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Abstract: While the practice of looking at multiple endpoints is by no means
recent in clinical research, the validity of using one endpoint as a surrogate for
another one has been raised and studied only over the last decade or so. Past
of the recent literature on the validation of biomarkers as surrogate endpoints
proposes to undertake the validation exercise in a multi-trial context which led
to a definition of validity in terms of the quality of both trial level and individual
level association between the surrogate and the true endpoint (Buyse et al, 2000).
These authors concentrated on continuous responses. When both the surrogate
and true endpoints are measured repeatedly over time, one is confronted with
the modelling of bivariate longitudinal data. In this work, we show how such a
joint model can be implemented in the context of surrogate marker validation. In
addition, a further challenge consists of summarizing the concept of “surrogacy”
in simple yet meaningful measures. We propose the use of the so-called variance
reduction factor. The methodology is illustrated on data from a meta-analysis
of five clinical trials comparing antipsychotic agents for the treatment of chronic
schizophrenia.
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1 Introduction

Recent literature on the validation of biomarkers as surrogate endpoints
has focused on different points of view. Prentice (1989) defines surrogacy
in terms of the equivalence of hypothesis tests for treatment effects and
proposes operational criteria for his definition. Freedman, Graubard and
Schatzkin (1992) introduced the proportion explained to quantify how
much of the treatment effect on the true endpoint is captured by the surro-
gate endpoint. More recently, Buyse et al. (2000), building on earlier work
of Buyse and Molenberghs (1998), suggested a multi-trial approach that led
to a new definition of validity in terms of the quality of both trial level and
individual level association between the surrogate and the true endpoint.
In their approach, the quality of a surrogate at the trial level is assessed by
means of a coefficient of determination R2

trial. At the individual level, the
squared correlation R2

indiv between the surrogate and true endpoint, after
adjustment for both the trial effects and the treatment effects is used. A
surrogate will be said to be valid when it is both trial-level valid (R2

trial º 1)
and individual-level valid (R2

indiv º 1).

Buyse et al. (2000) centered solely on normally distributed surrogate and
true endpoints. However, in many practical applications, repeated measure-
ments are encountered on either or both endpoints. Methods that take into
account the longitudinal structure of the data yield much more complex
statistical modelling strategies and require further extensions in the sur-
rogate marker evaluation methodology. In analogy to the bivariate normal
setting considered by Buyse et al. (2000) the calculation of these measures
should be based on a two-stage approach rather than a full random effects
approach, in order to reduce the numerical complexity.

Technically, we need (1) a model for bivariate longitudinal outcomes, and
(2) an extension of the R2 measures towards longitudinal data. In the
case of univariate longitudinal endpoints one can consider different types
of covariance structures, including compound symmetry, autoregressive,
bounded, factor, linear, Toeplitz, spatial, unstructured etc. Now we have
repeated measurements on two outcome variables, the surrogate and the
true endpoint. A possible joint covariance structure can then be based
on the Kronecker product of (1) an unstructured covariance structure for
the type of outcome and (2) a first order autoregressive structure for the
repeated measurements on an outcome. While, in the setting of Buyse et al.
the error covariance structure could be assumed constant over all trials, this
assumption is no longer plausible in most practical longitudinal settings.
Measures could be taken at different time points within different trials, the
number of measurements could be different in each trial etc. Therefore, we
allow for different covariance structures over the different trials.
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Hence, suppose that we have data from i = 1, . . . , N trials in the ith of
which j = 1, . . . , ni subjects are enrolled and further suppose that tij is the
time at which subject j in trial i was measured. Let Tijt and Sijt denote
the associated true and surrogate endpoints, respectively, and let Zij be
a binary indicator variable for treatment. Following the ideas of Galecki
(1994), a possible joint model for both responses can then be written as:
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are trial-specific intercepts, Æi and Øi are trial-specific
effects of treatment Zij on the two endpoints and µ
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i

are fixed
trial-specific time effects in trial i = 1, . . . , N . The vectors e"
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ij

and e"
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ij

are correlated error terms, assumed to be mean-zero bivariate normally
distributed with covariance matrix

Σi =
µ
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æSTi æSSi

∂

≠Ri. (2)

In the aforementioned formulation, Ri reflects a general correlation struc-
ture for the repeated measurements of the responses. A frequent choice in
practice would be the first order autoregressive structure (in case measures
are equally spaced, otherwise a spatial-type structure is better):
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It should be noticed that if we only have one observation per subject the
variable time will disappear from equation (1) and Ri = I. If it is also
assumed that Σi = Σ then our model is reduced to the model proposed by
Buyse et al. (2000).

Due to the replication at the trial level, we can impose a distribution on
the trial-specific parameters. At the second stage, we therefore assume
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where the second term on the right-hand side is assumed to follow a zero-
mean normal distribution with covariance matrix D.
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In the special case of a single measurement per response, Buyse et al. (2000)
examined the validity question at each of these two levels. A measure to
assess the quality of a surrogate at the trial level is then calculated based
on some of the elements of D. It is given by the coefficient of determination

R2

trial =

µ

d
Sb

dab

∂T µ

d
SS

d
Sa

d
Sa daa

∂°1

µ

d
Sb

dab

∂

dbb
. (4)

This coefficient measures how precisely the effect of treatment on the true
endpoint can be predicted, provided that the treatment effect on the sur-
rogate endpoint has been observed in a new trial (i = 0). It is unitless and
ranges in the unit interval if the corresponding variance-covariance matrix
D is positive-definite, two desirable features for its interpretation. The as-
sociation between the surrogate and final endpoints after adjustment for
the effect of treatment is captured by

R2

indiv

=
æ2

ST

æ
SS

æ
T T

, (5)

which is simply the squared correlation between S and T , after accounting
for trial and treatment effects.

Problems occur however when trying to adopt the above mentioned valida-
tion criteria to the specific case of bivariate longitudinal endpoints. In that
case the concept of R2

indiv has to be extended because R2

indiv is limited
to a single measurement where it represents the squared correlation after
correction for the trial effect. Although the inclusion of fixed trial-specific
treatment coefficients in our model enables us to estimate R2

trial at the
trial level, extensions may be needed for more complicated models where
treatment effects may vary over time. Hence, there is a clear need for al-
ternative approaches to summarize “surrogacy” in simple yet meaningful
measures. In the next section, we propose the use of the so-called variance
reduction factor (VRF) to this effect.

2 Variance Reduction Factor

In this section, we will first define a new measure of validity at the individual
level. Later, it will be shown how this can be easily translated into a validity
measure at the trial level.

We already know that the error terms e"T
ij

and e"S
ij

follow a multivariate
normal distribution with variance-covariance matrix :

Σi =
µ

ΣTTi ΣTSi

ΣT
TSi ΣSSi

∂
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Hence, we allow for a different covariance structure in each clinical trial,
thus leaving the possibility to tackle very general problems for which the as-
sumption of homogeneous covariance structures over trials would be overly
restrictive.

Essentially, we summarize the variability of the repeated measurements
on the true endpoint by the trace of its variance-covariance matrix and
summing this over all trials. In a similar way we summarize the conditional
variability of the true endpoint measurements, given the surrogate by the
trace of the conditional variance-covariance matrix and summing once more
over trials. Following these ideas the relative reduction in the true endpoint
variance after adjusting by the surrogate can be quantified as:

V RFind =

X

i

{tr(ΣTTi)° tr(Σ
(T |S)i)}

X

i

tr(ΣTTi)
, (6)

where Σ
(T |S)

i

denotes the conditional variance of e"T
ij

given e"S
ij

: Σ
(T |S)i =

ΣTTi ° ΣTSiΣ°1

SSiΣ
T
TSi. Intuitively, expression (6) tries to quantify how

much of the total variability around the repeated measurements on the
true endpoint is explained by adjusting for the treatment effects Zij and
the repeated measurements on the surrogate endpoints. In that respect,
expression (6) fits into the general definition of the “proportion of variation
of a dependent variable, Y , explained by a vector of covariates X” (PVE)
in general regression models (Schemper and Stare 1996).

The V RFindiv, as defined here, is a very natural extension of the R2

indiv
validation measure to multivariate longitudinal data. Indeed, one can show
(i) that the V RFind ranges between zero and one, (ii) that the V RFind

equals zero if and only if the error terms of the true and surrogate endpoints
are independent within each trial, (iii) that the V RFind equals one if and
only if there exists a deterministic relationship between the error terms of
the true and surrogate endpoints within each trial and finally (iv) that the
V RFind reduces to the R2

indiv when the endpoints are measured only once.
The proofs of these properties are deferred to the appendix.

Next, suppose that pi denotes the number of designed time points at trial
i and consider the covariance structure (3), then we have:

tr(ΣTSiΣ°1

SSiΣ
T
TSi) =

æ2

TSi

æSSi
pi,

tr(ΣTTi) = æTTipi.

Thus, the V RFind can be rewritten in terms of the correlations (ΩTSi)
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between surrogate and true endpoints at the different trials i = 1, . . . , N :

V RFind =
P

i piæTTiΩ2

TSi
P

i æTTipi

The latter expression yields an appealing interpretation of the VRF. In-
deed, the VRF is just a sum of different trial contributions, in which each
contribution is just the product of the correlation between the surrogate
and the true endpoint in that trial with the proportion of the total true
endpoint variance that is accounted for by that trial.

As mentioned before, we need an extension of R2

trial as soon as the treat-
ment effect cannot be assumed to be constant over time. For reasons ex-
plained earlier it would then be unrealistic to assume that the variance-
covariance matrix D would be constant over trial. In that case we can de-
fine the Variance Reduction Factor at the trial level, (V RFtrial). Suppose
that

µ

eØi

eÆi

∂

ª N

µµ

Ø̄i

Ǣi

∂

,Di

∂

with
Di =

µ

DØØi DØÆi

D0
ØÆi DÆÆi

∂

,

then we can define, similarly to the individual level and with straightfor-
ward notations, V RFtrial as:

V RFtrial =

X

i

©

tr(DØÆi)° tr(D
(Ø|Æ)i)

™

X

i

tr(DØÆi)
(7)

In case of a single normally distributed endpoint this reduces to R2

trial.

3 Example: a Meta-analysis of Trials in Schizophrenic
Subjects

Now we apply the proposed definition to individual patient data from
a meta-analysis of five double-blind randomized clinical trials, compar-
ing the effects of risperidone to conventional antipsychotic agents for the
treatment of chronic schizophrenia. Only subjects who received doses of
risperidone (4-6 mg/day) or an active control (haloperidol, perphenazine,
zuclopenthixol) were included in the analysis. Depending on the trial, treat-
ment was administered for a duration of 4 to 8 weeks.
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Our meta-analysis contains only five trials. This is insufficient to apply
the meta-analytic methods described in previous sections. Fortunately, in
all the trials information is also available on the countries where patients
were treated. Hence, we can use country within trial as unit of analysis. A
total of 20 units are thus available for analysis, with the number of patients
ranging from 9 to 128.

Even though this is not a standard situation for surrogate validation due
to the lack of a “gold” standard, we consider as our primary measure (true
endpoint) the Clinician’s Global Impression (CGI).

CGI is a 7-grade scale used by the treating physician to characterize how
well a subject is doing. As a surrogate measure we consider the Pos-
itive and Negative Syndrome Scale (PANSS) (Kay, Opler and Linden-
mayer, 1988). The PANSS consists of 30 items that provide an operational-
ized, drug-sensitive instrument, which is highly useful for both typological
and dimensional assessment of schizophrenia. In our model we considered
log(CGI) and log(PANSS) instead of the original variables to stabilized
the variances. Figures 1 and 2 show the mean profiles for log(CGI) and
log(PANSS) by treatment groups. Clearly, both figures show more or less
linear time trends.
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FIGURE 1. log(Panss): mean profiles

By applying the two-stage approach introduced before with model (1) at
the first stage to these data, one can obtain the estimated log(CGI) vari-
ance components (æ̂TTi), the estimated log(PANSS) variance components
(æ̂SSi), the log(CGI) ° log(PANSS) correlation as well as Ωi parameter,
separately for each unit. All these variance components are plotted in Fig-
ure 3, which clearly shows that the assumption of a constant covariance
structure over all trials is indeed not really plausible, as already suggested
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FIGURE 2. log(CGI): mean profiles
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FIGURE 3. Variance Components

If we now want to study the relationship between the log(PANSS) scale
and the log(CGI), then it is clear that the R2

ind measure proposed by Buyse
et al. is inappropriate for such a general situation with a complex variance-
covariance structure for the bivariate longitudinal data which cannot be as-
sumed to be constant over trial. In contrast, the V RFind that we proposed
in Section 2 does provide an adequate summary measure for the valida-
tion at the individual level. By applying the two-stage approach based on
model 1 we obtained an estimate for VRF of 0.39 (95% confidence interval:
[0.38; 0.39]). This shows that after adjusting by the surrogate log(Panss)
there is a relative reduction in the marginal variance of log(CGI) of 39 per-
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cent. Of course, this should be interpreted as an “average” reduction due
to the fact that we are summing over trials. Hence, log(PANSS) seems to
be a rather poor surrogate for log(CGI) at the individual level.

At the trial level the results are much more encouraging. We find a value
of R2

trial of 0.83. The resulting correlation between treatment effects on
log(CGI) and log(PANSS) equals 91% suggesting that a reliable predic-
tion can be made of the treatment effect on log(CGI) having observed
the treatment effects on log(PANSS). Graphically this is represented in
Figure 2 which plots the treatment effects on log(CGI) by the treatment
effects on log(PANSS). The size of each point is proportional to the num-
ber of patients within a unit. A 95% confidence interval for R2

trial wass
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obtained using bootstrap. The so-obtained confidence limits for R2

trial are
[0.67; 0.95], which shows that the trial-level association is estimated rather
precisely.
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