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1. Introduction

A classical result by Kakutani ([11], see also [8, Theorem 12.5]) characterizes Euclidean 
spaces among finite-dimensional normed spaces as follows:

Let V = (V, ‖ · ‖) be an n-dimensional normed space and 2 ≤ k < n. Suppose that for 
every k-dimensional linear subspace X of V , there exists a linear projector PX : V → X

onto X with unit operator norm, i.e. such that ‖PX(v)‖ ≤ ‖v‖ for all v ∈ V . Then ‖ · ‖
is a Euclidean (i.e., an inner product) norm.

This fact is also known as the Blaschke–Kakutani characterization; it can be seen 
as the dual form of Blaschke’s characterization of ellipsoids via planarity of shadow 
boundaries. The projector property always holds for 1-dimensional subspaces (by the 
Hahn–Banach theorem), which explains the condition k ≥ 2.

In this paper we characterize norms for which the same assumption is satisfied locally, 
that is for subspaces X ranging over an open subset of the respective Grassmannian. The 
answer is that the local structure of the norm near these subspaces is either Euclidean 
or cylindrical, see Theorem 1.2 below for the precise formulation.

Our main motivation and application is a local version of a low-dimensional solution 
of Banach’s problem about normed spaces where all subspaces of a fixed dimension are 
isometric. Using the approach from [10] together with Theorem 1.2 we show that the 
answer to the local version of Banach’s problem for k = 2, 3 is the same as in Theorem 1.2, 
see Theorem 1.4.

In the case when the norm is smooth and strictly convex, the local Blaschke–Kakutani 
characterization was obtained by Calvert [4]. The cylindrical case does not appear in 
[4] because of the strict convexity assumption. The local Banach’s isometric subspaces 
problem for k = 2 and smooth strictly convex norms was solved in [9] as a part of the 
proof of a Finsler geometry result. Note that the Blaschke–Kakutani characterization 
easily reduces to the case k = 2 while Banach’s problem does not.

Definitions and formulations

We state our results in convex geometry terms rather than in terms of norms. As usual, 
a norm on a vector space V is represented by its unit ball B, which is a convex body in V . 
Since a part of our motivation comes from Finsler geometry, we do not assume that B
is symmetric and hence consider norms that are not necessarily symmetric (``Minkowski 
norms'', see section 2). The existence of a norm non-increasing projector to a linear 
subspace X ⊂ V is equivalent to the property that B is contained in a cylinder with 
base B ∩X, see Definition 1.1 and Lemma 2.2 below.

By GrkV we denote the Grassmannian of k-dimensional linear subspaces of a vector 
space V . Two linear subspaces X,Y ⊂ V are called complementary if V = X + Y and 
X ∩ Y = 0. A convex body is a compact convex set with a nonempty interior.
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Definition 1.1. Let V be a real n-dimensional vector space and 1 ≤ k < n an integer. A 
set C ⊂ V is called a k-cylinder if it can be represented in the form

C = K + Y

where K is a k-dimensional convex body in a linear subspace X ∈ GrkV , and Y is a 
linear subspace complementary to X.

The set K is referred to as a base and Y as a generatrix of C. If the value of k is clear 
from context, we omit it and call k-cylinders simply cylinders.

Note that the generatrix of a cylinder is unique but a base is not. In fact, if C is a 
k-cylinder then for every linear subspace X ′ ∈ GrkV such that the set K ′ = C ∩X ′ is 
compact, K ′ is a base of C. (The compactness of K ′ is equivalent to X ′ ∩ Y = 0 where 
Y is the generatrix).

Our first result is the following theorem.

Theorem 1.2. Let V be a real n-dimensional vector space, B ⊂ V a convex body contain
ing 0 in its interior, 2 ≤ k < n an integer, and U ⊂ GrkV a nonempty connected open 
set.

Suppose that for every X ∈ U the body B is contained in a k-cylinder with base B∩X. 
Then there exists a set B′ ⊂ V such that

B ∩X = B′ ∩X for all X ∈ U (1.1)

and at least one of the following holds:

(1) B′ is a k-cylinder;
(2) B′ = {v ∈ V : Q(v) ≤ 1} for some nonnegative definite quadratic form Q on V .

The case (1) in Theorem 1.2 occurs if all k-cylinders from the assumption have the 
same generatrix. In (2), the set B′ may be an ellipsoid or, if Q is degenerate, a cylinder 
over an m-dimensional ellipsoid for some m ≥ k. The cylindrical and degenerate cases are 
unavoidable in the local setting. In fact, any B satisfying the conclusion of the theorem 
satisfies its assumption, see Lemma 2.5.

Remark 1.3. If U in Theorem 1.2 is the entire Grassmannian GrkV then (1.1) implies 
that B′ = B. Then, since B is compact, the cylindrical and degenerate cases are ruled 
out and the only remaining option is a sublevel set of a positive definite quadratic form. 
Thus Theorem 1.2 implies the original Blaschke–Kakutani characterization and moreover 
generalizes it to non-symmetric norms.

We also note that the cylindrical and degenerate cases cannot occur if B is strictly 
convex or, more generally, if the union of the subspaces from U contains an extreme 
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point of B. (Recall that an extreme point of B is a point p ∈ B such that B \ {p} is 
convex).

The proof of Theorem 1.2 is given in sections 5 and 6 after technical preparations in 
sections 2--4. In section 5 we handle the case n = 3 and in section 6 the proof is finished 
by induction on dimension.

The ellipsoid and cylinder cases in dimension 3 are separated by whether the corre
spondence between crossing planes and cylinders containing the body is 1-to-1 or not. 
In the latter case we deduce the result via convex geometry arguments, and in the for
mer case the proof is based on a local version of the fundamental theorem of projective 
geometry. This is similar to proofs in [4] and [9].

Banach’s isometric subspaces problem

In 1932, Banach [2] posed the following problem:

Let V = (V, ‖ · ‖) be a normed vector space and 2 ≤ k < dimV an integer. Suppose 
that all k-dimensional linear subspaces of V are isometric. Is ‖ · ‖ necessarily an inner 
product norm?

The problem translates into the language of convex geometry as follows: Consider a 
convex body B ⊂ V (the unit ball of a norm) and suppose that all cross-sections of B
by k-dimensional linear subspaces are linearly equivalent, that is, for every X,Y ∈ GrkV
there exists a linear map L : X → Y such that L(B ∩ X) = B ∩ Y . The question is 
whether such a body is necessarily a centered ellipsoid.

It is answered affirmatively in some dimensions and remains open in others. For a 
long time the only known result was the solution for k = 2 by Auerbach, Mazur, and 
Ulam [1]. Then Dvoretzky [6] solved the problem for infinite-dimensional spaces and 
Gromov [7] settled the case of even k and the case dimV ≥ k + 2 for all k. Recently 
the problem was solved for k ≡ 1 mod 4 except k = 133 by Bor, Hernández Lamoneda, 
Jiménez-Desantiago, and Montejano [3] and for k = 3 by the authors [10].

The proofs in [1,7,3] rely on algebraic topology of Grassmannians to find obstructions 
to the existence of certain families of linear equivalences. In contrast, the proof for k = 3
in [10] is based on differential geometric analysis in a neighborhood of a single cross
section. This suggests that it makes sense to consider a local version of the problem 
where the linear equivalence is assumed only for a small open set of cross-sections. Such 
a local result was obtained in [9] for k = 2, n = 3 and a smooth strictly convex body; 
the conclusion is that the respective part of the body coincides with an ellipsoid.

In this paper we extend the results of [9] and [10] and solve the local version of 
Banach’s problem for k = 2 and k = 3. Like in the case of Theorem 1.2, the problem 
admits locally cylindrical solutions in addition to locally ellipsoidal ones.

Theorem 1.4. Let V be an n-dimensional real vector space, B ⊂ V a convex body con
taining 0 in its interior, k ∈ {2, 3}, and U ⊂ GrkV a nonempty connected open set. 
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Suppose that for every X1, X2 ⊂ U the cross-sections B ∩ X1 and B ∩ X2 are linearly 
equivalent.

Then the same conclusion as in Theorem 1.2 holds, namely there exists B′ ⊂ V such 
that B ∩X = B′ ∩X for all X ∈ U and B is either a k-cylinder or a sublevel set of a 
nonnegative definite quadratic form (or both).

The proof of Theorem 1.4 is a combination of Theorem 1.2 and the results of [10]. In 
fact, the key propositions in [10] show that the assumptions of Theorem 1.4 imply those 
of Theorem 1.2. See section 7 for details.

Remark 1.5. A related question is whether a convex body in Rn is uniquely determined, 
up to a symmetry or homothety, by the congruence or a˙ine types of its k-dimensional 
cross-sections through the origin. For congruence types this question goes back to Naka
jima [12] and Süss [14]. In general the answer is negative as shown by Zhang [15]. However 
in the symmetric case an application of the spherical Radon transform shows that the 
answer is affirmative, moreover a symmetric body is uniquely determined by the areas 
of its cross-sections.

This type of questions can be localized as well, for example, one may ask the following:
Let B1 and B2 be origin symmetric bodies in Rn, 2 ≤ k < n, and U ⊂ GrkRn an open 

set. Suppose that for every X ∈ U the sections B1∩X and B2∩X are congruent (or, more 
generally, are linearly equivalent and have the same area). Is it true that B1∩X = B2∩X
for all X ∈ U?

Note that Proposition 3.1 implies an affirmative answer to this question when one 
of the bodies is an ellipsoid. Also see Purnaras–Saroglou [13] for a local problem of a 
similar flavor.

2. Preliminaries

2.1. Notation and conventions

In this paper, a ``vector space'' always means a finite-dimensional real vector space and 
a ``subspace'' means a linear subspace. For vector spaces X and Y , Hom(X,Y ) denotes 
the space of linear maps from X to Y , and X∗ = Hom(X,R) the dual space to X. For 
a vector space V , the Grassmann manifold GrkV consists of (unoriented) k-dimensional 
subspaces of V . For X ∈ GrkV and m ≥ k we denote by Grm(V,X) the set of subspaces 
from GrmV containing X:

Grm(V,X) := {W ∈ GrmV : X ⊂ W}. (2.1)

For a subset S ⊂ V we denote by LinSpanS the smallest linear subspace of V con
taining S. For v ∈ V \ {0} the line through v is denoted by Rv = {λv | λ ∈ R}.

For complementary subspaces X,Y ⊂ V we denote by prYX the projection to X along 
Y :
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prYX : V → V, v 
→ the unique point in (v + Y ) ∩X (2.2)

Note that any linear projector (i.e., idempotent linear map) P ∈ Hom(V, V ) is uniquely 
of the above form, with X = imP and Y = kerP .

For a convex set K ⊂ V we denote by ∂K the relative boundary of K, that is the 
boundary in the topology of its a˙ine span. A convex set B ⊂ V is called a convex body 
if it is compact and has nonempty interior. By an ellipsoid we mean the unit ball of an 
inner product norm in a vector space. In other words, all ellipsoids are assumed to be 
centered at 0. The same terminology adjustment applies to ellipses in dimension 2.

A Minkowski seminorm on a vector space V is a function Φ : V → R+ which is 
positively 1-homogeneous and subadditive (and hence convex). A Minkowski norm is a 
Minkowski seminorm which is positive on V \ {0}. The difference from usual norms is 
that a Minkowski norm is not assumed symmetric. There is a standard bijection between 
Minkowski seminorms and convex sets with 0 in the interior. Namely, to each Minkowski 
seminorm Φ one associates its unit ball BΦ = {x ∈ V : Φ(x) ≤ 1}, and for every 
convex set B ⊂ V with 0 in the interior there is a corresponding Minkowski seminorm 
ΦB(x) = inf{λ > 0 | x/λ ∈ B}. Note that ΦB is a Minkowski norm if and only if B is 
compact.

Recall that a supporting hyperplane of a convex body B at a point p ∈ ∂B is an a˙ine 
hyperplane H � p such that H ∩ IntB = ∅. We say that a point p ∈ ∂B is a smooth 
point of ∂B if B has a unique supporting hyperplane at p. In this case the hyperplane 
is also called the tangent hyperplane of B at b. If B is the unit ball of a Minkowski 
norm Φ then the smoothness of a point p ∈ ∂B is equivalent to the property that Φ
is differentiable at p. Note that a Minkowski norm is differentiable almost everywhere 
(since it is a convex function) and hence almost all points of the boundary of a convex 
body are smooth points.

2.2. Assumptions and assertions of Theorem 1.2

Definition 2.1. Let Φ be a Minkowski seminorm on a vector space V . A linear subspace 
X ⊂ V is called Φ-contracting if there exists a linear projector P from V onto X such 
that Φ(P (v)) ≤ Φ(v) for all v ∈ V .

Recall that every such linear projector P is of the form prYX for some subspace Y
complementary to X. We refer to Y as a contracting direction for X.

Being Φ-contracting is a closed condition: For every k ≤ n the set of k-dimensional 
Φ-contracting subspaces is closed in GrkV . Also note that if X is Φ-contracting then X
is (Φ|W )-contracting for every subspace W ⊂ V containing X (to prove this, just restrict 
P to W ).

The following lemma provides various reformulations for the assumption of Theo
rem 1.2. It will be handy throughout the proof.
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Lemma 2.2. Let Φ be a Minkowski seminorm on a vector space V , B its unit ball, and 
X,Y ⊂ V complementary subspaces. Then the following conditions are equivalent.

(1) B ⊂ (B ∩X) + Y ;
(2) prYX B = B ∩X;
(3) X is Φ-contracting with contracting direction Y ;
(4) (p + Y ) ∩ IntB = ∅ for all p ∈ ∂B ∩X.

Proof. (1) ⇒ (2). The inclusion B ∩ X ⊂ prYX B is trivial. The reverse one follows 
from (1) and the identity (prYX)−1(B ∩X) = (B ∩X) + Y .

(2) ⇒ (3). We have to show that Φ(prYX(v)) ≤ Φ(v) for every v ∈ V . If Φ(v) = 1 then 
v ∈ B, therefore prYX(v) ∈ B by (2), hence Φ(prYX(v)) ≤ 1. If Φ(v) > 0 then the desired 
inequality follows by homogeneity. If Φ(v) = 0 then tv ∈ B for all t ≥ 0, this and (2) 
imply that t prYX(v) ∈ B for all t ≥ 0, therefore Φ(prYX(v)) = 0.

(3) ⇒ (4). If q ∈ (p + Y ) ∩ IntB for some p ∈ ∂B ∩X, then prYX q = p hence

1 > Φ(q)
(3)
≥ Φ

(
prYX q

)
= Φ(p) = 1

and we obtain a contradiction.
(4) ⇒ (1). Suppose that (1) is false and pick b0 ∈ B such that b0 / ∈ (B ∩ X) + Y . 

Let p0 = prYX(b0), then p0 / ∈ B, hence Φ(p0) > 1. Let p = p0/Φ(p0), then p ∈ ∂B ∩X. 
Now observe that the set p + Y contains a point q = b0/Φ(p0) which belongs to IntB, 
contrary to (4). �

The assumption of Theorem 1.2 says that for every X ∈ U the condition (1) from 
Lemma 2.2 is satisfied for some Y = YX ∈ Grn−kV . In view of Lemma 2.2(3), this can 
be restated as follows: every X ∈ U is Φ-contracting, where Φ is the Minkowski norm 
associated to B.

Definition 2.3. Let V be a vector space, B1, B2 ⊂ V two convex sets with zero in the 
interiors, and X ∈ GrkV . We say that B1 and B2 coincide near X if there exists an 
open set U ⊂ V such that X ⊂ U and B1 ∩ U = B2 ∩ U .

A convex body B ⊂ V is called locally cylindrical near X if there exists a k-cylinder 
C such that B and C coincide near X. Note that in this case B ∩X is a base of C (see 
Definition 1.1) since C ∩X = B ∩X and B ∩X is compact.

The next lemma shows that the assumption of Theorem 1.2 is local.

Lemma 2.4. Let V be an n-dimensional vector space, X ∈ GrkV , and B1, B2 ⊂ V two 
convex sets with zero in the interiors. Assume that B1 and B2 coincide near X and B1

is contained in a k-cylinder C with base B1 ∩X. Then B2 ⊂ C as well.
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Proof. Let K = B1∩X = B2∩X and C = K+Y where Y is a subspace complementary 
to X. Suppose to the contrary that B2 
⊂ C. Then by Lemma 2.2 there exist p ∈ ∂K

and q ∈ B2 such that

q ∈ (p + Y ) ∩ IntB2.

Since p ∈ B2 and q ∈ IntB2, for every ε ∈ (0, 1) the point pε := p + ε(q − p) belongs 
to IntB2. Since B1 and B2 coincide near X, it follows that pε ∈ IntB1 for a sufficiently 
small ε. On the other hand, pε ∈ p + Y ⊂ ∂C. This contradicts the assumption that 
B1 ⊂ C. �

In the last lemma of this section we show that Theorem 1.2 is in fact an if-and-only-if 
statement.

Lemma 2.5. Let V be an n-dimensional vector space, B ⊂ V a convex body with zero in 
the interior, and X ∈ GrkV . Assume that at least one of the following holds:

(1) B is locally cylindrical near X;
(2) B coincides with B′ = {v ∈ V : Q(v) ≤ 1} near X, where Q is a nonnegative definite 

quadratic form on V .

Then B is contained in a k-cylinder with base B ∩X.

Proof. First assume (1) and let C be the corresponding cylinder (see Definition 2.3). 
The desired property follows from Lemma 2.4 applied to C and B in place of B1 and B2, 
respectively.

Now assume (2) and let Y be the orthogonal complement to X with respect to the 
symmetric bilinear form associated to Q. Since B′ ∩ X = B ∩ X is compact, Q|X is 
positive definite and therefore Y is a complementary subspace to X. From the orthog
onality we have Q(prYX v) ≤ Q(v) for all v ∈ V , therefore B′ is contained in a cylinder 
C = (B′ ∩X) + Y . Applying Lemma 2.4 to B′ and B finishes the proof. �
3. Quadratic forms

The goal of this section is to prove the following local version of the well-known fact 
that a normed space is Euclidean if all of its subspaces of fixed dimension k ≥ 2 are 
Euclidean. Though the statement looks standard, we could not find it in the literature 
and the proof is not so immediate as one might expect.

Proposition 3.1. Let Φ be a Minkowski norm on an n-dimensional vector space V , 
2 ≤ k < n an integer, and U ⊂ GrkV a connected nonempty open set. Suppose that 
for every X ∈ U the restriction Φ|X is an inner product norm on X.
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Then there exists a unique quadratic form Q on X such that (Φ|X)2 = Q|X for all 
X ∈ U . Moreover Q is nonnegative definite.

The following notation and terminology will be handy throughout the proof. For a 
basis v = (v1, . . . , vn) of a vector space V we denote by Πv

ij its coordinate planes:

Πv
ij = LinSpan{vi, vj}, 1 ≤ i 
= j ≤ n.

If U ⊂ Gr2V is an open set of planes, we say that a basis v is U-compatible if all its 
coordinate planes Πv

ij belong to U . Clearly for any plane Π ∈ U every basis (v1, v2)
of Π can be extended to a U-compatible basis of V (just choose the remaining vectors 
sufficiently close to Π).

We precede the proof of Proposition 3.1 with a couple of lemmas.

Lemma 3.2. Let v = (v1, . . . , vn) be a basis of a vector space V and F : V → R a function 
whose restrictions to the coordinate planes Πv

ij are quadratic forms on these planes. Then 
there exists a unique quadratic form Q on V such that Q|Πv

ij
= F |Πij

for all i 
= j.

Proof. Let (x1, . . . , xn) be the coordinates on V with respect to the basis v. We construct 
the (symmetric) matrix (cij) of Q in these coordinates from the values of F on the 
coordinate planes.

First define cii = F (vi) for all 1 ≤ i ≤ n. Then for each pair i, j with i 
= j, consider 
the quadratic form Qij := F |Πv

ij
on the plane Πv

ij . Since Qij(vi) = F (vi) = cii and 

Qij(vj) = F (vj) = cjj , the coordinate expression of Qij has the form

Qij(xi, xj) = ciix
2
i + cjjx

2
j + 2cijxixj

for some cij ∈ R. We use this expression to define cij .
The resulting quadratic form Q(x1, . . . , xn) =

∑
i,j cijxixj satisfies Q|Πv

ij
= Qij for 

all i 
= j. The uniqueness is obvious from the construction. �
The next lemma essentially covers the case n = 3 of Proposition 3.1. Note that in this 

case we do not assume that U is connected.

Lemma 3.3. Let X be a 3-dimensional vector space, F : X → R a continuous function, 
and U ⊂ Gr2V a nonempty open set. Suppose that for every Π ∈ U the restriction F |Π
is a quadratic form on Π. Then there exists a unique quadratic form Q on X such that 
F |Π = Q|Π for all Π ∈ U .

Proof. Fix a U-compatible basis v = (v1, v2, v3) of X. By Lemma 3.2, there exists a 
unique quadratic form Q on X that coincides with F on the coordinate planes Πv

ij . We 
show that this Q satisfies F |Π = Q|Π for all Π ∈ U .
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First consider a plane Π ∈ U which is generic in the sense that it does not contain any 
of the vectors v1, v2, v3. Since F and Q coincide on the coordinate planes, they coincide 
on the lines

�ij := Π ∩ Πv
ij , 1 ≤ i < j ≤ 3.

Both F |Π and Q|Π are quadratic forms on Π, and a quadratic form on Π is uniquely 
determined by its values on the three distinct lines �ij. Hence F |Π = Q|Π if Π is generic. 
To finish the proof, observe that any non-generic plane Π can be approximated by generic 
ones and the identity F |Π = Q|Π follows by continuity. �
Proof of Proposition 3.1. Let V , Φ and U ⊂ GrkV be as in Proposition 3.1. Define 
F = Φ2 and

Ω =
⋃

X∈U
X \ {0}.

It is easy to see that Ω is a connected open subset of V .
The assertion of the proposition can be rewritten as follows: there exists a unique 

quadratic form Q on V such that F |Ω = Q|Ω and furthermore Q is nonnegative definite. 
First we verify the uniqueness and nonnegative definiteness of such Q. The uniqueness 
follows from the facts that Ω is open and a quadratic form is uniquely determined by its 
restriction to any open set.

Now suppose that Q is a quadratic form such that F |Ω = Q|Ω and Q(v) < 0 for some 
v ∈ V . Fix p ∈ Ω and define f(t) = F (p+tv) for all t ∈ R. The function f is convex since 
F = Φ2 is a convex function on V . The identity F |Ω = Q|Ω implies that f(t) = Q(p+tv)
for all t sufficiently close to 0. Therefore f is smooth near 0 and f ′′(0) = 2Q(v) < 0, 
contrary to the convexity of f . This contradiction shows that Q must be nonnegative 
definite.

It remains to prove the existence of a quadratic form Q such that F |Ω = Q|Ω. First 
we reduce this statement to the special case when k = 2. Consider the set

U2 = {Π ∈ Gr2V : Π ⊂ X for some X ∈ U}

and observe that U2 is a connected open subset of Gr2V , Φ|Π is a quadratic form for 
every Π ∈ U2, and 

⋃
Π∈U2

Π\{0} = Ω. Thus it suffices to prove the proposition for k = 2
and U2 in place of U . We therefore assume k = 2 for the rest of the proof.

For a U-compatible basis v = (v1, . . . , vn) of V , we denote by Qv the quadratic form 
on V satisfying F |Πv

ij
= Qv|Πv

ij
for all 1 ≤ i < j ≤ n. Such a form exists and is unique 

by Lemma 3.2. Clearly Qv does not change if the vectors of v are permuted or multiplied 
by nonzero scalars.
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Claim. Let v1, . . . , vn ∈ V and t ∈ R be such that v = (v1, v2, . . . , vn) and

v′ = (v1 + tv2, v2, . . . , vn)

are U-compatible bases. Then Qv = Qv′ .

Proof. By the definition of Qv′ it suffices to show that

Qv|Πv
′

ij
= F |Πv

′
ij

(3.1)

for all 1 ≤ i < j ≤ n. Observe that Πv′

ij = Πv
ij if i, j ≥ 2 or {i, j} = {1, 2}, so (3.1)

trivially holds in these cases. It remains to verify (3.1) for i = 1 and j > 2. Fix j > 2
and apply Lemma 3.3 to the 3-dimensional subspace

X = LinSpan{v1, v2, vj},

the set U ∩ Gr2X in place of U , and the function F |X in place of F . This yields a 
quadratic form Q on X such that Q|Π = F |Π for all planes Π ∈ U ∩ Gr2X. In par
ticular Q and F coincide on the planes Πv

12, Πv
1j and Πv

2j , therefore Q = Qv|X by 
the uniqueness part of Lemma 3.2. On the other hand, Q and F coincide on the plane 
Πv′

1j = LinSpan{v1 + tv2, vj} since this plane also belongs to U ∩ Gr2X. Therefore (3.1)
holds for all 1 ≤ i < j ≤ n and Claim follows. �

Fix p ∈ Ω and choose a U-compatible basis v = (v1, . . . , vn) such that v1 = p. Fix 
ε > 0 so small that for every point p′ ∈ V of the form

p′ = p +
n ∑

i=1 
tivi where ti ∈ (−ε, ε) for all 1 ≤ i ≤ n, (3.2)

the collection v′ = (p′, v2, . . . , vn) is a U-compatible basis. We are going to show that 
Qv′ = Qv for every such v′.

Let p′ ∈ V be as in (3.2). Connect p to p′ by a sequence p0 = p, p1, . . . , pn = p′ where

pm = p +
m ∑
i=1 

tivi, m = 1, . . . , n,

and let vm = (pm, v2, . . . , vn) for each m. By the choice of ε, each vm is a U-compatible 
basis. Observe that Qv1 = Qv since v1 is obtained from v by rescaling the first basis 
vector. For 2 ≤ m ≤ n, the basis vm is obtained from vm−1 by a transformation as in 
Claim (up to a permutation of indices), hence Qvm = Qvm−1 . Thus

Qv = Qv1
= Qv2

= · · · = Qvn

= Qv′
.
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In particular, since p′ is one of the basis vectors in v′, we have Qv(p′) = Qv′(p′) = F (p′).
Thus Qv(p′) = F (p′) for any point p′ of the form (3.2). The range of such points p′ is 

an open neighborhood of p, therefore we have proven the following statement (where Qv

is renamed to Qp): For every p ∈ Ω there exists a quadratic form Qp on V such that Qp

and F coincide in a neighborhood of p. Since a quadratic form is uniquely determined 
by its restriction to any open set, such Qp is unique for every p ∈ Ω and the map 
p 
→ Qp is locally constant on U . Since Ω is connected, it follows that all Qp, p ∈ Ω, are 
one and the same quadratic form. Denote this quadratic form by Q and observe that 
Q(p) = Qp(p) = F (p) for all p ∈ Ω. Thus Q|Ω = F |Ω and Proposition 3.1 follows. �
4. Local cylinders

In this section we collect technical facts about locally cylindrical convex bodies, see 
Definition 2.3. Throughout this section V is an n-dimensional vector space, Φ is a 
Minkowski norm on V , and B is the unit ball of Φ.

Lemma 4.1. Let X1, X2 ∈ GrkV and Y ∈ Grn−kV be such that

B ⊂ (B ∩Xi) + Y for i = 1, 2.

Then (B ∩X1) + Y = (B ∩X2) + Y .

Proof. The assumption of the lemma implies that

(B ∩X1) + Y ⊂ B + Y ⊂ ((B ∩X2) + Y ) + Y = (B ∩X2) + Y.

Swapping X1 and X2 yields the opposite inclusion, hence the result. �
Lemma 4.2. Let U ⊂ GrkV be an open set and X0 ∈ U . Suppose that all subspaces from U
are Φ-contracting with the same contracting direction Y0 ∈ Grn−kV (see Definition 2.1). 
Then B is locally cylindrical near X0.

Proof. By Lemma 2.2 we have B ⊂ (B∩X)+Y0 for all X ∈ U . Then Lemma 4.1 implies 
that all cylinders (B ∩X) + Y0, X ∈ U , are in fact one and the same cylinder, which we 
denote by C. Let U ⊂ V be the union of IntB and all subspaces from U . The set U is 
open, contains X0, and satisfies B∩U = C∩U since C∩X = ((B∩X)+Y0)∩X = B∩X for 
every X ∈ U . Thus B and C coincide near X0 hence B is locally cylindrical near X0. �
Lemma 4.3. Let U ⊂ GrkV be a nonempty connected open set. Suppose that B is locally 
cylindrical near X for every X ∈ U . Then there exists a k-cylinder C such that B∩X =
C ∩X for all X ∈ U .
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Proof. First we show that for every X ∈ U , a k-cylinder that coincides with B near X
is unique. Indeed, suppose that for some X ∈ U there are two such cylinders, C1 and 
C2, and observe that C1 and C2 coincide near X. By Lemma 2.4 applied to C2 in place 
of B2 and C1 in place of both B1 and C, it follows that C2 ⊂ C1. Similarly C1 ⊂ C2, 
hence C1 = C2, showing the desired uniqueness.

Let CX denote the above unique cylinder. Pick X ∈ U and let U ⊂ V be a neighbor
hood of X such that B ∩ U = CX ∩ U (see Definition 2.3). Since B is compact, there 
exists a neighborhood UX ⊂ U of X such that B ∩X ′ ⊂ U for all X ′ ∈ UX . Then CX

and B coincide near X ′ for every X ′ ∈ UX . Hence CX′ = CX , by the above uniqueness 
applied to X ′ in place of X.

Thus the map X 
→ CX is locally constant and hence constant on U . Denote the 
constant cylinder CX by C and observe that B ∩ X = CX ∩ X = C ∩ X for every 
X ∈ U . �

The next lemma provides a convenient reformulation of the conclusion of Theorem 1.2.

Lemma 4.4. Let U ⊂ GrkV be a nonempty connected open set. Suppose that for every 
X ∈ U at least one of the following holds:

(1) B is locally cylindrical near X;
(2) B ∩X is an ellipsoid.

Then the conclusion of Theorem 1.2 holds for B and U .

Proof. If all intersections B ∩ X are ellipsoids then Φ|X is an inner product norm for 
every X ∈ U (recall that all ellipsoids in this paper are 0-centered). Then Propo
sition 3.1 implies that there exists a nonnegative definite quadratic form Q on V
such that (Φ|X)2 = Q|X or, equivalently, B ∩ X = B′ ∩ X for all X ∈ U where 
B′ = {v ∈ V : Q(v) ≤ 1}. This is the second option in the conclusion of Theorem 1.2.

Now assume that some of the intersections B ∩X, X ∈ U , are not ellipsoids. Let U0
be a connected component of the nonempty open set

U ′ := {X ∈ U : B ∩X is not an ellipsoid}.

By our assumptions B is locally cylindrical near X for every X ∈ U0. By Lemma 4.3
there exists a k-cylinder C0 such that B ∩X = C0 ∩X for all X ∈ U0. If U0 = U then 
this is the first option in the conclusion of Theorem 1.2. It remains to rule out the case 
when U0 
= U .

Suppose that U0 
= U . Then, since U is connected, there exists X1 ∈ U \ U0 that 
belongs to the closure of U0. Clearly X1 / ∈ U ′, hence B ∩X1 is an ellipsoid. On the other 
hand, all intersections of the form B ∩ X where X ∈ U0, are linearly equivalent since 
they are compact cross-sections of the same cylinder C0. Since the linear equivalence is a 



14 S. Ivanov et al. / Journal of Functional Analysis 289 (2025) 111063 

closed condition, it follows that B∩X1 is linearly equivalent to B ∩X0 for any X0 ∈ U0. 
However B ∩X0 is not an ellipsoid, a contradiction. �

The next lemma will allow us to reduce the theorems to the codimension 1 case.

Lemma 4.5. Let X ∈ GrkV be such that for every W ∈ Grk+1(V,X) the intersection 
B ∩W is locally cylindrical near X. Then B is locally cylindrical near X.

Proof. Let K = B ∩X. Choose

W1, . . . ,Wn−k ∈ Grk+1(V,X) such that LinSpan
(

n−k⋃
i=1 

Wi

)
= V .

For each i = 1, . . . , n−k, since B∩Wi is locally cylindrical near X, there exists vi ∈ Wi\X
such that K + [−vi, vi] = B ∩ (X + [−vi, vi]) where [−vi, vi] denotes the straight line 
segment between −vi and vi. Define Y = LinSpan{vi}n−k

i=1 and C = K + Y , then Y is a 
subspace of V complementary to X and C is a k-cylinder with base K.

We show that B ⊂ C. Lemma 2.2 implies that it is enough to check that 
(p + Y ) ∩ IntB = ∅ for all p ∈ ∂K. Fix p ∈ ∂K and let H be a supporting hyperplane 
to B at p. Then for any i = 1, . . . , n− k the line li = H ∩LinSpan{p, vi} is a supporting 
line to Bi = B∩LinSpan{p, vi} at p. As p+[−vi, vi] ⊂ ∂Bi, we have p+vi ∈ li. Therefore 
p + vi ∈ H for all i = 1, . . . , n− k hence p + Y ⊂ H thus (p + Y ) ∩ IntB = ∅.

Define a neighborhood U0 of 0 in Y by

U0 =
{

n−k∑
i=1 

tivi : t1, . . . , tn−k ∈ R, 
∑

|ti| < 1
}

and let U = X + U0. The choice of vi and the convexity of B imply that K + U0 ⊂ B. 
Combining this with B ⊂ C we obtain B ∩ U ⊂ C ∩ U = K + U0 ⊂ B ∩ U hence B is 
locally cylindrical near X. �
5. Proof of Theorem 1.2 in dimension 3

In this section we prove Theorem 1.2 for n = 3 and k = 2. Let V , B, and U satisfy 
the assumptions of Theorem 1.2 with n = 3 and k = 2. That is, V is a 3-dimensional 
vector space, B ⊂ V is a convex body with zero in the interior, U ⊂ Gr2V is a nonempty 
connected open set, and for every X ∈ U there exists a line LX ⊂ Gr1V such that B is 
contained in the 2-cylinder with base B ∩X and generatrix LX :

B ⊂ (B ∩X) + LX . (5.1)

Note that (5.1) implies that LX is complementary to X, otherwise the set on the right
hand side would be two-dimensional and could not contain B.
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We fix the above notation and assumptions for the rest of this section and denote 
by Φ the Minkowski norm associated to B.

To facilitate understanding, we first sketch the proof in the case of the classical Kaku
tani criterion (that is, U = Gr2V ) for a smooth, strictly convex, 0-symmetric body B. 
In this case one can define a continuous bijection ψ : Gr1V → Gr2V as follows: for 
L ∈ Gr1V , ψ(L) is the plane from Gr2V parallel to the tangent planes of ∂B at the 
points of L ∩ ∂B. The Grassmannians Gr1V and Gr2V can be regarded as real pro
jective planes, which are dual to each other in the sense that points in one projective 
plane correspond to lines in the other. Indeed, a plane X ∈ Gr2V corresponds to the 
set {L ∈ Gr1V : L ⊂ X}, which is a line of the projective structure of Gr1V , and a line 
L ∈ Gr1V corresponds to the set {X ∈ Gr2V : L ⊂ X}, which is a line of the projective 
structure of Gr2V .

The assumption of the Kakutani criterion implies that the above map ψ sends projec
tive lines of Gr1V to projective lines of Gr2V . Indeed, for every X ∈ Gr2V and L ∈ Gr1X
the plane ψ(L) must contain the line LX from (5.1), thus ψ sends the projective line of 
Gr1X corresponding to X to the projective line of Gr2X corresponding to LX .

By the fundamental theorem of projective geometry it follows that ψ is a projective 
map, that is, ψ is induced by a linear bijection F : V → V ∗ between the 3-dimensional 
vector spaces with projectivizations P (V ) = Gr1V and P (V ∗) = Gr2V . In the latter case 
the projectivization is given by the map V ∗ \{0} → Gr2V, f 
→ ker f . To summarize, we 
obtain a linear bijection F : V → V ∗ such that ψ(Rv) = ker(F (v)) for all v ∈ V \ {0}. 
It is not hard to show that such a linear parametrization of tangent directions of ∂B is 
possible only if B is an ellipsoid. (This last step is detailed in Lemma 5.6 below).

We now turn to the general case of Theorem 1.2 for n = 3 and k = 2. The difference 
of the proof from the sketch above is that we have to tackle the cylindrical case (see 
Lemma 5.2 below) and in the non-cylindrical case it is more natural to construct the 
projective dual of ψ. The proof is composed of several lemmas.

Lemma 5.1. For every X ∈ U there is a unique line LX ∈ Gr1(V ) satisfying (5.1).

Proof. Suppose to the contrary that for some X ∈ U there exist two distinct lines 
L1 
= L2 such that B ⊂ K + Li, i = 1, 2, where K = B ∩X. Note that both L1 and L2
are complementary to X.

Pick a smooth point p of ∂K such that the supporting line l of K at p is not contained 
in the plane p + L1 + L2. Then l + L1 and l + L2 are two distinct supporting planes of 
B at p. Hence B ⊂ H1 ∩H2 where H1 and H2 are closed half-spaces of V bounded by 
l + L1 and l + L2 respectively.

Pick a plane X ′ ∈ U such that p ∈ X ′ and X ′ 
= X. Let L = LX′ ∈ Gr1V be a line 
satisfying (5.1) for X ′. By Lemma 2.2 we have

B ∩X ′ = prLX′(B) ⊃ prLX′(K). (5.2)
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Assume for a moment that L 
⊂ X. Then the restriction of prLX′ to X is a linear iso
morphism between X and X ′. Since prLX′(p) = p, it follows that p is a smooth point of 
prLX′(K). This and (5.2) imply that p is a smooth point of B ∩X ′. On the other hand, 
B ∩ X ′ is contained in the set X ′ ∩ H1 ∩ H2, which is a non-straight solid angle with 
vertex at p. Hence p is not a smooth point of B ∩X ′, a contradiction.

This contradiction shows that the assumption L 
⊂ X is false. Thus for every plane 
X ′ ∈ U such that p ∈ X ′ and X ′ 
= X, one has LX′ ⊂ X (for any choice of LX′). Pick 
a sequence {Xi} of such planes converging to X. For every i we have a line LXi

⊂ X

satisfying (5.1) for Xi. Passing to a subsequence if necessary we may assume that the 
lines LXi

converge to some line L0 ⊂ X, then B ⊂ (B∩X)+L0 by continuity. However, 
the set (B ∩ X) + L0 is two-dimensional, a contradiction. This finishes the proof of 
Lemma 5.1. �

With the help of Lemma 5.1, we can now define a map ϕ : U → Gr1(V ) by ϕ(X) = LX

where LX satisfies (5.1). Since (5.1) is a closed condition on a pair (X,L) ∈ Gr2V ×Gr1V , 
the uniqueness of LX implies that ϕ is continuous. We fix the notation ϕ for the rest of 
this section.

In the next lemma we handle the degenerate case when ϕ is not injective.

Lemma 5.2. Suppose that the above map ϕ is not injective. Then there exists a 2-cylinder 
C ⊂ V such that B ∩X = C ∩X for all X ∈ U .

Proof. Fix a line L0 ∈ Gr1V having more than one ϕ-preimage. For a point p ∈ V define

Up = {X ∈ U : p ∈ U}

Claim. Let X0, X1 ∈ U be such that X0 
= X1 and ϕ(X0) = ϕ(X1) = L0. Then there 
exists a point p ∈ (∂B ∩X0) \X1 such that ϕ(X) = L0 for all X ∈ Up.

Proof. Recall that every compact convex set in a finite-dimensional vector space is a 
convex hull of its extreme points. This implies that there exists an extreme point of 
B ∩X0 outside the line X0 ∩X1. Let p be such a point.

Let q = prL0
X1

p. Then q 
= p as p / ∈ X1, and q ∈ B by Lemma 2.2. Consider the set

Upq = {X ∈ U : X ∩ (p, q) is a single point}

where (p, q) denotes the open line segment between p and q. We claim that ϕ(X) = L0
for all X ∈ Upq. Suppose to the contrary that ϕ(X) = L 
= L0 for some X ∈ Upq. 
Consider the points p′ = prLX(p) and q′ = prLX(q). Since p, q ∈ B, Lemma 2.2 implies 
that p′, q′ ∈ B ∩X. The assumption that L 
= L0 implies that p′ 
= q′. Thus (p′, q′) is a 
nontrivial open line segment in B ∩X. Moreover (p′, q′) contains the intersection point 
of X and (p, q) since this point is preserved by prLX . Now consider points p′′ = prL0

X0
(p′)

and q′′ = prL0
X0

(q′). They belong to B ∩X0 by Lemma 2.2, they are distinct since p′ 
= q′
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and L0 is complementary to X, and we have p ∈ (p′′, q′′) since (p′, q′) contains a point 
from (p, q) ⊂ L0. This contradicts the choice of p as an extreme point of B ∩X0. This 
contradiction shows that ϕ(X) = L0 for all X ∈ Upq. Then Claim follows by continuity 
as every plane from Up can be approximated by planes from Upq. �

Fix X0, X1 ∈ U such that X0 
= X1 and ϕ(X0) = ϕ(X1) = L0. Let p ∈ (∂B∩X0)\X1
be a point provided by Claim. Applying Claim to X0 and any plane from Up \ {X0} we 
obtain another point p′ ∈ (∂B ∩X0) \Rp such that ϕ(X) = L0 for all X ∈ Up′ .

Let C = (B ∩ X0) + L0. For every X ∈ Up ∪ Up′ we have ϕ(X) = L0 and hence 
B ⊂ (B∩X)+L0 by the definition of ϕ. This and Lemma 4.1 imply that (B∩X)+L0 = C

and hence B ∩X = C ∩X for all X ∈ Up ∪ Up′ . Thus B ∩ U = C ∩ U where U ⊂ V is 
the union of all planes from Up ∪ Up′ .

Since Rp 
= Rp′, U contains an open neighborhood of X0 \ 0 and every plane X ∈ U
sufficiently close to X0 is contained in U . For every such plane X ⊂ U we have

B ∩X = B ∩ U ∩X = C ∩ U ∩X = C ∩X,

therefore (B ∩X) + L0 = C and hence ϕ(X) = L0. Thus X0 has a neighborhood in U
where ϕ is constant. Since X0 is an arbitrary element of ϕ−1(L0), it follows that ϕ−1(L0)
is an open set. Since U is connected, this implies that ϕ is constant, thus ϕ(X) = L0 for 
all X ∈ U .

Now Lemma 4.1 applied to X0 and any X ∈ U implies that (B ∩X) + L0 = C and 
hence B ∩X = C ∩X, finishing the proof of Lemma 5.2. �

Lemma 5.2 implies Theorem 1.2 in the case when ϕ is not injective. Now we consider 
the case when ϕ is injective.

Lemma 5.3. Let X1, X2, X3 ∈ U be distinct planes containing a common line � ∈ Gr1V . 
Then the lines ϕ(X1), ϕ(X2), ϕ(X3) are contained in one plane from Gr2V .

Proof. First consider the case when � ∩ ∂B contains a smooth point p of ∂B. Let T be 
the unique supporting plane of B at p. By Lemma 2.2, for every j ∈ {1, 2, 3} the straight 
line p+ϕ(Xj) does not intersect IntB and hence, by the smoothness of B at p, this line 
is contained in T . Therefore the lines ϕ(X1), ϕ(X2), ϕ(X3) are contained in the plane 
from Gr2V parallel to T . This proves the lemma in the case when � ∩ ∂B contains a 
smooth point of ∂B.

The general case follows by continuity, since smooth points are dense in ∂B and any 
triple of planes X1, X2, X3 ∈ Gr2V with � = X1 ∩X2 ∩X3 ∈ Gr1V can be approximated 
by similar configurations where intersection lines contain smooth points of ∂B. �

Each of the Grassmannians Gr1V and Gr2V carries a natural structure of a real 
projective plane as explained in the beginning of this section.
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Lemma 5.3 says that ϕ preserves collinearity with respect to these projective struc
tures: it sends any three collinear points of U ⊂ Gr2V to three collinear points of Gr1V . 
We use the following generalization of the fundamental theorem of projective geometry.

Proposition 5.4 ([5, Theorem 3.2]). Let U ⊂ RP 2 be a connected open set and 
ϕ : U → RP 2 an injective map such that for any three collinear points of x, y, z ∈ U

their images ϕ(x), ϕ(y), ϕ(z) are also collinear. Assume that the image ϕ(U) contains 
three non-collinear points. Then ϕ is the restriction of a projective map.

If the map ϕ : U → Gr1V defined above is injective, then it satisfies the assumptions 
of Proposition 5.4. Indeed, ϕ preserves collinearity by Lemma 5.3, and its continuity 
and injectivity imply that the image ϕ(U) is not contained in one projective line of 
Gr1V , hence ϕ(U) contains three non-collinear points. Thus there exists a projective 
map ϕ̃ : Gr2V → Gr1V such that ϕ̃|U = ϕ.

We now construct a dual projective map ψ : Gr1V → Gr2V . Pick L ∈ Gr1V and 
consider the set PL = {X ∈ Gr2V : L ⊂ X}. It is a projective line in Gr2V , hence its 
image ϕ̃(PL) is a projective line in Gr1V . This means that ϕ̃(PL) = Gr1(P ′

L) for some 
plane P ′

L ∈ Gr2V . We define ψ(L) = P ′
L. This yields an injective map ψ : Gr1V → Gr2V

uniquely characterized by the property

L ⊂ X ⇐⇒ ϕ̃(X) ⊂ ψ(L) for all L ∈ Gr1V and X ∈ Gr2V . (5.3)

In particular (5.3) implies that ψ preserves collinearity, therefore it is a projective 
map. Hence ψ is the projectivization of some linear bijection F : V → V ∗ (recall that 
Gr1V = P (V ) and Gr2V = P (V ∗)). This means that

ker(F (p)) = ψ(Rp) for all p ∈ V \ {0} (5.4)

Lemma 5.5. Assume that ϕ is injective and let F : V → V ∗ be as above. Let p ∈ ∂B be a 
point contained in at least one plane from U . Then p + ker(F (p)) is a supporting plane 
of B at p.

Proof. First assume that p is a smooth point of ∂B. Let T be the unique supporting 
plane of B at p and T0 ∈ Gr2V the plane parallel to T through the origin. Pick distinct 
X1, X2 ∈ U such that p ∈ X1 ∩ X2. Similarly to the proof of Lemma 5.3, we have 
p+ ϕ(Xi) ⊂ T and hence ϕ(Xi) ⊂ T0 for i = 1, 2. On the other hand, (5.3) implies that 
ϕ(Xi) ⊂ ψ(X1 ∩ X2) for i = 1, 2. Since there is only one plane containing ϕ(X1) and 
ϕ(X2), it follows that ψ(X1 ∩X2) = T0. This and (5.4) imply that ker(F (p)) = T0. Thus 
p + ker(F (p)) = p + T0 = T .

We have shown that the assertion of the lemma holds in the case when p is a smooth 
point of ∂B. The general case follows by continuity. �
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The next lemma, together with Proposition 3.1, proves Theorem 1.2 for n = 3, k = 2
in the case when ϕ is injective.

Lemma 5.6. Suppose that ϕ is injective. Then B∩X is an ellipse for every X ∈ U (recall 
that all ellipses in this paper are 0-centered).

Proof. Fix X ∈ U and let K = B ∩ X. For each p ∈ X, define f(p) ∈ X∗ by 
f(p) = F (p)|X , where F is the map from Lemma 5.5. Then f : X → X∗ is a linear 
map. Applying Lemma 5.5 to p ∈ ∂K we obtain that f(p) 
= 0 and p + ker(f(p)) is a 
supporting line of K at p.

Among other things this implies that there is a way to continuously assign a supporting 
line to each point of ∂K. This is possible only if ∂K is a C1 curve and the Minkowski 
norm Φ is C1 away from 0. Now for every p ∈ ∂K, the line p + ker(f(p)) is the tangent 
line of ∂K at p.

We turn this family of supporting lines into a linear vector field W as follows. Fix a 
nonzero skew-symmetric bilinear form ω on X, and for each p ∈ X let W (p) ∈ X be the 
unique vector satisfying

ω(W (p), q) = f(p)(q) for all q ∈ X.

Then W : X → X is a non-degenerate linear map, and for every p ∈ ∂K we have 
W (p) ∈ ker(f(p)), hence the direction of W (p) is the tangent direction of ∂K at p. We 
have therefore obtained a linear vector field W on X that is tangent to ∂K. It is well
known that the existence of such a vector field implies that K is an ellipse, see e.g. [10, 
Lemma 3.4]. �

We now compose the proof of Theorem 1.2 for n = 3 and k = 2 from the results of 
this section. For V , B, U as in the theorem, define a continuous map ϕ : U → Gr1V
as explained after Lemma 5.1. Then there are two cases: either ϕ is injective or not. If 
ϕ is not injective then Lemma 5.2 implies that the alternative (1) of the conclusion of 
Theorem 1.2 takes place. If ϕ is injective then Lemma 5.6 implies that B∩X is an ellipse 
and hence Φ|X is a Euclidean norm for every X ∈ U . This and Proposition 3.1 imply 
that the alternative (2) of the conclusion of Theorem 1.2 takes place. Thus Theorem 1.2
holds for n = 3 and k = 2.

6. Proof of Theorem 1.2 in higher dimensions

In this section we finish the proof of Theorem 1.2. First we observe that for every 
fixed n and k the statement of Theorem 1.2 is equivalent to the following proposition.

Proposition 6.1. Let k ≥ 2 and n ≥ k + 1 be integers. Let V be an n-dimensional vector 
space, Φ a Minkowski norm on V , and B the unit ball of Φ. Let X0 ∈ GrkV be such that 
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all k-dimensional subspaces X from a neighborhood of X0 in GrkV are Φ-contracting 
(see Definition 2.1). Then at least one of the following holds.

(1) B is locally cylindrical near X0 (see Definition 2.3).
(2) B ∩X0 is an ellipsoid (recall that all ellipsoids in this paper are 0-centered).

To show that Theorem 1.2 is equivalent to Proposition 6.1, first observe that the 
assumptions on X in Theorem 1.2 and Proposition 6.1 are equivalent by Lemma 2.2. 
The conclusion of Theorem 1.2 trivially implies that of Proposition 6.1. Conversely, by 
Lemma 4.4 the conclusion of Proposition 6.1 implies that of Theorem 1.2.

The proof of Proposition 6.1 occupies the rest of this section. We argue by induction 
with base n = 3 and k = 2 established in section 5. The induction step is based on the 
following lemma.

Lemma 6.2. Let X1, X2 ∈ Grn−1V be two hyperplanes and L1, L2 ∈ Gr1V two lines, 
X1 
= X2 and L1 
= L2. Suppose that X1 and X2 are Φ-contracting with contracting 
directions L1 and L2, respectively (see Definition 2.1).

Then the subspace X1 ∩X2 ∈ Grn−2V is Φ-contracting.

Proof. Define W = X1 ∩X2 and Z = L1 + L2. We are going to show that W ∩ Z = 0
and the projector prZW : V → W does not increase Φ.

Consider the map T = prL1
X1

◦ prL2
X2

. Note that Φ(T (v)) ≤ Φ(v) for all v ∈ V as prL1
X1

and prL2
X2

do not increase Φ. We also have T (V ) ⊂ X1 and T |W = idW . Since L1 
= L2, 
T has no fixed points outside W . Define L = Z ∩ X1 and note that dimL = 1. By 
construction we have T (v) − v ∈ Z for all v ∈ V , therefore T (L) ⊂ L and moreover 
T (p+L) ⊂ p+L for every p ∈ X1. Pick p ∈ X1 \W and consider the a˙ine map T |p+L

from the line p + L to itself. This map cannot be a nontrivial translation of p + L since 
T does not increase Φ and sublevel sets of Φ|p+L are bounded. Therefore T |p+L has a 
fixed point, hence (p + L) ∩W 
= ∅. Thus L 
⊂ W , X1 = W ⊕ L, and W ∩ Z = 0.

Now we have a projector prZW and it remains to show that it does not increase Φ. 
Let p be as above and q = prZW (p). Note that q is the unique intersection point of 
p + L and W hence the unique fixed point of T |p+L. Since T (L) ⊂ L and T does 
not increase Φ, the restriction T |L is a multiplication by some λ ∈ [−1, 1], therefore 
T (p) = T (p − q) + T (q) = λ(p − q) + q. If λ = 1 then T (p) = p which contradicts 
our choice of p as p / ∈ W and T has no fixed points outside of W . If λ = −1 then 
q = p+T (p)

2 and then Φ(q) ≤ Φ(p) since Φ is convex and Φ(T (p)) ≤ Φ(p). If |λ| < 1 then 
q = limm→∞ Tm(p), hence Φ(q) ≤ Φ(p) since T does not increase Φ.

We have shown that Φ(prZW (p)) ≤ Φ(p) for an arbitrary p ∈ X1 \W . Thus prZW does 
not increase Φ on X1. Since prZW = prZW ◦ prL1

X1
, it follows that prZW does not increase Φ

everywhere. �
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Proof of Proposition 6.1. Recall that Proposition 6.1 and Theorem 1.2 are equivalent 
for every fixed n and k. The case n = 3 is covered in section 5, so we assume that n ≥ 4. 
Arguing by induction, we assume that Proposition 6.1 and Theorem 1.2 are proven for 
all 3 ≤ n′ < n in place of n.

Let V , Φ, B, X0 be as in Proposition 6.1. If B ∩ X0 is an ellipsoid then the second 
alternative of Proposition 6.1 takes place, so we assume that B ∩X0 is not an ellipsoid.

First assume that n > k + 1. For every W ∈ Grk+1(V,X0) the assumptions of Propo
sition 6.1 are satisfied for W in place of V , Φ|W in place of Φ, and B ∩W in place of B. 
Since B ∩X0 is not an ellipsoid, the (k + 1)-dimensional case of Proposition 6.1 implies 
that B ∩W is locally cylindrical near X0 for every W ∈ Grk+1(V,X0). By Lemma 4.5
it follows that B is locally cylindrical near X0. This finishes the proof of Proposition 6.1
for n > k + 1.

Now assume that n = k + 1. Let U be a neighborhood of X0 in Grn−1V such that all 
subspaces from U are Φ-contracting. We consider two cases.

Case 1: All subspaces from Grn−2X0 are Φ-contracting. Then the (n−1)-dimensional 
case of Theorem 1.2 applies to X0, B ∩ X0, and Grn−2X0 in place of V , B, and U
respectively, and we conclude that B ∩X0 is an ellipsoid. (Other possibilities for B′ in 
Theorem 1.2 are excluded as explained in Remark 1.3).

Case 2: There exists W0 ∈ Grn−2X0 that is not Φ-contracting. Define

Σ = {W ∈ Grn−2V : W is not Φ-contracting}

Since being Φ-contracting is a closed condition, Σ is an open subset of Grn−2V .
Let L0 ∈ Gr1V be a contracting direction for X0 (see Definition 2.1). Pick X1 ∈ U

such that X1 
= X0 and X1 ∩X0 = W0. Applying Lemma 6.2 to the hyperplanes X0 and 
X1 we conclude that L0 is the unique contracting direction for X1, otherwise W0 would 
be Φ-contracting.

Now consider the set

U0 = {X ∈ U : X 
= X1 and X ∩X1 ∈ Σ}.

It is an open subset of U containing X0. For every X ∈ U0 we apply Lemma 6.2 to X
and X1 and conclude that contracting directions for X and X1 coincide (since X ∩X1
is not Φ-contracting). Thus all hyperplanes from U0 have the same contracting direction 
L0, and an application of Lemma 4.2 shows that B is locally cylindrical near X0.

Thus we have shown that in all cases one of the alternatives from the conclusion of 
Proposition 6.1 holds for an arbitrary X0 ∈ U . This finishes the proof of Proposition 6.1
and Theorem 1.2. �
7. Proof of Theorem 1.4

The proof of Theorem 1.4 is essentially the same as that of the main result of [10] 
except that the use of the global Kakutani criterion is replaced by an application of 
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Theorem 1.2. Below we go through the steps of the proof from [10] for k = 3 and fill out 
missing bits in the case k = 2 (which was not considered in [10]).

We restate the key intermediate results from [10] in the following two propositions. 
The first one works in all dimensions and provides a special algebraic family of tangent 
directions to ∂B.

Proposition 7.1 ([10, Proposition 2.4] and [10, Remark 4.6]). Let V be a vector space, 
dimV = k+ 1 ≥ 3, B ⊂ V a convex body containing 0 in its interior, and U ⊂ GrkV an 
open set. Suppose that for every X1, X2 ⊂ U the cross-sections B ∩X1 and B ∩X2 are 
linearly equivalent.

Then for almost every X ∈ U there exist a vector ν ∈ V \X and a linear map

R : X∗ → Hom(X,X)

such that for every λ ∈ X∗ the linear operator Rλ = R(λ) : X → X satisfies:

(1) TraceRλ = 0.
(2) For every p ∈ ∂B ∩X, the vector Rλ(p) + λ(p)ν is tangent to ∂B at p.

The notion of tangency to ∂B in Proposition 7.1(2) is defined as follows: A vector 
v ∈ V is said to be tangent to ∂B at a point p ∈ ∂B if for the Minkowski norm Φ
associated to B the function t 
→ Φ(x+ tv) has zero derivative at t = 0. One can see that 
this is equivalent to the property that the tangent cone of B at p contains LinSpan{v}.

The most important case in Proposition 7.1(2) is when p ∈ kerλ. In this case the 
term λ(p)ν vanishes and hence Rλ(p) is tangent to ∂K at p where K = B ∩ X is the 
respective cross-section. This property is a strong restriction on the pair (K,R) and at 
least in dimensions k = 2, 3 we have the following.

Proposition 7.2 (cf.   [10, Proposition 2.5]). Let X be a vector space, dimX = k ∈ {2, 3}, 
and let K ⊂ X be a convex body with 0 in its interior. Let R : X∗ → Hom(X,X) be a 
linear map such that for every λ ∈ X∗ the map Rλ = R(λ) satisfies TraceRλ = 0 and

for every p ∈ ∂K ∩ kerλ, the vector Rλ(p) is tangent to ∂K at p. (7.1)

Then Rλ(p) is tangent to ∂K at p for all p ∈ ∂K and λ ∈ X∗.

Proof. The case k = 3 is covered by [10, Proposition 2.5]. The proof for k = 2 can be 
assembled from arguments in [10] as follows.

Fix a basis (e1, e2) of X, and let (e∗1, e∗2) be the dual basis of X∗. For a point 
p = xe1 + ye2 ∈ X define λp = ye∗1−xe∗2 and observe that p ∈ kerλp. Hence by (7.1) the 
vector W (p) := Rλp

(p) is tangent to ∂K at p. Denote Rij = Re∗i (ej) and rewrite W (p)
using the linearity of R:
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W (p) = Rλp
(p) = Rye∗1−xe∗2 (xe1 + ye2) = xy(R11 −R22) − x2R21 + y2R12. (7.2)

Thus W is a quadratic vector field on X and it is tangent to ∂K everywhere. This implies 
(see [10, Lemma 3.4]) that K is a 0-centered ellipse or W = 0. In the case of an ellipse 
the result follows from [10, Lemma 2.6], which is independent of the dimension.

It remains to consider the case W = 0 (cf. [10, Lemma 5.2]). In this case (7.2)
vanishes as a function of x and y, therefore R12 = R21 = 0 and R11 = R22. Since 
TraceRe∗1 = TraceRe∗2 = 0, we have R1

11 = −R2
12 = 0 and R2

22 = −R1
21 = 0 where Rm

ij , 
m = 1, 2, denotes the mth coordinate of Rij with respect to the basis (e1, e2). Now the 
identity R11 = R12 implies that R2

11 = R2
22 = 0 and R1

22 = R1
11 = 0. Thus the tensor R

is zero, hence Rλ(p) = 0 for all λ ∈ X∗ and p ∈ X, and the assertion of the proposition 
follows. �

Now we deduce Theorem 1.4 from Propositions 7.1 and 7.2; the argument essentially 
repeats the one from [10, §2.3].

Let n, k, V , B and U be as in Theorem 1.4. First we assume that n = k + 1 and 
apply Proposition 7.1. Let X, R and ν be as in the assertion of Proposition 7.1 and 
K = B ∩X. Then K and R satisfy the assumptions of Proposition 7.2 and we conclude 
that for all p ∈ ∂K and λ ∈ X∗, the vector Rλ(p) is tangent to ∂K and hence to ∂B
at p. Pick p ∈ ∂K and choose λ ∈ X∗ such that λ(p) 
= 0. Now we have two vectors, 
Rλ(p) + λ(p)ν from Proposition 7.1 and Rλ(p) from Proposition 7.2, such that they are 
both tangent to ∂B at p and ν is their linear combination. These properties imply that 
ν is also tangent to ∂B at p (a detailed proof of this implication can be found in [10, 
Lemma 2.3]).

Let Y = LinSpan{ν}. The above tangency and convexity of B imply that 
(p + Y ) ∩ IntB = ∅ for all p ∈ ∂K. By Lemma 2.2 it follows that B is contained in 
the cylinder (B ∩ X) + Y . Thus we have shown that almost every X ∈ U satisfies the 
assumption of Theorem 1.2 (the ``almost every'' is inherited from Proposition 7.1). This 
assumption is a closed condition, therefore it is satisfied for all X ∈ U . Now we apply 
Theorem 1.2 and conclude that Theorem 1.4 holds for n = k + 1.

It remains to handle the case n ≥ k + 2. By Lemma 4.4 it suffices to verify that for 
every X ∈ U , B is locally cylindrical near X or B ∩X is an ellipsoid. Pick X ∈ U . For 
every W ∈ Grk+1(V,X), the assumption of Theorem 1.4 is satisfied for W in place of V , 
B∩W in place of B, and the connected component of U ∩Grk(W ) containing X in place 
of U . If B ∩X is not an ellipsoid then by the codimension 1 case of Theorem 1.4 proven 
above, B ∩W is locally cylindrical near X for every W ∈ Grk+1(V,X). By Lemma 4.5
this implies that B is locally cylindrical near X. This finishes the proof of Theorem 1.4.
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