Composable Building Blocks for Controllable and
Transparent Interactive AI Systems

Sebe Vanbrabant|®, Gustavo Rovelo Ruiz /@], and Davy Vanacken

Hasselt University - Flanders Make, Digital Future Lab, Diepenbeek, Belgium
sebe.vanbrabant@uhasselt.be gustavo.roveloruiz@uhasselt.be
davy.vanackenQuhasselt.be

Abstract. While the increased integration of Al technologies into in-
teractive systems enables them to solve an equally increasing number of
tasks, the black box problem of AI models continues to spread through-
out the interactive system as a whole. Explainable AI (XAI) techniques
can make Al models more accessible by employing post-hoc methods or
transitioning to inherently interpretable models. While this makes indi-
vidual AI models clearer, the overarching system architecture remains
opaque. To this end, we propose an approach to represent interactive
systems as sequences of structural building blocks, such as AI models
and control mechanisms grounded in the literature. These can then be
explained through accompanying visual building blocks, such as XAI
techniques. The flow and APIs of the structural building blocks form an
explicit overview of the system. This serves as a communication basis
for both humans and automated agents like LLMs, aligning human and
machine interpretability of AT models. We discuss a selection of building
blocks and concretize our flow-based approach in an architecture and
accompanying prototype interactive system.
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1 Introduction

Artificial intelligence (AI) is becoming increasingly integrated into various inter-
active systems, with different challenges arising depending on the AI technologies
used and the type of user interactions offered by these systems [6]. The increasing
complexity of AI models, from interpretable decision trees to opaque Deep Neu-
ral Networks (DNNs) and Large Language Models (LLMs), has led to a decline
in their transparency [3II8]. These models are often black boxes, producing re-
sults without explanations, justifications, or indications of uncertainties [8].The
field of eXplainable AT (XAI) addresses these challenges by complementing Al
predictions with explanations [930]. Machine learning (ML) workflows can be
made more transparent in two ways: either by using white-box models that offer
inherent interpretability, like decision trees, or by leveraging post-hoc explana-
tions (e.g., LIME [24] and SHAP [I7]) to try to explain the internal workings of
black box models, such as neural networks.
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We view explainability techniques like LIME, SHAP and the What-If tool [29]
as visual building blocks. They address Al models’ transparency by answering
Why, Why-not, and What-if. However, no widespread building blocks exist that
support users to control their AI models in the same way that LIME and SHAP
address transparency. Current visual approaches can explicate Al behavior by
interacting with the model (e.g., allow the user to change model inputs [29/10])
or through overviews of its internals (e.g., the structure of a neural network [5]).

While standardized approaches exist for interpreting model behavior, they
are not necessarily applicable to the interactive system in which they are embed-
ded. Kulesza et al. [15] found that the quality of a user’s mental model directly
correlates to their ability to control the underlying system as desired. This also
applies to LLMs, which require careful prompting and the right (amount of) in-
formation to address user queries accurately. Approaches like Tool-Augmented
Language Models (TALMs) [23] and Anthropic’s recent Model Context Protocol
(MCP) [2] enable LLMs to invoke code subroutines, facilitating their integration
into interactive systems.

We envision an approach that simultaneously empowers users and automated
agents to understand and control Al models. This involves extending XAI tech-
niques and subroutine-based tools beyond model-level explanations. We instead
look to support transparency and control in system-level Al workflows through
structural and visual building blocks. For example, an AI model (structural
building block) can be explained through LIME, SHAP, and WhatIf (visual
building blocks), and further controlled through structured building blocks that,
for instance, override unintended decisions [I3] or give per-instance feedback [I4].
To combine these blocks into one approach, we draw inspiration from neuro-
symbolic AI (NSAI), which integrates neural and symbolic approaches to com-
bine their strengths while circumventing their inherent weaknesses [27]. By in-
corporating techniques to explain one Al model into conceptual systems using
structural building blocks, we aim to clarify interactive Al systems for humans
and enable automated tools and agents, such as LLMs, to audit them using a
shared knowledge base, aligning human and machine interpretation of AI models.

2 Related Work

Looking at the nine stages of the ML workflow, two major stages are evident: one
data-oriented stage, involving data preparation, and one model-oriented stage,
involving model (re)training and deployment [I]. For supervised ML, this results
in a model that can predict new outputs from new inputs by leveraging its in-
ternal learning process. We can, thus, conceptually, view a trained model as a
pipeline that transforms inputs into outputs through a model. These pipelines
can be chained to make system behavior more advanced and fit for a task,
which is the case for interactive systems embedding Al technologies. Symbolic
Al such as decision rules, excels at structured reasoning and provides high in-
herent explainability and interpretability [27]. However, symbolic approaches are
less trainable and more error-prone in unfamiliar situations. In contrast, con-
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nectionist techniques like neural networks excel at training by discovering and
learning patterns from data, yet remain black boxes that require large datasets
for effective training.

NSAI combines trainability and interpretability by using neural approaches
to learn from experience and applying symbolic reasoning to draw conclusions
from that knowledge [27]. Type 2 NSAI, as described by Kautz [12], considers
connectionist models as neural module subroutines within a symbolic problem-
solving system. TALMs are a recent example of type 2 NSAI systems. Systems
like ViperGPT [25] and Chameleon [I6] combine LLMs as neural subroutines
within a symbolic tool usage framework. TALMs query tools rather than gen-
erating the answer directly, which is helpful for mathematical operations or to
interface with external APIs.

The strengths of LLMs for XAI are evident in x-[plAIn| [20] and SHAPsto-
ries [I9], which generate audience-specific summaries of XAI methods tailored
to users’ knowledge and interests, improving accessibility and decision-making.
These approaches, however, do not offer capabilities other than those of the
XAT methods. ECHO [26], a conversational approach to XAI, tackles this with
a TALM using generated tools for explicating system-specific behavior comple-
mented with predefined tools that address various explanation types and XAI
methods. These approaches are all purely textual, however, and could be ex-
tended to intelligible interfaces. For instance, visualizations like those in Tim-
berTrek [28] and AI-Spectra [7] can be enhanced by integrating conversational
interfaces to help users understand and select the right models for their needs.
An explainer offering recommendations and explanatory insights can make the
process more accessible and interactive.

Aside from visualizing model analysis, other tools offer ways to build models
visually using flow-based graph-like visualizations. To visualize models during
development, DeepGraph [I1] constructs the data flow graph representation of
the architecture from the DNN source code and automatically synchronizes it
with its graph representation. To enable users to build deep learning models
visually, DeepFlow [5] uses a flow-based visual programming tool, realizing a no-
code approach to building neural networks while viewing models as sequences
of learnable functions. Existing approaches help visualize complex architectures
and democratize Al development, but primarily focus on the AI development
process rather than the model’s role within the encapsulating Al system.

3 Building Blocks for Intelligibility and Control

While current approaches to explainability typically interrogate Al models by
probing parts of the input — model — output pipeline through the Predict
method, we propose expanding this conventional pipeline through structural
and visual building blocks that also allow AI models to be visualized and con-
trolled. By considering interactive systems embedding Al as type 2 NSAI sys-
tems consisting of specific components, their decision process can be represented
through structural building blocks, which can be explained through visual build-
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ing blocks. This gives both humans and Al agents a structured and shared knowl-
edge base of (complex) system architectures through accessible building blocks.

3.1 Visual Building Blocks

Intelligiblity We initially considered the commonly used explanations of ‘Why”,
‘Why-not’, and ‘What-if’ [2I]. Why and Why-not can be addressed by visual
building blocks encompassing LIME and SHAP, which explain Al behavior
using feature importance, which is commonly used to address Why and Why-not
explanations. For What-if questions, we use a visual building block displaying
all the predict method’s input parameters and a corresponding output value,
similar to the approach of He et al. [10].

3.2 Structural Building Blocks

Control One way to honor user feedback through a structural building block
would be to allow users to re-label instances and retrain the model accord-
ingly [14]. We draw further inspiration from the work on controllable AI by
Kieseberg et al. [I3]. Their five methods for managing control loss map to struc-
tural building blocks in our interactive NSAT pipeline. For non-autonomous Al
systems, DivineRuleGuard ensures ethical compliance by overriding harmful
or unethical decisions before they are acted upon as a postprocessing step for
model output. Conversely, NonGoalFilter acts as a pre-processor, rejecting in-
puts that do not align with intended behaviors or intentions. ShutdownTrigger
functions as an emergency stop to disable autonomous Al systems at any point.
BiasInjector strategically influences decision-making by embedding predefined
biases to guide the model toward preferred outcomes. Lastly, LogicBomb op-
erates as a self-monitoring fail-safe, resetting or shutting down the Al if it ever
attempts to produce an outcome that breaches ethical or operational boundaries.

Execution Flow Aside from controlling the individual NSAI components, we
also envision components for visualizing and controlling conditional execution
flows between components. This is useful in scenarios where multiple AI mod-
els are used together, such as in the context of ensemble learning [22] or model
multiplicity [28[7], techniques commonly used in high-stakes interactive systems.
Specifically, we envision a Splitter and Aggregator, where the Splitter indi-
cates the dataset being distributed to different AI models. The Aggregator then
displays how the final output is produced/aggregated from these models. For
model multiplicity, Chernoff bots could be the visual building block for each
individual model; its dashboard can be linked to the aggregator.

4 Auditable 5-Layer Architecture for Transparent and
Controllable Interactive AI Systems

We apply our proposed 5-layer architecture to an example heart disease pre-
diction ensemble in Fig. [l The vertical pipeline was loosely based on the XAI
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system depicted by Mohseni et al. [2I], modified to support structural and visual
building blocks. We define the following layers:

e ivil [] structural BB
Dataset ~—— ""F'flﬁ"" Splitter RL""'S".‘ Aggregator ”"g"’ 'z"" —
iltor egression uar ML Pipeline
API-LLM
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User Interface <01>
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Fig. 1. An example heart disease prediction ensemble to illustrate our proposed archi-
tecture. Layer 1 shows the structural building blocks, consisting of our building blocks
(in blue) integrated into the ML pipeline (in green). Layer 2 converts the structural
building blocks into a callable API, usable by the visual building blocks in layer 3,
assembled into the user interface of layer 4. The API is also accessible by the LLM of
layer 5 so that both agents use common knowledge.

Layer 1: Structural Building Blocks Structural building blocks convey the
(conceptual) architecture of the interactive system at a glance. Each block
is mapped to a part of the system’s source code, completely specified by the
developer through function decorators. Since this representation is purely
conceptual, the developer can choose what (parts of) the system to expose
and how to communicate the pipeline.

Layer 2: Interactive System API Developers can write their code as usual,
and link it to conceptual structural building blocks through developer-defined
methods. Each block’s REST API is automatically generated from the struc-
tural building blocks’ definition and its decorator of layer 1.

Layer 3: Visual Building Blocks Visual building blocks interact with the
structural building blocks of layer 1 through the API of layer 2. For in-
stance, a structural building block of an AI model can have its behavior
explained through LIME, for which data is acquired over the REST API.

Layer 4: User Interface Structural and visual building blocks are combined
into an interface where they can be explored, interrogated, and controlled.
Currently, visual building blocks are assembled into one coherent Ul; future
research directions include LLM-powered layouts [4].
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Layer 5: Agents The final layer of the architecture comprises agents that in-
teract with the building blocks. These can be users interacting with the UI
and its visual building blocks, or an automated LLM agent interacting with
the shared REST API of layer 2. This API can then be integrated as tools
for a TALM such as ECHO [26]. Both agents have access to the same infor-
mation, and users can interact with the LLM to ask about system behavior.
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Fig. 2. Prototype of our approach using the heart disease prediction ensemble. The Ul
(layer 4) shows each structural building block (layer 1) influencing predictions, exposing
system behavior to both users and automated agents (layer 5) through visual building
blocks (layer 3) and an API (layer 2), respectively.

5 Conclusion

Rising AI complexity has led to an increase in challenges regarding explain-
ing and controlling AI behavior. These challenges propagate from the individual
model to the system that embeds it, making the entire interactive system opaque
to users. We proposed a preliminary architecture for making interactive systems
more accessible by explicitly conveying their conceptual model through an APIL.
This enables both users and LLMs to access information related to system behav-
ior, aligning human and machine interpretability of Al models. Future research
directions include applying our architecture to more elaborate NSAT applications
and use cases involving model multiplicity, such as integrating the Al-Spectra
dashboard and its Chernoff bots as visual building blocks [7]. Furthermore, it
would be interesting to explore and integrate user-specific, personalized, and
dynamic Uls into the textual conversations that adapt to individual user needs.
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