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Abstract—There is a substantial demand for deep learning
methods that can work with limited, high-dimensional, and
noisy datasets. Nonetheless, current research mostly neglects this
area, especially in the absence of prior expert knowledge or
knowledge transfer. In this work, we bridge this gap by studying
the performance of deep learning methods on the true data
distribution in a limited, high-dimensional, and noisy data setting.
To this end, we conduct a systematic evaluation that reduces the
available training data while retaining the challenging properties
mentioned above. Furthermore, we extensively search the space
of hyperparameters and compare state-of-the-art architectures
and models built and trained from scratch to advocate for
the use of multi-objective tuning strategies. Our experiments
highlight the lack of performative deep learning models in current
literature and investigate the impact of training hyperparameters.
We analyze the complexity of the models and demonstrate
the advantage of choosing models tuned under multi-objective
criteria in lower data regimes to reduce the likelihood to overfit.
Lastly, we demonstrate the importance of selecting a proper
inductive bias given a limited-sized dataset. Given our results,
we conclude that tuning models using a multi-objective criterion
results in simpler yet competitive models when reducing the
number of data points.

Index Terms—Limited Data, Deep Learning, Multi Objective
Optimization, Overfit

I. INTRODUCTION

In recent years, deep learning celebrated unprecedented
success ranging from the rise of large language models [1]–[3]
to the discovery of new materials [4], [5] and image generation
[6], [7]. Pushing models further toward the boundary of com-
putation enables a sheer unforeseeable range of possibilities
[8], provided that the amount of data matches the demand of
the steadily growing models and their hunger for data [9].
However, looking at the other end, where data is scarce but
high-dimensional and noisy, we are still facing substantial
obstacles. Research has long abstained from investigating deep
learning models in these circumstances, although countless
real-world applications require performative models to drive
development and research. Rare diseases [10], [11] is a
particular case of such an application where data can have
very high-dimensional, noisy measurements and is limited
by definition. Likewise, the discovery of new molecules to
improve on existing drugs is a fundamentally low data problem

as many newly proposed molecules are incompatible or even
toxic [12]. Furthermore, archaeological discoveries rely on
limited, highly complex data [13], [14]. Deep learning has
made tremendous progress in the last few years, particularly
regarding methodologies tailored for data in large quantities.
In this work, we address settings where the data is limited,
high-dimensional, and noisy by nature.
In recent work, Banerjee et al. [10] reflect on the state and
applicability of deep learning methods for investigating rare
diseases. To facilitate learning, they propose to increase the
amount of data by combining data sets, injecting prior knowl-
edge, or transferring the weights of a deep learning method
trained on a related domain. However, in newly emerging
fields such as diagnosing new rare diseases, simply merging
datasets falls out of the question as we do not have relatable
data. Therefore, using transfer learning to enable learning in
high-dimensional yet scarce data environments is not an option
since transferring weights from one domain to another might
not always benefit performance [15].
We explore the limitations of deep learning when confronted
with limited yet high-dimensional and noisy data without
introducing prior knowledge or transferring weights from
another domain. To do so, we conduct a systematic evalua-
tion1 that mirrors the challenging data contexts and enables
us to analyze deep learning and a deep Gaussian Process-
based model in a controlled framework, by systematically
decreasing the available data, starting from the entire data
set, until only one percent of the original data remains. We
then task the algorithms with predicting on the complete test
data to evaluate their abilities on the true data distribution.
Furthermore, we extensively investigate the spaces of possible
architectures and hyperparameters of several deep learning
techniques to provide insights and guidelines to train models
in this challenging set up. Specifically, we question the trade-
off between performance and complexity in a multi-objective
context. With our work, we demonstrate the capability of deep
learning models to learn in this challenging framework.
The rest of the paper is structured as follows. We provide

1https://github.com/simomoxy/limited data.git



an overview of related work in section II. In sections III and
IV, we present our evaluation and deep learning models in
detail before explaining our experimental procedures. Finally,
we display and discuss our results in sections V and VI
respectively.

II. RELATED WORK

Training small and efficient models that function correctly
in adverse circumstances remains an important challenge.
Recently, the research community has recognized the lack of
resources invested in this branch of deep learning, and part
of it is shifting its focus away to reduce model complex-
ity [16]–[18]. However, popular techniques to enable stable
training in small data regimes, such as transfer learning [19],
[20] or knowledge distillation [21]–[23], are not applicable
to our problem framework since we are concerned with
studying the behavior of deep learning methods for entirely
new domains. Banerjee et al. [10] investigate the current
state of machine learning in the context of rare diseases,
where the authors propose several techniques to improve
the dataset, such as harmonically combining data sets and
reducing class imbalance with decision tree-based methods,
as well as augmenting models, e.g., with knowledge graphs.
Furthermore, applications of these techniques are summarized
and analyzed. In our study, we take a general perspective
on this difficult-to-train context, where the domain of rare
diseases constitutes a specific case instead of focusing entirely
on this field. Moreover, compared to Banerjee et al., we do
so without prior knowledge or the transfer of weights. Dou et
al. [24] provide a broad review of machine learning methods
facing small data challenges in molecular sciences. Our work
differs since we create a synthetic evaluation in which we
systematically control the quantity of information available to
the learner. Additionally, we limit our exploration of deep
learning models and abstain from other machine learning
techniques as we seek to process high-dimensional data, a
domain in which deep learning methods have been excelling
in recent years, lifting the requirement to carefully design
feature extraction techniques as it is frequent for traditional
machine learning models. Brigato et al. [16] identify the need
to find models that can work under small data availability.
In their pioneering study, the authors reveal the benefit of
using models with lower than state-of-the-art complexity by
investigating convolutional neural networks under different
image classification evaluations. Contrary to their work, we do
not consider using sophisticated data augmentation techniques
that need to be to be hand-designed and require sufficient
prior knowledge [16]. In contrast to other works on limited
data [16], [17], where the authors only present a few models
per study, we expand our examinations to consider a broader
range of deep learning models. As we search the space of
deep learning architectures exhaustively, our work is related
to Neural Architecture Search (NAS). NAS extends hyperpa-
rameter optimization by additionally searching architectural
parameters [18], [25], [26]. It is concerned with finding the
optimal network architecture without relying on a researcher’s

prior experience and freeing the process of required intuition
by reducing the necessity of human intervention [26]. Our
work builds on the principles of neural architecture search
by considering a model’s complexity and performance as
two criteria for finding optimal architecture and tuning hy-
perparameters. We optimize hyperparameters using Bayesian
and bandit-based search [27] to find suitable architectures
and tuning hyperparameters. When performing our search
concerning performance and complexity, we are interested
in finding Pareto-optimal models resulting from the trade-off
between these conflicting criteria. The Pareto frontier marks
the boundary where we achieve an optimal trade-off between
performance and model size such that we cannot find a model
further optimized in one aspect without losing in the other
[18].

III. METHODS

We base our study on three pillars: III-A the evaluation,
III-B the search strategies, III-C the models. We now describe
them starting with the evaluation.

A. Evaluation

In our experiments, we want to shed light on the perfor-
mance and limitations of modern deep-learning techniques
when faced with highly complex and noisy data under limited
availability. To gain insights into the impact of the size of
the dataset, we aim to show the limitations of such tech-
niques when we systematically reduce the available data. More
specifically, we consider the PTB-XL dataset [28], consisting
of 21.837, 12-lead electrocardiogram recordings of 18.885
patients, having 71 labels in total [29] as our base data
set, denoted as X . The dataset contains an unbalanced label
distribution, with possibly multiple labels per data point and
noisy, high-dimensional time series data. We split X into a
training T , validation V , and test set U in accordance with the
stratified folds, as proposed in [28]. We use a downsampling
rate, δ ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 0.85, 0.9, 0.95, 0.99}, to draw
K subsets from T uniformly at random. For each δ, the
random subset fulfills the following condition

|T i
δ | = ⌊|T |(1− δ)⌋ (1)

with i = 1, . . . ,K, | · | denoting the size of a set and ⌊·⌋ the
floor function. By training our models on the same fixed sets
T i
δ , for all values of i, and thus, avoiding training our models

on different sub-samples of the data, we ensure comparability
across the training runs of the different models. Further, we
consider the complete validation set to tune the parameters
according to the true data distribution. The validation in the
original data split has been ensured to have high-quality
samples and a balanced label distribution [28]. Thus, our
tuning data set concerns

Di
δ = {T i

δ ,V} (2)

We determine the performances and limitations of modern
deep learning models in a two-fold procedure, where we define



performance in terms of macro-averaged area under the curve
(macro AUC). To compute the macro AUC, each class AUC is
calculated independently before averaging them. This accounts
for a better judgment of the classifier than accuracy as it
relieves the requirement to optimize for a threshold value [29].
Additionally, choosing micro-averaging, i.e., computing the
average based on the combined true and false positive rates
of each class, would lead to an overrepresentation of highly
populated classes [28].

B. Search Strategies

The task of automatically finding the optimal hyperpa-
rameters, be it architectural or training settings, is an active
field of research [27], [30]. In hyperparameter optimization
frameworks, the aim is to find the optimal setting of hyper-
parameters without having a human-in-the-loop to eliminate
possible biases and the need for prior experience regarding
specific machine learning models. For this, trials are sampled
according to some heuristic and the black-box model is evalu-
ated according to user-specified performance metrics. For our
purposes, we differentiate between bandit-based optimization
via the Asynchronous Successive Halving Algorithm (ASHA)
[31], and Bayesian optimization using the Multi-objective Tree
Parsen Estimator (MTPE) [32].

1) Asynchronous Successive Halving Algorithm: ASHA
[31] can be best understood as a best-arm identification
problem in a multi-armed bandit set up. The algorithm sam-
ples hyperparameter configurations where each configuration
corresponds to an arm. It aims to identify the best-performing
arm and, where in this setting this arm corresponds to the best-
performing hyperparameter configuration. Formally, given a
set of hyperparameter configurations Θ, we want to find
the single best-performing arm according to the evaluation
function f ,

maximize f(θ)

subject to θ ∈ Θ
(3)

In doing so, the algorithm allocates a uniform computa-
tional budget to a predetermined number of configurations.
After each evaluation, poorly performing configurations are
eliminated, and their computational budget is redistributed
to the remaining trials. This procedure is called successive
halving [33]. In ASHA, this elimination process occurs asyn-
chronously by evaluating each arm as soon as possible instead
of waiting for the remaining arms, repeating the process until
only one trial is left. Due to its asynchronous nature, the
algorithm efficiently enables parallelization and scalability.

2) Multi-objective Tree Parsen Estimator: MTPE [32] is a
multi-objective hyperparameter optimization algorithm in the
form of

maximize f(θ) = (f1(θ), ..., fM (θ))

subject to θ ∈ Θ
(4)

that, similar to ASHA, tries to find the best hyperparameter
configuration, but instead of a single objective evaluation, it
considers multiple objective functions. For this, a metric vector

is constructed given an evaluation, ζ = f(θ). Using this metric
vector, containing the respective evaluations of each objective
function, we can compare two hyperparameter settings by the
concept of domination. Following2 [32], a vector ζ ∈ RM

dominates another vector ζ′ ∈ RM if for all i ∈ {1, . . . ,M}
it holds that ζi ≥ ζ′i, and there exists j ∈ {1, . . . ,M} such
that ζj > ζ′j . We write domination as ζ ≻ ζ′, meaning that
the metric vector ζ performs better in at least one metric
j ∈ {1, . . . ,M}, while performing better or equal in the other
metrics. Similarly, we define weak domination between two
vectors when for all i ∈ {1, . . . ,M} it holds that ζi ≥ ζ′i,
denoted as ζ ⪰ ζ′. Further, a vector ζ dominates (or weakly
dominates) a set of vectors Z ⊆ RM , denoted as ζ ≻ Z (or
ζ ⪰ Z), if and only if for all ζ′ ∈ Z it holds that ζ ≻ ζ′
(or ζ ⪰ ζ′). Likewise, set of vectors Z ⊆ RM dominates (or
weakly dominates) a vector ζ ∈ RM , Z ≻ ζ (or Z ⪰ ζ), if
there exists ζ′ ∈ Z such that ζ′ ≻ ζ (or ζ′ ⪰ ζ respectively).
Following this, we define incomparability as ζ||Z, i.e., neither
ζ ⪰ Z nor ζ ⪯ Z. With these concepts, we can define two
densities, l(θ) and g(θ),

p(θ|ζ) =

{
l(θ) if ζ ≻ Z∗ ∨ ζ||Z∗

g(θ) if ζ ⪯ Z∗ (5)

where Z∗ is a set of vectors such that p(ζ ≻ Z∗∨ζ||Z∗) =
γ. Here, Z∗ contains trials that are inferior or incomparable
to ζ, while γ ∈ (0, 1) constitutes a threshold parameter that
can be set by the user. Essentially, γ splits the hyperparameter
configurations into two groups: those with good performance,
measured by l(θ), and those with poor performance, measured
by g(θ). This helps to distinguish between trials that improve
over earlier ones and those that do not where new configura-
tions are sampled by evaluating an acquisition function. In the
case of MTPE, the corresponding acquisition function is the
Expected Hypervolume Improvement (EHVI) given by

EHV IZ∗(x) ∝
(
γ +

g(θ)

l(θ)
(1− γ)

)−1

(6)

giving more emphasis to samples with a high probability
under l(θ) and a low probability under g(θ). Subsequently,
after evaluating the new hyperparameter configuration in terms
of the objective functions {fm}Mm=1, the probability densities
are updated, and a proceeding sample is chosen according to
the acquisition function.

C. Models

We test a broad range of models to demonstrate the state of
deep learning under limited data availability. We investigate
the current best-performing models reported for the original
PTB-XL dataset. Next, we question the performance of pop-
ular deep learning methods by extensively searching possible
architectural settings.

2Please note that instead of following the original notation of [32], we
decided to switch the signs to emphasize that we are dealing with a
maximization problem.



Fig. 1: The number of Pareto optimal models decreases with
higher down-sample rates.

1) State of the Art (SOTA): As a baseline, we consider
the models reported in [34], [35] consisting of a state
space model (S4) [34], [36], a one-dimensional XResnet
model [37], and an LSTM-based model (CPC) [35]. Each
of these models comes with a fixed architecture. First, we
train the models on each T i

δ with their default training
hyperparameters as described in [34], [35]. The training
hyperparameters under investigation are the learning rate
and weight decay as these have a crucial impact on a deep
learning model’s performance [27], and batch size, which
has shown to directly correlate with the ability to generalize
[38]–[40]. Next, we tune each of these hyperparameters
using the bandit-based hyperparameter optimization ASHA
to analyze their impact on the performance on smaller data
samples. For our purposes, we do not tune the SOTA models
on the multi-objective criterion as their model size does not
change since we consider their architectures fixed.

2) Base models: In addition to the state-of-the-art models,
we investigate a range of deep learning models, which we
refer to as Base models, comprised of a convolutional neu-
ral network architecture (CNN), an LSTM-based architecture
(LSTM), a transformer encoder (ENC), and a state-space
model (S4) [36]. Furthermore, we explore the performance of
deep Gaussian Process approximations using Random Fourier
Features and convolutional layers (ConvRFF) [41].
We tune these models regarding architectural hyperparame-
ters, such as the width and depth of the layers, activation
functions, and dropout. Further, we tune them for the same
tuning hyperparameters as the SOTA models using ASHA
[31] to gain insights over the preferred architectures in low
but high-dimensional data settings. Additionally, we tune the
hyperparameters of the Base models using a multi-objective
search procedure realized by the MTPE by maximizing for
performance and minimizing for complexity.

IV. EXPERIMENTAL SET UP

We implement our experiments using PyTorch [42] and
PyTorch Lightning [43]. We use RayTune [44] to implement
ASHA and Optuna [45] for the MTPE. Our tuning is set up
such that each sample of architectural or tuning hyperparame-
ters constitutes a trial. An experiment consists of 100 trials per

TABLE I: An overview of the experiments. Each SOTA model
has precisely one configuration. The number of Pareto trials
varies for each model and each down-sample rate. In total, we
conduct 1772 training runs.

Model Configurations Pareto Trials Full Runs
S4 900 216 351

CPC 450 - 90
XResnet 450 - 90

CNN 900 312 357
ConvRFF 900 248 293

LSTM 450 207 252
ENC 450 294 339

Total 4500 1277 1772

model, both SOTA, and Base, for each T i
δ . We run each trial

for 10 epochs and set K = 5 to report the mean and variances
per model and per down-sample rate. After completing the
tuning, we select the best hyperparameter according to their
respective performances in the single objective optimization
and every model that is part of the Pareto front for the multi
objective search. We then train each of the best-performing
models for 100 epochs. Subsequently, the models are tested on
the complete testing data as we judge their quality to capture
the true data distribution. All experiments (training, tuning and
testing) are run on Nvidia A100 and P100 GPUs.

V. RESULTS

We search the space of training and architectural hyper-
parameters using the single objective ASHA and the multi-
objective TPE and present an overview of the associated
experiments in Table I. Each model is tuned for every down-
sample rate for each of the five data samples and 100 trials
per optimization strategy, resulting in 100|δ|K = 450 trials
per optimization strategy. In the case of ASHA, we select the
top-performing model of each data sample to train it on the
respective data sample. In contrast, since the multi-objective
search does not result in a single best model but rather in a
Pareto front of model configurations, we train each member
of the Pareto front. In total, we train 1.772 models over 100
epochs, ranging over 9 different down-sample rate settings and
five data samples per down-sample rate.
Figure 1 displays the number of Pareto models found per
model and down-sample rate. Notably, the number of Pareto
optimal models decreases together with the data.

Performance

At first, we compare the performances on the test data, U ,
of each model, trained for each T i

δ . We depict their results in
Figure 2 starting with the SOTA models on the left, the best-
performing retuned models via the single-objective ASHA,
and lastly, the models found by the multi-objective Bayesian
search. In the case of the single objective hyperparameter
tuning, we report that the performance of the SOTA models is
higher than that of the Base models. However, the higher the
down-sample rate, the smaller the gap becomes, resulting in
a marginal performance advantage for the S4 (0.68 ± 0.07)
compared to the CNN (0.68 ± 0.03) for a down-sample



Fig. 2: Performance is measured as macro AUC for all models, starting from the SOTA models (left), single-objectively tuned
SOTA models (middle-left), single-objectively tuned Base models (middle-left), and multi-objectively tuned models (right)
across all down-sample rates. Surprisingly, the models are stable throughout higher down-sample rates where the S4 model is
superior throughout most data subsets and optimization strategies. For higher down-sample rates, models that are trained from
scratch perform equal or better than models with specific architectures.

Fig. 3: Loss of performance when comparing each down-sample rate to the average performance on the entire data set,
measured as macro AUC for all models, starting from the SOTA models (left), single-objectively tuned SOTA models (middle-
left), single-objectively tuned Base models (middle-left), and multi-objectively tuned models (right) across all down sampling
rates. The performance remains close to the baseline up to a down-sample rate of 40%.

rate of 99%. In the multi-objective case, the CNN surpasses
the S4 for a down-sample rate of 60%, 95%, and 99%.
For a down-sample rate of 99%, the Gaussian process-based
model ConvRFF significantly closes the gap between the two
models based on point estimates and even beats the S4 model
regarding macro AUC. Notably, the performance for all models
remains stable upon a loss of 40 percent of the sample size,
after which it starts to decline, as shown in Figure 3. Overall
S4 is the superior model for most of the down-sample rates.
Figure 3 shows the difference in the average performance
of each model given a down-sample rate of 0%, i.e., the
complete data set, depicting the SOTA models (left), the single
objective models (middle), and the multi-objective models
(right). Remarkably, when comparing all three configurations,
we see that the multi-objectively tuned models remain stable
even with a down-sample rate of up to 60%, consistently
outperforming the others at all lower down-sample rates.

Complexity vs. Performance

The trade-off between complexity and performance for the
multi-objectively optimized models is shown in Figures 4,
where we depict the Pareto front of a CNN model trained
on T 3

0.85 after tuning it for 10 epochs. In the case of the CNN
in Figure 4, we demonstrate that a model’s complexity directly
influences its performance in the early epochs. However, we
remark that in some trials the multi-objective search does
not necessarily result in a linear or convex shape of the
Pareto front, which would be preferable. Figure 5 shows the
performances of fully trained models for all subset of the data
using a down-sample rate of 85%. From this figure, we can
observe that, given a fixed down-sample rate, the model size
can be reduced without severely impacting the performance
by carefully investigating the Pareto front.



Fig. 4: Pareto front of a CNN tuned on T 3
0.85 while being

optimized for performance and complexity. The higher the
macro AUC and the lower the model size the better the model
is. We would expect the Pareto front (red) to be of linear or
convex shape.

Fig. 5: Size vs. performance of fully trained models after
being optimized on T i

0.85 for performance and complexity
simultaneously. Displayed for all i = 1 . . . 5. For most models,
the size can be reduced without harming the performance.

Training Hyperparameters

Next, we investigate the role of the training hyperparame-
ters. More specifically, we study whether the learning rate,
weight decay, dropout, or batch size is impacted by the
reduction of data samples. We note that the weight decay has
no particular tendency except for the Bayesian optimisation

procedure that saw an increase from 0.004±0.01 for a down-
sample rate of 0% to 0.02 ± 0.03 given only 1% of the
data set. The optimization algorithms set the batch size at a
slightly lower value compared to the original batch size of
32 as reported in [34], particularly for higher down-sample
rates (26.11± 31.77 to 21.30± 24.52 for a down-sample rate
of 0% and 99% averaged over all search results). Overall,
all three searches slightly increased the learning rates in their
configurations compared to the learning rate used on the entire
data set (0.005 ± 0.008 to 0.018 ± 0.022 again for δ = 0
and δ = 0.99 averaged over all searches). Lastly, the multi-
objective search resulted in higher dropout rates by roughly
15% (0.24 ± 0.19 to 0.40 ± 0.22, δ = 0 and δ = 0.99
respectively).

Overfit

Subsequently, we inspect the models for their susceptibility
to overfit when reducing the amount of training data as seen
in Figure 6. Here, we determine overfit as the training loss
minus the validation loss, and likewise training macro AUC
minus the validation macro AUC. Surprisingly, as seen in
Figure 6a, the SOTA models are well-tuned on average with
respect to overfitting in both loss and performance, exhibiting
just a slight overfit on the loss. The models found by ASHA
show a larger average overfit with respect to the performance
values. In contrast, the multi-objective models demonstrate
a comparably marginal overfit in terms of averaged loss
and macro AUC. Figure 6b displays single trajectories of
the overfit and loss per model tuned with single-objective
and multi-objective search, respectively. In both cases, the
trajectories indicate that for a subset of models, the overfit
diverges more strongly from the average case. Additionally,
we present the overfit in terms of loss and macro AUC for each
of the K sampled datasets while setting δ = 0.99 in Figures 7
and 8, which similarly demonstrate a tight confidence interval,
while single trajectories diverge from the average. Overall, the
multi-objective search criterion results in models that are well-
tuned on average.

VI. DISCUSSION

Our study compared the performance of state-of-the-art
models and basic architectures via a systematic evaluation that
tests a model’s ability to deal with limited, highly dimensional,
and noisy data. Furthermore, we extensively explored the
space of architectural and training hyperparameters.
Each model suffers a performance loss when reducing the
amount of data points. However, some models, such as the
transformer encoder, are more affected than others (e.g., the
state space model S4).
We found that the models are surprisingly robust to overfitting.
Overall, we state that the models that are tuned with respect
to performance and complexity are well-tuned (i.e., no over-
nor underfit) compared to their single-objective counterparts.
Training hyperparameters, such as the learning rate and batch
size, tend to be impacted by a reduced number of data
points, corroborating earlier findings in the literature [39],



(a) Mean overfit in terms of loss and macro AUC with 95%
confidence interval.

(b) Single trajectories.

Fig. 6: Overfit in terms of loss and macro AUC, calculated
by subtracting the validation value from the training value,
averaged over all down-sample rates, and displayed for all
epochs using the average and a 95% confidence interval (a) and
single trajectories (b). In the case of the loss, we normalized
the training and validation values before subtracting the latter
from the former. The plots compare single-objectively (left)
and multi-objectively (right) tuned models.

particularly for the lower batch sizes [38], [40]. Weight decay
only plays a marginal role in the single objective search,
but tends to be increased when considering performance and
complexity. Similarly, dropout becomes more important as the
number of data points decreases, emphasizing the need to
balance performance and model complexity. This finding is
in accordance with the reports made by Brigato et al. [46].
We postulate that the superior performance of the state space
model and the convolutional neural network-based models
arise due to their inductive biases, specific for a given data
type. This difference is noticeable in the single-objective
models depicted in both of the mid-columns of Figure 2,

where the remaining models fall off quickly for higher down-
sample rates. The ability of the state space model to capture
long-range signals [36] appears to be beneficial to classify
electrocardiogram signals, as demonstrated in the original
PTB-XL evaluation [34]. Thus, one way of augmenting the
inferior models would be to expand their inductive biases, e.g.,
as proposed by Yin et al., who introduce a convolutional bias
into their transformer architecture [47].
We highlighted the importance of balancing performance and
model size by advocating for a multi-objective model selection
when confronted with limited yet high-dimensional and noisy
data. Our experiments demonstrated that the performance
of our multi-objectively tuned models remains more stable
when compared with single-objectively tuned models, and is
robust against overfitting. Furthermore, we have shown that, in
low data regimes, a model’s complexity can be significantly
reduced without sacrificing its performance, as seen in Fig-
ure 5. When ready-made state-of-the-art models are not yet
available in the corresponding literature, we propose tuning
the architectural and training hyperparameters of a model
from scratch, as it can result in a performance close to the
best-performing models in the respective domain, especially
in lower data set sizes. Albeit the accuracy may not be the
best possible, the reduction in overfit is a strong argument
in favor. Additionally, the resulting Pareto front allows for a
case-sensitive model selection in which we favor one objective
over the other.
In certain cases, however, the Pareto front can have a sub-
optimal shape, resulting in a set of models forming a concave
curve. By averaging over these models, we obtain a new model
that dominates the set of Pareto optimal models [48], meaning
that it performs better in terms of performance while being
of smaller complexity than the models of the Pareto front
found to be optimal. Concretely, this means that if the Pareto
front exhibits a concave shape, the overfit curves presented in
Figure 6a overestimate the performance of the models. This is
confirmed by analyzing Figures 6b-8, from which it is evident
that some model trajectories diverge stronger than the average,
e.g., the transformer-based model. However, the ConvRFF and
S4 models are well-represented by their respective averages.
Overall, our results indicate that the trajectories exhibit a re-
duction in overfitting, albeit with the possibility of degenerate
cases.
Given the plethora of different hyperparameter settings, our
work only explored the tip of the iceberg, nonetheless focused
on the parameters that are most relevant for model creation.
However, we used efficient search strategies to navigate the
space of possible settings.
Lastly, we want to address why we have chosen to tune our
models on the entire validation set for every down-sample rate
instead of reducing the amount of validation similar to the
training data. With this study, we want to reflect on the state of
current deep learning methods when faced with reduced data in
a high-dimensional and noisy setting in terms of capturing the
true data distribution. While downsampling the validation data
would be tailored specific to a case, we chose to emphasize



Fig. 7: Overfit in terms of loss with 95% confidence interval (upper) and the corresponding single trajectories (lower, calculated
by subtracting the validation value from the training value, displayed for all epochs as single trajectories. The plots compare
single-objectively (left) and multi-objectively (right) tuned models. The multi-objectively tuned models show smaller confidence
intervals with a mean closer to zero while having single diverging trajectories.

Fig. 8: Overfit in terms of macro AUC with 95% confidence interval (upper) and the corresponding single trajectories (lower),
calculated by subtracting the validation value from the training value, displayed for all epochs as single trajectories. The plots
compare single-objectively (left) and multi-objectively (right) tuned models. The multi-objectively tuned models show smaller
confidence intervals with a mean closer to zero while having single diverging trajectories.

the general capabilities of the deep learning methods across
limited data samples. Using the entire validation data allows us
to optimize the models according to the true data distributions
and thus gives a better reflection of the model performances
for low data regimes.

VII. CONCLUSION

In this study, we have analyzed the current state of deep
learning methods in limited, high-dimensional, and noisy data
settings. Specifically, we have introduced a novel approach that
allows us to investigate models when reducing the data in a
systematic manner. Furthermore, we have extensively searched
the space of architectural and training hyperparameters using
single-objective and multi-objective search. Our experiments
revealed the importance of model selection according to multi-
objective criteria to yield well-tuned models, competitive with
state of the art methods. Moreover, we demonstrated the
impact of the inductive bias of a model in limited, high-
dimensional and noisy data sets.
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