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ABSTRACT
Flatworms are increasingly recognised for their ecological significance and potential to disrupt local fauna, yet most research 
has focused on conspicuous, larger planarians. Smaller flatworms, or microturbellarians, are often top predators within meio-
faunal food webs. Here, we report a novel interaction involving a rhabdocoel microturbellarian, Strongylostoma simplex simplex, 
preying on Daphnia water flea embryos. We identified the flatworm based on histological serial sections and recognised key di-
agnostic traits. In a laboratory experiment, we tested for survival and offspring production of Daphnia magna in the presence and 
absence of S. simplex simplex. Exposure to flatworms caused a drastic reduction in water flea fitness, indicated by the strongly re-
duced survival and offspring production in flatworm-exposed D. magna. This finding corroborates our visual observations of egg 
predation by these flatworms and suggests a strong pressure on Daphnia population dynamics. This is particularly concerning 
for small or isolated water bodies, such as the water wells located in a cemetery in Berlin in which we documented this interac-
tion, as this would increase the probability of encounters between flatworms and water fleas. As Daphnia play an essential role 
in regulating phytoplankton blooms and supporting higher trophic levels in freshwater ecosystems, understanding the ecological 
consequences of predatory flatworms is imperative.

1   |   Introduction

Rhabdocoela is the most species-rich taxon of small flatworms 
living in freshwater habitats, collectively referred to as micro-
turbellarians (WoRMS 2024). As top predators within meiofau-
nal food webs, these animals likely play critical roles in such 
ecosystems. Although a substantial body of literature exists 
on rhabdocoel ecology, predation behaviour and dietary pref-
erences, much of this research dates back several decades and 
focuses primarily on a few mesostomid species (Blaustein and 
Dumont 1990; Brendonck et al. 2002; Case and Washino 1979; 
De Roeck et  al.  2005; De Meester and Dumont  1990; 
Dumont and Carels  1987; Dumont et  al.  2014; Dumont and 

Schorreels 1990; Jennings 1957; Kaur 2000; Kolasa 1984; Kolasa 
and Schwartz 1988; Maly et al. 1981; Menn and Armonies 1999; 
Rocha et al. 1990; Schwartz and Hebert 1982, 1986; Tranchida 
et  al.  2009; Wrona and Koopowitz  1998). However, several of 
these studies already indicate that rhabdocoel flatworms can 
alter invertebrate community structures through predation 
pressure (Blaustein  1990; Blaustein and Dumont  1990; Case 
and Washino 1979; Maly et al. 1981; Schwartz and Hebert 1982; 
Tranchida et al. 2009).

For those rhabdocoels whose diet is known, cladoceran 
(Crustacea) zooplankton appear to be a common prey (Blaustein 
and Dumont 1990; Dumont et al. 2014; Kolasa and Schwartz 1988; 
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Rocha et  al.  1990). Large zooplankton such as the water flea 
Daphnia are key ecological interactors in freshwater food webs, 
as they efficiently graze on phytoplankton and are preferred prey 
for a range of predators (Miner et al. 2012). Studies reveal that flat-
worms can exert strong pressure on cladocerans, with effects rang-
ing from shortened lifespan (Nandini and Sarma 2013) to reduce 
population size (Caramujo and Boavida  2000; Maly et  al.  1981; 
Wang et al. 2011), and ultimately altered community structure and 
ecosystem functioning (Devkota et al. 2023). Research efforts on 
flatworm predation on cladocerans have almost explicitly focused 
on species of Mesostoma (Blaustein and Dumont  1990; Dumont 
et al. 2014; Rocha et al. 1990), and only a handful of studies on 
the interactions between nonmesostomid flatworms and cladoc-
erans exist (see Houben et  al.  2014; Nandini and Sarma  2013, 
Tessens et  al.  2023; Wang et  al.  2011). Flatworms can rapidly 
reach high population densities in small water bodies (Blaustein 
and Dumont 1990), where cladocerans such as Daphnia typically 
occur. Therefore, the investigation of novel predator–prey interac-
tions is critical for understanding the broader ecological impacts of 
flatworms on freshwater community dynamics.

In this study, we report the first record of rhabdocoel flatworms 
feeding on water flea embryos in Berlin, Germany. The location 
of this finding has been regularly sampled for water fleas, and 
we recently observed a sudden, dense population of rhabdocoel 
flatworms, both inside brood chambers of water fleas as well 
as free-swimming (A. Fürst von Lieven, N. Lemke & N. Tüzün, 
personal observation), previously unrecorded in the area. The 
species is identified through morphological study, and its taxo-
nomic status is re-assessed. In addition, the potential impact of 
this interaction on local Daphnia water flea populations is ex-
plored through a short-term in vitro experiment.

2   |   Material and Methods

2.1   |   Flatworm Specimens and Sampling Location

Flatworm specimens used in the morphological study were 
collected from a single water well in a cemetery in Berlin 
(52°30′59.1″N, 13°16′56.9″ E) in September 2023. We measured 
basic environmental parameters of the well water (temperature, 
pH, conductivity, dissolved oxygen) during September 2024, 
using a WTW Multi3630 probe.

2.2   |   Morphological Study

Specimens of S. simplex simplex selected for morphological study 
were transported to the Diepenbeek campus of Hasselt University, 
where they were fixed in hot Bouin's fixative at 50°C and embed-
ded in paraffin. The samples were then serially sectioned at 4 μm 
using a Leica SM2000 R Microtome in sagittal, frontal and hori-
zontal planes. The sections were stained with Heidenhain's hae-
matoxylin and counterstained with erythrosine.

A Leica LED DM2500 microscope, equipped with a drawing 
mirror, was used to study the sections and create a reconstruc-
tion of the internal organs. Micrographs and measurements 
were taken using the LAS X software provided by the supplier, 
with measurements performed along the central axis of the 

studied structures. To the authors' knowledge, no type material 
for this species, nor either of its two subspecies, exists for com-
parative study.

2.3   |   Observations of the Flatworm–Water Flea 
Interaction

Following the accidental observation of flatworm predation in 
D. magna water flea specimens collected from the cemetery 
well, we first conducted in situ field observations. To understand 
the behaviour of S. simplex simplex in the presence of D. magna, 
and vice versa, we made live observations by adding specimens 
of Daphnia and flatworms into transparent containers filled 
with water. Water fleas were collected from the same cemetery 
well, as well as from additional locations in Berlin where we 
detected flatworm-infected water fleas. For a more detailed ob-
servation, we placed water fleas and flatworms in a Petri dish 
under a camera-stereomicroscope set-up (Olympus DP23 cam-
era mounted on an Olympus SZX16 stereomicroscope). We ob-
served infected water fleas (i.e., with flatworms present in the 
brood chamber), as well as uninfected water fleas in the pres-
ence of (free-swimming) flatworms. Observations under the ste-
reomicroscope were recorded in photo and video format.

2.4   |   Experimental Design to Test Effects 
of Flatworms on Water Fleas

To test for the effects of the flatworms on water fleas, we per-
formed a short-term experiment where we exposed individual 
water fleas to flatworms and measured two fitness-related traits: 
water flea survival and offspring production. We used eight rep-
licates per the two treatments, that is, control (no flatworm) and 
flatworm treatment (total N = 16). Each water flea was housed 
individually in 300-mL vials filled with tap water and fed every 
3rd day with dry yeast. Vials were refreshed every 3rd day. We 
checked for survival and hatched offspring every second day. We 
recorded survival and the total number of offspring produced 
over the 9-day experimental period.

For the treatment group, we added one individual water flea per 
vial that contained flatworms in its brood chamber. We visually 
confirmed the presence of flatworms in the water flea brood 
chamber but did not count the number of flatworms per water 
flea. For the control group, we added one individual water flea 
per vial that did not contain any flatworms in its brood chamber. 
Individual water fleas were selected to be similar in size, and all 
carried eggs at the beginning of the trial (eggs were of similar de-
velopmental stage). During the experiment, conducted in early 
October, vials were exposed to the natural day-night regime (ca. 
12:12 light: dark) and standard room temperature (between ca. 
19°C and 22°C).

2.5   |   Statistical Analyses of Experimental Data

To test for differences in water flea survival between flatworm-
treated and the control group, we used Fisher's exact test. To test 
for differences in offspring production between the flatworm-
treated and the control group, we used the Wilcoxon rank-sum 
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test. This nonparametric test is preferred for data that deviate 
from the assumptions of normal distribution and homogeneity 
of variances. All analyses were performed in R version 4.3.2 (R 
Core Team 2023).

3   |   Results & Discussion

3.1   |   Taxonomical Account

Dalytyphloplanida Willems et al. (2006).

Neotyphloplanida Willems et al. (2006).

Limnotyphloplanida Van Steenkiste et al. (2013).

Typhloplanidae Graff (1905).

Strongylostoma simplex simplex Meixner (1915). Figures 1–3.

3.1.1   |   New Locality

Luisenkirchhof II in Berlin, Germany (52°30′59″ N, 13°16′57″ 
E). Water well made out of concrete (diameter 75 cm, height 
70 cm) in a cemetery, with ca. 1 cm sediment on the bottom 
(Appendix  Figure S1), filled with tap water (no natural water 
flow) and frequently used as a source of drinking water by 
wild animals. Habitat includes water fleas (D. magna and D. 
longispina), diving beetles and larvae of mosquitoes and may-
flies. Filamentous algae were present. Water parameters: 23.0°C, 
7.823 pH, 677 μS/cm conductivity and 7.60 mg/L dissolved oxy-
gen (measured on 7 September 2024).

3.1.2   |   Previously Known Distribution

Lunzer See (Meixner  1915) and Schwarzensee, Austria 
(Steinböck  1926), Lago Maggiore, Italy (Steinböck  1948, 1949, 
1951), Lake Mývatn, Iceland (Steinböck  1948), Baraus Lake, 
Tsjeljabinsk, Russia (Rogozin  2017), and Upper Volga River 
Basin, Russia (Korgina 2002). Luther (1963) also references a re-
cord by Steinböck (1932) of the species occurring in Lago di Como 
and Lago di Garda, Italy, which we were unable to confirm. Note 
that, according to Luther (1963), it is uncertain whether the his-
torical records prior to his work in 1963 pertain to S. simplex 
simplex or S. simplex lapponicum Papi in Luther 1963.

3.1.3   |   Material Examined

Video recordings and photographs of live specimens. Six serial 
sections: Three in sagittal orientation, one in frontal orientation 
and two in transverse orientation.

3.1.4   |   Description

The specimens are 0.31–0.51 mm long (n = 2), with a width ap-
proximately half the length of the body. Both the anterior and 

posterior ends of the body are smoothly rounded. Two brown-
pigmented eyes are located at the anterior end. The epidermis 
is cellular and fully ciliated (Figure  1E–F: c) and measures 
approximately 10 μm in height (n = 2). The cilia measure ap-
proximately 7 μm in two specimens. Circular and longitudi-
nal muscles are present below the basal lamina. The animal 
is predominantly brown, except for its transparent edges and 
a light-coloured anterior region. The eggs of the animals, ap-
proximately 200 μm in diameter (measured on live specimens), 
exhibit a reddish-brown coloration, observed in live specimens 
(Figure 4A and Video 1). In general, the pharynx (Figure 1A–C: 
ph) is as described by Meixner (1915). It is situated in the ante-
rior third of the body, measuring 115–160 μm (n = 2) in length, 
with a diameter of 92–116 μm (n = 2). The mouth opening, pre-
pharyngeal cavity and pharyngeal lips are ciliated. An external 
layer of circular muscles surrounds the pharynx bulb, just in-
side the septum. Approximately 40 radial muscles run between 
the internal and the external walls. The pharyngeal lumen is 
covered with a relatively high nucleated epithelium and is sur-
rounded by an inner circular and an outer longitudinal muscle 
layer. The brain is positioned immediately anterior to the phar-
ynx and can be recognised as an eosinophilic mass (Figures 1C 
and 2A: br).

Immediately posterior to the pharynx lies the reproductive 
system, which occupies roughly the middle third of the body 
(Figure 3). The ovary (Figures 1C, 2D, 3A: ov) is inverted pear-
shaped and measures 69–71 μm in length (n = 2). The oocytes are 
arranged in a row, with the largest oocytes located most distally. 
The vitellaria (Figures 1A,D–E, 3A: vi) are dispersed through-
out the body, primarily on the dorsal and ventral sides. The vi-
telloduct (Figure 3A: vd) is connected to the proximal end of the 
oviduct, which leads to the seminal receptacle (Figures 1B, 2C, 
3A: rs). The seminal receptacle has a diameter of 15 μm (n = 1) 
and no muscular stalk. A female duct connects the female re-
productive system to a common genital atrium (Figures  1F, 
2B,E–F: cga), which measures 52 μm in width and 65 μm in 
length (n = 1). A large eosinophilic gland occurs adjacent to the 
genital atrium (Figures 1B, 2F, 3: eg1), though no connection to 
the genital atrium was found. The genital opening is centrally 
located and ciliated, with cilia about half the length of those on 
the epidermis.

The testes (Figure 1A,E: t) are situated dorsally in the poste-
rior third of the body and vary in shape from oval to rounded, 
though they are predominantly rounded. The vas deferens 
(Figure 3B: vdf) empties into the copulatory bulb (Figure 3B: 
cb), which encloses a single seminal vesicle (Figures 2E, 3B: 
vs). The seminal vesicle measures 52 μm in width and 68 μm 
in length (n = 1) and is divided into two parts with a minor 
connection between them. Given the presence of two testes, 
it is likely that the vas deferens fuse somewhere before enter-
ing the bulb. However, we did not observe the separate vas 
deferens or the point where this fusion may occur. A short 
ejaculatory duct (Figure  3A: de) empties into the common 
genital atrium. It measures 19–25 μm in length (n = 2) and is 
surrounded by a well-developed, eosinophilic prostatic gland 
(Figures  1A, 2E, 3B: eg2) with a diameter of 25 μm (n = 1), 
containing a medium-grained secretion. These glands are not 
mentioned by Meixner (1915) or Luther (1963).

 20457758, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.71277 by U

niversiteit H
asselt D

ienst Financiën, W
iley O

nline L
ibrary on [17/06/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 of 11 Ecology and Evolution, 2025

3.1.5   |   Remarks

The absence of a proboscis (Willems et al. 2006) and lack of a 
double connection in the female system (Van Steenkiste and 
Leander 2022; Vicente-Hernández et al. 2023) exclude the stud-
ied specimens from Kalyptorhynchia and Mariplanellida, respec-
tively, and unambiguously place them within Dalytyphloplanida. 

The presence of paired, compact testes, a single ovary, follicular 
vitellaria, a single genital opening and a pharynx rosulatus po-
sitions them within the (paraphyletic) family ‘Typhloplanidae’ 
(Graff 1905; Houben 2013; Houben et al. 2022; Van Steenkiste 
et  al.  2013). This species-rich assemblage comprises 287 de-
scribed species to date (Tyler et al. 2006–2025), with the speci-
mens under study here designated to Strongylostoma.

FIGURE 1    |    Strongylostoma simplex simplex, details of the internal morphology on sagittal sections. (A–C) Structures oriented with the anterior 
end toward the top of the plate. (D) Posterior end of the body. (E) Detail of the dorsal epidermis. (F) Detail of the ventral epidermis. Scale bar = 20 μm. 
br: Brain; c: Cilia; cga: Common genital atrium; eg1: Eosinophilic gland 1; eg2: Eosinophilic gland 2; od: Oviduct; ov: Ovary; pc: Prepharyngeal cav-
ity; ph: Pharynx; rs: Seminal receptacle; t: Testis; vi: Vitellaria; vs: Seminal vesicle.
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Species of Strongylostoma are characterised by dermal rhabdites, 
protonephridia that open near the mouth, a genital opening in 
the anterior two-thirds of the body, a pharynx located in the mid-
dle or anterior part of the body and the absence of a uterus and 
copulatory atrium (Graff 1913; Luther 1904, 1963; Örsted 1843; 
Van Steenkiste et al. 2011). These characteristics were corrobo-
rated in our studied specimens. Most species of Strongylostoma 
also possess eyes (Örsted  1843), except for S. coecum Sekera, 
1912. Additionally, most species of Strongylostoma typically 
have a seminal receptacle with a muscular stalk; however, this is 
not the case for S. simplex simplex (Meixner 1915), the (sub)spe-
cies to which the specimens under study belong.

Strongylostoma simplex simplex is morphologically most similar 
to S. devleeschouweri Van Steenkiste et al. 2011. These two spe-
cies are, for instance, the only ones in the genus lacking spines 
in the ejaculatory duct and are also distinctive in that the com-
mon genital atrium is not divided into two parts—a key feature 
distinguishing S. simplex simplex from S. simplex lapponicum 
(Luther  1963; Van Steenkiste et  al.  2011). However, S. devlee-
schouweri is distinct from the specimens under study due to its 
green-spotted colouration, caudally positioned testes, the pres-
ence of the genus-typical sphincter around the seminal recepta-
cle stalk, a caudal protrusion of the common genital atrium and 
granular eosinophilic prostate glands filling the copulatory bulb 
(Van Steenkiste et al. 2011).

3.2   |   Impact of Flatworm Predation on 
Water Fleas

3.2.1   |   Observational Findings

During in situ field observations, specimens of S. simplex sim-
plex were observed either in the brood chamber of the water flea 
D. magna (detectable by white reflecting colouration) or free 

swimming in the water column (the flatworm is visible to the 
naked eye). While the observations described below are mainly 
based on D. magna, we also detected flatworm infections in a 
smaller water flea species that co-occurred in the sampling site, 
that is, D. longispina (Appendix Figure S2).

During our detailed observations in the container and Petri 
dish, we observed flatworms actively chasing the water fleas 
and attaching themselves to the carapace (exoskeleton). The 
swimming speed of the flatworms was visibly faster during 
chases. Some water fleas were observed to shake the worms 
off by rapid circular movements (Supporting Information 
Video S2). In other cases, flatworms successfully entered the 
water fleas' body cavity via the opening in the filter apparatus. 
Once inside the body cavity, flatworms squeezed themselves 
into the brood chamber of the water fleas and moved be-
tween the embryos (Figure 4A, Video 1). Infected water fleas 
were occasionally observed to perform ventral flexion of the 
postabdomen (Supporting Information Video S3), a behaviour 
typical during the release of newborn juveniles (Ebert 2005), 
performed possibly as a reaction to the flatworm infection. 
Additionally, infected water fleas seemed to have reduced 
swimming performance.

Importantly, we observed partially deformed embryos in 
flatworm-infected water fleas (Figure 4B), suggesting a poten-
tial brood predation role of the flatworm. While we did not make 
any direct observation of water flea embryos being eaten by the 
flatworms, we noted that flatworms found in brood chambers 
were of darker colouration—in contrast, free-swimming flat-
worms are more or less white coloured (Figure  4). This co-
louration may potentially be due to recently digested water flea 
eggs. Aside from the potential brood predation behaviour, we 
also observed flatworms attached to the water fleas' ovaries 
and/or midgut, potentially feeding on tissues other than eggs 
(Appendix Figure S3).

VIDEO 1    |    The water flea Daphnia magna infected by the flatworm Strongylostoma simplex simplex. Note the multiple flatworms inside the 
Daphnia brood chamber, with one flatworm carrying an egg (reddish-brown), as well as the free-swimming flatworms. Video content can be viewed 
at https://onlinelibrary.wiley.com/doi/10.1002/ece3.71277
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3.2.2   |   Experimental Findings

After 9 days, only one of eight water fleas survived in the flatworm 
treatment, whereas six of the eight survived in the (flatworm-
free) control group (Figure 5A). This difference was statistically 
significant (p = 0.0152, Fisher's exact test). The average number 

of offspring produced over 9 days was 14.75 for the control and 
2.25 for the flatworm treatment group (Figure 5B); a statistically 
significant difference (p = 0.0424, Wilcoxon rank-sum test). In 
the flatworm treatment group, five of the eight water fleas did 
not produce any offspring, whereas in the control treatment, only 
two water fleas did not produce any offspring (Figure 5B).

FIGURE 2    |    Strongylostoma simplex simplex, details of the internal morphology on sagittal sections (A–F). Brain in the anterior part of the 
body (A). Genital opening and common genital atrium (B). Seminal receptacle with a segment of the oviduct (C). Ovary (D). Seminal vesicle (E). 
Eosinophilic gland next to the common genital atrium (F). Scale bar = 20 μm. Br: Brain; cga: Common genital atrium; de: Ejaculatory duct; eg1: 
Eosinophilic gland 1; eg2: Eosinophilic gland 2; gp: Gonopore; od: Oviduct; ph: Pharynx; rs: Seminal receptacle; vs: Seminal vesicle.
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Overall, our experiment revealed that infection by flatworms 
caused a drastic reduction in water flea fitness, measured as sur-
vival and offspring production. This finding corroborates our vi-
sual observations of egg predation by the flatworms and suggests 
a strong pressure on water flea populations. Reduced population 
sizes of zooplankton due to rhabdocoel flatworm predation have 
been documented (Blaustein and Dumont  1990), including for 
Daphnia (Maly et al. 1981; Wang et al. 2011). Aside from these 
correlational studies, a laboratory experiment revealed neg-
ative effects of the predatory flatworm Stenostomum leucops 
(Catenulida) on the lifespan of the cladoceran Moina macrocopa 

(Nandini and Sarma 2013). Our finding of reduced survival may 
be linked to the injury caused by the flatworms when consuming 
water flea embryos and undeveloped eggs, as well as when transi-
tioning from the body cavity into the brood chamber. Alternative 
predation methods employed by other flatworms may also be a 
cause of mortality. The relatively well-studied rhabdocoel flat-
worm Mesostoma employs a wide variety of prey-killing mecha-
nisms, including trapping prey in mucus and paralyzing prey via 
toxins (Blaustein and Dumont 1990; Dumont et al. 2014). While 
we did not observe any of these behaviours, at this point we can-
not fully exclude them as alternative mechanisms.

FIGURE 3    |    Strongylostoma simplex simplex. (A) Reconstruction of the female reproductive system. The position of the seminal receptacle was 
slightly moved laterally for visibility purposes. (B) Reconstruction of the male reproductive system. Scale bar = 50 μm. cb: Copulatory bulb; cga: 
Common genital atrium; de: Ejaculatory duct; eg1: Eosinophilic gland 1; eg2: Eosinophilic gland 2; gp: Gonopore; od: Oviduct; ov: Ovary; rs: Seminal 
receptacle; vd: Vitelloduct; vdf: Vas deferens; vi: Vitellaria; vs: Seminal vesicle.
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4   |   Conclusions

Water bodies, including those located in urban areas, provide es-
sential ecosystem services, ranging from protecting biodiversity 
to recreational and human health benefits (Higgins et al. 2019). 
Zooplankton grazers such as Daphnia are essential organisms 
in these ecosystems. Algal blooms, which may also come in 
toxic forms that are dangerous to wildlife, are actively prevented 
by healthy populations of large grazers such as Daphnia (Ger 

et al. 2016). Reduced population sizes of Daphnia in the presence 
of flatworms may therefore risk the balance of these ecosystems. 
Importantly, many zooplankton species, including species of 
Daphnia, exhibit diel vertical migration patterns, that is, graz-
ing on algae close to the water surface at night and staying close 
to the bottom to hide from visual predators during the day (De 
Meester et al. 2022). If S. simplex simplex follows this migration 
pattern, as was suggested for a species of Mesostoma (De Meester 
and Dumont  1990), the encounter rate between Daphnia and 

FIGURE 4    |    The water flea Daphnia magna infected by the flatworm Strongylostoma simplex simplex. (A) A flatworm, containing an egg, is 
attached to the water flea carapace (Arrow 1), and another flatworm is inside the brood chamber of the water flea, next to the water flea embryos 
(Arrow 2). (B) A flatworm is inside an empty brood chamber of the water flea (Arrow 1), next to a clump of deformed tissue, possibly belonging to an 
embryo (Arrow 2). Note also the differences in the individual flatworm coloration, possibly due to feeding.

FIGURE 5    |    Results of the short-term experiment testing for the effects of the flatworms on water fleas. (A) Survival of the water flea Daphnia 
magna after 9 days, either in the absence of flatworms (control group) or presence of flatworms (treatment group). (B) Number of offspring produced 
by the water flea D. magna over 9 days, either in the absence of flatworms (control group) or presence of flatworms (treatment group).
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flatworms will be high, resulting in stronger predation pressure 
on populations of Daphnia. Moreover, studies on the predatory 
flatworm Mesostoma reveal higher predation rates on Daphnia 
at warmer temperatures (Beisner et al. 1997; Devkota et al. 2023) 
and in shallower ponds (Maly et al. 1981). Urban water bodies, 
which are typically shallow and have higher temperatures com-
pared to rural natural ponds (Brans et al. 2018), provide habi-
tats that may promote a strong flatworm-predation pressure on 
Daphnia. Light pollution, another anthropogenic stress factor 
associated with urbanisation, can additionally influence this 
interaction (e.g., for host–parasite interactions in aquatic eco-
systems: Poulin 2023). Finally, our observation that both of the 
co-occurring species of Daphnia, D. magna and D. longispina, 
were infected by the flatworm is of concern, as the potential loss 
of the functional role (i.e., grazing on phytoplankton) of one spe-
cies may not be compensated by the other.

Based on our discovery of S. simplex simplex flatworms preying on 
Daphnia water flea embryos, with strong negative effects on the 
D. magna population, we encourage further research investment 
into exploring this novel interaction. Later sampling efforts re-
vealed the presence of flatworms in water wells from at least five 
additional locations in Berlin (data not shown), suggesting this to 
be a widespread phenomenon in the study region; at least in this 
type of habitat. So far we have encountered this interaction only 
in urban cemetery wells, but a potential spread of the flatworms 
to other water bodies (e.g., urban park ponds, natural lakes) may 
pose a risk for Daphnia populations, hence also the health of 
aquatic ecosystems. Alternatively, this novel interaction may be 
restricted to very small water bodies (e.g., increased probability of 
water fleas and flatworms encountering each other due to spatial 
constraints), a possibility that requires further investigation.
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