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Abstract 

Background  Characterizing malaria burden and its evolution is complicated by the high levels of spatio-temporal 
heterogeneity and by the complexity of the transmission process.

Main body  This manuscript presents an integrative review of the combined use of mathematical and statistical mod-
els to estimate malaria transmission parameters. Therefore, this work aims to provide a solid methodological founda-
tion for the estimation of transmission intensity and other relevant quantities. A perspective covering both math-
ematical and statistical models to appraise commonly used metrics is adopted and subsequently their inclusion 
as parameters in compartmental models as well as their estimation from available data is discussed. The current 
review argues in favour of a more widespread consideration of the Force of Infection (FOI) as a malaria transmission 
metric. Using the FOI dispenses the analyst from explicitly describing vector dynamics in compartmental modelling, 
simplifying the system of differential equations describing transmission dynamics. In turn, its estimation can be flex-
ibly performed by solely relying on host data, such as parasitaemia or serology, avoiding the need for entomological 
data.

Conclusion  The present work argues that the interaction between mathematical and statistical models, 
although previously exemplified by others, is underappreciated when modelling malaria transmission. Orienting 
the exposition around the FOI provides an illustration of the potential borne by the existing methodology. A connec-
tion between the two modelling frameworks warrants better scrutiny, as it leads to the possibility of exploiting the full 
range of modern statistical methods.
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Background
Assessing the current level and (spatio-)temporal changes 
in malaria transmission is of great importance for evalu-
ating the feasibility (ex ante), impact (ex post) and cost-
effectiveness of any strategy aiming at malaria control or 
elimination [1].

Transmission intensity is defined by the World Health 
Organization (WHO) as the “frequency with which peo-
ple living in an area are bitten by anopheline mosquitoes 
carrying human malaria sporozoites.” [2]. It is charac-
terized by spatio-temporal heterogeneity, with its level 
being related to a large range of factors encompassing 
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entomological (e.g., mosquito population density), envi-
ronmental (e.g., seasonal variation in temperature and 
rainfall), biological (e.g., immunity), and other elements 
(e.g., heterogeneous biting) [3]. Moreover, the transmis-
sion process itself is highly complex, developing over 
several phases and biological cycles involving vector and 
host, thus offering a wide range of possibilities for inter-
vention. This implies that a transmission metric can focus 
on dynamics of the vector, the host, or the parasite itself, 
so that an observable change in the value of a malaria 
transmission metric can be caused by a change in one (or 
more) of these factors.

The presence of all these intricacies makes it para-
mount to explicitly define criteria and methods required 
for an optimal (that is, “resource conscious”) and robust 
estimation of malaria transmission intensity or other 
related epidemiological quantities, such as current para-
site levels, which are closely related [4, 5]. The present 
work aims at meeting these needs by providing a meth-
odological overview on the estimation of malaria trans-
mission from a perspective covering both mathematical 
and statistical modelling techniques. Therefore, the cur-
rent review is termed ‘ìntegrative’, stressing the impor-
tance of combining both approaches and providing 
specific details concerning their use. The integration of 
statistical models into the mathematical modeling frame-
work dates back to the seminal work by Sir Ronald Ross 
[6], who proposed to iterate between what he defined as a 
posteriori and a priori methods, nowadays often referred 
to as statistical and mathematical models, respectively, to 
estimate relevant parameters governing disease dynam-
ics and their transmission process. Since Ross’s time, the 
“toolbox” available to researchers interested in under-
standing the dynamics of malaria, from a mathematical 
and statistical point of view, has expanded considerably 
[7–9]. The present work argues that combining both 
approaches provides the best way forward to enjoy all 
these developments simultaneously, opening up a realm 
of possibilities to the analyst that the two frameworks, 
taken individually, would not provide [10]. In effect, 
the biological “facts” that one wants to translate into a 
set of mathematical equations may not be well under-
stood beforehand, however, assumptions thereon could 
be contrasted with data through statistical models [11]. 
Next to that, estimates of key epidemiological parameters 
could be derived from models for which the underlying 
assumptions are tested to be in line with observed data. 
In particular, this work focuses on highlighting how the 
interaction between mathematical and statistical mod-
els can be achieved by considering the Force of Infection 
(FOI), commonly used in infectious disease epidemiology 
[12, 13], as a malaria transmission metric. Despite the 
fact that FOI has been considered as a measure of malaria 

transmission, its use is less common than the ubiquitous 
use for close contact and sexually transmitted diseases.

Previous work, such as the review by Tusting and co-
authors [14], provides a comprehensive overview and 
evaluation of malaria metrics, and as such was used as 
a relevant starting point for our evaluation. However, it 
does not deal explicitly with either issues related to the 
estimation of such metrics, or with their role as param-
eters in mathematical models of disease transmission. 
On the other hand, the reviews by Mandal et al. [15] and 
Reiner et  al. [9], focus more specifically on mathemati-
cal models of malaria transmission, although they do not 
deal with the possibility of estimating relevant epidemio-
logical quantities using statistical models, while the paper 
by Smith et  al. [16] presents a historical perspective on 
the so-called “Ross-Macdonald” model [17, 18] and vari-
ations thereof.

Building on a review covering the estimation of the FOI 
at large [19], and in the spirit of recent contributions to 
the scientific literature [20] summarizing methods for the 
analysis of serological data, the present work is defined 
as a methodological integrative review thereby synthesiz-
ing mathematical and statistical modelling approaches to 
the estimation of the FOI. By presenting existing meth-
odologies and referring to applications in the context of 
malaria, the aim is to provide a cohesive and structured 
understanding of the topic. Despite the fact that several 
malaria review papers describe various themes, the lit-
erature on the subject of malaria transmission does not 
feature a literature review, to the best of our knowledge, 
addressing the estimation of the FOI based on math-
ematical and statistical models. Moreover, it was not 
possible to identify other publications simultaneously 
focusing on malaria metrics that are integrated as direct 
or indirect parameters of mathematical (compartmental) 
models and deriving estimates thereof from relevant data 
by exploiting the connection between mathematical and 
statistical models to do so.

The overview starts by introducing the FOI in Sect. 
2, placing it in the wider context of metrics of common 
use Sect.  3 highlights how the FOI can be successfully 
integrated in mathematical models of malaria disease 
dynamics as well as appropriately estimated via statisti-
cal models dealing with the complexities highlighted 
above. Lastly, Sect. 10 is concerned with presenting ear-
lier approaches that conducted an integrated analysis 
within the framework of malaria. These will act as ‘build-
ing blocks” towards a general framework integrating 
mathematical and statistical modelling approaches, with 
which the review concludes. This framework should help 
connect the different highlighted perspectives, providing 
insights into their strengths, limitations, and synergies.
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Malaria metrics and the FOI
Considering the structure of the malaria transmission 
cycle, it is possible to identify three possible measure-
ment levels: (1) the human level, encompassing any clini-
cal sign or symptom (e.g., the spleen rate, now obsolete, 
or presence of fever) or humoral immune response, 
gauged by serological data [21]; (2) the parasite level, 
identified for instance by microscopy on blood samples; 
and (3) the vector level, including entomological meas-
urements. From now on, the term “parasitological” is 
used to refer to the measurement of the parasite load in 
a blood sample and “serological” to refer to the presence 
of antibodies to the malaria parasite in a blood sample. 
Common metrics employing data from each of these 
measurement levels are now briefly introduced.

First, detection of parasites in a blood sample can be 
used to compute the Parasite Rate (PR), a common met-
ric for prevalence and endemicity, measuring the propor-
tion of individuals harbouring malaria parasites in their 
blood at a given time. Serological data can be used to 
compute the Seroconversion Rate (SCR), expressing the 
rate of conversion of individuals in a cohort from the 
seronegative to the seropositive stage. In a sense, the SCR 
captures the switch of individuals from a non-infected 
to an infected state over a certain unit of time. However, 
the SCR is obtained from the analysis of antibody data, 
thus expressing past infection, rather than incidence [21]. 
The SCR can be used to reconstruct history of exposure, 
the more so if measurements taken on a large cohort of 
individuals across most (if not all) age groups are avail-
able and considering antibodies capturing short- and 
long-term response to infection. Last, the Entomological 
Inoculation Rate (EIR) counts the number of infectious 
bites per person per unit time, by combining measures 
of the “human biting rate” (i.e., the number of bites per 
person per year), and of the “sporozoite rate” (that is, the 
proportion of mosquitoes carrying sporozoites in the 
salivary glands, thus being potentially infectious). In turn, 
this requires complex experimental or field measurement 
settings, and its accuracy will critically depend on the 
accuracy of its constituent components, whose measure-
ment still suffers from a lack of standardization [1, 22]. 
EIR provides a good summary of exposure to infectious 
bites, but it is difficult to translate to incidence or clinical 
disease, also considering the known discrepancy between 
transmission intensity and efficiency [3, 23].

The FOI measures the per capita number of infections 
per unit time or, equivalently, represents the instantane-
ous probability of acquiring infection, that is, the rate (or 
hazard) of infection [24, 25]. Importantly, the FOI counts 
all new infections, whether symptomatic or asympto-
matic. This concept has been recently expanded to take 
into account the availability of genetic data so that the 

new concept of molecular Force of Infection, or mFOI 
can be conceptualized as a metric counting all new para-
site clones acquired per unit of time. The main principle 
behind both metrics remains that of capturing the level of 
transmission by counting incident infections. As a result, 
one has to first define “ìnfection” in an individual, so that 
the computation of the FOI can be performed. For exam-
ple, assume that malaria parasite positivity is considered 
as the variable expressing (new) infection among parasite 
negative individuals at baseline. The FOI then expresses 
the rate of occurrence of infection (estimated based on 
sampled individuals), i.e., the so-called hazard of infec-
tion similar to the hazard function defined in survival 
analysis (e.g., hazard of death or relapse in oncological 
trials). Although the FOI has been considered constant, 
generally the force of infection depends on both measur-
able and unmeasurable factors, including host-specific 
features (e.g., age), calendar time (including seasonality), 
and environmental conditions (e.g., living conditions), to 
name a few.

As a consequence of this, the FOI is only going to be 
as accurate and precise as the measure which is chosen 
to signal the presence of a new infection in an individual, 
for instance, the presence of the parasite in the blood-
stream, and on the sensitivity and specificity of the diag-
nostic instruments used to detect it. Following Tusting 
and coauthors [14] in defining accuracy as the ability of 
a metric to provide estimates close to the true value of 
the quantity of interest, a notion with a direct link to the 
idea of “unbiasedness” in statistical literature. Precision 
instead covers issues surrounding sampling variability, as 
it expresses the ability to provide estimates with a level of 
certainty and to obtain similar estimates, under the same 
conditions, in a series of independent replications of the 
study.

For example, if parasite presence is taken as infection 
signal, it should be taken into account that parasitaemia 
is highly sensitive to any factor that affects the parasite 
density load and the blood sample analysis technique 
(and the intrinsic uncertainty surrounding its use). To 
overcome these difficulties, the WHO recommends col-
lecting a large number of samples, with high frequency, 
but this could prove unfeasible especially in remote areas 
with high endemicity [26]. The rationale behind this 
advice is that, as parasitaemia can fluctuate, one would 
ideally want to have as many measurements as possi-
ble, taken as frequently as possible, to keep track of the 
evolution of infection. Taking measurements only on a 
monthly or quarterly basis, for instance, might lead to 
underestimating the number of infections because one 
(or more) might develop and end between two subse-
quent blood tests.
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What is argued in the following sections is that such 
difficulties can be overcome via a fruitful interaction 
between mathematical and statistical models. First, rep-
resenting transmission intensity using the FOI leads to a 
simplification in mathematical compartmental models, 
dispensing the analyst from the need to conduct com-
plex and time-consuming entomological measurements. 
Then, it is discussed how it is in fact possible to take into 
account the influence of factors affecting any measure 
used to construct FOI (e.g., parasitaemia) via statistical 
modelling, which can also provide ways to correct for 
bias induced by measurement error.

Estimating malaria transmission intensity using 
the FOI
Having provided a taxonomy and review of some com-
monly used metrics, the overview continues by discuss-
ing how transmission intensity, as captured by the FOI, 
can be expressed in mathematical models and estimated 
from available data.

Mathematical modelling of malaria transmission
Mathematical models describe the current state and 
evolution of a biological system over time via a set of 
equations and/or through (micro)simulation, thereby 
expressing a phenomenon such as disease transmission 
in mathematical terms. Mathematical modelling provides 
a convenient and flexible way to link individual-level pro-
cesses (e.g., infection), with population dynamics (e.g., 
incidence and prevalence of disease) [27, 28]. They allow 
researchers to condense the evidence available regard-
ing the dynamics of, say, an epidemic, and can be used 
to reflect on which factors constitute the most important 
drivers of its persistence. In turn, this can lead to the for-
mulation of context-specific public health policies.

Various types of mathematical models have been pro-
posed in infectious disease literature ranging from deter-
ministic and stochastic compartmental models [see, e.g., 
[24, 29]], over meta-population models [30] to individ-
ual- or agent-based models [31]. In the context of infec-
tious disease spread, the use of compartmental models is 
most widespread, entailing compartmentalisation of the 
population according to different disease states relevant 
for the pathogen under study (for an excellent introduc-
tion into compartmental models, see [25]).

Mathematical modeling of host dynamics
The early emphasis on control and elimination strate-
gies that focused on attacking the malaria vector led to a 
proliferation of compartmental models including a set of 
equations describing the dynamics of both hosts and vec-
tors. However, it is possible to argue that what appears to 
be common practice is neither a necessary nor sufficient 

condition to model malaria transmission dynamics. In 
a “standard” mathematical model of malaria, a param-
eter similar to FOI is normally expressed by relating 
the“happening” [6] of infection to the encounter between 
vector and host, expressed via a set of parameters quan-
tifying the probability of a host-vector contact, i.e., that 
of a vector bite being infectious, and that of an infectious 
bite actually leading to an infection. A classic example is 
offered by Macdonald’s model [32], which follows a Sus-
ceptible-Infected-Susceptible (SIS) structure for human 
compartments.

The mathematical equation describing the evolution of 
the fraction of infected and infectious humans (denoted 
here by ih(t) ) reads as follows:

with d/dt used for total derivatives with respect to time 
t, im(t) representing the fraction of infected mosquitoes 
in the population at time t, and ν denoting the recovery 
rate. The other parameters present in the equation corre-
spond to the human biting rate a, the proportion of bites 
leading to infection b, and the ratio of female to male 
mosquitoes in the population, denoted by m. A compre-
hensive overview related to the notation of the model 
parameters displayed in this manuscript can be found 
in the glossary Table  2 in the Appendix  A. This can be 
considered a vector-borne disease adaptation of the gen-
eral Mass Action Principle (MAP), a concept borrowed 
from chemistry [see, e.g., [10]], which explicitly links the 
interaction between susceptible and infected/infectious 
subjects in a population to the spread of infectious dis-
eases. Briefly, in its most simple form, the principle states 
that the FOI is proportional to the number (or density) of 
infected individuals, with a proportionality factor repre-
senting the rate of transmission upon a contact between 
a susceptible and infected individual. In case of a vec-
tor-borne disease, the simple MAP can be extended to 
encompass that the FOI for a human host is proportional 
to the number of infected mosquitoes, as vectors respon-
sible for transmission, and vice versa when looking at the 
FOI for mosquitoes. In the present case, β := abm rep-
resents the so-called (effective) transmission rate upon 
contact between a susceptible human host and an infec-
tious mosquito. One of the main tenets of the MAP is 
the assumption of homogeneous mixing, that is humans 
and vectors mix in a random and uniform manner. Under 
homogeneous mixing of humans and mosquitoes, the 
FOI is equal to �(t) := βim(t) . It is apparent that, when 
excluding the vector population from the system of dif-
ferential equations, it is no longer possible to infer the 
FOI through direct application of the MAP. However, 
counting new infections over a certain period of time, as 

(1)
dih(t)

dt
= abmim(t)[1− ih(t)]− νih(t),
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previously described, thereby tracking the movement of 
humans out of the “Susceptible” compartment, enables 
the estimation of the FOI without explicitly accounting 
for vector dynamics. This leads to the following equation 
(where the index h, for humans, is kept just to highlight 
the link with Equation (1), but is dropped in the remain-
der of the manuscript):

Under this formulation, there is no need to collect ento-
mological data for the estimation of a, b, m, and im(t) . 
The analyst can now focus on the direct estimation of 
the FOI, and can do so from any study that at the very 
least collected clinical, parasitological, or serological data 
(recalling Sect. 2, measurements at level (1) or (2)).

Illustrative examples
Some examples of studies which applied the formula-
tion of the FOI introduced in the previous section are 
now introduced. For the purpose of keeping the exposi-
tion simple, here and in the remainder of this work either 
age-dependent disease dynamics under the assumption 
of endemic equilibrium, implying that the system is in 
steady state or time homogeneity is considered, or work 
in which time-varying though age-invariant transmis-
sion is referred to. More specifically, endemic equilib-
rium entails a disease incidence that is fluctuating over 
time though around an equilibrium value. From the per-
spective of a Lexis diagram [see, e.g., [10, 33]] describing 
the evolution of birth cohorts over “calendar” time and 
age, time homogeneity implies that both time and age 
collapse into one common dimension or a single scale. 
This is particularly helpful when analysing and inter-
preting age-specific data in order to infer past dynam-
ics, at least in the absence of time-varying dynamics. 
As a result, under endemic equilibrium, the FOI solely 
depends on age. In the latter case of age-invariant trans-
mission, the FOI is expressed as a function of (calendar) 
time (see example of Stadler et al. [34] below). It is com-
mon practice to use capital letters to express the number 
of individuals, and lowercase equivalents to express the 
proportion of individuals in a given compartment. The 
examples provided below conformed to the aforemen-
tioned convention, thereby adapting the notation used by 
the respective authors, at least in view of this capitaliza-
tion rule. Other notation and terminology is preserved. A 
comprehensive overview of the notation and terminology 
with regard to the model parameters related to the mod-
els described in this paper can be found in the glossary 
included in the Supplementary Material (see Tables  1 
and  2 in Appendix A). Despite the fact that simplifying 
assumptions with regard to either age or time are often 

(2)
dih(t)

dt
= �(t)[1− ih(t)]− νih(t).

made, a general mathematical model under time hetero-
geneity, hence describing both age- and time-dependent 
transmission dynamics, can be formulated as presented 
in Appendix C.2.

Gosling et al. [35] used a Susceptible-Infected-Suscep-
tible (SIS) model to understand the differences in protec-
tive efficacy of a series of interventions among infants. 
Disease transmission is parameterized by an age-specific 
force of infection �(a) (under the assumption of time 
homogeneity), as follows:

Here, I(a) refers to the number of infected individuals of 
age a, N(a) is the number of individuals in age group a 
(thus [N (a)− I(a)] stands for the number of susceptible 
individuals of age a), and χ(a) and ν(a) express the age-
dependent rate of development of clinical disease (which 
is detected by surveillance and subsequently leads to 
treatment and recovery from infection), and the natural 
clearance rate, respectively.

The age-dependent force of infection �(a) is then esti-
mated using data from clinical trials on intermittent 
preventive treatment of infants as the mean incidence 
of clinical malaria in the placebo group. The FOI was 
assumed to be invariant from the immunity level in the 
base case and was allowed to vary by the immunity level 
in a set of scenarios.

In a different study, Aguas and co-authors [36, 37] 
applied a mathematical model to assess how the develop-
ment of immunity results in age-specific differences in 
the burden of clinical malaria, between different popu-
lations. Their model encompasses a compartment for 
susceptible individuals, defined as individuals who are 
completely immunologically naive, but divide infected 
individuals into patients suffering from clinical/sympto-
matic malaria ( I1 ), and patients suffering from asympto-
matic infections ( I2 ). Assuming that immunity protects 
against clinical symptoms, but not against infection, 
the model allows individuals in I1 to transition first to a 
recovered state (R), and from there to I2 if re-infected, 
unless they completely lost their immunity over time. In 
the latter case, they revert to S and start the cycle again. 
The FOI �(a) is assumed to be common across infection 
types, and to depend on age, such as:

with �0(1− c) constituting the lower limit (at age zero), 
and �0 the upper limit for the FOI, while z and c control 
the steepness and amplitude of the age-specific preva-
lence curve.

(3)
dI(a)

da
= �(a)[N (a)− I(a)] − [χ(a)+ ν(a)]I(a).

(4)�(a) = �0(1− ce−za),
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Exclusive modelling of host dynamics can also be 
employed to investigate relevant features of transmis-
sion such as heterogeneity in the acquisition of infec-
tion. Corder et  al. [38] used the same formulation for 
the FOI as Aguas and colleagues, and included it in a 
compartmental SIS model describing disease dynam-
ics by subdividing the population into low and high risk 
individuals, defined by their risk factors xj > 0, j = 1, 2 
for the two risk levels. The authors also consider 
repeated exposure as a potential modifier of the infec-
tion risk, introducing a parameter σ(w) = e−α·w , where 
w is the number of clinical Plasmodium Vivax malaria 
episodes suffered from in the past and α describes the 
rate of immunity development after repeated episodes 
of infection. As a result, the age-dependent FOI �(a) 
is modified by previous exposure and risk factors as 
follows:

The authors then expanded the SIS model formulation 
to include an additional compartment for asymptomatic 
individuals, assuming immunity covers the development 
of clinical disease, thus describing asymptomatic dynam-
ics by xj[1− σ(w)]�(a).

On the topic of risk heterogeneity, exclusive model-
ling of host dynamics has also been employed to inves-
tigate the dynamics of relapses for patient infected with 
Plasmodium vivax  [34]. Stadler and coauthors con-
structed a series of mathematical models to describe 
how after an initial period of drug-induced protection, 
individuals can become infected again, or suffer from a 
relapse due to re-activation of liver stage hypnozoites. 
In their work, different formulations for the param-
eter expressing relapse risk were compared in order 
to account for the possibility of heterogeneity in the 
hazard of reactivation, for instance, across space and 
between different members of the same population. An 
immediate link between this study and Equation (2) can 
be expressed as:

where exit from the “Susceptible” compartment S was 
thus modelled as the sum of a fixed parameter n express-
ing a constant infection rate and a parameter ri(t) 
expressing relapse rate, potentially time-varying and 
changing by individual. Although their model does not 
directly consider individual differences in the risk of rein-
fection, extensions such as those applied to the relapse 
risk parameter could, in principle, be applied to the FOI 
to account for a wider range of observed and unobserved 
sources of heterogeneities.

(5)�(a,w, j) = xjσ(w)�(a)

(6)�(t) = ri(t)+ �0

Finally, the whole area of within-host modeling, dealing 
with pharmacological dynamics and development of drug 
resistance, focuses on models regarding the human host 
only. However, a description of these models is beyond 
the scope of this review paper. The interested reader 
can find a complete classification of malaria modelling 
types, and a list of interesting publications, as part of the 
Supplementary Material in [9] and an example of such 
within-host models is reported in Appendix  C.1 of this 
paper.

Statistical modelling of malaria transmission data
Having highlighted the integration of the FOI in math-
ematical compartmental models, the next section dis-
cusses the topic of its estimation from available data 
using modern statistical methodologies.

Analysis of longitudinal malaria data
Longitudinal studies constitute a gold standard for 
assessing malaria risk over time. However, these data 
need to be analysed with caution, given the repeated 
measurements per individual over time. Furthermore, in 
the presence of (additional) data hierarchies (e.g., indi-
viduals clustered in households, villages) an appropriate 
account thereof is in order. Moreover, the estimation of 
relevant epidemiological parameters from longitudinal 
data should be done by using appropriate statistical tech-
niques to accommodate all model complexities, includ-
ing, for example, the fact that subsequent episodes of 
infection and clearance cannot be assumed to be inde-
pendent of each other. This is something that, despite a 
positive trend in recent years, is still currently performed 
by just one in three published cohort studies [39].

Methods that can deal with correlated longitudinal data 
with additional data hierarchies are available, and include 
subject-specific generalized (linear) mixed-effects mod-
els (GLMMs) and the marginal Generalised Estimating 
Equations approach [40]. Furthermore, the standard Cox 
model has been extended to accommodate association 
and recurrent events when analysing (censored) time-to-
event data, for example, by modelling association among 
observations using a latent frailty term [41], or by mak-
ing assumptions about the dependence of future on past 
events (Andersen-Gill [42], Prentice-William-Peterson 
models [43]). The number of applications of such meth-
ods to malaria data is limited, but has been increasing in 
recent times (see [44–46] for examples of applied studies 
and [47–49] for methodological investigations).

In general, estimation of the FOI in infectious disease 
epidemiology dates back to the early work by Muench 
[50], which is discussed in more detail in Sect. 12 and was 
based on the assumption of a constant FOI. This restric-
tive assumption has been relaxed using more flexible 
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models, including both parametric approaches (e.g., pol-
ynomial regression models [51, 52], nonlinear models 
[53–56], and models with fractional polynomials [10]) 
and semiparametric (ie, spline-based methods and non-
parametric models [10]). For more details, the reader is 
referred to Hens et al. [10], with a shorter historical per-
spective provided in [19].

Illustrative example
In recent years, such longitudinal data have been used for 
a number of different purposes, such as identifying resid-
ual sources of malaria transmission [57], investigating the 
development of immunity over time [58, 59], understand-
ing drug effectiveness [60], performing impact evaluation 
after interventions such as mass drug administration [61, 
62], or following the evolution of the disease in a cer-
tain area over time [63], including changes in serologi-
cal status [64]. Nevertheless, longitudinal parasitaemia 
and serological data also provide the type of information 
needed for estimating the FOI, as was already highlighted 
Sect.2 in 2. More specifically, in order to estimate the 
prevalence of infection (e.g., seroprevalence or parasite 
prevalence), denoted as ih(t) in Equation (2), the ana-
lyst should consider the wide range of modern statistical 
techniques to accommodate measured and unmeasured 
sources of heterogeneity in disease spread, which are 
more difficult to account for in mathematical models 
(e.g., by multiplying the number of compartments or to 
extend the underlying structure of the model). Such a 
statistical modeling approach goes beyond “plugging in” 
a simple estimate for the prevalence, irrespective of its 
type, into the respective model equation(s).

As an illustration of a statistical modeling approach, 
the simplest possible analysis, based on a dichotomiza-
tion of the outcome variable expressing the presence 
of infection is now described, thus leading to the use of 
models for binary outcome data such as those mentioned 
above. Define Yij as a binary variable that denotes the 
presence ( Yij = 1 ) or absence ( Yij = 0 ) of parasites (or 
antibodies) in the blood, for individual i = 1, . . . ,N  at 
the observation number (time point) j = 1, . . . , ni (fur-
ther hierarchical levels, such as clustering within the 
household or community, can be considered). Denote 
πij = P(Yij = 1 | xij , zij , bi) as the probability that Yij = 1 
given xij , i.e., a (1× (p+ 1))-vector of covariate informa-
tion with respect to p independent variables, and zij a 
vector containing information about a set of q individual-
specific random effects, denoted by bi = (b1i, . . . , bqi).

It is relevant to briefly mention the relation between πij 
and i(t) in the compartmental models presented above. 
When πij depends on time, both express the (point) prev-
alence, at least in case of Yij representing current infec-
tion, that is the proportion of infected individuals at a 

specific point in time. Even in case of serological data 
comprising information on past infection, proportions 
of hosts in compartments of a more complicated math-
ematical model encompassing loss of immunity could be 
linked to a statistical model estimating πij . Needless to 
say, πij accounts for individual-specific covariate infor-
mation, thereby strengthening the relationship further. 
This notion also underpins the link between mathemati-
cal and statistical models which is further illustrated in 
Sect.  10. For the moment, the notation πij is employed, 
as it is more commonly found in the statistical literature 
dealing with modelling disease prevalence.

Given the covariates and the random effects, the obser-
vations (Yij|xij , zij , bi) ∼ Bernoulli(πij) are assumed inde-
pendent, with conditional mean:

The GLMM framework allows for the modelling of such 
conditional mean by transforming it using a so-called 
“link function”, i.e., g(·) , and equating the transformed 
mean to a linear predictor η(·):

where β represents a vector of unknown model param-
eters to be estimated from the data. The choice of the link 
function determines the interpretation of the parameter 
estimates.

Modelling the linear predictor is not necessarily 
restricted to basic forms of GLMMs, and more complex 
models can be envisaged accounting for nonlinearities 
in the age effect or other features such as seasonality. An 
example of such a model, the generalized additive mixed 
model (GAMM), is extensively discussed in the mono-
graph by Wood [65].

Combining mathematical and statistical models
With the aim of arguing in favour of combining math-
ematical and statistical modelling approaches when 
estimating malaria transmission rates, some relevant 
examples from the available literature are highlighted, 
after which a general framework will be presented and 
discussed.

Illustration 1: linking malaria metrics
The structure of the malaria transmission cycle is such 
that transmission metrics are necessarily related to each 
other. For instance, given that the introduction of para-
sites is related to mosquito bites, there must be a rela-
tionship between the PR and EIR, and consequently 
between EIR, expressing transmission efficiency, and FOI 
expressing transmission intensity. This relationship can 
be investigated in the following ways: 

E(Yij|xij , zij , bi) = P(Yij = 1 | xij , zij , bi) = πij .

g(πij) = xijβ
T + zijb

T
i =: η(xij , zij , bi),
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O1	 Mathematically, from mathematical models of 
transmission expressing the mechanistic form of 
such relationships,

O2	 Statistically, by examining the association 
between estimates of malaria metrics collected as 
part of epidemiological studies (coupled estimates 
from the same study, or as part of a meta-analysis),

O3	 By positing a mathematical model making such 
relationship explicit, and estimating its parameters 
statistically.

As an elucidation of (O1), let us introduce the first model 
relating EIR and prevalence by Ross [17, 66]. The model 
follows an SIS structure, and under the assumption that 
the EIR is constant and that people become susceptible 
again after clearance, the EIR-PR relationship corre-
sponds to [67]:

where ν corresponds to the clearance rate, b · EIR to 
the infection rate, and PR represents the proportion of 
infected individuals in the population (i.e., individuals in 
compartment I). Solving this equation leads to the fol-
lowing equilibrium solution:

with γ equal to b/r being the time to clearance per infec-
tious bite.

An early instance of a statistical approach (O2) is the 
work by Beier and colleagues, who applied a linear model 
directly to pairs of EIR and PR estimates derived from 
cohorts of Kenyan children [68]. Recognizing that this 
model structure would yield poor predictions, particu-
larly in regions approaching malaria elimination, they 
demonstrated in a subsequent study [69] that a log-linear 
relationship between PR and EIR offers a more accurate 
fit to their data.

As an example of (O3), consider the work by Smith 
and coauthors [3, 70]. EIR and FOI were long supposed 
to be linearly related, but the data did not support these 
conclusions [68, 71, 72]. Smith and colleagues therefore 
focused on nonlinear mathematical models which could 
explain, for instance, the observed discrepancy between 
intensity and efficiency. Other sources of individual 
heterogeneity must also be taken into account, such as 
immunity [73], heterogeneous biting [70] and the role 
of factors such as host size, which changes with age, or 
reduction in susceptibility to infectious inoculations [23]. 

dPR(t)

dt
= b · EIR[1− PR(t)] − νPR(t),

(7)
γEIR

γEIR+ 1
,

Starting from the model proposed by Ross, the authors 
formulated SIS and SIRS (Susceptible-Infected-Recov-
ered-Susceptible) mathematical models by changing a 
set of critical assumptions regarding the role that indi-
vidual heterogeneity plays in susceptibility to biting and 
development of infection, immunity, and clearance. Each 
model led to a different formulation for the relation-
ship between PR and EIR, which was then fit to coupled 
PR/EIR values using maximum likelihood techniques. 
Model selection was performed using Akaike’s Informa-
tion Criterion (AIC; [74]), and model fit was compared to 
Beier’s log-linear model. For comparison with the previ-
ous equation, what resulted to be the best model, an SIS 
model with heterogeneous infection rates (distributed as 
a Gamma(1, 1/d)) and superinfection is reported, leading 
to the following relation:

Amoah and colleagues [67] further modified the basic 
SIS model by allowing different infection and recovery 
rates for women and children, as well as superinfection. 
The authors reviewed a range of previous models and 
proposed a “logit-linear” extension of the original Beier 
“log-linear” formulation, critiquing the fact that in the 
log-linear model, as EIR goes to zero parasite rate goes 
to minus infinity, and approaches infinity as EIR goes to 
infinity:

Overall, and unlike the work by Smith et al., Amoah and 
coauthors considered statistical models (log-linear and 
logit-linear) to outperform the functional relationships 
derived from mathematical transmission models, with 
the logit-linear model ultimately resulting in the best fit 
to the observed data. This gives an indication that the 
transmission models considered need further scrutiny.

Illustration 2: estimating the FOI using catalytic models
Catalytic models provide a way to characterise age-prev-
alence curves and fit data to estimate the FOI. They can 
be used to infer the acquisition of infection (and eventual 
immunity) given exposure to an infectious agent [8, 50]). 
In their original formulation, it was assumed that the 
infection would leave an exposure mark on a proportion 
k of the population, so it would be possible to distinguish 
between previously infected and uninfected individu-
als, as is, for example, the case for the antibody response 

PR(t) = 1−

[
1+

bEIR(t)

νd

]
− d.

log

[
PR(t)

1− PR(t)

]
= α + b · log[EIR(t)].
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left by immunizing infections. Moreover, a constant FOI 
(“exposure rate”) � per unit of time was assumed, and, a 
fraction of the population was allowed to escape infec-
tion (l). The catalytic curve can be thus described as 
π(t) = k(l − e−�t) [see, e.g., [19]].

Catalytic models [75] were applied to malaria for the 
first time in the 1950 s by George Macdonald [76], in a 
simplified version which assumed k = l = 1 [76], thereby 
leading to:

The link between the aforementioned compartmental 
models and the catalytic models is evident, since Equa-
tion (8) can be obtained directly by solving an SI (Sus-
ceptible-Infected) model for the proportion of infected, 
under the assumption of time homogeneity. Further-
more, Equation (8) corresponds to the expression for the 
cumulative distribution function of infection times in the 
case of an exponential time-to-event process [77].

An extension of the disease dynamics implies a more 
complicated relationship between prevalence and FOI, 
which could entail including a constant rate of “acquisi-
tion” of infection as well as of “reversion” from it, mirror-
ing the extension of an SI model to account for return to 
the susceptible state in an SIS model structure:

with � and ν denoting the FOI and reversion rate, respec-
tively, and i(t) being the proportion of infected individu-
als at time t. This leads to the following analytical solution 
for i(t):

thus allowing for inference regarding infection and rever-
sion rates based on available data.

In the analysis of malariometric data, early applications 
of catalytic models can be found in [78, 79]. Pull and 
Grab [78] applied Muench’s model for evaluating the risk 
of malaria infection in infants. Under the steady-state 
assumption and constant FOI, they analysed parasitae-
mia data obtained from a series of cross-sectional sur-
veys. They estimated the FOI by applying the method of 
moments to Equation (8).

Bekessy and Molineaux [79] extended the approach to 
model longitudinal data for the simultaneous estimation 
of incidence and recovery. They proposed to model tran-
sitions from an individual’s state (positive or negative) 

(8)π(t) = 1− e−�t .

di(t)

dt
= �[1− i(t)] − νi,

(9)i(t) =
�

�+ ν
[1− e−(�+ν)t ],

from time t to time t + 1 as a Markov process, with the 
probability of switching states assumed to follow a Bino-
mial distribution. The solution of the corresponding sys-
tem of equations is such that the probability of infection 
at time t corresponds to Equation (9). Parameter estima-
tion was performed using Maximum Likelihood (ML)
estimation [80].

Extensions to the standard reversible catalytic model 
include the work by Yukich and coauthors [81], who sug-
gest integrating prevalence and health facility data, argu-
ing that the estimation of the FOI via longitudinal studies 
requires long follow-up and large sample sizes, especially 
at low levels of transmission. However, information on 
clinical incidence is frequently readily available by collat-
ing data collected via routine healthcare systems, often 
reported in the form of Annual Parasite Index (API). 
Their work extends standard catalytic models by includ-
ing the possibility of changing the duration of infection 
according to treatment, and also features a parameter τ , 
expressing the proportion of infections that are immedi-
ately treated and are not computed as part of the preva-
lence of the community. In this case, �(t) = (1− τ )�0(t) , 
that is the FOI without treatment �0(t) is rescaled by a 
factor 1− τ . Moreover, the average clearance rate, µ0 can 
be re-expressed as the sum of two components, one being 
the natural clearance rate, ν0 and another, τ�0 , expressing 
the treatment rate. Equation (9) is thus modified into:

which can be solved to express the FOI as:

Surveillance data can then be used to calculate the value 
of treatment parameters and integrate with prevalence 
measures, such as those available from the Malaria Atlas 
Project [82]. Note how the estimation of the FOI, and 
ultimately its extension to allow for time-dependency, 
hinges on the value i(t), which can be obtained by model-
ling prevalence and surveillance data using the statistical 
techniques mentioned in Sect. 7.

Even though the catalytic model was originally applied 
to parasitological data, it has in more recent times being 
championed for the analysis of serological data as well. 
The idea is that seroprevalence data, reflecting history 
of exposure and being less influenced by fluctuations 
such as those induced by seasonality and parasite den-
sities, could provide a complementary way to estimate 

di(t)

dt
= (1− τ )�0(t)[1− i(t)] − (µ0 + τ�0(t))i(t),

�0(t) =
µ0

1−τ
i(t) − 1

.
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transmission. A short summary is provided in Appen-
dix  D.1 and refer the interested reader to the review 
paper by Sepúlveda et al. [7].

General framework for analysis
A general framework for the estimation of the FOI, sub-
suming the illustrations previously outlined, is now for-
mulated. The framework extends the idea at the core of a 
catalytic model, that is being able to derive an expression 
for the FOI in terms of the model parameters associated 
with an underlying mathematical model structure, con-
structed to resemble state of the art knowledge about the 
biological processes of interest, and employing statistical 
methods to estimate these parameters. However, there is 
no need to restrict one’s attention to an SI or SIS model 
structure, or to assume that the FOI itself is constant. As 
an example, the formulation will be first derived from an 
SIR (Susceptible-Infected-Recovered) setting to high-
light the flexibility of the framework, after which an SIS 
model adaptation is exemplified in the illustrative exam-
ple below.

In terms of estimating the (relevant parameters asso-
ciated with the) FOI, two distinct approaches are con-
siderd (see below for a specific example thereof ), which 
are defined as a direct or indirect parameterisation [10]. 
In the former case, a (parametric) model for the FOI is 
directly posited. The parameters describing such func-
tional form enter the likelihood function for the avail-
able data (e.g., parasitaemia) directly, and their estimates 
are obtained, for instance, by direct ML estimation 
techniques. In the latter case, an estimate for the FOI is 
obtained by first modelling prevalence data, after which 
the estimated prevalence is used to estimate the FOI, 
conditional on the imposed (compartmental) math-
ematical model structure of choice and its implied link 
between the prevalence on the one hand and the FOI on 
the other hand (e.g., Yukich et al. [81]).

Consider again the case of a dichotomous response 
variable expressing presence or absence of infection 
(e.g., presence of parasites in the bloodstream, or previ-
ous positivity), let Yi , i = 1, . . . ,N  for N individuals in the 
sample, and assume for illustration purposes that a dis-
ease follows an SIR model under time homogeneity, for 
which π(a) = 1− s(a) = 1− e−

∫ a
0 �(u)du . That is, once 

recovered, a person does not contract the infection again, 
hence, the proportion of people who are of a certain age a 
are or were infected is equal to one minus the proportion 
of people who have not yet experienced the infection. 
This is equivalent to the well-known concept of a survival 
or survivor function in survival analysis. Equivalently, the 

survival function expressing the probability of not hav-
ing experienced the event of interest (i.e., infection in this 
case) at a specific time point is related to the cumulative 
(or integrated) hazard of infection �(a) up to age a  [see, 
e.g., [83]].

To better understand the difference between the two 
aforementioned approaches (i.e., direct and indirect par-
ametrizations) towards estimation of the FOI, one can 
compare their implied binomial log-likelihood functions:

where, as above, π(ai; θ) denotes, for example, the age-
dependent parasite prevalence corresponding to observa-
tion i ( i = 1, . . . ,N  ) depending on model parameters θ . It 
is evident to observe how the model for the direct para-
metrization features the model for �(a; θ) , making the 
dependence on the model parameters θ explicit, directly 
in the likelihood, whereas for the case of an indirect para-
metrization, a model for π(ai; θ) appears in the likeli-
hood formulation.

As a result, in the case of a direct parametrization, 
maximization of the likelihood leads directly to the 
estimation of the FOI, �̂(a) . An indirect parameteriza-
tion instead requires modelling of the (parasite) preva-
lence first, so that, recalling the notation of generalized 
linear models introduction in Sect. 7 one starts with an 
estimate π̂(a) = g−1[η̂(a)] , suppressing for brevity the 
dependence on additional covariates, model parameters 
θ̂  and (individual-specific) random effects (for unmeas-
ured heterogeneity). In a second step, an estimate for the 
FOI is obtained as:

where π ′(a) = dπ(a)/da is the derivative of the preva-
lence with respect to age. Again, it is useful to stress 
the link with survival analysis [77]. More specifically, 
as pointed out before, the FOI represents the hazard of 
infection which can be expressed as the ratio of f(t), the 
density function for the time to experiencing malaria 
infection, which is the change in prevalence π ′(a) , and 
the survival function S(t) equal to the proportion of sus-
ceptible individuals [1− π(a)].

Direct Parameterization

l(θ) =

N∑

i=1

yi log[1− e−
∫ a
0 �(u;θ)du] + (1− yi) log[e

−
∫ a
0 �(u;θ)du]

Indirect Parameterization

l(θ) =

N∑

i=1

yi log[π(ai; θ)] + (1− yi) log[1− π(ai; θ)]

(10)�̂(a) =
π̂ ′(a)

1− π̂(a)
,
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Different formulations of the mathematical model lead 
to different solutions for the proportion of susceptible 
individuals, and thus to different formulations of the link 
between FOI and prevalence, which can be contrasted 
with available data to identify the best fitting model. At 
the same time, the form of π ′(t) and its relationship with 
π(t) depends on the link function chosen for the statisti-
cal model of malaria prevalence. In general, for a binary 
response variable, the FOI takes the following form 
�(a) = η′(a)δ[η(a)] , with the second term determined by 
the choice of the link function [10].

Some examples illustrating the framework outlined 
above are introduced. Direct parameterization requires 
specifying a model for �(a) , and examples of this were 
discussed in previous sections, such as the study by 
Aguas et al. [36] (see Equation (4)) or the work by Smith 
et al. [3]. For additional examples of mathematical mod-
els for the FOI, the interested reader is referred to the 
review by Hens and coauthors [19].

An example of an indirect parameterization used to 
estimate the FOI and applied to a longitudinal dataset of 
P. falciparum parasitaemia data [84] is presented here. 
Recalling the notation presented so far, the main aim is 
to be able to provide a mathematical link between �(t) , 
the time-dependent FOI, and η(xij , zij , bi) , the linear pre-
dictor of a GLMM modelling available parasitaemia data. 
This can be achieved since GLMMs relate the mean of a 
dependent variable, such as point prevalence in case of a 
binary endpoint, to a linear predictor, relying on a chosen 
link function. In turn, the given structure of a mathemati-
cal model will provide a way to link the point prevalence 
to the FOI [10], by re-expressing the starting system of 
equations so that the FOI can be expressed as a function 
of other, known or estimable, quantities.

The work by Mugenyi and colleagues [84] offers an 
example of such analysis, where the following SIS system 
of equations in (11)

is re-expressed to formulate a relationship between FOI 
and PR:

with i′(t) = di(t)/dt and ν being the rate of clearance, 
which is assumed to be constant over time (all other 
elements can be found in the Glossary). Although the 

(11)






ds(t)

dt
= −�(t)s(t)+ νi(t)

di(t)
dt

= �(t)s(t)− νi(t)

(12)�(t) =
i(t)ν + i′(t)

1− i(t)
,

previous derivations were done under the assumption 
of time homogeneity, implying that age and time dimen-
sions collapse as pointed out earlier, in the work by Mug-
enyi and colleagues the parasite prevalence and implied 
force of infection is assumed to depend on both age and 
time, while adjusting for other measured covariates (e.g., 
related to treatment) and accommodating clustering at 
individual, household and district level. In their study, the 
authors provide estimates for the prevalence by analysing 
data on parasitaemia from a cohort of Ugandan children 
by making use of a GLMM accounting for clustering at 
individual and household level. This estimate for the 
(age- and time-dependent) prevalence is then plugged 
into (12), together with estimates of ν gathered from the 
literature, to obtain an estimate for the FOI.

Despite the limitations of the proposed SIS model 
structure for the specific case of modelling malaria 
transmission dynamics, the work constitutes an inter-
esting starting point that warrants further development, 
which will have to deal, in particular, with the complexi-
ties when considering other more realistic model struc-
tures [see, e.g., [73]]. Other developments could target 
improvements in the flexibility of the relation between 
the prevalence and, for example, age and/or time, 
through the use of, for example, GAMMs [65].

Conclusion
This integrative review summarizes key concepts related 
to mathematical and statistical modeling of malaria 
transmission with the aim of stressing the importance of 
combining both frameworks. Despite the fact that this 
dates back to the early work by Ross [6], an integrated 
approach that allows estimation of model parameters 
from data is often lacking. Illustrative examples for each 
of the modelling frameworks separately and for a gen-
eral framework combining the approaches are provided. 
Although various malaria metrics are proposed and used 
in the literature, this review mainly focuses on the use of 
the force of infection, thereby highlighting its close rela-
tionship with concepts in survival analysis and emphasiz-
ing its popularity in infectious disease epidemiology for 
close contact infections. Despite the additional complex-
ity of vector-borne transmission of malaria, concepts like 
the mass action principle extend to the malaria context in 
a straightforward way as exemplified in this paper.

The current work offers a methodological perspec-
tive with respect to estimating the intensity of malaria 
transmission. After summarizing the state of the art 
concerning the nature, advantages, and disadvantages of 
the most commonly used metrics, a series of arguments 
favouring a more widespread use of the force of infection 
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was presented. Through the elucidation of previous 
approaches working towards methodological linkages, a 
unified framework centered on the interaction between 
mathematical and statistical models was introduced as 
a recommendation for future research. Such framework 
entails: 

1.	 Expressing a (realistic compartmental) mathematical 
model;

2.	 Expressing a parameter of interest, as a function of 
other quantities estimable from observed data, such 
as point prevalence;

3.	 Estimating those quantities via statistical tech-
niques, accommodating data complexities, taking 
into account relevant issues such as nonlinearities in 
space-time and (observed and unobserved) heteroge-
neities;

4.	 Replacing such estimates into the formula made 
explicit in point 2) to obtain a value for the desired 
quantity.

This framework provides a number of advantages in 
the specific context of estimating malaria transmis-
sion parameters, as it allows the focus to be on a set of 
equations expressing the dynamics of the host only, thus 
greatly simplifying the mathematical model structure 
and, by avoiding explicit reliance on the Mass Action 
Principle, eliminating the need for the collection and 
analysis of entomological observations.

This implies restricting our attention to the implemen-
tation of the following two metrics: the Force of Infec-
tion and the Seroconversion Rate. In fact, both express 
the rate of change from the state of susceptibility to the 
state of infectiousness, acting as a real-time transition 
“tracker”. From a statistical point of view, the FOI can 
be flexibly estimated with a wide range of fully, semi-, or 
non-parametric techniques for handling the underlying 
infection measure, such as parasitaemia (or parasite den-
sity) [10, 84, 85].

In line with the work by Mugenyi et  al. [84], further 
developments to the statistical modelling of parasitae-
mia data should be given even more prominence, in 
order to make the best possible use of longitudinal data, 
and assess the suitability of flexible modelling strategies, 
including Generalized Nonlinear (Mixed) Models, Gen-
eralised Additive Models, and splines-based approaches 
[19, 85], on top of a comprehensive assessment of hetero-
geneity, which should move beyond the sole considera-
tion of available covariates, and include hidden variability 

in transmission, which can be assessed by inclusion of 
random effects or frailties [11, 86].

The choice of the mathematical model depends on the 
availability of entomological and human malaria data. 
More specifically, in case information regarding the 
vector population is available, this could be included in 
the mathematical model structure, thereby enabling a 
description of the connection between transmission 
dynamics in the vector and host populations. Despite the 
fact that this is possible, and many papers have studied 
such an explicit connection, the overarching methodol-
ogy connecting mathematical and statistical modelling 
approaches as introduced in this paper, does not require 
that data on both human and vector populations are 
available. Based on assumptions with regard to the 
underlying transmission process, transmission intensity 
can be quantified in terms of the force of infection, and 
the effects of different vector control measures are indi-
rectly quantified in terms of the reduced risk of malaria 
transmission for humans. As exemplified by the differ-
ent examples included in the integrative review paper, 
estimation of the force of infection in the absence of 
data on transmission dynamics in the vector population 
simplifies the analysis considerably. Admittedly, the pro-
posed general modelling framework has not been used 
to evaluate the impact of ignoring the vector popula-
tion dynamics in relation to such control measures, nor 
for the quantification of effects of disregarding the vec-
tor completely on malaria metrics for the host in general. 
Although the methodology has been used in the absence 
of entomological information and solely based on, for 
example, parasitaemia data, a critical appraisal of the 
results when different data sources are available would 
be of utmost importance in the future and therefore pro-
vides an interesting avenue for further methodological 
and applied research.

Appendix A Glossary
See Tables 1, 2
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Appendix B Literature review
In this appendix, additional details are provided concern-
ing the methodological review of existing malaria lit-
erature relevant for the discussion presented in the main 
text. First, the scope and criteria used for this review are 
highlighted. Second, the search strategy is documented 
and described.

Scope and criteria guiding the review
In order to provide a comprehensive overview of the 
available literature, a combination of sources was deemed 
relevant. These include a set of key publications identified 
by the authors, as well as searches in the online databases 
PubMed. In line with the recommendations and guid-
ance by [87], for each selected publication backward and 
forward citation searches were performed. The following 

Table 1  Summary of main terms used in the manuscript

Term Definition

Endemic equilibrium Situation where disease transmission has stabilised, thus, as disease dynamics repeat regularly, calendar time 
becomes less relevant, and an individual’s age really drives exposure to the disease.

Entomological Inoculation Rate (EIR) Number of infectious bites an individual receives over a certain period of time.

Force of Infection (FOI) The force of infection ( � ) represents the per capita rate at which susceptible individuals become infected. In 
survival analysis terms, it corresponds to the hazard of infection.

Mass action principle (MAP) The MAP expressed the notion that disease transmission is related to the number of susceptible and infectious 
individuals in a population, as well as to the rate of contact between the two groups.

Parasite Rate (PR) Proportion of individuals testing positive for the presence of malaria parasite in their blood at a given time.

Parasitological data Information obtained from tests analyzing a blood sample for the presence of parasites in the bloodstream.

Seroconversion rate (SCR) Rate at which individuals transition from seronegativity to seropositivity status as a result of immune system 
reaction due to vaccination or infection.

Serological data Information obtained from tests analysing a blood sample for the presence of antibodies, antigens, or other 
immune markers.

Table 2  Summary of notation for the parameters used in the manuscript. The equation reported corresponds to first usage

Notation Parameter

a Human biting rate (Equation (1))

b Proportion of bites leading to infection (Equation (1))

bi Individual specific random effects

I/i Without a subscript, number/proportion of infectious individuals in the population, respectively. Subscripts are used to differentiate 
between humans, h and mosquitoes m when necessary (e.g., Equation (1)).

m Ratio of female to male mosquitoes in the population (Equation (1))

N(a) Number of individuals in age group a (Equation (3))

ri Relapse rate of individual i (Equation (6))

w Number of clinical malaria episodes suffered in the past (Equation (5))

xij Vector of covariate information

Yij Binary variable expressing presence or absence of parasite in the blood, for individual i = 1, . . . ,N at time point j = 1, . . . , ni

zij Vector collecting information individual-specific random effects

α Rate of development of immunity (Equation (5))

β Effective transmission rate upon contact between a susceptible human host and an infectious mosquitoes (in Equation (1) β = abm)

γ Time to clearance per infectious bite (Equation (7))

η(.) Linear predictor of a regression model

θ Any general set of model parameters

µ Average clearance rate (in Equation (4.2) only)

ν Natural recovery (clearance) rate (Equation (1))

π(a) Age-dependent parasite prevalence. For the purpose of statistical modelling, it correponds to the probability that Yij = 1 given covariates 
and random effects.

τ Proportion of infections treated immediately (Equation (4.2))

χ Rate of development of clinical disease (Equation (3))



Page 14 of 18Grosso et al. Malaria Journal          (2025) 24:173 

criteria for searching, screening, and selecting papers are 
considered:

•	 The article provides a direct estimation of the FOI, 
in the context of a statistical and/or mathematical 
model, together with an explicit description of the 
estimation method used.

•	 The article provides a description of the relationship 
between transmission metrics, using an underlying 
mathematical, statistical model, or statistical model 
informed by a mathematical transmission model.

•	 The article clearly aims at discussing or reviewing the 
characteristics and use of the FOI, alone or in combi-
nation with other metrics, in the context of malaria.

In order to be included in this review, papers had to fulfil 
at least one of these criteria.

Search strategy for the literature review
No restrictions were placed on the type of study included 
in the review or the year of publication, though only 
studies written in the English language were considered.

A summary list of key publications identified by the 
authors as a starting point for the review are reported 
here:

•	 Early contributions: [17, 71, 76, 88]
•	 Contributions based on the work by Muench [50, 

75]: using cross-sectional survey data [78], using lon-
gitudinal data [79]

•	 Contemporary contributions: on the use of Parasite 
Rate: [81], on the relationship between metrics [3, 14, 
16, 23, 70, 89]

•	 Previous literature reviews: [9, 15, 39]

In order to optimize the search strategy in PubMed, the 
most appropriate MeSH term were identified by first 
establishing:

•	 The disease of interest: Malaria
•	 The topic of interest: estimation of transmission

For the former component, the most appropriate start-
ing point in the MeSH database for malaria is the dis-
ease itself, “Malaria”. This retrieves 10 entries of which 
the most appropriate are “Malaria”, “Malaria, falciparum”, 
and “Malaria, Vivax”. Other terms can be safely excluded, 
such as those referring to the malaria vaccine, to avian 
malaria, etc. As a consequence of the presence of terms 
not relevant for the purpose of this review, the default 
option of “exploding” the MeSH term to all its subhead-
ings was employed. The most relevant subheadings 

appear to be the following: “analysis”, “epidemiology”, 
“statistics”, “prevention and control”, “transmission”. It 
is possible to supplement MeSH terms with appropri-
ately selected keywords, but given the MeSH terms seem 
to cover the topic comprehensively, this did not seem 
necessary.

For the latter component, it is important to identify 
appropriate words concerned with malaria transmis-
sion as captured by FOI. In the MeSH Dataset, the most 
directly related terms appear to be the following:

•	 Disease Transmission, Infectious
•	 Incidence

The relevant MeSH group appears to be group G03 (Bio-
logical Sciences - Environment and Public Health).

Based on prior knowledge of the relevant literature, it 
seemed sensible to supplement the searches with the fol-
lowing keywords to be looked for in the articles Title and 
Abstract:

•	 Force of infection
•	 Transmission Rate
•	 Attack Rate
•	 Effective Inoculation Rate
•	 Parasitological Inoculation Rate

The following search strategy was thus employed in 
PubMed:

(Malaria[MeSH Terms]) AND (”force of 
infection”[Title/Abstract] OR ”attack rate”[Title/
Abstract] OR ”transmission rate” [Title/Abstract] OR 
”effective inoculation rate” [Title/Abstract] OR ”parasito-
logical inoculation rate” [Title/Abstract])

These results were supplemented by backward and for-
ward citation searches from the key papers.

Appendix C Mathematical modelling
Within‑host modelling example
The review by Reiner et  al. [9] subdivides publications 
into those that modelled the vector explicitly, implic-
itly (i.e., via quantities such as vectorial capacity), or 
not at all [9]. Among the typology of models which did 
not consider vector dynamics explicitly, one category 
is those type of models that focus instead on “within-
host” dynamics, which go beyond the focus of the cur-
rent paper but constitute perhaps the most intuitive way 
in which vectors can be excluded without losing model 
accuracy.

An example is the study by [90], on the determinants 
and pharmacological dynamics of artemisin-resistant 
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malaria in the Cambodian setting. Their mathemati-
cal model encompasses a series of stages summarizing 
the development of the parasite inside the human host, 
according to the following sequence: Susceptible - Liver 
Stage - Blood Stage (non-infectious) - Blood Stage (infec-
tious). In their model, the transition between the Suscep-
tible and Infected stage were modelled as follows:

with ρ representing a reduction in transmissibility due 
to effective drug coverage, cr representing the clearance 
rates (by treatment), Sdg being the number of susceptible 
by drug type and control strategy evaluated, Irdg being 
the number of individuals in the Infectious blood stage, 
by resistance status, drug activity, and strategy evalu-
ated, and finally, β representing the probability that a sus-
ceptible individual receives and infectious bite from an 
infectious vector who had previously bitten a randomly-
chosen infectious individual. It is evident how the repre-
sentation of the force of infection can be reconducted to 
the “classic” βIN  structure, where all possible interactions 
across the groups identified by the specific study (in this 
case, drug type and control stategies) are considered.

Age‑ and time‑dependent transmission dynamics
A general model to describe non-stationary disease 
dynamics (i.e., the disease is not in steady state or 
endemic equilibrium) requires keeping track of the age- 
and time-specific evolution in proportion of individu-
als in different compartments. Such dynamics are then 
translated into a system of Partial Differential Equations 
(PDEs) [29], describing the evolution of disease dynam-
ics across different age groups and calendar times, e.g. 
extending the previous SIRS model even further:

Solving a PDE system is complex, therefore these models 
are normally approximated by a tractable set of ordinary 
differential Equations (ODEs). An efficient way to do this 
is by the means of a so-called realistic age-structured 
model (RAS-model) [10, Chp. 16]. Under a RAS imple-
mentation, individuals are allowed to move across com-
partments over a time period of one year, assuming age 
groups of one year, after which they are moved to the 
next age group. RAS models better reflect aging and tem-
poral dynamics than continuous age-structured (CAS) 

(1− ρ)βSdg
∑

g

∑
d

∑
r(1− cr)Irdg

N
,






∂s(a,t)
∂a + ∂s(a,t)

∂t = −�(a, t)s(a, t)+ γ (a, t)r(a, t),
∂i(a,t)
∂a + ∂i(a,t)

∂t = �(a, t)s(a, t)− ν(a, t)i(a, t),
∂r(a,t)
∂a + ∂r(a,t)

∂t = ν(a, t)i(a, t)− γ (a, t)r(a, t).

models in which individuals continuously transition and 
can grow old immediately.

Having simplified the original system of PDEs, it is pos-
sible to solve, analytically or numerically, the specific age-
cohort system of (time-varying) differential equations 
to obtain a relation between the FOI and incidence (or 
prevalence), which is subsequently contrasted to avail-
able data, such as serological surveys, for the estimation 
of relevant parameters. Different model formulations 
can then be compared and assessed for model selection 
using standard statistical methods. For an example of 
this approach albeit in a different context, the reader is 
referred to the study by Ogunjimi and colleagues [91].

Alternatively, it is possible to posit endemic equi-
librium   [12, Chp.4], where the system has reached a 
steady state and only dependence on age is considered, 
thus dropping the derivatices with respect to time and 
the indices t. The system then reduces to a set of Ordi-
nary Differential Equations (ODEs), which are more 
easily tractable and could in principle be solved, leading 
to the formulation of a direct link between the FOI and 
prevalence.

Appendix D Statistical modelling
Analysis of serological data
Serological data have been mostly analysed by fit-
ting catalytic models to them [21, 78] after identifying 
seronegative and seropositive individuals. Drakeley and 
colleagues [8, 21] fitted a reversible catalytic model, 
assuming a binomial error distribution and estimating 
parameters using maximum likelihood estimation, to 
antibody data from Kenya collected during two cross-
sectional surveys of 250 individuals across 12 villages 
spanning different altitude levels. Seroprevalence cor-
related better with measures of altitude and EIR than 
point prevalence. Moreover, a separate analysis of 
short- and long-lived antibody responses, stratified by 
age group, made it possible to disentangle recent and 
distant patterns in transmission. The catalytic model 
is quite restrictive and more flexible models are typi-
cally required to describe disease dynamics, something 
which can be done by refining the underlying math-
ematical model. As an example, Bosomprah et  al. [92] 
incorporates the “boosting” effect of continuous expo-
sure, which can explain the long life of certain sets of 
antibody markers, by implementing a model featuring 
superinfection to explain seropositivity to malaria anti-
gens. In addition to these modifications, it is possible to 
consider different structures for the changes in trans-
mission over time, which can be assumed to undergo 
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a sharp drop at a certain time point, or consider, 
for instance, a linear or quadratic evolution in FOI 
between the start and the end of the study period. More 
recently, mixture models have been considered to use 
the full range of antibody titers [93, 94], and to avoid 
the (subjective) specification of fixed cut-off point(s) 
thereby di- (seronegative or -positive) or tri-chotomis-
ing (including an inconclusive/equivocal result when 
titer concentrations are between an upper and lower 
threshold value) the test result, thus leading to consid-
erable information loss.
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