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Abstract
We study large classes of real-valued analytic functions that naturally emerge
in the understanding of Dulac’s problem, which addresses the finiteness of
limit cycles in planar differential equations. Building on a maximum modulus-
type result, our main statement essentially follows. Namely, for any function
belonging to these classes, the following dichotomy holds: either it has isolated
fixed points or it coincides with the identity. As an application, we prove that
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the non-accumulation of limit cycles holds for vector fields around a specific
class of the so-called superreal polycycles.

Keywords: Cauchy–Heine transform, Dulac’s problem, limit cycles,
Phragmén–Lindelöf principle, Stokes phenomenon

Mathematics subject classification: 30C80, 34C05, 34C07, 40A30

1. Introduction

In this manuscript, generally speaking, we prove that concrete families of real-valued functions
arising in the study of Dulac’s problem about the finiteness of limit cycles in planar differential
equations are well-behaved. Namely, going into the Complex Analytic domain, we prove that
for any function belonging to such classes it happens that either it has isolated fixed points or it
coincides with the identity. In doing so, we generalise concepts first introduced by Ilyashenko
in his seminal work [7].

One of our main motivations is to gain a better understanding of Dulac’s problem, because
the proposed proofs (see [4, 7]) seem to be far from fully understood by most of the specialists.
For an overview on Dulac’s problem and the main definitions and concepts related to, we refer
to the introduction of Ilyashenko’s book [7]. We also recommend the recent book [9, section
24], which contains a historic review of the still unsolved Hilbert sixteenth problem, as well as
the aforementioned Dulac’s problem, including a complete proof of the non-accumulation of
limit cycles around the so-called hyperbolic polycycles, originally proved in [6]. Throughout
this manuscript, we will primarily follow the definitions and notations used in these works.

One of themain objects of interest in this work is the concept of a polycycle, as defined in [9,
definition 24.16]. We recall that a polycycle of a vector field is a finite oriented spherical graph
Γ, topologically equivalent to a continuous image of the unit circle. Its vertices correspond
to singular points of the vector field, while its edges represent infinite trajectories that are bi-
asymptotic to these singular points. We will focus exclusively on the so-called monodromic
polycycles; that is, those that admit a well-defined first return map, as discussed in [9, p. 450–
452] and [7, definition 2, p.8]. Thus, throughout this manuscript, when we refer to polycycles,
we are specifically referring to the monodromic ones.

In [15], Yeung offered a constructive approach (in the traditional sense) to proving non
oscillation of return maps of groups of polycycles, drawing on a part of the ideas present in
Ilyashenko’s work [7]. For a suitable choice of classes R and NC (see definitions 1 and 2
below), linked to the types of saddles appearing in the polycycles of interest, one comes to the
point that the primary focus is on the classes of functions:

〈Aff,AiR0,AjNC | 0⩽ i ⩽ n,0⩽ j ⩽ n− 1〉,

where 〈.〉 means group generated under composition, A is conjugation with the exponential;
i.e. A( f) := ln◦f ◦ exp, and R0 is the subset of R with identity linear part.

We will address how to show non oscillation for certain elements of the above group when
the elements of the class NC exhibit Stokes phenomena of a type to be defined below.

In particular, we will be considering elements of the form:

Aff ◦ 〈R,NC〉 ◦ · · · ◦An (〈R,NC〉) ◦ · · · ◦ 〈R,NC〉 ◦Aff.

That is to say, the amount ofA that is put around 〈R,NC〉 first increases to n, and then decreases
back to zero. For simplicity’s sake we will define a class NC such that R⊂NC, essentially
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because we will at no point need the larger domain of R which was vital for induction in the
proof of [7].

The classes Aff and NC we will consider here actually are the following (for more detail
see definition 14):

Definition 1. We define the class Aff to be the class of affine real analytic functions with
positive derivative; i.e. the functions:

ζ 7→ αζ +β , α,β ∈ R,α > 0.

We define R to be the class of almost regular functions of [9, definition 24.27], that are real
on the real axis.

Definition 2. Let NC be the set of real analytic germs at infinity that can be extended to
extendable cochains on some standard quadratic domain; i.e. a domain of the form:

Ω := Ψ
(
C+
)
,

with Ψ(ζ) = ζ +C
√
ζ + 1 for some C> 0 (positive branch of the square root) and C+ being

the complex half-plane with positive real part.
With partition given by the lines Im(ζ) = kπ,k ∈ Z,k 6= 0; i.e. on each of the strips Π in

C+ bounded by two adjacent lines of the form Im(ζ) = kπ, except k= 0, we get an analytic
function that can be analytically continued to a strip with a larger width. We will denote byΠϵ
the strip Π widened by ϵ on both sides (still inside the standard quadratic domain).

Then the class NC is the subset of such cochains f for which:

(1) There exists some series:
ζ +

∑
Pn (ζ)e

−cnζ ,

with the Pn real polynomials, cn > 0 real and going to +∞ such that for any m> 0 there
exists a finite sum SN up to some N which approximates all the component functions of
f uniformly up to accuracy O(e−mζ); i.e. there exists some C> 0, ϵ > 0 and some ξ0 > 0
such that for all stripsΠ, for all ζ ∈Πϵ with Re(ζ)> ξ0 for the analytic function fΠ on the
strip Π:

|fΠ (ζ)− SN (ζ) |< Ce−mRe(ζ) .
(2) There exists some ϵ> 0, C,C ′ > 0 such that for any two stripsΠ,Π ′ with respective func-

tions fΠ, fΠ ′ we have for all ζ ∈Πϵ ∩Π ′
ϵ:

|fΠ (ζ)− fΠ ′ (ζ) |⩽ Ce−C ′eRe(ζ)

.
(3) The function fΠ0 on the strip Π0 containing the real axis, is the original real analytic germ

in the class NC.

Remark 1 (on superreal semihyperbolic saddles). The way the class NC comes up in [7]
is that they contain the normalisation maps of semihyperbolic saddles (also known as saddle-
nodes) to their formal normal form on the centre side (suitably normalised and put in the
logarithmic chart ζ =− ln(z), with z the usual coordinate).

We emphasise that we have made a simplification assuming f to be real on the real axis. In
essence, this only holds for semihyperbolic saddles where theMartinet-Ramismoduli (see [11]
and [8, section 3]) corresponding to the one-sided transversal for the Dulac map are all zero,
an infinite codimension. Throughout this manuscript, we will refer to such semihyperbolic
saddles as superreal semihyperbolic saddles, a term suggested to us by Ilyashenko.

We stress that without this assumption asymptotics become much more tedious, and in
the general case, controlling the asymptotics to prove non oscillation results remains an open
problem.
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Figure 1. Semihyperbolic singularities.

The following is then our main Theorem:

Theorem A. Let g be an element of:

Aff ◦ 〈NC〉 ◦A(〈NC〉) ◦ · · · ◦An−1 (〈NC〉) ◦An (〈NC〉) ◦An−1 (〈NC〉)
◦ · · · ◦A(〈NC〉) ◦ 〈NC〉 ◦Aff .

Then either g≡ id or g has no fixed points close enough to +∞.
In particular if for all µ> 0, for x large enough real positive (depending on µ):

|g(x)− x|< e−µexp◦n (x) ,

(n-fold composition of the exponential) then g≡ id.

As a consequence of theorem A, we obtain a positive answer for a restricted version of
Dulac’s problem. To do this, we first need to introduce the notion of depth of a polycycle; see
[15].

So take a polycycle homeomorphic to a circle in a vector field on a real analytic 2-manifold.
Wemay now parametrise our polycycle, say Γ, with γ : [0,1]→ Γ, starting at an arbitrary point
x ∈ Γ, say that x is not equal to an equilibrium. Suppose that γ is injective on (0, 1).

Then for a t ∈ [0,1] we can define the depth of γ at t, D(γ, t) as follows:

D(γ, t) := C(t)−H(t) ,

where

C(t) := #{semihyperbolic saddles in γ((0, t])from the centre direction} ,

and

H(t) := #{semihyperbolic saddles in γ((0, t])from the hyperbolic direction} .

Below we illustrate both a semihyperbolic saddle from the hyperbolic direction; figure 1(a),
and a semihyperbolic saddle from the centre direction; figure 1(b).

Note first that this is well-defined because a polycycle only has a transit map along a ‘single
side’. Using this we can define a particular class of polycycles:

Definition 3. We call a polycycle superreal if every semihyperbolic saddle in it is superreal.
And, we call a polycycle balanced if D(γ,0) = D(γ,1).

Moreover, we say that a polycycle has one turn if there exists a parametrisation γ such
that D(γ, t) only goes from decreasing to increasing once; i.e. there exists t0 ∈ (0,1) such

4
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Figure 2. Polycycle with one turn.

that before t0 only semihyperbolic saddles going to the central manifold are encountered and
after t0 only semihyperbolic saddles going away from the central manifold are encountered,
hyperbolic saddles may be encountered anywhere.

Then from our main Theorem we have the following partial positive answer to Dulac’s
problem:

Corollary 1. Any superreal and balanced real analytic polycycle with only one turn has a
neighbourhood without limit cycles.

Sketch. It is known (see [9, lemma 24.40]) that any Dulac map of a hyperbolic saddle gives
an element of the above described class NC, even without the cochain part; i.e. it is a single
function on that domain.

It is also known (essentially [11], but also [15] for how to manipulate the formal normal
form, see also [7, p. 43], where it is given a table containing all the possible different maps
one has to deal with) that the Dulac map of a superreal semihyperbolic saddle can be decom-
posed into an analytic normalisation on the hyperbolic side, something close to an exponential
function and an element of the class NC, even up to a shifted half-plane instead of a standard
quadratic domain in the logarithmic chart.

The assumption that the polycycle only has one turn then puts it in the correct form to apply
theorem A to the return map of the polycycle, indeed, such a polycycle as represented in [15]
will have some form like this (see figure 2):

with horizontal maps being in 〈NC〉, maps down being exp and maps up being ln, so by
the shape of it adding the following lines standing for superfluous applications of exp and ln
gives the correct form (see figure 3):

We stress that the n in theorem A is exactly the height of this polycycle as defined in [15].
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Figure 3. Splitting up a polycycle with one turn.

1.1. Structure of the work

In section 2, we define rigorously the cochains we work with and the terms used in the defin-
ition of the class NC. Then we will go into the more technical parts of our work; that is, the
repartitioning procedure we require; which strictly speaking is not necessary in the case we
are working with, but it is necessary in general when we start working with the full Dulac’s
problem as in [15], so we have elected to nonetheless include it here.

Then we will extend the notion of Cauchy–Heine transform from summability; see [3, 10],
to a nice set of cochains, obviously including those relevant for theorem A. Using that we
will establish a version of the well-known Phragmén–Lindelöf principle; see [12, 13], which
while it may look complicated formally, should essentially be seen as the following statement:
Suppose that a cochain f defined, in total, on some large domain Ω is small enough to satisfy
Phragmén–Lindelöf for that domain (for an analytic function f this would mean f is identically
zero), then f is at most the size of their Stokes phenomena/coboundary.

Finally we will use these technical results and terminology to more precisely define the
class NC, and to prove the remaining Lemmas that allow us to prove theorem A.

1.2. A historical note

We would like to emphasise that our work has been largely influenced by the seminal work
carried out first by Ilyashenko in his approach to Dulac’s problem; see [7]; being the main
results proved here generalisations of those that are present in [7]. Namely, the cochains we
work with are generalised versions of the ones introduced in [7, sections 1.1 and 1.6]. Plus, the
Cauchy–Heine transform in this article generalises the one in [7, section 3.4B and lemma 1],
and the Theorem of Phragmén–Lindelöf we prove generalises [7, section 3.6 and lemma 4].

The proof of theorem A is essentially as outlined in [7, section 3.2], but in a much simpler
case, as was the intention. In particular in [7] there is a nested (finite) sequence of partitions
which had to be worked away using Phragmén–Lindelöf for cochains, while here we only have
one. Moreover, we stress that the induction argument here does not work in general.
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2. Cochains

Before introducing the cochains of [7], we feel it appropriate to compare and contrast to its
‘close cousin’ Čech cohomology. The biggest difference which informs the small practical
differences is philosophical. For an overview of Čech cohomology we refer the reader to the
classic text by Godement; see [5, section 5].

Generally speaking, given a topological space X, and an open cover of it U , one of the main
ideas behind Čech cohomology is to deduce global properties of X by knowing local data in
terms of U , and how the open sets in U are glued together. It is in some sense a topological
and combinatorial question. The biggest indicator being that this can without difficulty be
generalised to sheaves of abelian groups.

When looking at cochains as in [7], we actually start with a single analytic function, say
real analytic. Classical Phragmén–Lindelöf actually asserts that the domain of analytic con-
tinuation of a real analytic function can preclude some degenerate behaviour; e.g. any oscilla-
tion for an real analytic function on the right half-plane still has to have ‘peaks’ that are of the
size e−λx.

The question asked in [7] is essentially ‘what if your real analytic function has Stokes phe-
nomenon beyond the domain of analytic continuation? Does this prevent degenerate beha-
viour?’ In this line of inquiry a cochain is supposed to represent a function together with its
Stokes phenomenon, unlike in Čech cohomology where a cochain is of independent interest.

The answer to this question is yes, which is what we will present as Phragmén–Lindelöf
for cochains, the idea of the statement is the following: Suppose some real analytic function
f admits Stokes phenomenon up to some large domain Ω, suppose on the real axis f is small
enough to apply Phragmén–Lindelöf on the large domain Ω, then the size of f on the real axis
depends on two things:

(1) The size and shape of the overlaps of the elements in covering on which f is defined.
(2) The size of the differences on Stokes lines.

Both of these are things which are of no interest in Čech cohomology, so we will have to
slightly redefine the notions from Čech cohomology to fit our purposes. Let us start with the
idea of a partition:

Definition 4. Let Ω⊂ C be a domain. A collection Ξ of open subsets of Ω forms a partition
of Ω if:

(1) The pairwise intersection of elements in Ξ is empty.
(2) In the subspace topology on Ω:⋃

U∈Ξ

U=Ω .

(3) This is locally finite in the sense that any point inΩ has an open neighbourhood containing
only a finite amount of elements of Ξ.

(4) The boundary of each element of Ξ is piecewise analytic.

We define ∂Ξ to be the union of ∂U, U ∈ Ξ (the boundary taken in Ω).
Let x ∈ ∂Ξ, then we call x a regular point if there exists some open A in Ω, x ∈ A, such that

∂Ξ ∩A is homeomorphic to a line. Else we call x singular.

7
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We call Ξ a regular partition if:

(1) The singular points are isolated; i.e. for each singular point there is a neighbourhood con-
taining no other singular points.

(2) Every singular point has at least one curve that is homeomorphic to a line of regular
points going into it. We require that these lines have finite variation in argument; i.e. let
γ : [0,1]→ C be a parametrisation of one of these curves of regular points going to the
singular point s at t= 1, then we want that arg(γ(t)− s) (with a branch cut of the logar-
ithm in the origin) remains bounded as t goes to 1 (note that for this notion the choice of
arg(γ(0)− s) does not matter).

(3) There exists a positive real number d and a positive integer n such that any ball of radius
d around any point has at most n finite lines of regular points in it.

We call d the regularity radius and we call n the multiplicity.
We call Ξ uniformly regular if in addition there exists a δ > 0 such that there is a distance

⩾ δ between a given singular point and all other singular points. We call the maximal δ the
uniformity constant of Ξ.

In order to catch the notion of ‘size of the overlaps’ in a flexible way, that allows for things
like Cauchy estimates, we introduce the notion of generalised ϵ-neighbourhoods:

Definition 5. Let Ω⊂ C be a domain, let Ξ be a partition of Ω, then a generalised ϵ-
neighbourhood of Ξ is given by:

(1) A positive real number ϵ0.
(2) For each ϵ in (0, ϵ0) and each U ∈ Ξ an open Uϵ such that:

(a) For each U ∈ Ξ and ϵ ∈ (0, ϵ0) we have in the subspace topology of Ω:
U⊂ Uϵ .

(b) If ϵ < ϵ ′ and each U ∈ Ξ we have:
Uϵ ⊂ Uϵ ′ .

We will often shorten this to ‘Let Ξϵ be a generalised ϵ-neighbourhood of Ξ’.
Let U ∈ Ξ, then for ϵ > ϵ ′ > 0 we define the ϵ ′ − ϵ-diameter of U to be:

dU (ϵ
′, ϵ) := sup{r⩾ 0 | ∀u ∈ Uϵ ′ ,B(u,2r)⊂ Uϵ} ,

where B(u,2r) is the ball around u of radius 2r. We define the ϵ ′ − ϵ-diameter of the partition
Ξ with its generalised ϵ-neighbourhood to be:

dΞ (ϵ
′, ϵ) := inf

U∈Ξ
dU (ϵ

′, ϵ) .

We say a generalised ϵ-neighbourhood is regular if dΞ(ϵ ′, ϵ)> 0 as long as ϵ is small
enough.

Instead of dΞ(0, ϵ) or dU(0, ϵ) we will just write dΞ(ϵ) and dU(ϵ) respectively.

Let us talk about some obvious operations to perform with partitions:

Definition 6. Let Ξ and Ξ ′ be partitions of Ω, then their product is defined to be:

Ξ ·Ξ ′ := (U∩V)U∈Ξ,V∈Ξ ′

if this is a partition. We define the product of Ξϵ and Ξ ′
ϵ, denoted Ξϵ ·Ξ ′

ϵ by:

(U∩V)ϵ := Uϵ ∩Vϵ .
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This is then a generalised ϵ-neighbourhood for Ξ ·Ξ ′.
Let ρ : Ω ′ → Ω be a biholomorphism. We define:

ρ−1Ξ :=
{
ρ−1 (U) | U ∈ Ξ

}
.

We define the pull-back of Ξϵ by ρ, denoted ρ−1Ξϵ by:(
ρ−1 (U)

)
ϵ
:= ρ−1 (Uϵ) .

This is then a generalised ϵ-neighbourhood of ρ−1Ξ.

With this notion of partition more suited to the study of Stokes phenomena we can look at
cochains:

Definition 7. Let Ξϵ be a generalised ϵ-neighbourhood of a partition Ξ on Ω, a cochain f for
this generalised ϵ-neighbourhood consists of a positive real number ϵ, and for each open set
U ∈ Ξ an analytic function fU on Uϵ.

We callΩ the total domain of the cochain f. We also say that f is an (ϵ-)extendable cochain.
We may sometimes say ‘let f be a cochain’ in that case, the total domain is Ωf and the

corresponding partition is Ξf.

Let us talk about a few obvious operations we can do with cochains:

Definition 8. Let f and g be cochains on Ω. Then:

(1) Their sum f + g is a cochain with partition Ξf ·Ξg and for U ∈ Ξf and V ∈ Ξg we have:
( f + g)U∩V = fU|U∩V+ gV|U∩V .

(2) Their product f · g is a cochain with partition Ξf ·Ξg and for U ∈ Ξf and V ∈ Ξg we have:
( f · g)U∩V = fU|U∩V · gV|U∩V .

(3) The derivative of f, denoted f ′ is a cochain with partition Ξf and:(
f ′
)
U
= ( fU)

′
.

Let ρ : Ω ′ → Ω be a biholomorphism, then f ◦ ρ is defined on ρ−1Ξf by:

( f ◦ ρ)ρ−1(U) = fU ◦ ρ.

3. Repartitioning

The reason for this part is that, those elements arising from the Additive Decomposition
Theorem, as presented in [15, cf., theorem 2.14], will naturally occur on a regular partition;
however, to get really much information we need uniformly regular partitions. The point of
this section is to show that cochains on regular partitions with regular ϵ-neighbourhoods are
also defined on a uniformly regular partition with regular ϵ-neighbourhoods, preserving cer-
tain features we will be interested in. To get there, we will first need to introduce a way of
rechoosing ϵ-neighbourhoods.

Definition 9. Suppose given a partition Ξ, then we can define the natural ϵ-neighbourhoods
associated to Ξ taking for each ϵ> 0 and each U ∈ Ξ:

Uϵ = Bϵ (U) :=

{
z ∈ C | inf

u∈U
|z− u|< ϵ

}
.

we call any cochain f which is ϵ-extendable in these neighbourhoods naturally ϵ-extendable.

9
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Figure 4. Local surgery.

Remark 2. It is clear that if a cochain f is extendable on a regular set of neighbourhoods, then
it is naturally extendable.

In some sense, this emphasises that our main concern is extendability in the natural sense.
However, in practice, problems often arise with more apparent extensions–such as sectors
to larger sectors or strips to larger strips; etc. Attempting to convert every such generalised
neighbourhood to the natural one is not only tedious but may also result in losing crucial
information. For example, changing the opening of a sector affects the Phragmén–Lindelöf
theorem for the domain, while adding balls of a given radius does not.

What we then want to prove is the following:

Theorem 1. Let f be a cochain naturally ϵ-extendable on some regular partition Ξ on some
domain Ω⊂ C. Let ϵ be a positive real number smaller than the regularity radius. Then there
exists a uniformly regular partition Ξ ′ on the same total domain with uniformity constant ϵ3
such that the cochain f is naturally ϵ

3 -extendable on Ξ
′.

Moreover, the partition Ξ ′ can be chosen such that outside of a distance ϵ6 from the singular
points of Ξ, ∂Ξ = ∂Ξ ′. Plus, the partition Ξ ′ has the same regularity radius.

Proof. The proof is essentially by local surgery as on figure 4:
The red points remaining the same across both drawings and the green point being the

centre.
The argument is roughly that we can keep performing the surgery above in a tiling of squares

with radius ϵ
6 (by radius we mean the distance from the centre to one of the sides) around

singular points, resulting in a distance of ϵ3 between two singular points. By the singular points
being isolated, this gives a new partition.

We may assume without loss of generality that there are no singular points on the boundary
of any of the squares. Indeed, if we only consider tilings with a corner at the origin, for any
fixed point there are at most a countable amount of tilings having this point on its boundary. So,
because we only have a countable amount of singular points we can always choose a positive
real number ϵ among the uncountable choices such that there are no singular points on the
boundary of the tiling by squares with radius ϵ6 .

10
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We can have a look at the amount of points on the boundary of such a square, it is at
most twice the multiplicity because any line segment can at most intersect the boundary twice,
implying that a finite amount of lines go into each new singular point. Then if we take squares
with the same radius as the old regularity radius over

√
2, it can only have a finite amount m

of such squares in it because any such square has a set radius and any of the n old curves at
worst breaks up into two curves with each ball, thus turning intom+ 1 curves giving n(m+ 1)
as multiplicity.

Hence, this partition Ξ ′ clearly satisfies all properties ascribed to it. And because the size
of the set we manipulate is at worst

√
2ϵ
3 away from a boundary point; i.e. at worst a boundary

we care about is on one boundary point and we need to drag it to the opposite boundary point,
we still have natural ϵ3 -extendability of our function f.

4. The Cauchy–Heine transform

In this section, we introduce a concept of coboundary suitable for our purposes. To compare
and contrast with Čech cohomology again, we do not care about the fact that going from
cochain to coboundary gives a differential and later a complex. What we do care about is dif-
ferences of our cochain on Stokes lines because we are interested in the qualitative difference
between an analytic function on a domain and a cochain on that same domain. To that end, we
also care about the coboundary as a single function on the total domain, because it, in a sense,
quantifies the difference between being a function and a cochain.

Definition 10. Let Ξ be a regular partition. Then the coboundary of an extendable cochain
f on the partition Ξ is the tuple of analytic function δU,Vf indexed by (U,V) ∈ Ξ2 defined on
∂U∩ ∂V by:

δU,Vf(z) := fU (z)− fV (z) ,

together with the choice of (U,V) we get a natural orientation on ∂U∩ ∂V by saying that U is
on the left and V is on the right.

Now we get to the part that allows us to relate a cochain to an analytic function on its entire
domain.

Theorem 2 (Trivialization of a cocycle). LetΩ⊂ C be a domain, let Ξ be a regular partition,
let Uϵ be a regular choice of generalised ϵ-neighbourhoods. Let f be an ϵ-extendable cochain.
Let us define for any path A consisting only of the regular points of ∂Ξ the following cochain:

CA ( f)(ζ) :=
1
2

∑
(U,V)∈Ξ2

1
2π i

ˆ
A

δU,Vf(τ)
τ − ζ

dτ.

Here we integrate over A using the appropriate orientation for δU,Vf defined above, we assume
that if we approach a singularity we are able to integrate by approaching the singularity; that
is, the integral up to distance ϵ> 0 away from the singularity converges to something. We have
for every pair (U,V) ∈ Ξ2 that δU,VCA( f) = δU,Vf on the interior of A (as subset of ∂Ξ).
Moreover, let B be an open such that A is the set of regular points in B∩ ∂Ξ. Suppose that:

(1) We have:
1
2

∑
(U,V)∈Ξ2

1
2π

ˆ
∂Ξ

|δU,Vf(τ) |dτ <∞.

(2) For each U and V in Ξ we have some ϵ> 0 such that |δU,Vf| is bounded up to Uϵ ∩Vϵ.

11
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Figure 5. Cauchy–Heine transform.

(3) Close enough to each singular point in ∂Ξ ∩B f is bounded in the sense that there is some
neighbourhood X of the singular point such that for all W ∈ Ξ, fW is bounded on X∩Wϵ.

Then f −CA is analytic in the entirety of B; i.e. including on the singular points of ∂Ξ.
When there is no subscript A, then we assume A= ∂Ξ and we call C( f) the Cauchy–Heine

transform of f.

In order to prove this theorem we need to understand the function:

g(z) :=
1

2π i

ˆ
γ

ϕ(ζ)

z− ζ
dζ ,

for suitable γ and ϕ. Let us start with a very simple case inspired by similar proofs in the
Gevrey asymptotics case; see [10, theorem 1.4.2]:

Lemma 1. Let U be a open set in C. Let ϕ : U→ C be an analytic function. Let γ be a smooth
finite positive length curve in U without self-intersection. Fix an orientation for γ, thus also
fixing locally around γ a sense of left and right. Let a,b ∈ U be distinct points not on γ, let α
be a finite length smooth curve from a to b with no self-intersection and intersecting γ exactly
once, going from left to right (see illustration below). Suppose that on U \ γ the following
function is defined:

g(z) :=
1

2π i

ˆ
γ

ϕ(ζ)

z− ζ
dζ .

Then it is possible to analytically continue g along the paths:

(1) α from a to b, we call this value g+(b).
(2) The inverse of α from b to a, we call this value g−(a).

These values satisfy the following relations:

g+ (b)− g(b) = ϕ(b) , g(a)− g− (a) = ϕ(a) .

Moreover, it is possible to analytically continue g to γ from both sides of γ.

Proof. Let us start by noting that g is analytic by combining the classic Theorems of Morera
([2, p. 122]) and Fubini and noting that the integrand for fixed ζ is analytic. In addition, let us

12
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note that by saying that γ and α are smooth we mean that it has a smooth unit speed paramet-
risation from some interval.

Suppose α intersects γ in zα, this splits α into two parts, α0, the part before zα and α1, the
part after zα. If we want to analytically continue from a to b along α, then we homotopically
deform γ ‘around α1, always keeping α1 to its left’ (see figure 5). This is possible because γ
is smooth and α intersects γ only once. Hence, we conclude that at any point of α1 there is an
open not containing any points of γ, where we can deform γ to wrap around α1 as described.

Call this new curve γ ′, suppose γ ′ deviates from γ at z0 close to zα and rejoins γ at z1, on
the other side of zα.

Note that, by construction, for any point z on α0 we have:

1
2π i

ˆ
γ

ϕ(ζ)

z− ζ
dζ =

1
2π i

ˆ
γ ′

ϕ(ζ)

z− ζ
dζ,

and because α1 touches γ ′ nowhere by construction, the following function:

g+ (z) :=
1

2π i

ˆ
γ ′

ϕ(ζ)

z− ζ
dζ

remains analytic along α for the same reason as g, so g+(b) satisfies the demands.
Then:

g+ (b)− g(b) =
1

2π i

ˆ
γ ′

ϕ(ζ)

b− ζ
dζ − 1

2π i

ˆ
γ

ϕ(ζ)

b− ζ
dζ.

This is just the contour integral of ϕ(ζ)b−ζ from z0 to z1 following γ ′ and then back from z1 to z0
along γ. By construction this curve goes counter-clockwise, contains b in its interior, and by
assumption ϕ has no singularities in U, so by Cauchy’s Theorem we have:

g+ (b)− g(b) = ϕ(b) .

The other cases are analogous. Note that in order to extend g to γ, it suffices to pick a point
on γ and because γ has no self-intersection and is smooth, it is possible to make a small curve
perpendicular to γ, intersecting γ only at the chosen point and one uses this small curve to
analytically continue.

Before proving theorem 2, we still need a second auxiliary result to treat the singular points.
That said, we remark that this Lemma will be used a lot independently later.

Lemma 2. Let f be an extendable cochain for a regular partition Ξ and a regular set of gen-
eralised ϵ-neighbourhoods, let f be ϵ-extendable and let ζ0 be a point in U in the partition of f.
Suppose that:

(1) the integral:
1
2

∑
(U,V)∈Ξ2

1
2π

ˆ
∂Ξ

|δU,Vf(τ) |dτ <∞ .

(2) We have some d> 0, d⩽ dΞ(ϵ) such that |δf| is bounded on B(ζ0,d) in the sense that it is
bounded by the same constant over all choices of two elements of the partition.

(3) Let L<∞ be the sum of for each regular piece of boundary both entering and exiting
B(ζ0,d) the difference between entering and leaving angle, in radians.

(4) Suppose that any regular piece of boundary entering B(ζ0,d) also leaves; i.e. B(ζ0,d)
contains no singular points.

13
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Then the following inequality takes place:

|C( f)(ζ0)|⩽
1
2

∑
(U,V)∈Ξ2

1
2π

´
∂Ξ

|δU,Vf(τ) |dτ +Lsup
ζ1∈B(ζ0,d) |δf(ζ1) |

2πd
.

In particular, should you have an W⊂ Ωf such that:

(1) |δf| is bounded on B(W,d) (the set of all points at distance ⩽ d from W).
(2) We have a uniform bound L of the lengths L for all points. And B(W,d) still contains no

singular points.

Then:

sup
ζ0∈W

|C( f)(ζ0)|⩽
1
2

∑
(U,V)∈Ξ2

1
2π

´
∂Ξ

|δU,Vf(τ) |dτ +Lsup
ζ1∈B(W,d) |δf(ζ1) |

2πd
.

That is, the previous estimate becomes uniform, including on the boundary and can ‘cross the
boundary’.

Proof. Note that the second statement follows from the first by continuity.
For the first statement, let us recall the definition of a Cauchy–Heine transform:

CA ( f)(ζ0) :=
1
2

∑
(U,V)∈Ξ2

1
2π i

ˆ
A

δU,Vf(τ)
τ − ζ0

dτ .

We get our estimate by splitting the integral into two parts, the part where |τ − ζ0|> d and the
part where |τ − ζ0|⩽ d. Let V1 denote the first part and V2 the second, then:∣∣∣∣∣∣12

∑
(U,V)∈Ξ2

1
2π i

ˆ
V1

δU,Vf(τ)
τ − ζ

dτ

∣∣∣∣∣∣⩽ 1
2

∑
(U,V)∈Ξ2

1
2π

ˆ
V1

|δU,Vf(τ) |
d

dτ

⩽ 1
2

∑
(U,V)∈Ξ2

1
2π

´
∂Ξf |δU,Vf(ζ) |dζ

2πd
.

As for V2, instead of direct estimation, we argument deforming the path of integration.
Indeed, by deforming the path of integration to arcs on the boundary of B(ζ0,d), conditions
(2) and (4) in the first part of the statement and then condition (3) guarantee the upper bound:

Lsup
ζ1∈B(ζ0,d) |δf(ζ1) |

2πd
.

With these results in our hands, we can now prove theorem 2:

Proof of theorem 2. All we really still need to prove is about the singular points. Let s be a
singular point in A inside B, then note that s is an isolated singularity of f −CA( f), we can then
use the estimate of lemma 2 on small circles of radius 2d around s, denoted S2d. Then because
there are only a finite amount of lines of regular points going out of s eventually we get an
estimate for |f −CA( f)| of the following form:

sup |f|+

∣∣∣∣∣
1
2

∑
(U,V)∈Ξ2

1
2π

´
∂Ξ

|δU,Vf(τ) |dτ +Lsup
ζ1∈B(S2d,d) |δf(ζ1) |

2πd

∣∣∣∣∣ .
14
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But this implies that

lim
z→s

(z− s)2 ( f −CA ( f)) = 0 .

So, by Riemann’s Theorem; see [2, 4.3.1 theorem 7], we get that f −CA( f) has at worst a
simple pole at s. That is to say, that limz→s(z− s)( f −CA( f)) exists. Suppose that it does have
a simple pole at s, then this limit should be non-zero. But a simple calculation through Taylor
series shows that the integral:ˆ

δ ( f)(w)
w− z

dw

behaves roughly as a logarithm times δ( f)(z) when w→ z, so we are roughly looking at z ln(z)
around the origin, which goes to zero unless z spirals around the origin fast enough. But, by
regularity, we assumed finite variation of argument for the lines along which we integrate, so
we can just approach the singular point radially and have limz→s(z− s)( f −CA( f)) = 0. Thus,
once again Riemann’s Theorem gets us where we want to be.

From this and the classical Phragmén–Lindelöf (cf theorem 3 below), one quickly gets a
form of maximum modulus principle for cochains:

Corollary 2. Let f be a bounded cochain satisfying all conditions of theorem 2 with A being all
the regular points of Ξ. Suppose Ω is biholomorphic with C+ through ρ : C+ → Ω, mapping
the boundary of Ω to the imaginary axis. Suppose f and C( f) are bounded on Ω. Then:

sup
Ω

|f|⩽ sup
∂Ω

|f −C( f) |+ sup
Ω

|C( f) |⩽ sup
∂Ω

|f|+ 2sup
Ω

|C( f) | .

Remark 3. This Corollary obviously also works when one cuts out a compact part of C+.

Combining this with lemma 2 when we have a uniformly regular partition we get the
estimate:

Corollary 3. Let f be a bounded cochain satisfying all conditions of theorem 2 with A being
all the regular points of Ξ and Ξ being uniformly regular. Suppose Ω is biholomorphic with
C+ through ρ : C+ → Ω, mapping the boundary of Ω to the imaginary axis. Then there exists
a constant C depending only on the partition (that is, how well we can control the estimate of
lemma 2 for singular points using Jordan curves around them) such that:

sup
Ω

|f|⩽ sup
∂Ω

|f|+C

(ˆ
∂Ξ

|δf(ζ) |dζ + sup
ζ1∈Ω

|δf(ζ1) |

)
.

Proof. As soon as we know f −C( f) is analytic we know that every component of C( f) is
analytic even extended past a singular point, so we can use maximum modulus theorem on a
small circle around the singular point in the boundary inside the ϵ-neighbourhood of a chosen
component, by uniform regularity it is possible to take the size of this circle the same for all
singular points, resulting in a uniform estimate using lemma 2.

Perhaps more clearly we pick an open setU bordering our singular point s, thenUϵ contains
s in its interior and we can analytically continue C( f)U around s in a small circle S, because
f −C( f) is fully analytic and fU is analytic up to Uϵ we know that analytically continuing
C( f)U around s does not create a branch cut, but rather comes back to our original function.
Thenwe applymaximummodulus theorem to estimate themodulus ofC( f)U(s) by its value on
S, which can be bounded in the same way as lemma 2, by exactly the same proof. By regularity
of the partition, we can take the same S for allU bordering on s; and, by uniform regularity, we
can take circles of the same radius for all singular points, fixing all constants in lemma 2.
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5. Phragmén–Lindelöf principle

Before we move on to what we will refer to as Phragmén–Lindelöf for regular cochains, we
will need an improvement to classical Phragmén–Lindelöf principle; see [12]. With this aim,
next we recall the classical Phragmén–Lindelöf principle following Titchmarsh text [13]:

Theorem 3 (classical Phragmén–Lindelöf, [13, section 5.61]). Let f be an analytic function
in an unbounded simply connected region U inside a sector at infinity making angle π

α at
infinity, including the boundary; i.e. f is analytic on U, and U is contained inside the closure
of the sector.
Suppose that on ∂U:

|f(z) |⩽M. (1)

If there exists some β < α such that on U:

|f(z) |= O
(
e|z|

β
)
,

then Inequality (1) holds on the entirety of U.

Remark 4. The region U was not in the original statement in [13], but is clear that exactly the
same proof works.

Definition 11. Let K be a compact subset of the right half-plane C+, and let γ be a curve
contained in C+ \K. We call γ a meaningful dividing line if C+ \ (K∪ γ) consists of two path
connected components, each containing some sector with a positive angle.

A direct consequence of the classical Phragmén–Lindelöf, as stated in theorem 3, is the
following:

Proposition 1. Let K be a compact subset of the right half-planeC+, and let γ be a meaningful
dividing line in C+ \K. Let f be an analytic function on C+ \K, such that:

|f(z) |⩽M, for any point z ∈ γ ∪ ∂
(
C+ \K

)
. (2)

Suppose that there exists some λ> 0 such that on C+ \K:

|f(z) |⩽ eλ|z|,

then Inequality (2) holds on C+ \K.

Proof. It is enough to apply theorem 3 on each of the path connected components of C+ \
(K∪ γ).

Once we have recalled the classical Phragmén–Lindelöf, we turn to the main result of this
section; namely, its generalisation for regular cochains.

Theorem 4 (Phragmén–Lindelöf for regular cochains). Let f be a bounded cochain satisfy-
ing all conditions of corollary 3. Let ϕ : Ω→ C+ \K be a biholomorphism, K a compact set.
Suppose that the image of the real axis under ϕ is a meaningful dividing line.
Define the set Ba as all z in the boundary of Ξ with real part a. Let J : Ba → R be the

map mapping a regular point z to the following: locally there exists (if it does not exist, make
J(z) =∞, implies a need to repartition usually) a function γ such that ∂Ξ is given by the
points γ(t) with γ(0) = z and Re(γ(t)) = Re(z)+ t then we define:

J(z) = |γ ′ (0) |.

If it is a singular point, J(z) = 0.
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Let L be an increasing positive C1 function such that:∑
z∈Ba

J(z)⩽ L(a) .

Suppose that M is some positive non-zero C1 function such that:

sup
Re(z)⩾a

|δf|⩽M(a) .

Suppose that ρ is some positive non-zero C1 function with positive derivative such that:

sup
Re(z)=a

Re(ϕ(z))⩽ ρ(a) .

Suppose that σ is some positive continuous function such that:

σ (a)⩽ inf
Re(z)⩾a

Re
(
ϕ−1 (z)

)
.

Suppose that:

(1) The cochain f is bounded on Ω.
(2) The cochain f ◦ϕ−1 descends in absolute value faster than any exponential on the image

of the real axis under ϕ.
(3) The function:

λ(a)⩽ inf
b⩾σ(a)

−
M ′(b)
M(b) + L ′(b)

L(b)

ρ ′ (b)
is eventually positive.

(4) Assume that for all a:

Iρ (a) :=
ˆ +∞

σ(a)
e−δ(a)(ρ(s)−ρ(σ(a)))ds<∞.

Then for any real function ψ going to +∞ and smaller than Re(ϕ) on the real axis and for
any positive function δ̃ eventually between the zero function and λ, we have for x ∈ R large
enough a constant C depending only on the partition such that:

|f(x)|⩽
(
e−(λ(ψ(x))−δ̃(ψ(x)))(Re(ϕ(x))−ψ(x))

)
(
sup
Ω

|f|+CM(σ (ψ (x)))(L(σ (ψ (x))) Iρ (ψ (x))+ 1)

)
.

Proof. Let us define for a> 0:

Ωa := ϕ−1 ({Re(z)> a}) , fa := e(λ(a)−δ̃(a))(ϕ(z)−a)f(z) .

We are now interested in estimating f a on Ωa using corollary 3. As one might notice, the
intention of this setup is that sup∂Ωa

|fa|= sup∂Ωa
|f|⩽ supΩ |f|.

Let us start by estimating the relevant integral for a large enough to make λ(a)− δ̃(a)
positive (to keep notation light we will omit the sum over all (U,V) ∈ Ξ2 and the subscripts
for δ):

ˆ
∂Ξ∩Ωa

|δfa (ζ) |dζ ⩽
ˆ +∞

σ(a)
L(s)M(s)e(λ(a)−δ̃(a))(ρ(s)−a)ds.
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Denote the integrand by I(s), we want to apply Gronwall’s Lemma as follows: note that by
definition of λ:

I ′ (s)
I(s)

=
L ′ (s)
L(s)

+
M ′ (s)
M(s)

+
(
λ(a)− δ̃ (a)

)
ρ ′ (s)⩽−δ̃ (a)ρ ′ (s) .

This implies that:

L(s)M(s)e(λ(a)−δ̃(a))(s−a) ⩽ L(σ (a))M(σ (a))e−δ̃(a)(ρ(s)−ρ(σ(a))).

Thus: ˆ
∂Ξ∩Ωa

|δfa (ζ) |dζ ⩽ L(σ (a))M(σ (a)) Iρ (a) .

Now we can look at:

sup
Ωa

|δfa| ,

and note that:

sup
Re(z)=s

|δfa|⩽
I(s)
L(s)

.

Recall that we have assumed L to be increasing, moreover, it is clear that I(s)⩾ 0 thus already
having calculated that I ′(s)⩽−δ̃(a)ρ ′(s)I(s) we know that I(s) at least does not increase,
thus:

sup
Ωa

|δfa|⩽M(σ (a)) .

Note that because f is bounded, the improved Phragmén–Lindelöf in the Proposition above
still works for fa ◦ϕ−1. This combines with corollary 3 into:

sup
Ωa

∣∣∣e(λ(a)−δ̃(a))(ϕ(z)−a)f(z)
∣∣∣⩽ sup

Ω
|f|+C(M(σ (a))L(σ (a)) Iρ (a)+M(σ (a))) .

Dividing by the exponential on the left hand side and removing the supremum we get:

|f(z)|⩽
(
e−(λ(a)−δ̃(a))(ϕ(z)−a)

)(
sup
Ω

|f|+CM(σ (a))(L(σ (a)) Iρ (a)+ 1)

)
.

This estimate holds for f ∈ Ωa now certainly for x ∈ R, x ∈ ΩRe(ϕ(x)) ⊂ Ωψ(x) so filling in x for
z and ψ(x) for a we get the estimate we want.

6. Proving theorem A

Definition 12. Define on the right half-plane C+ the so-called simple standard partition Ξst,
given by the lines:

Im(ζ) =

{
n
3
4
π | n 6= 0

}
.

This is given the generalised ϵ-neighbourhoods by ‘enlarging the strips vertically by ϵ on both
sides’.

We denote for the rest of this section the element of Ξst containing the real axis by Ust.
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Definition 13. A simple cochain f (of type 1) is given by a cochain on some:

C+
a := {ζ ∈ C | Re(ζ)> a} ,

with partition Ξst such that for some C,C ′ > 0, for all ζ ∈ C+
a :

|δf(ζ) |⩽ Ce−C ′eRe(ζ)

.

Definition 14. An element of the class NC is a real analytic function which can be extended
to a simple cochain such that there exists some series:

ζ +
∑

ane
−nζ ,

with real coefficients an, such that any finite sum SN up to some N approximates f uniformly
up to accuracy O(e−(n+1)ζ); i.e. there exists some C> 0, ϵ> 0, and some ξ0 > 0, such that for
all U ∈ Ξst, for all ζ ∈ Uϵ with Re(ζ)> ξ0:

|fΠ (ζ)− SN (ζ) |< Ce−(n+1)Re(ζ).

By abuse of notation we will use f to both refer to the real germ as well as a chosen and fixed
extension to a simple cochain.

Before we prove theorem A, let us prove two auxiliary Lemmas:

Lemma 3. Let f be a simple cochain which is real on the real axis, suppose that f is smaller
than any exponential on the real axis, then f is identically zero on the real axis.

Proof. By applying Phragmén–Lindelöf for cochains on the smaller total domain, say given
by:

Ω := Ψ
(
C+
)
,

with Ψ(ζ) = ζ +
√
ζ + 1 (one of the standard quadratic domains of [7, p. 22]), it is easy to

check that the boundary of Ω is given by:

it+
√
1+ it=

√√
1+ t2 + 1

2
+ i

sgn(t)

√√
1+ t2 − 1

2
+ t

 .
We can take L(a) = C1a2, M(a) = C2e−C3e

a
(in the notation of theorem 4 with C1,C2 some

constants). Also clearly Ψ−1 plays the role of the function ϕ in the notation of the Phragmén–
Lindelöf Theorem. So we can take σ(a) = a.

Plus, certainly Re(z)⩽ Re(ϕ−1(z)) on the imaginary axis, now |Re(z)−Re(ϕ−1(z))|=
o(z), thus by classical Phragmén–Lindelöf for harmonic functions; see [1, 4. corollary] we
can take:

ρ(a) = a .

Then:

inf
b⩾a

−
(
−C3e

b+
2
b

)
= inf

b⩾a
C3e

b− 2
b
= C3e

a− 2
a
,

which we can simply take as λ(a). Take δ(a) = 1. Then:

Iρ (a) =
ˆ ∞

a
e−(x−a)dx= 1 .
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We can also take ψ(x) = 1
2x because from the fact that Ψ is near identity on the real axis the

same can be deduced forΨ−1. From this we also get for x large enough Re(Ψ−1(x))−ψ(x)>
1
3x. This results in the following estimate on the real axis:

|f(x) |⩽ e
−
(
C3e

1
2 x− 4

x−1
)

1
3 x
(
C4 +C5

(
C3e

1
2 x− 4

x
− 1

)(
x2

4
+ 1

))
.

Simplifying down to the important parts and renaming the constants we get:

|f(x) |⩽ Ce−C ′xe
1
2 x .

Consequently, we note that the component containing the real axis is defined on the strip with
imaginary parts between −π and π. So, the composition f ◦m2 ◦ ln, with m2 being multiplic-
ation by 2, is defined on C+ outside some compact set, and we have that:

|f(x) |⩽ Ce−C ′ ln(x)x,

which is smaller than any exponential so by Classical Phragmén–Lindelöf this is identically
zero.

Lemma 4. NC forms a group under composition.

Proof. To see for the composition that both standard quadratic domains and Dulac series are
preserved, see [9, lemma 24.33] (nothing is really changed by the cochain nature).

The argument that the partition can be preserved comes from its extendability to larger strips
and the fact that the cochain is exponentially close to the identity, meaning that if f1, f2 ∈NC,
for Re(ζ) large enough, for any strip Π, f1,Π (the component of Π) will map Πϵ/2 inside Πϵ,
which is the domain of f2,Π, so we can just take the same partition by reducing the ϵ up to
which we can extend to Πϵ.

To show that NC is closed under inversion, we will use the following formula for the
inverse function, derived fromRouché’s Theorem; see [2, pp. 153–154] (with thanks to Dmitry
Novikov): Let f be an invertible analytic function, note then that by Cauchy’s Theorem:

f−1 (w0)−w0 =
1

2π i

ˆ
f−1 (w)−w
w−w0

dw.

Thus, making the substitution w= f(z), we get:

f−1 (w0)−w0 =
1

2π i

ˆ
(z− f(z)) f ′ (z)
f(z)−w0

dz.

Let us now take α ∈NC and consider f = id+α. We obtain:

(id+α)−1
(w0)−w0 =

1
2π i

ˆ
α(z)(1+α ′ (z))
z+α(z)−w0

dz,

noting that performing Cauchy estimates on circles of radius e−Re(z)
1
2 will still preserve our

domains and we get both the domain and the estimates we want. We only need to prove that
id+α is invertible for Re(z) large enough, for the series expansion we refer to the formula in
[14, lemma 6.23].

Let f(z) = z+α(z), and let us then consider f̃(z) = f(z+ 2x0)− 2x0, α̃= α(z+ 2x0). Note
that by definition:

f̃(z) = z+ α̃(z) ,
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but unlike with α, α̃i; i.e. the i-fold composition, makes sense and we can explicitly give the
inverse of f̃ as:

f̃−1 (w) =
∞∑
i=0

α̃i (w) .

This implies that z 7→ f̃(z)− 2x0 = f(z+ 2x0) will eventually be injective. Moreover, because
f ′ will remain non-zero by Cauchy estimates, we know that f will eventually be injective on
the type of domain that is necessary.

Let us finally prove theorem A; the main result of this manuscript. For this sake, we recall
that A(_) means the conjugation by the exponential function; i.e. A(g) := ln◦g ◦ exp, for any
given function g, and we also recall that by x 7→ exp◦n(x) we mean the n-fold composition of
the exponential.

Proof of theorem A. First of all, since in lemma 4 we just proved that NC forms a group
under composition, we are only looking at an element g of:

Aff ◦NC ◦ · · · ◦AnNC ◦ · · · ◦NC ◦Aff.

Weproceed by induction on n, being the base case n= 0 obvious. Thus, let n> 0 be any positive
integer, let us take arbitrary affine elements a,b ∈ Aff, and let g be any element in:

a ◦NC ◦ · · · ◦AnNC ◦ · · · ◦NC ◦ b .

We stress that g has a fixed-points free neighbourhood around zero if and only if b ◦ g ◦ b−1

does. Hence, we may assume b≡ id. Consequently, we note then that the element g can be
rewritten as the sum of the affine term a plus some exponentially small terms. But, if a 6≡ id,
then that keeps g away from the identity. Therefore, we may also assume g to be in:

NC ◦ · · · ◦AnNC ◦ · · · ◦NC.

Again by conjugation we may assume that there exists some element g1 ∈NC such that g is
in:

g1 ◦ANC ◦ · · · ◦AnNC ◦ · · · ◦ANC.

But, once again we notice then that g turns out to be the sum of g1 and double exponentially
small terms by Taylor expansion. So, by the Phragmén–Lindelöf arguments in lemma 3, if the
Dulac series for g1 is not the identity, it provides a neighbourhood without fixed points, else
g1 ≡ id and then g is in:

ANC ◦ · · · ◦AnNC ◦ · · · ◦ANC.

Then g has a fixed-points free neighbourhood if and only if A−1(g) does. Nevertheless, A−1(g)
is in:

NC ◦ · · · ◦An−1NC ◦ · · · ◦NC.

So by induction we are done.
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