the main category of ‘map-based’ visualizations 
as this category maps to our space (S) data facet which was missing in 
the categorization of Guo et al. [28]. This results in the following cate-
gorization: chart-based, network-based, matrix-based, hierarchy-based, 
timeline-based, and map-based. Open coding was used to identify the 
subcategories within each main category. When a new visualization 
occurred, we added a code (subcategory) that described the visual-
ization. This iterative approach allowed us to refine our classification 
framework as we progressed.

Table  2 summarizes the results of coding as it lists the visualization 
categories and subcategories, along with their absolute and relative 
frequencies in the 74 investigated case studies.

Interestingly, generic chart-based visualizations are most often used. 
In particular bar charts, line graphs, and dotted charts (scatter-plots) 
are observed relatively frequently. The network-based visualizations, 
i.e. visualizations intended to represent process models, are the sec-
ond most frequently used type of visualization. Within this category, 

https://www.tf-pm.org/competitions-awards/bpi-challenge
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Fig. 4. Identified popular PM visualizations: (A) Dotted chart, (B) Variant diagram, (C) Process Tree, (D) Process Map, (E) Frequency diagrams, (F) Petri Net, (G) BPMN, (H) 
Process Matrix, (I) Performance Spectrum, (J) Spatial Map [14]. Images created using the PMTK process mining tool [29] (A); Cortado [30] (C), PRoM [31] (F), bupaR [32] (B, 
E, H, I), and Celonis (D).
process maps (e.g. DFGs) are most frequently used. We further observe 
that node-link diagrams are often used to represent various types of 
relationships next to control-flow (e.g., resource relationships such as 
the handover-of-work or social networks can be visualized). Perhaps 
unexpectedly, visualizations of process modeling formalisms such as 
Petri nets and BPMN (see Fig.  1) are used relatively infrequently. Note 
that our sample might be biased due to the relatively large space 
consumption of process model visualizations, whereas space is typically 
expensive in academic publications and, hence, less used. Other less 
frequently used visualization categories are the matrix-based, hierarchy-
based, time-line based, and map-based categories, where the latter did 
not appear at all. Similar to the network-based control-flow models – 
i.e., Petri nets and BPMN –, the hierarchy-based control-flow models – 
i.e., process trees – are relatively infrequently visualized.

3.4. Categorization of popular PM visualizations in terms of VA concepts

Starting from the popular PM visualizations identified in
Section 3.3, we present a categorization of these visualizations in terms 
of data facets, mark(s), visual channel(s), and tasks, as described in 
Section 2.3 and 3.1. We limit ourselves to the visualizations considered 
as typical PM visualizations, i.e., the ones italicized in Table  2: Dotted 
Chart, Process Map, Petri net, BPMN, (Process) Matrices, Process trees, 
and Variant diagram. All non-PM-specific representations categorized in 
the chart-based category are considered Frequency diagrams and are also 
characterized, as these visualizations are often utilized in PM analyses.

Next to the most popular PM visualizations – as identified in re-
ported case studies – we expand the list with visualizations that are 
more recently introduced in academic studies. Despite their absence in 
the screened case studies, we postulate that these visualizations might 
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be of great potential in the future of VPA. To this end, we screened the 
conference proceedings of all editions of the International Conference 
on Process Mining (ICPM 2019–2024) and the proceedings of the last 
five editions of the annual conference on Business Process Management 
(BPM 2020–2024). In the first phase, titles were screened for newly 
introduced visualizations. When an indication of a visualization was 
present in the title, the full paper was screened in the second phase to 
assess whether a new visualization was introduced.

The examination of these proceedings led to one additional visu-
alization, the Performance Spectrum [33]. Aside from this, the space 
annotation was mentioned [34]. Annotations were not considered new 
visualizations to be included. However, annotations link explicitly to 
one of the VA data facets. Additionally, it is tied to a new visualization, 
the Spatial Map, that was presented at a workshop in the margin of 
ICPM 2023 [14]. Therefore, we added both the Performance Spectrum
and Spatial Maps to the list of PM visualizations that are of interest to 
examine from a VA point of view.

In the following, we introduce the visualizations in detail and 
indicate their primary and secondary facet as well as the marks, visual 
channels, and tasks used.

To determine time or relationship as the primary data facet (e.g., in 
process maps), we consider if the semantics of a relationship include 
any notion of time (either absolute or temporal order). If so, e.g., the
direct succession between activities in a DFG, time is considered the 
primary facet. If a relationship is more abstract or generic (i.e., no time, 
no space) and we are concerned with the overall structural properties 
of all relationships (e.g., resource usage) we consider relationship to be 
the primary facet.

The task categorization was informed by the contextual relevance 
of each visualization within its respective case study and by a broader 
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understanding of its typical applications in the field, derived from the 
collective author’s domain expertise and experience. We leveraged our 
domain expertise to minimize any misalignment between the tasks we 
inferred from publicly available visualizations in case studies and the 
actual tasks analysts perform to draw conclusions. While visualizations 
suggest certain interactions and insights, the way analysts use them in 
practice may differ. To account for this, we carefully examined both the 
visual representations, the supporting text, and the reasoning process 
analysts typically follow. However, some discrepancies may still exist 
between the tasks we identified and the actual tasks performed, as these 
might not be directly observable from the visualization and supporting 
text alone.
Dotted chart. A dotted chart visualization is a scatterplot-like visu-
alization of event data [10]. Consider Fig.  4-A, in which we depict 
an exemplary dotted chart visualization. Whereas the visualization is 
highly customizable, time is most commonly plotted on the 𝑥-axis. As 
each event in the event data relates to a case, we can consider the 
case identifier as an event attribute. Given some ordering specified over 
the case identifiers, the 𝑦-axis represents the case identifier value of 
the events. As such, all events (represented as a dot) related to the 
same case are plotted on the same 𝑦-axis value. Event colors are mostly 
based on the corresponding activity. A dotted chart is often used to 
spot interesting patterns at a glance. For example, the emergence of 
‘‘vertically stacked dots’’ in a dotted chart indicates the presence of
cross-case batching behavior, where events of the same type but from 
different cases happen at the same time.

We identify time (x-axis) as the primary facet of the dotted chart.
Attributes (dot color) are considered an additional facet. The main visual 
mark is identified as being a dot. As visual channels, position and color
are identified. Finally, dotted charts are primarily used for analytics
tasks.

Variant diagrams. Variant diagrams [35] are a summarizing event log 
visualization that group all traces that record equal control-flow behav-
ior. For example, reconsider the example event log depicted in Table 
1. Assume that multiple cases all describe the sequence of activities
Create Travel Report, Attach Receipt, Send Report, and finally Receive 
Confirmation. We refer to the aforementioned sequence of activities as a
trace variant, i.e., a sequence of activities described by one or multiple 
cases. Consider Fig.  4-B which provides an example visualization of a 
variant diagram. Typically, the activities are represented by a shape, 
and given a specific color.

As a primary facet for the variant diagrams, we identify time (tem-
poral order). Additional facets identified comprise relationships and
attributes. Visual marks are rectangles and points, while visual channels 
are position on a common scale and color hue. Variant diagrams are 
primarily used for conformance, enhancement, and analytics tasks.
Process tree. Process trees [36] are used to model the control-flow of 
processes. As the name suggests, they are an extension of the graph-
theoretical notion of a tree. Consider Fig.  4-C, in which we visualize 
an example process tree. The internal vertices of the tree (i.e., the 
non-leaf vertices) are referred to as operators. Operator vertices specify 
the control-flow of their children. For example, a sequence operator, 
typically visualized with the →-symbol, specifies sequential behavior, 
i.e., the left-most child should be fully executed first, followed by 
the second child (from left to right), etc. Other operators include 
the exclusive choice (×), concurrency (∧) and loop (↺) operator. The 
hierarchical nature of process trees allows to easily spot groups of 
(sub-)process behavior, which is arguably harder to achieve from other 
modeling formalisms such as Petri nets and BPMN models. As a primary 
data facet, relations are visualized by process tree visualizations. Time
and attributes are considered as additional facets, e.g., computing any 
activity-based KPI (time, costs, etc.) and use a relative color scale 
to overlay on top of the model leaf nodes. The identified marks are
points, lines, and rectangles. As visual channels, we identify position on 
an unaligned scale, and spatial region. Finally, process trees are generally 
used in the three core PM tasks, i.e., process discovery, conformance 
checking, and process enhancement.
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Process map. Fig.  4-D presents an example visualization of a process 
map. The nodes in the process map represent process activities, and the 
arcs connect two activities that are (in)directly following each other 
as recorded in the event data. Typical interactions with process maps 
include zooming in/out, gradually adding more behavior, and inspect-
ing activity information. Compared to the dotted chart visualization, a 
process map applies more aggregation. That is, events are not explicitly 
visualized but rather the activities they represent.

As a primary facet, we identify that time (temporal order) among 
process artifacts (i.e., activities) are visualized. Additional facets are
relationships and attributes, i.e., typically time and attribute-derived 
values can be overlaid on the process maps.

The marks used are points, lines and rectangles; the visual chan-
nels are positioning on an unaligned scale, and (tool-dependent) color 
hue and saturation. Note that for all process map visualizations (DFG, 
BPMN, Petri Net) also object-centric counterparts exist that encode the 
different objects by using color hue.
Frequency diagrams. As indicated, frequency diagrams entail all non-
PM-specific visualizations in the chart-based category, i.e., bar-charts, 
line-graphs, etc. (see e.g., Fig.  4-E). Generally, we observe attributes to 
be the primary facet of this type of visualization. All facets can also act 
as an additional facet. Marks such as points, lines, and areas are pre-
dominantly used in frequency diagrams. The visual channels adopted 
are primarily length and color hue. Finally, the frequency diagrams, 
such as the dotted chart in the same category, are predominantly used 
in analytics.
BPMN. Business Process Model and Notation (BPMN) is a process 
modeling notation that is designed for (but not limited to) use in 
industry [37]. Reconsider Fig.  1, in which an example BPMN model 
is depicted. In addition to what is seen in Fig.  1, the BPMN standard 
describes many more modeling constructs that can be used to model a 
business process. However, notably, in the context of PM, the modeling 
elements shown in Fig.  1, i.e. tasks/activities, routing operators, and 
start/end points are most commonly used. This is due to the fact that 
most PM algorithms internally use Petri nets. Hence, Petri nets, having 
less support for ‘‘advanced modeling constructs’’, are often converted 
to BPMN models.

The facets identified for BPMN are equal to process maps (primary:
time, secondary: relationships, attributes). As marks we identify points,
lines and rectangles. Visual channels represent position on an unaligned 
scale and area. BPMN models are typically used for all tasks.
Petri nets. A Petri net [38] (see Fig.  4-F) is a graph-based mathematical 
modeling notation that allows for modeling the behavior of complex 
systems that exhibit concurrency. In the context of PM, a subclass of 
Petri nets is often considered, i.e., Workflow nets [39], which assumes 
that the system modeled (i.e., the process) has an explicit single start 
and end point.

We classify Petri nets similar to BPMN models (see Fig.  4-G) on all 
aspects of our categorization.
Process matrix. Process matrices visualize typical process properties in 
an 𝑛×𝑚 table. Consider Fig.  4-H, in which we depict an example process 
matrix. On both axes, activity names are plotted. The value depicted 
in a cell at position (𝑖, 𝑗) refers to the number of times the activity at 
position 𝑖 of the 𝑥-axis was followed directly by the activity at position 
𝑗 at the 𝑦-axis.3 The color intensity (saturation) is based on the relative 
frequency of the cell values. Alternative matrix-like representations 
exist as well. For example, one axis could show activities and the 
other axis could represent resources, and values in the cells record the 
(relative) frequency of a resource executing the activity.

3 In some cases, the process matrix can be seen as the matrix representation 
of a process map.
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Table 3
Categorization of popular PM visualizations in terms of typical PM Data Facets and corresponding Mark(s), Visual Channel(s), and PM Task(s).

 

As a primary facet, the process matrix visualizes the time (temporal 
order) between process entities. Typically, relationships and attributes
can potentially be additionally visualized using color or glyphs in each 
matrix cell, i.e., acting as additional facets. This has, to the best of our 
knowledge, not been done and provides a simple and effective manner 
to increase further use of the Process Matrix. Rectangles are used as 
marks, the visual channels entail areas and color saturation. All tasks 
can be supported by process matrices.
Performance spectrum. The Performance Spectrum [33] visualization is a 
specific instantiation of a Marey chart, tailored to event data. Consider 
Fig.  4-I which depicts an example of the performance spectrum. As in 
any Marey chart, the 𝑥-axis represents time. The different values on 
the 𝑦-axis represent the occurrence of a specific activity. For example, 
assume the two activities Create Travel Report and Attach Receipt are 
part of a performance spectrum visualization. Whenever two such 
events directly follow each other for some case in the process, we draw 
a line from one activity to the other in the spectrum. The color of the 
line is based on the relative duration of the segment it represents.

For the performance spectrum, we identify time as the primary facet. 
As an additional facet, we identify attributes. As visual marks, lines are 
used. The visual channels identified are position on a common scale and
color hue. The performance spectrum is primarily used in analytics tasks.
Spatial map. In spatial maps (see Fig.  4-J), the main element is spatial 
position. Typically, this is related to a geographical location, but not 
necessarily; spatial maps can also represent (virtual) resources. The 
process is of secondary importance and generally represented on top 
of the spatial map. Consider Fig.  4-J, where a room is depicted as the 
main spatial element, and the arrows represent the process flow (person 
movement) [14].
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As a primary facet for spatial maps, we identify space. Additional 
facets identified are time, relationships and attributes. Visual marks are
dots, lines, and area. The visual channels are position on a common scale,
color hue, and area. Spatial maps are primarily used for all three main 
tasks discovery, conformance, and enhancement.

An overview of the categorization of popular PM visualizations 
in terms of VA concepts is presented in Table  3. Starting from this 
overview, we discuss the challenges and opportunities of VPA.

4. Challenges and opportunities

To discuss the open challenges of bringing together VA and multi-
faceted PM in more detail, we start with a gap analysis by analyzing 
the results of our categorization (see Table  3). Next, potential avenues 
for future research are posited. More specifically, we discuss how PM 
visualizations could further be enhanced towards true multi-faceted 
VPA through the use of abstraction and interaction.

4.1. Gap analysis

Observations and opportunities. From the existing PM visual represen-
tations classified according to the earlier defined data facets, marks, 
visual channels, and high-level PM tasks, we observe the following:

• Time tends to be the primary facet in multiple PM visualizations, 
mostly focusing on the temporal order between activities. These 
visualizations are typically representing the process models with 
variations of a node-link diagram where nodes represent the ac-
tivities or operators and the links represent the relations (process 
tree, process matrix, process map, BPMN, and Petri Net). The 
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relationships are typically used to determine the layout of the 
node-link diagram (often through means of topological sorting). 
Therefore, the visual channel used to encode the relationships is
position on an unaligned scale. As a consequence the process maps 
and variant diagram only show temporal order, not absolute or 
quantifiable time. The dotted chart and performance spectrum 
typically show quantifiable time. For these time is encoded with 
the visual channel of position on a common scale. As this is the 
highest ranked visual channel in terms of effectiveness, this is a 
good match.

• Only the process tree has relationships as the primary facet. The 
operators and relationships are typically positioned using stan-
dard tree-based layouts. As the visual channel that is used here is
position on an unaligned scale, the relationships are well encoded. 
However, the secondary facet time is not explicitly encoded and 
can only be derived from interpreting the operators.

• Space is never used as a primary facet except for the spatial 
map (which was only encountered once in our review on PM 
visualizations). In a spatial map, the primary space facet would 
be encoded through position on a common scale (e.g., latitude–
longitude pairs). Time and additional attributes are then encoded 
with color and size, but relationships is not present. In general, this 
is an under-explored area that provides ample opportunities for 
further exploration (e.g., in a recent workshop paper, maps are 
used as a backdrop [14]).

• Attributes as a primary facet are only present in the frequency 
diagrams, typically encoded with length and color (e.g., bar charts, 
line-graphs, etc.).

• The process model visualizations (process tree, process matrix, 
process map, BPMN, and Petri Net) are typically used for the 
primary task of understanding the control-flow: discovery, con-
formance checking, and enhancement. Analytics on top of this is 
typically a secondary task that is performed with visual channels 
(e.g., color) enhancing the process model visualization. More 
advanced analytics for which perspectives need to be combined 
are mainly performed with different (linked) frequency visual-
izations that are chart-based (frequency diagrams, dotted chart) 
and timeline-based (performance spectrum, variant diagrams). 
There lies an opportunity and challenge in combining these into 
a single view, or enabling flexible reconfiguration by dynamically 
changing the primary facet for a different perspective [40].

• Most visualizations used for the PM tasks of analytics are what 
would be considered simple visualizations from the perspec-
tive of VA (e.g., bar-charts, line-charts, pie-charts, area-charts, 
heatmaps). Alternatively, analytics information is also encoded 
with additional visual channels such as color and size, on top 
of the control-flow. These direct encodings and linked visu-
alizations are typically only capable of conveying univariate 
patterns (i.e., color, size, a bar or line chart only shows one 
variable at a time). We observe that more complex advanced 
multivariate visualizations are not used (e.g., scatterplot-matrix, 
parallel-coordinate plot, glyph-based approaches). A recommen-
dation would be to start using these instead of the basic charts 
to discover more complex relationships and (inter-)dependen-
cies. For example, there might be correlations between time, 
bottlenecks, and resources used, which cannot be identified and 
discovered by solely looking at visualizations of the individual 
components. A more challenging opportunity is to integrate or 
extend these multivariate visualizations to also show relationships 
to convey control-flow simultaneously.

• The process model visualizations (process tree, process matrix, 
process map, BPMN, Petri Net) all have the same primary and 
secondary facets from a data visualization point of view, but they 
use different semantics. This is reflected in the diverse selections 
of marks and visual channels used. Here, there is an opportunity 
to tailor the visualizations to convey the semantics, e.g., reflect-
ing loop operators with activities positioned along a circle, or 
conveying concurrency by showing activities intertwined.
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• Related to the opportunity of visual objects better reflecting their 
semantics, are object-centric process maps. Current object-centric 
process maps use the (arguably) most important element, object, 
and encode this with the visual channel of color. However, if color 
is removed, they can be considered traditional process maps. Here 
is an opportunity and challenge to rethink how to encode the 
objects with higher ranked visual channels to truly treat objects 
as first-class citizens.

4.2. Enhancing PM via abstractions and interactivity

So far, our focus has been on the visual aspects of integrating VA 
into PM. Yet, VA is only complete when visual methods work in concert 
with automatic computations and interactivity [5], as explained in 
Section 2.3.

The automatic computations mainly serve the purpose of abstrac-
tion: the analysis is focused on information that is essential to the task 
at hand, while less relevant information is abstracted or omitted alto-
gether. Interactivity is key to enabling an analytic discourse between 
the human analyst and the machine-generated artifacts (i.e., visualiza-
tions and abstractions).

In the following sections, we briefly review typical abstraction 
methods and interaction techniques in VA that can be useful to further 
enhance multi-faceted VPA.

4.2.1. Abstractions
When the data to be analyzed become larger (more data entities, 

more data attributes) and more complex (more data facets, more data 
sources, more data types, etc.), which is regularly the case in PM, 
it is no longer possible to show all information on one screen [41]. 
This is even more true when considering multi-faceted VPA, which 
involves several tailored views focusing on different parts of the data 
and distinct data facets. This focus on essential information can be 
achieved through abstraction methods.

Different categories of abstraction methods exist in VA [7]. They 
vary in what is abstracted and how the abstraction is obtained. In 
terms of what is abstracted, one can distinguish visual abstraction 
and data abstraction. Visual abstraction operates in the visual domain 
and includes density-based representations and bundling approaches. 
Data abstraction works directly on the data. Typical methods for how
abstraction can be implemented include degree-of-interest approaches, 
clustering, or dimensionality reduction. The remainder of this subsec-
tion will outline the aforementioned approaches, of which an overview 
is also provided in Fig.  5.
Density-based representations — from individual items to item density. 
Instead of visualizing data as discrete visual items, density-based repre-
sentations, as the name suggests, show density fields. That is, individual 
data or visual items are abstracted to density values. One example 
technique is continuous scatter plots [42], which can be helpful when 
visualizing the associated data attributes of object-centric processes.
Bundling — from cluttered lines to bundles. Visual representations that 
work with many lines or paths, such as DFGs, can be abstracted by 
means of bundling. The visual clutter that is caused by many lines 
is reduced by routing the lines in bundles. Bundles can make major 
flows among processes more clear. Yet, individual paths can become 
more difficult to identify. Depending on the data and visualization 
requirements, different bundling techniques can be applied [43].
Sampling — from all data to sampled data. Sampling is an approach to 
reduce the number of data items to be visualized. Sampling creates 
a sampled dataset that includes a selection of the original data. The 
key challenge is to perform sampling such that the sampled data 
preserves most of the properties of the original data [44]. While event 
log sampling has been considered in PM [45], graph sampling [46] 
could be useful to sample the topological structure of relations between 
process entities in a PM process model. 
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Fig. 5. Overview of graphical and data abstraction methods being used in VA. cb

Source: Adapted from [7].
Degree-of-interest approaches – from all data to relevant data. When 
complex processes with many entities (cases/activities) need to be 
analyzed, indistinctly showing all entities is not feasible. Instead, the 
analysis should be focused on the subset of entities that are relevant to 
the task at hand. Degree-of-interest approaches assign relevance values 
to data entities and dedicate more visual resources to highly-relevant 
entities while using less or no resources for irrelevant entities. This 
can be particularly useful for large graph structures such as process 
hierarchies or DFGs [47,48].
Feature-based approaches — from all data to a few features. In VA 
research, the term feature denotes a derived characteristic of the data. 
By focusing the analysis on the derived features, one can achieve a 
substantial level of abstraction. This requires a formal description of 
features to be extracted from the data [49]. Once extracted, features can 
be visualized instead of the raw data. Features can also be tracked over 
time to understand their evolution, including certain events during the 
evolution [50]. In PM, features could, for example, be certain motifs in 
a DFG; we identify topological structures such as multi-activity loops, 
stars, or highly connected activities, and consider these features [51]. 
Rather than visualizing the individual activities and their relationships, 
we show a representation of the features for a high-level analysis.
Aggregation — from raw data to aggregated data. Aggregation is a classic 
means to reduce several original data values into a single aggregated 
value. Typical aggregates include min, max, sum, count, average, me-
dian, and mode. In addition to such value aggregations, complete 
data entities can also be aggregated into meta-entities. This can, for 
example, be useful for hiding subprocesses in meta-nodes in DFGs, as 
suggested by works on event abstraction in PM [52]. By visualizing 
aggregated data rather than raw data, the visual complexity of visual 
representations can be reduced [53].
Clustering — from all data to a few groups of similar data. Clustering 
is an unsupervised machine learning method that groups data based 
on their similarity. The visual analysis can then be centered around 
the clusters (and their properties) rather than the raw data. These have 
been used to allow the interactive exploration at various levels of detail 
of event sequence data using multiple overviews [54]. In PM, trace 
clustering approaches have been proposed to group similar traces in 
a cluster such that, e.g., a less complex DFG can be discovered for each 
cluster instead of for the event log as a whole [55]. An appropriate 
specification of the notion of similarity is very important to obtain good 
clustering results. For multi-faceted data, similarity can be defined, for 
example, with respect to multivariate attributes or the structure defined 
by the relationship among data items [56].
Dimensionality reduction — from many to few dimensions. When data are 
associated with many attributes (e.g., multidimensional sensor data in 
machinery processes), dimensionality reduction can reduce the number 
of data dimensions to be visualized. The reduction of dimensions (not 
data entities) focuses the analysis on major trends in the data, while 
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neglecting less important information. A difficulty is that the reduced 
dimensions might not be easy to interpret with respect to the semantics 
of the original dimensions and that minor but maybe still interesting 
patterns are suppressed. Typical dimensionality reduction methods in-
clude principal component analysis, multi-dimensional scaling, UMAP, 
and t-SNE [57]. An example in PM would be to consider all (derived) 
attribute values of events and reduce these to 2D for visualization [41] 
such that clusters of points then indicate events with similar attribute 
values.

4.2.2. Interactivity
In addition to visualization and automatic computation, the third 

key ingredient of VA is interactivity. Interactivity is the bridge be-
tween the machine and the human analyst [58]. It is required because 
complex data such as multi-faceted event data about processes cannot 
be comprehensively understood from a single visual representation. 
Interactivity enables the human analyst to flexibly orchestrate a whole 
spectrum of computational and visual methods with the goal of satisfy-
ing constantly changing information needs during multi-faceted process 
analyses [59].

In the following, we first provide an overview of fundamental VA 
interactions, and second, we use the example of interactive lenses to 
illustrate how VPA can benefit from interactivity notions present in the 
VA domain.
Fundamental interactions. Yi et al. [60] categorize the wealth of possi-
ble interactions with data and their visual representations by means of 
seven interaction intents. These intents capture why data analysts need 
to interact and can be briefly summarized as follows:

Mark something as interesting. This fundamental operation allows 
users to temporarily (hover) or permanently (select) mark parts 
of the visual representation as particularly relevant for the task 
at hand (e.g., highlight an anomalous process instance).

Show me something else. As it is typically only possible to show 
parts of the data, users need to move from one partial view to 
the other to create an overall picture of the data (e.g., look at 
different subsets of the process instances included in the original 
event log).

Show me a different arrangement. Rearranging the marks of a vi-
sual representation can help make specific parts of the data 
easier to follow and understand (e.g., centrally align a path of 
interest in a process map).

Show me a different representation. Especially for multi-faceted
data, different visual representations need to be studied. Each 
representation emphasizes the peculiarities of a particular facet 
(see Fig.  4). Taken together, they lead to comprehensive under-
standing (e.g., changing from a DFG to a dotted chart to study 
both relationships and quantitative time).
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Fig. 6. The similarity lens for the ‘‘show me related things’’ interaction intent. Left: The situation before applying the lens. The visualization shows the graph topology. The node 
size and color additionally represent the node degree. The focus object is denoted by ×. While one can see how × is connected in the graph, the similarity with respect to the 
objects’ data attributes cannot be readily accessed. Right: The similarity lens has been activated and moved on top of ×. Dissimilar objects were pushed out of the lens (red arrow), 
while similar ones were pulled to the lens interior (green arrows). The similar objects’ distance to × and their green colors encode the degree of similarity. The analyst can now 
easily assess the similar objects. cb (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Show me more or less detail. As described earlier, different kinds of 
abstractions offer different degrees of detail about the data. By 
showing more or less detail, the level of abstraction can be 
adjusted to the task at hand (e.g., visualizing activity clusters 
instead of individual events).

Show me something conditionally. By interactively specifying con-
ditions, analysts can dynamically query or filter the data and 
work on a reduced subset that meets the conditions (e.g., filter 
based on frequency such that infrequent behavior is not shown).

Show me related things. Seeing something interesting in the data 
often raises the question of seeing related things. These interac-
tions can dynamically change the visualization to bring related 
things to the display, as we will illustrate later in the example 
of interactive lenses.

Several of the aforementioned interaction intents can be implic-
itly connected to PM research. For instance: to cope with settings in 
which the process flow exhibits high variance, a process map can be 
discovered for subsets of process instances instead of the entire event 
log (‘‘show me something else’’) [61,62]. To give another example: 
many control-flow algorithms such as heuristics miner [63], inductive 
miner [64] and split miner [65] have parameters that enable analysts to 
exclude less frequent behavior from the discovered process map (‘‘show 
me something conditionally’’). While these examples demonstrate that 
the interaction intents offer a relevant perspective for PM research, 
targeted research on this topic is lacking. Hence, creating and inves-
tigating effective approaches that support these interaction intents in a 
PM setting constitutes an avenue for further research. A promising step 
in that direction is Cortado, a tool that supports incremental process 
discovery and enables several types of interaction [30].

Current commercial PM tools also support several interaction in-
tents by, for instance, providing different types of filters (e.g., filter out 
a particular subset of cases or a time period) and sliders to remove 
less frequent nodes and arcs in order to simplify the resulting process 
map [1]. From an academic perspective, the actual use of these inter-
active functionalities and their impact on the performed PM analysis 
and gathered insights has not yet been investigated, marking a valuable 
direction for future research.

PM often involves switching between different tools or environ-
ments when tuning algorithmic parameters (e.g., re-run an algorithm 
at the console) and analyzing the mined processes (e.g., create a new 
visualization view). VA aims to integrate these steps, for example, by 
bringing together different tools in a unified interface [66] and by 
designing techniques with direct and fluid interaction [67]. Next, we 
showcase how such direct and fluid interaction can look like using the 
example of interactive lenses.
11 
Interactive lenses for PM. Interactive lenses are versatile, lightweight 
tools for directly and fluidly interacting with visualizations [68]. De-
spite their utility, they have not yet been applied in the context of 
PM.

Lenses can be moved across a visualization very much like a regular 
looking glass. But unlike regular looking glasses, interactive lenses can 
also be adjusted in size or shape to control the space where they take 
effect.

In the lens interior, the lens function creates an adapted version of 
the original visualization underneath the lens. The VA literature de-
scribes various lens techniques with lens functions that create manifold 
effects, including changing the visual encoding, altering the layout, and 
filtering data items [68].

To give a concrete example, let us consider the similarity lens whose 
effect is to alter the layout of a graph visualization [69]. The similarity 
lens has been developed to support the exploration of node similarities 
in multivariate graphs. In other words, the similarity lens supports the 
interaction intent of ‘‘show me related things’’ or more specifically, 
‘‘show me similar nodes’’. In PM terms, this may translate to exploring 
similar objects in DFGs, where the objects are associated with several 
data attributes.

Applied to VPA, the similarity lens could work as follows. When it 
is moved across a DFG, the object that is closest to the lens center is 
selected as the focus object. The lens function will then locally adapt 
the DFG layout in two steps. First, objects that are similar to the focus 
object are smoothly pulled towards the lens and are positioned inside 
the lens such that their distance to the lens center corresponds to their 
similarity to the focus object. Second, any objects within the lens that 
are dissimilar to the focus object are pushed out of the lens. As a 
result, the lens creates a local view that collects all objects that are 
similar to the focus object and thus satisfies the ‘‘show me related 
things’’ interaction intent. Once the analyst’s need for node similarity 
information is satisfied, the lens can be discarded and the original DFG 
layout is restored. Fig.  6 illustrates the effect of the similarity lens with 
the example of a basic node-link diagram of a simple graph. It shows 
how the relationship facet (nodes and links) and the data attribute 
facet (dynamic similarity-based rearrangement of selected nodes) can 
be intertwined with the help of interactivity.

In this section, we presented computed abstractions and interactiv-
ity as important ingredients of multi-faceted VPA. Here, our review 
of potentially useful methods could only be brief. A full survey of VA 
methods for PM would be a task for future work.



S. van den Elzen et al. Information Systems 133 (2025) 102560 
Table A.4
Case study references for data analyses.
 Source Year References  
 BPIC reports 2015 Dixit et al. [70], Teinemaa et al. [71], Suchy and Suchy [72], Van den Spiegel and 

Blevi [73], Martin et al. [74], Buffett and Emond [75], Choi et al. [76], Martens and 
Verheul [77], van der Ham [78]

 

 2017 Berger [79], Scheithauer et al. [80], Smith and Day [81], Ryu et al. [82], Wangikar 
et al. [83], van der Ham [84], Dadashnia et al. [85], Rodrigues et al. [86], Blevi 
et al. [87]

 

 2019 Botti [88], Diba et al. [89]  
 2020 Nikolayuk et al. [90]  
 Case studies in Web of Science 2020 Duma and Aringhieri [91], De Oliveira et al. [92], Remy et al. [93], Schuh et al. 

[94], Elleuch et al. [95], Arias et al. [96], Aloini et al. [97], Stefanini et al. [98], 
Kempa-Liehr et al. [99], Halawa [100], Stefanini et al. [101], Andrews et al. [102], 
Agostinelli et al. [103]

 

 2021 Amrou M’hand et al. [104], de Leoni and Pallettiero [105], Ito et al. [106], Tran 
et al. [107], Pang et al. [108], Pan and Zhang [109], Hobeck et al. [110], Bravo 
et al. [111], Ramires and Sampaio [112], Khaosanoi and Limpiyakorn [113], 
Bernthuis et al. [114]

 

 2022 Singh et al. [115], Benevento et al. [116], Hobeck et al. [117], Lim et al. [118], 
Benevento et al. [119], Roubtsova and Berk [120], Kumbhar et al. [121], Rashid and 
Louis [122], Friederich et al. [123]

 

 2023 Li et al. [124], Yari Eili et al. [125], Berti et al. [126], Butt et al. [127], Coremans 
et al. [128], Chinnathai and Alkan [129], Choudhary et al. [130], Lugaresi et al. 
[131], Wickramanayake et al. [132]

 

 2024 Kobialka et al. [133], Urrea-Contreras et al. [134], Krajcovic et al. [135], Nogueira 
and Zenha-Rela [136]

 

 Case studies in Reinkemeyer [27] 2020 Henriques [137], Boenner [138], El-Wafi [139], Balint et al. [140], Reindler [141]  
 

5. Related work

The basis for our study is our Human in the (Process) Mines Dagstuhl 
Seminar report [4], which has been extended with an extensive study of 
visualizations used in PM case studies and a systematic view of relevant 
(VA) data facets in this context. The presented categorization is derived 
from Guo et al. [28] and Yeschchenko and Mendling [12].

Guo et al. [28] provide an overview of existing VA techniques that 
are developed for event sequence data and formalize a design space for 
characterizing each VA approach and introduce analytical tasks that 
are frequently applied to event sequence data. Their work primarily 
discusses the VA techniques that are designed for each task, while we 
survey and identify the visualizations specific to PM and the different 
involved PM-focused tasks.

Yeshchenko and Mendling [12] extend the design space and propose 
the ESeVis framework to categorize visualizations of event sequence 
data. We deviate from this categorization by introducing network-based 
visualizations to support process maps and extend it with map-based 
visualizations. In contrast to the categorization of Guo et al. [28] 
and Yeshchenko and Mendling [12], we focus on the multi-faceted 
data aspects and classify each visualization according to these facets. 
Additionally, for each visualization, we identify the marks, visual chan-
nels, and tasks from a VA perspective. This enables us to analyze the 
information space and identify opportunities and challenges to enhance 
PM visualizations. It further enables us to reason about whether the 
used techniques are effective according to their task as being used in 
practice.

While its potential was already highlighted by Van der Aalst et al.
[142] in the Process Mining Manifesto, the combination of VA and 
PM is still largely unexplored. Pioneering work by Gschwandtner [143] 
identified six challenges and opportunities for extending PM solutions 
with techniques from VA based on reviewing academic literature. 
In addition to (more recent) academic work, we also analyze PM 
visualizations used in practice and map these to our multi-faceted 
framework to derive additional challenges and opportunities. In addi-
tion to challenges and opportunities, Klinkmüller et al. [144] examine 
the information needs of process analysts through an extensive sys-
tematic literature review. Their focus is on analysis of the visual 
representations used and their contribution to PM tasks. We build on 
this with a multi-perspective categorization also including data facets, 
12 
marks, and visual channels, enabling us to identify challenges and 
opportunities at different levels and perspectives.

Only few works address the novel combination of PM and VA tech-
niques by focussing on, e.g., interactive conformance analysis [145], 
event data exploration and analysis [146], visual drift detection [147]. 
Knoblich et al. [148] review visual encodings in six common business 
PM tools. Our study complements this work by focusing on academic 
case studies rather than industry tools and extends the taxonomy to 
also include PM tasks. A more narrow categorization based on confor-
mance checking is presented by Rehse et al. [11]. Related to this, a 
structural model for conformance checking is presented and evaluated 
by Klessacheck et al. [148].

Finally, Alman et al. [14] propose a novel framework to leverage VA 
for the interactive visualization of multi-faceted process information, 
aimed at easing the investigation tasks of users in their process analysis 
tasks. Similar to our study, they discuss facets and show how existing 
process models can be extended with additional facets using a layered 
approach utilizing backdrops. We anticipate that our systematic review 
of multi-faceted VPA results in more novel approaches such as theirs.

6. Conclusion

In this paper we aimed to bring together PM and VA by studying 
and categorizing existing PM visualizations from a VA perspective on 
data facets. To this end, we identified the data facets currently present 
in PM, being time, space, relationships, and attributes.

Next, we studied visualizations used in PM case studies from the 
last decade. From this, we grouped the visualizations into six categories
chart-based, networks-based, matrix-based, hierarchy-based, timeline-based,
and map-based. For each category, typical instances are selected and 
analyzed by identifying and discussing primary and secondary data 
facets, marks, visual channels, and tasks.

We present the categorization in an overview table, and identified 
gaps, opportunities, and challenges from this. Furthermore, we discuss 
opportunities how to enrich PM visualizations with analytical abstrac-
tion and interaction techniques from VA. This paper presents ample 
opportunities to adapt, enhance, and enrich PM visualizations to move 
towards true multi-faceted Visual Process Analytics.
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