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Abstract 

Rare diseases present critical challenges to healthcare systems, patients, and caregivers due to their low prevalence 
and unique characteristics. Designing clinical trials and developing statistical methodologies for evaluating interven-
tions in rare diseases face several challenges. The “EBStatMax” project, part of the European Joint Programme on Rare 
Diseases’ Demonstration Projects, aimed to address one of these challenges, namely: designing and analyzing longitu-
dinal cross-over data in rare diseases, like Epidermolysis bullosa simplex (EBS). Although the main findings of the pro-
ject have been published elsewhere, this manuscript reflects on additional hurdles encountered during the project, 
particularly regarding outcomes and methodological considerations. It explores issues surrounding outcome meas-
urement, statistical methodology, and clinical considerations, emphasizing their broader relevance to methodological 
advancements in rare disease research beyond this specific case. This manuscript highlights the critical role of inter-
national collaboration in rare disease research to enhance evidence quality and aims to inspire further advancements 
in the field.
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Introduction
While the definition of a rare disease varies by preva-
lence, it is generally accepted that the number of rare 
diseases is substantial [1, 2]. Collectively, they impose a 
significant burden on healthcare systems, societies, and 
most importantly, on the patients and their caregivers [3, 
4]. Consequently, numerous strategies, initiatives, fund-
ing programs, and projects have been launched, with the 
aim of improving the diagnosis, prognosis, and treatment 
of patients with rare diseases.

In rare diseases, as in other fields of medicine, rand-
omized controlled clinical trials are regarded as the gold 
standard for establishing the efficacy and safety of treat-
ments. However, compared to other domains of clinical 
research and pharmaceutical development, rare diseases 
present particular challenges. These include, for example, 
limited patient populations, disease heterogeneity, and 
the need to identify and validate appropriate endpoints, 
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among others. While some of these issues have been 
addressed by methodological experts and statisticians 
in a number of EU-funded projects [5–7], many unre-
solved problems remain, necessitating further investiga-
tion. Additionally, the innovative statistical approaches 
developed through these projects are often underappre-
ciated and underutilized. To facilitate understanding of 
the often complex innovative methodological approaches 
and to foster the translation into practice, three so-called 
“Demonstration Projects” have been funded in 2020 by 
the European Joint Programme on Rare Diseases [8].

One of those demonstration projects,“EBStatMax” [9], 
aimed to: 

1.	 Conduct systematic empirical comparisons, by 
means of simulations, of existing innovative statisti-
cal methods for analyzing longitudinally collected 
data from rare disease clinical trials;

2.	 Provide educational materials and guidance to 
encourage adoption of these methods by applied 
researchers and other stakeholders in rare diseases;

3.	 Implement the most promising statistical approaches 
in accessible, user-friendly software tools.

The project focused on a specific clinical case, but the 
main findings are applicable to other rare diseases with 
similar study design characteristics. The chosen case was 
a single cross-over clinical trial assessing the efficacy of 
Diacerein cream versus placebo in patients with Epider-
molysis bullosa simplex (EBS) on blister counts, pain, 
pruritus, and quality of life (QoL) [10].

Epidermolysis bullosa (EB) is a group of rare inherited 
disorders characterized by fragile epithelial-lined tissues 
and surfaces, particularly the skin [11]. EBS is the most 
common EB subtype, which is marked by the formation 
of blisters under low mechanical stress, causing substan-
tial burden during daily activities for affected individuals.

In the case trial, outcomes were assessed at four time 
points: baseline, 2 weeks, end-of-treatment at 4 weeks 
and follow-up at 3 months. However, the original analy-
sis focused solely on the end-of-treatment time point 
for assessing the primary endpoint [10]. The EBStatMax 
project addressed this limitation by identifying and com-
paring statistical methods that leverage the available lon-
gitudinal data, both for the blister count outcome [12] as 
well as for pain and pruritus [13]. This resulted ultimately 
in practical recommendations for rare disease cross-over 
trials with missing data on the identified methods: non-
parametric marginal models, generalized pairwise com-
parisons (GPC), generalized estimating equations (GEE) 
models, and model averaging[14]. In addition, the project 
explored optimal design for longitudinal cross-over trials 
[15], as well as how to combine diverse outcomes, such as 

blister counts and QoL measurements in a single, com-
prehensive analysis [16]. Several of these methodologies 
have also been implemented in user-friendly software.

The interdisciplinary composition of the project’s con-
sortium, which included expertise in biostatistics as well 
as complementary clinical and methodological research, 
led to the emergence of several valuable methodologi-
cal questions. The aim of this manuscript is to provide a 
comprehensive summary of these reflections and discus-
sions, focusing on outcome measurements (Sect. Reflec-
tion on outcome measurements), statistical methodology 
(Sect. Reflection on statistical methodology) and clinical 
aspects (Sect. Reflection on clinical and patient-relevant 
aspects). By highlighting these topics, we hope to foster 
and guide future research. This discussion is primarily 
targeted at statisticians and methodological researchers, 
although it would also be valuable to other stakeholders 
and practitioners within the rare-diseases community. 
Addressing these reflections is important because they 
have the potential to shape priorities for funding agen-
cies, stimulate innovative methodological approaches 
among applied biostatisticians, and ultimately improve 
the quality of research and care in rare diseases.

Reflection on outcome measurements
Number of blister lesions
The primary outcome in the cross-over trial “use case” 
was the number of blister lesions counted by clinicians 
on a pre-specified area of the skin repeatedly over time 
[10]. However, using blister counts over time to measure 
treatment efficacy is subject to variability from multiple 
sources. First, blisters are not always clearly delineated, 
leading to uncertainty about whether a lesion represents 
one or multiple blisters, when assessed at a particu-
lar (single) time point. This results in non-negligible 
inter- and intra-rater variability in outcome assessment. 
Secondly, some blisters heal spontaneously, potentially 
causing an overestimation of the treatment effect. These 
uncertainties in the blister count outcome were circum-
vented by the dichotomization of the blister count in the 
case trial. A reduction of more than 40% in the number of 
blisters was considered a treatment effect, while reduc-
tions of 40% or less were not. This dichotomization aimed 
to reduce the impact of uncertainty in the blister count 
on the treatment assessment. However, dichotomization 
can result in a loss of information and, consequently, a 
loss of power to detect treatment effects. For example, 
a simulation study using one of the most powerful tests, 
the unmatched prioritized GPC, showed a decrease in 
power to detect treatment effects from 53% to 10% when 
shifting from raw to dichotomized blister counts [12]. 
Needless to say that in small-sample trials, maximizing 
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the use of the available information and minimizing loss 
of information are critical considerations.

To optimize the use of available information in small 
sample trials, while accounting for non-negligible vari-
ability in outcome measurements, further research is 
required. For example, incorporating a reference baseline 
period into the study design could help address uncer-
tainties related to blister occurrence and spontaneous 
healing. Before the first administration of the trial drug, 
blister dynamics could be monitored over a sufficiently 
long baseline period (for example, 4–6 weeks). Depend-
ing on the methodology, the average blister count – and 
possibly its variance – during this baseline period could 
serve as a covariate in modeling, a standardization fac-
tor, or even as part of longitudinal modeling approaches. 
Interestingly, in GPC, the uncertainty in blister counts 
can be managed by introducing a threshold in pairwise 
comparisons. In this context, a subject’s blister count is 
considered better than another only if their (standard-
ized) blister count differs by at least the natural vari-
ability observed during the baseline period. This latter 
strategy is a way of analyzing the data which is somehow 
in-between the raw blister counts, which fail to account 
for uncertainty, and dichotomized counts, which lacks 
power, thereby balancing uncertainty and power.

Given these challenges, it is important to critically eval-
uate how different statistical methods utilize available 
information. For example, the semi-parametric GEE-type 
models and the parametric models in the model averag-
ing method used in the EBStatMax project analyze the 
longitudinal profile of the probability of observing cer-
tain blister counts. These approaches implicitly account 
for some measurement uncertainty. On the other hand, 
non-parametric marginal models and the GPC method 
rely on ranks (or the equivalent pairwise comparisons), 
which focus on the relative position of the counts rather 
than their absolute differences. Relative measures may be 
less sensitive to the blister-count uncertainty, especially 
when the counts are standardized using baseline counts. 
Nevertheless, a sufficiently flexible (semi-)parametric 
approach should be able to accommodate both absolute 
and relative differences. Further research may focus on 
enhancing (semi-)parametric models to better incorpo-
rate measurement error, for example, in a residual term.

Pain and pruritus: ordinal or metric visual analogue scale 
(VAS)
In the case trial, both pain and pruritus were meas-
ured on a visual analog scale (VAS). Patients answered 
the question “How do you perceive your level of pain/
pruritus?”, by marking a point on a continuous scale 
ranging from 0  cm (“absence of pain/pruritus”) to 
10  cm (“most intense pain/pruritus imaginable”), with 

an increment of 0.5 cm, While this looks like a metric 
scale, it is recommended to treat VAS scores as ordinal 
because differences between scores cannot consistently 
be interpreted in a meaningful way [17]. For instance, 
the difference between “3” and “1” has clinically and 
intra-individually a different connotation than the dif-
ference between “8” and “6”, although the absolute dif-
ference remains the same. Additionally, although the 
short-term reliability of VAS scores for pain (within 
24  h) is well-documented, their long-term reliability 
remains questionable [18].

Although modeling ordinal longitudinal data is rela-
tively straightforward, the ordinal-metric nature of VAS 
scores poses unique challenges for their longitudinal 
evaluation. Analyzing absolute VAS values assumes long-
term reliability of the scores, while baseline-corrected 
absolute differences rely on the assumption that dif-
ferences carry the same significance for all individuals 
throughout the range of values. Similarly, relative differ-
ences compared to baseline assume long-term reliabil-
ity of the scores and require a nonzero baseline score. 
Although relative differences have been recommended 
[19], the EBStatMax project focused solely on absolute 
values and baseline-corrected absolute differences, since 
many baseline VAS scores were zero [13]. Note that the 
change from baseline may be in contradiction to the ordi-
nal nature of VAS variables. Alternatively, dichotomiz-
ing VAS scores – such as determining whether the score 
decreases by at least 30% – would be more robust against 
fluctuations due to objectivity, but may lose granularity of 
the data.

In EBStatMax we prioritized non-parametric methods 
that rely on the order of values. However, this approach 
also has challenges related to the meaningful analysis and 
interpretation of VAS scores. Indeed, given the intra- and 
inter-subject variability of VAS scores, they may have less 
value for comparing VAS scores across groups of indi-
viduals at one specific time point. Comparison of VAS 
scores between subjects may be possible, but it would 
require a large amount of data or subjects to keep the 
variability under control. Precisely this is an issue in the 
context of rare diseases. A potential solution may be to 
compare VAS scores with baseline scores and define the 
following categories:

•	 improvement (when the difference exceeds a clini-
cally or subjectively relevant threshold);

•	 stable (when the absolute difference is less than a 
threshold);

•	 worsening (when the difference is smaller than the 
complement of a relevant threshold).
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However, dividing the VAS score into these categories 
may lead to loss of information and consequently loss 
of power. Apart from that, it might be difficult to estab-
lish a unified definition of the categories that is based 
on solid, thorough reasoning.

Future research should focus on identifying the 
most appropriate methods for analyzing the metric-
ordinal VAS scores (see Sect.  Methodologies for VAS 
scores) and in identifying the smallest reliably detect-
able change and the minimally important difference at 
which patients experience a chance in symptoms or dis-
ease burden. Additionally, it is worth exploring whether 
the burden of disease might be better captured by a 
quality of life (QoL) scale, which could provide a more 
comprehensive measure than separate VAS scores for 
pain and pruritus.

Longitudinal data and multivariate outcomes
In small-sample trials, where the number of partici-
pants is limited, it is of the utmost importance to opti-
mize the use of available information when assessing 
a treatment. One strategy to maximize information is 
to evaluate longitudinal measurements of the clinical 
outcome of interest, provided such data is available. 
However, collecting measurements in EBS are often 
invasive, including more extensive bandage and dress-
ing changes, causing discomfort for the patients. This 
may impair the willingness for patients to participate in 
clinical trials, the compliance and adherence to the trial 
schedule and the recruitment. Another strategy to max-
imize information is to incorporate multiple outcomes 
into the analysis. Rare diseases are often multifaceted, 
making it challenging – and sometimes inadequate – 
to select a single clinically relevant endpoint that fully 
captures the therapeutic benefits of a treatment. More-
over, patient-centered outcomes, such as QoL assess-
ments, are increasingly recognized as essential for 
evaluation of treatments [16, 20, 21] and should be con-
sidered alongside more traditional outcomes.

In the EBS trial, both the number of blisters and QoL 
were assessed, reflecting the significant impact of the dis-
ease on daily activities for patients. However, combining 
outcomes of different data type in a single analysis pre-
sents specific challenges. For instance, multiple testing 
procedures often lead to a decrease in power, while semi-
parametric and parametric modeling approaches may 
be difficult to apply in small-sample settings. GPC and 
non-parametric multivariate methods [22, 23] have been 
shown to be effective and easy to use methods to assess 
a treatment in a small sample with multiple outcomes of 
varying data type, such as, blisters (as a count or binary 
outcome) and QoL ( as an ordinal outcome) [16].

Despite their promise, the potential of these non-
parametric methods for analyzing multiple outcomes 
warrants further exploration. Comparisons with other 
methodologies are needed, including, but not limited to:

•	 Parametric combined models with split sample [24–
26] or pseudo-likelihood inference [25–27]

•	 Item response theory [28]
•	 The O’Brien methods [29] and its variations [30]
•	 Non-parametric and semi-parametric MANOVA 

[31]
•	 Multiple testing procedures [32]

In addition, the GPC method should be expanded to 
handle both longitudinal and multiple outcomes simul-
taneously, which would further enhance their utility in 
complex trial designs.

Finally, endpoints and methodologies that allow for 
simultaneous assessment of blister counts, the type 
of blisters (healing or non-healing), pruritus and pain 
should be further developed.

Data‑generating mechanism for simulation‑based method 
comparison
In the EBStatMax project, several statistical methodolo-
gies were compared in terms of their potential to evalu-
ate longitudinal cross-over information in small sample 
trials. This evaluation was based on their ability to con-
trol type I error, the power to detect a treatment effect 
and handling of missing data within a simulation study. 
This study permuted the original observations in the case 
trial to remove any treatment effects and subsequently 
inserted artificial effects based on clinical reasoning [12, 
13, 16]. This approach was chosen because it primar-
ily relies on observed data, omitting the requirement of 
making several (distributional) assumptions when simu-
lating data in a traditional way by drawing observations 
from distributions. Alternatively, a mixed-effects model, 
such as the one developed in Verbeeck et  al. [12] could 
serve as a data-generating mechanism. Of course, any 
mixed-effects model is subject to assumptions, which 
may be misspecified.

A persistent challenge in comparing statistical meth-
odologies lies in creating simulation scenarios that do 
not inadvertently favor one method over another. For 
instance, in our simulations, the GPC methodology 
might have been advantaged due to the prioritization of 
certain time points. Conversely, using a mixed-effects 
model as the data-generating mechanism could inher-
ently favor parametric modeling approaches.

Further research is needed to evaluate the utility of 
several data-generating mechanisms. Regardless of the 
approach, simulated scenarios should be grounded in 
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clinical expert knowledge, derived from sources such as 
registries, trials or clinical experience. In addition, sim-
ulations should explore several realistic scenarios and 
assess the impact of various forms of misspecification 
through sensitivity analyses.

Reflection on statistical methodology
Missing data
For some methods employed in the EBStatMax project, 
strategies to handle missing data are well-established 
[33]. For example, likelihood-based or Bayesian meth-
ods ensure validity under the assumption of missingness 
at random (MAR), meaning the missingness mecha-
nism can depend on covariates and observed outcomes, 
but not on unobserved outcomes. However, GEE, which 
lacks a likelihood foundation, requires particular care. 
Options include using weighted GEE (WGEE), or pre-
processing GEE with multiple imputation (MI; [34]). 
Multiple imputation is a versatile technique, applica-
ble not only to GEE, but also to any method without a 
likelihood or Bayesian framework, including the non-
parametric methods discussed in this text [35]. Because 
missingness not at random (MNAR) – where missing-
ness also depends on unobserved outcomes – cannot be 
ruled out based on observed data, sensitivity analyses are 
crucial. These analyses assess the impact of unverifiable 
assumptions about the missing data mechanism on key 
inferences, such as treatment effects. Sensitivity analyses 
can be conducted using multiple imputation based meth-
ods [36].

At the time of the EBStatMax project, the non-para-
metric marginal models could only accommodate fully 
observed longitudinal profiles. Consequently, profiles 
with missing data had to be excluded from the analysis, 
which is suboptimal in rare disease trials, where data is 
already scarce. However, an extension of these models 
has since been published, allowing for missing data in a 
clustered-data setting [37]. Future research should exam-
ine how this adapted approach handles different miss-
ingness mechanisms, in particular MAR and MNAR. A 
comparison with an MI-based approach would also be 
highly valuable.

In the unmatched GPC, initial studies on the missing-
ness mechanisms have been conducted [38], but further 
exploration is needed. This is true for matched GPC, 
whether used independently or in conjunction with MI.

Covariate adjustment for non‑parametric methods
An issue commonly encountered in non-parametric sta-
tistical methodology is the limited ability to correct for 
covariates beyond treatment. The non-parametric meth-
ods evaluated in the EBStatMax project are no exception, 

although the non-parametric marginal models allow for a 
stratification factor for repeated measures, alongside the 
treatment. Likewise, a GPC analysis can be stratified in pre-
defined subgroups [39]. However, dividing an already small 
sample into even smaller strata may become prohibitive in 
some rare-disease clinical trials. Although covariate adjust-
ment was not necessary for the analyses in the EBStatMax 
project, it was identified as a limitation of the non-para-
metric methodologies.

To ensure wider applicability, further research should 
focus on extending the non-parametric marginal mod-
els to incorporate covariate adjustment, which may be 
achieved using ideas from the univariate non-paramet-
ric ANCOVA models [40] and the semi-parametric 
repeated measures ANCOVA models [41]. In contrast, 
semi-parametric GPC regression models have already 
been suggested for univariate outcomes [42], which have 
been extended to multivariate outcomes [43]. However, 
these models depend on asymptotic assumptions and 
further research is needed to study their performance 
in small sample settings and, if necessary, to propose 
improvements.

Methodologies for VAS scores
When assessing treatment effects using a VAS score, 
as performed for both pain and pruritus in the EBStat-
Max project, the outcome is often treated as ordinal. In 
small samples, where fitting full likelihood models, such 
as (continuous) ordinal regression models [17, 44] is 
challenging, longitudinal ordinal outcomes can be mod-
eled marginally using GEE-type ordinal logistic models. 
These models do not explicitly describe the association 
structure, but rather replace it with a potentially mis-
specified working assumption, while still yielding valid 
inferences. However, several issues were encountered 
when modeling the VAS score with these GEE-type 
models. First, since the VAS score is measured with an 
accuracy of 0.5 cm (see Sect. Pain and pruritus: ordinal 
or metric visual analogue scale (VAS)), a transformation 
of the outcomes is needed. For example, multiplying the 
VAS scores by 2 yields an ordinal outcome, now rang-
ing from 0–20, which can be analyzed using an ordinal 
logistic model. Second, small sample bias corrections are 
necessary when the variance exhibits heteroskedasticity 
over time [12]. Unfortunately, such corrections are not 
readily available for ordinal outcomes in mainstream sta-
tistical software. Without small sample bias corrections, 
re-analyzing the simulated scenarios from Geroldinger 
et al. [13] using the following GEE-type model (based on 
Verbeeck et al. [12]):
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where i = 1, 2 is an index for the treatment assignment, 
k = 1, . . . ,N  denotes the subjects, t = 1, . . . , 4 indicates 
time points, Xikt ∈ {0, 1, . . . , 20} are the ordinal VAS 
scores, a = 1, . . . , 20 , θk represents the covariate vec-
tor including Gik (treatment group indicator), Pk (period 
indicator) and Tijkt (discrete time indicator), with inde-
pendent and heterogeneous autocorrelation structure, 
shows a slightly liberal type I error: 0.055 (95% CI 0.049; 
0.062) and 0.061 (95% CI 0.055; 0.068), respectively. 
The power to detect the treatment effect (0.27 and 0.26, 
respectively) is near that of the non-parametric mar-
ginal model (0.28), but lower than that of the prioritized 
unmatched GPC (0.67). This suggests that the conclu-
sions drawn from the comparison between methodolo-
gies on the blister outcome [12] can be extended to the 
ordinal outcome, namely, the prioritized unmatched 
GPC exhibits higher power to detect treatment effects in 
longitudinal cross-over trials than GEE-type models in 
small samples.

However, VAS scores are often criticized for their large 
inter-subject variability and, to a lesser extent, intra-sub-
ject variability (Sect. Pain and pruritus: ordinal or metric 
visual analogue scale (VAS)). One approach to address 
this variability is to correct for baseline values by intro-
ducing them as covariates in the statistical model. While 
this is straightforward for regression models, it requires 
further investigation for non-parametric methods 
(Sect.  Covariate adjustment for non-parametric meth-
ods). For the non-parametric marginal model, developing 
an ANCOVA test capable of handling repeated measures 
(i.e., the longitudinal profile of the remaining VAS values) 
is a promising avenue. Furthermore, further research into 
modeling longitudinal VAS scores could explore pseudo-
likelihood models with pairwise fitting [27] or split-sam-
pling techniques [24–26].

Adaptive designs
When investigating the optimal design for the longitu-
dinal cross-over EBS trial, the mixed-effects model with 
the highest weight from a model-averaging approach was 
selected as the “ground truth model” to optimize future 
studies [15]. Although it is common practice in optimal 
design to assume a single model as the truth, a potential 
drawback is that this model may be misspecified, leading 
to a suboptimal design. This risk can potentially be miti-
gated by using robust methods like E-family (Bayesian) 
optimal designs [45, 46], which rely on a distribution of 

logit [P(Xikt ≤ a|θk )] = βa + β1Gik + β2Pk +

5∑

j=3

βjTijkt + β6GikPk

+

9∑

j=7

βjGikTijkt +

12∑

j=10

βjPkTijkt ,

model parameters, rather than fixed values. Alternatively, 
a model-averaging approach [47, 48] can be employed, 
wherein multiple models and/or parameters are weighted 
and incorporated into the optimal design calculations. 
However, robust model-averaging design methods are in 
general computationally more time-consuming and they 
still provide a design that does not adapt as additional 
information becomes available. Adaptive designs offer 
a potential solution to this limitation, where the model 
is updated when new data is collected and the design is 
adjusted to reflect these updates [49]. This adaptation can 
occur at both the population level (updating the design 
for the entire study population) or at the individual level 
(updating the design for the individual patient), using the 
initial model as prior information. Future research on 
optimal study designs could include adaptive elements 
and investigate the potential gain in information and 
determine whether adaptive designs are more robust to 
misspecification of the initial model.

Individual patient predictions
For longitudinal data, the benefit of having established a 
mixed-effects models, such as for the treatment of blis-
ter lesion counts [12], is that the model can be used for 
designing individual outcomes in a future study and pre-
dicting outcomes in clinical practice. If correctly speci-
fied, the individual outcomes can be predicted with either 
no information of the longitudinal outcome (i.e., based 
on only baseline covariates), or with additional longitu-
dinal outcomes collected during the study. Individualized 
treatment effects can be estimated initially and refined as 
more data become available during the course of treat-
ment. This is commonly called precision medicine, where 
the treatment is tailored towards the individual patient, 
based on their unique characteristics and/or observa-
tions. In statistical terms, this is often referred to as indi-
vidual maximum a posteriori (MAP) or empirical Bayes 
estimation (EBE) for non-linear mixed-effect models. It is 
defined as:

where li is the conditional likelihood (−2 log likelihood) 
given the fixed effects β , the random effects bi , and the 
individual characteristics and design parameters zi . The 
prior distribution is specified as the probability density 
function (pdf) given bi , assuming bi follows a multivariate 
normal distribution with mean 0 and variance � , where � 
denotes the inter-individual variability.

The individual parameters are estimated using β , b̂i , 
and zi , enabling predictions at an individual level. Note 
that the MAP estimation can also guide individual-level 
design adaptations, such as optimizing the timing of 

b̂i = arg min
bi

li(β , bi, zi, . . . )+ log(pdf(bi;�)),
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observation time(s) to maximize the information gain 
(see Sect. Adaptive designs). This approach is especially 
valuable in rare diseases, where patient numbers are typi-
cally very low and maximizing the individual information 
is often essential.

Reflection on clinical and patient‑relevant aspects
Despite the insights gained in evaluating longitudinal 
outcomes and optimizing the design of clinical trials for 
rare diseases, many clinical questions still remain regard-
ing the design of rare disease clinical trials in general and 
those for EB in particular.

One of the key issues in many rare disease clinical tri-
als is identifying optimal endpoints to evaluate clinical 
and patient-relevant treatment effects and obtain multi-
stakeholder consensus on standardized and validated 
endpoints [50]. Clinical trials in EB have used various 
endpoints, including the number of blisters, wound heal-
ing, pain reduction, and quality of life [51]. However, 
selecting endpoint(s) that capture a patient’s overall bur-
den best while remaining sufficiently sensitive to treat-
ment effects can be challenging.

To optimize endpoint selection, engaging with regula-
tory agencies is essential. Endpoints should align to reg-
ulatory guidelines, ensuring feasibility, reproducibility, 
and patient-centeredness. Moreover, scalable, standard-
ized and validated endpoint measurement tools should 
be available. For example, although many outcomes have 
been assessed in EBS, the number of blisters assessed by a 
rater remains one of the most frequently used outcomes, 
despite its limitations. Indeed, it is subject to uncertainty 
(Sect. Number of blister lesions) and therefore less repro-
ducible. Regulatory agencies, such as the FDA, favor an 
investigator global assessment (IGA). However, it is chal-
lenging to convert counting blisters or blister areas into a 
5-step IGA defining global disease activity as severe (5), 
moderate, mild, almost clear and clear (1) [52]. In addi-
tion, a patient still must visit a health-care facility for 
blister assessment, which is associated with discomfort 
and pain for EB patients. Both the blister uncertainty and 
the patient’s travel burden might be mitigated by explor-
ing remote blister assessment options using digital tools. 
Such tools may even increase the number of measure-
ments, improve data granularity, and reduce variability 
in assessment definitions and ultimately enhancing the 
evaluation of treatment effects. An important aspect of 
clinical blister assessment, whether manual or digital, is 
the differentiation between acute and chronic lesions. 
While both types contribute to the patient’s overall bur-
den, their pathophysiological processes may differ, and 
treatments may affect them differently.

Similarly, additional research is needed to evalu-
ate whether patient-centered outcomes measures and 

patient-reported outcomes, such as VAS scores and QoL, 
are informative for clinical trials (see Sect. Pain and pru-
ritus: ordinal or metric visual analogue scale (VAS)). 
Moreover, advances in molecular genetics and patho-
mechanisms, methodology and technology, alongside 
facilitated approval procedures and funding initiatives 
in rare diseases have stimulated translational research, 
which paves the way to personalized precision medicine 
and broadens therapeutic possibilities. It is therefore 
important to acknowledge that even within the same dis-
ease, inter- and intra-individual pathogenic heterogene-
ity and the diversity in therapeutic mechanisms of action 
may hinder identification of a single optimal endpoint. 
Even if a reliable and valid endpoint can be identified, 
questions about the external validity or generalizability of 
the results remain. Practically speaking, any selected end-
point should undergo validation through inter-and intra-
reliability testing. Further research, such as, for example, 
randomized inference methods [53], is required in this 
area.

Efforts to reduce patient burden in clinical trials could 
focus on minimizing placebo treatment duration or avoid 
it entirely. Potentially, patient registries that collect real-
world data, could help reduce the need for extended pla-
cebo periods.

Another inherent challenge in rare disease clinical tri-
als is patient heterogeneity. Methodological strategies 
should be developed to stratify patients based on base-
line characteristics and distinguish between respond-
ers and non-responders to interventions. Specifically for 
cross-over trial designs, guidelines and strategies should 
be developed to mitigate cross-over effects, which imply 
more complicated interpretation of the case trial results 
[10].

To address these challenges, fostering international 
collaboration among clinicians, methodologists, statisti-
cians, regulatory agencies, and patient advocacy groups 
is essential to ensure good progress in rare disease 
research [51]. Such collaborations, of which EBStatMax 
is an example, can help to consolidate data, enhance evi-
dence quality, and facilitate translational research.

Discussion
The EBStatMax project [9] has provided valuable insight 
into addressing the unique challenges of rare-disease 
clinical trials, particularly in evaluating longitudinally 
repeated measures in Epidermolysis bullosa simplex [12–
16]. While the results are based on one particular case, 
they can be readily extended to other indications and rare 
diseases. The challenges related to study design and anal-
ysis are similar across different rare diseases, allowing 
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promising novel methodological approaches developed 
for one condition to be applied more broadly.

As is often the case, research projects address only a 
specific set of questions, leaving other equally relevant 
issues unaddressed. Furthermore, some answers inevita-
bly lead to to new questions. We have summarized the 
methodological questions that emerged from this pro-
ject, including those related to outcome measurements, 
statistical approaches, and clinical aspects. It is clear that 
optimizing endpoint selection, addressing measurement 
variability, exploring missing data mechanisms, incor-
porating covariate adjustments and developing adaptive 
trial designs are critical steps for improving the quality 
and efficiency of rare disease research.

Epidermolysis bullosa simplex is a rare and debilitating 
genetic disorder characterized by skin fragility, leading 
to painful blisters and wounds [11]. Improving clinical 
trial design and outcome measurement in EBS research 
is essential for developing therapies to alleviate the bur-
den of this condition. By addressing challenges related to 
identifying optimal endpoints, including patient-centered 
outcome measures, managing patient heterogeneity, 
leveraging technological advancement, and minimiz-
ing patient burden during clinical trials, the EB research 
community can move toward more effective treatments 
and improved quality of life for patients [51].

Collaborative efforts among researchers, clinicians, 
regulatory agencies, and patient advocacy groups will 
be essential to advance rare disease clinical research and 
ultimately benefit individuals living with these condi-
tions. Continued research and international cooperation 
are critical to making meaningful progress in this vital 
area of healthcare.
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