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Longitudinal and incomplete
clinical studies

Summary - Repeated measures are obtained whenever an outcome is measured repeat-
edly within a set of units. The fact that observations from the same unit, in general, will
not be independent poses particular challenges to the statistical procedures used for
the analysis of such data. The current paper is dedicated to an overview of frequently
used statistical models for the analysis of repeated measurements, with emphasis on
model formulation and parameter interpretation.
Missing data frequently occur in repeated measures studies, especially in humans.
An important source for missing data are patients who leave the study prematurely,
so-called dropouts. When patients are evaluated only once under treatment, then
the presence of dropouts makes it hard to comply with the intention-to-treat (ITT)
principle. However, when repeated measurements are taken then one can make use
of the observed portion of the data to retrieve information on dropouts. Generally,
commonly used methods to analyse incomplete longitudinal clinical trial data include
complete-case (CC) analysis and an analysis using the last observation carried forward
(LOCF). However, these methods rest on strong and unverifiable assumptions about
the dropout mechanism. Over the last decades, a number of longitudinal data analysis
methods have been suggested, providing a valid estimate for, e.g., the treatment effect
under less restrictive assumptions.
We will argue that direct likelihood methods, using all available data, require the
relatively weak missing at random assumption only. Finally, since it is impossible
to verify that the dropout mechanism is MAR we argue that, to evaluate the robust-
ness of the conclusion, a sensitivity analysis thereby varying the assumption on the
dropout mechanism should become a standard procedure when analyzing the results
of a clinical trial.
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1. Introduction

In medical science, studies are often designed to investigate changes in a
specific parameter which is measured repeatedly over time in the participating
subjects. Such studies are called longitudinal studies, in contrast to cross-
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sectional studies where the response of interest is measured only once for
each individual. As pointed out by Diggle et al. (2002) the main advantage
of longitudinal studies is that they can distinguish changes over time within
individuals (longitudinal effects) from differences among people in their baseline
values (cross-sectional effects).

In randomized clinical trials, where the aim is usually to compare the
effect of two (or more) treatments at a specific time-point, the need and the
advantage of taking repeated measures is at first sight less obvious. Indeed, a
simple comparison of the treatment groups at the end of the follow-up period
is often sufficient to establish the treatment effect(s) (if any) by virtue of the
randomization. However, in some instances, it is important to know how the
patients have reached their endpoint, i.e., it is important to compare the average
profiles (over time) between the treatment groups. Further, longitudinal studies
can be more powerful than studies evaluating the treatments at one single time-
point. Finally, follow-up studies often suffer from dropout, i.e., some patients
leave the study prematurely, for known or unknown reasons. In such cases, a
full repeated measures analysis will help in drawing inferences at the end of the
study. Since incompleteness usually occurs for reasons outside of the control of
the investigators and may be related to the outcome measurement of interest,
it is generally necessary to reflect on the process governing incompleteness.
Only in special but important cases is it possible to ignore the missingness
process.

When patients are examined repeatedly in a clinical trial, missing data can
occur for various reasons and at various visits. When missing data result from
patient dropout, the missing data pattern is monotone pattern. Non-monotone
missingness occurs when there are intermittent missing values as well. Our
focus will be on dropout.

When referring to the missing-value, or non-response, process we will use
the terminology of Little and Rubin (2002). A non-response process is said
to be missing completely a random (MCAR) if the missingness is indepen-
dent of both unobserved and observed data and missing at random (MAR) if,
conditional on the observed data, the missingness is independent of the unob-
served measurements. A process that is neither MCAR nor MAR is termed
non-random (MNAR). In the context of likelihood inference, and when the
parameters describing the measurement process are functionally independent
of the parameters describing the missingness process, MCAR and MAR are
ignorable, while a non-random process is non-ignorable. Thus, under ignor-
able dropout, one can literally ignore the missingness process and nevertheless
obtain valid estimates of, say, the treatment. Above definitions are conditional
on including the correct set of covariates into the model. An overview of the
various mechanisms, and their (non-)ignorability under likelihood, Bayesian, or
frequentist inference, is given in Table 1.
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Table 1: Overview of missing data mechanisms.

Acronym Description Likelih./Bayesian Frequentist

MCAR missing completely at random ignorable ignorable
MAR missing at random ignorable non-ignorable
MNAR missing not at random non-ignorable non-ignorable

Let us first consider the case where only one follow-up measurement per
patient is made. When dropout occurs, and hence there are no follow-up
measurements, one usually is forced to discard such a patient from analysis,
thereby violating the intention to treat (ITT) principle which stipulates that all
randomized patients should be included in the primary analysis and according to
the randomisation scheme. Of course, the effect of treatment can be investigated
under extreme assumptions, such as, for example, a worst case and a best case
scenario, but such scenarios are most often not really helpful.

Early work regarding missingness focused on the consequences of the in-
duced lack of balance of deviations from the study design (Afifi and Elashoff
1966, Hartley and Hocking 1971). Later, algorithmic developments took place,
such as the expectation-maximization algorithm (EM, Dempster, Laird and Ru-
bin 1977) and multiple imputation (Rubin 1987). These have brought likelihood-
based ignorable analysis within reach of a large class of designs and models.
However, they usually require extra programming in addition to available stan-
dard statistical software.

In the meantime, however, clinical trial practice has put a strong emphasis
on methods such as complete case analysis (CC) and last observation carried
forward (LOCF) or other simple forms of imputation. Claimed advantages
include computational simplicity, no need for a full longitudinal model analysis
(e.g., when the scientific question is in terms of the last planned measurement
occasion only) and, for LOCF, compatibility with the ITT principle. However, a
CC analysis assumes MCAR and the LOCF analysis makes peculiar assumptions
on the (unobserved) evolution of the response, underestimates the variability of
the response and ignores the fact that imputed values are no real data.

On the other hand, a likelihood-based longitudinal analysis requires only
MAR, uses all data (obviating the need for both deleting and filling in data)
and is also consistent with the ITT principle. Further, it can be shown that
also the incomplete sequences contribute to estimands of interest (treatment
effect at the end of the study), even early dropouts. For continuous responses,
the linear mixed model is quite popular and is a direct extension of ANOVA
and MANOVA approaches, but more broadly valid in incomplete data settings.
For categorical responses and count data, so-called marginal (e.g., generalized
estimating equations, GEE) and random-effects (e.g., generalized linear mixed-
effects models, GLMM) approaches are in use. While GLMM parameters can
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be fitted using maximum likelihood, the same is not true for the frequentist
GEE method but modifications have been proposed to accommodate the MAR
assumption (Robins, Rotnitzky and Zhao 1995).

Finally, MNAR missingness can never be fully ruled out based on the
observed data only. It is argued that, rather than going either for discarding
MNAR models entirely or for placing full faith on them, a sensible compromise
is to make them a component of a sensitivity analysis.

In Section 3, we will first focuss on linear models for Gaussian data.
In Section 4, we will discuss models for the analysis of discrete outcomes.
Section 5 describes simple methods to deal with incomplete data, while more
appropriate methods are described in Section 6. Sensitivity analysis is briefly
discussed in Section 8.

2. Case studies

2.1. The Toenail data

As a typical longitudinal example, we consider data from a randomized,
double blind, parallel group, multicentre study for the comparison of 2 oral
treatments (in the sequel coded as A and B) for toenail dermatophyte ony-
chomycosis (TDO). We refer to De Backer et al. (1996) for more details about
this study. TDO is a common toenail infection, difficult to treat, affecting more
than two percent of the population. Antifungal compounds classically used for
treatment of TDO need to be taken until the whole nail has grown out healthy.
However, new compounds, have reduced the treatment duration to three months.
The aim of the present study was to compare the efficacy and safety of two
such new compounds, labelled A and B, and administered during 12 weeks.

In total, 2 × 189 patients were randomized, distributed over 36 centres.
Subjects were followed during 12 weeks (3 months) of treatment and followed
further, up to a total of 48 weeks (12 months). Measurements were taken
at baseline, every month during treatment, and every 3 months afterwards,
resulting in a maximum of 7 measurements per subject. As a first response,
we consider the unaffected naillength (one of the secondary endpoints in the
study), measured from the nail bed to the infected part of the nail, which is
always at the free end of the nail, expressed in mm. Obviously this response
will be related to the toesize. Therefore, we will include here only those
patients for which the target nail was one of the two big toenails. This reduces
our sample under consideration to 146 and 148 subjects respectively. Individual
profiles for 30 randomly selected subjects in each treatment group are shown in
Figure 1. Our second outcome will be severity of the infection, coded as 0 (not
severe) or 1 (severe). The question of interest was whether the percentage of
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severe infections decreased over time, and whether that evolution was different
for the two treatment groups. A summary of the number of patients in the
study at each time-point, and the number of patients with severe infections is
given in Table 2.
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Figure 1. Toenail data: Individual profiles of 30 randomly selected subjects in each treatment arm.

Table 2: Toenail data: Number and percentage of patients with severe toenail infection, for
each treatment arm separately.

Group A Group B

# severe # patients percentage # severe # patients percentage

Baseline 54 146 37.0% 55 148 37.2%
1 month 49 141 34.7% 48 147 32.6%
2 months 44 138 31.9% 40 145 27.6%
3 months 29 132 22.0% 29 140 20.7%
6 months 14 130 10.8% 8 133 6.0%
9 months 10 117 8.5% 8 127 6.3%
12 months 14 133 10.5% 6 131 4.6%
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A key issue in the analysis of longitudinal data is that outcome values
measured repeatedly within the same subjects tend to be correlated, and this
correlation structure needs to be taken into account in the statistical analysis.
This is easily seen with paired observations obtained from, e.g., a pre-test/post-
test experiment. An obvious choice for the analysis is the paired t-test, based
on the subject-specific difference between the two measurements. While an
unbiased estimate for the treatment effect can also be obtained from a two-
sample t-test, standard errors and hence also p-values and confidence intervals
obtained from not accounting for the correlation within pairs will not reflect the
correct sampling variability, and hence still lead to wrong inferences. In general,
classical statistical procedures assuming independent observations, cannot be
used in the context of repeated measurements. In this paper, we will give an
overview of the most important models useful for the analysis of clinical trial
data, and widely available through commercial statistical software packages.

2.2. Orthdontic Growth data

As an example, we use the orthodontic growth data, introduced by Pothoff
and Roy (1964) and used by Jennrich and Schluchter (1986) as well. The
data have the typical structure of a clinical trial and are simple yet illustrative.
They contain growth measurements for 11 girls and 16 boys. For each sub-
ject, the distance from the center of the pituitary to the maxillary fissure was
recorded at ages 8, 10, 12, and 14. Figure 2 presents the 27 individual profiles.
Little and Rubin [1] deleted 9 of the [(11+16)×4] measurements, rendering 9
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Figure 2. Orthodontic Growth Data. Raw and residual profiles. (Girls are indicated with solid lines.
Boys are indicated with dashed lines.)
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incomplete subjects which, even though a somewhat unusual practice, has the
advantage of allowing a comparison between the incomplete data methods and
the analysis of the original, complete data. Deletion is confined to the age
10 measurements and rougly speaking the complete observations at age 10 are
those with a higher measurement at age 8. We will put some emphasis on
ages 8 and 10, the typical dropout setting, with age 8 fully observed and age
10 partially missing.

3. Linear models for Gaussian data

With repeated Gaussian data, a general, and very flexible, class of para-
metric models is obtained from a random-effects approach. Suppose that an
outcome Y is observed repeatedly over time for a set of persons, and suppose
that the individual trajectories are of the type as shown in Figure 3. Obviously,
a linear regression model with intercept and linear time effect seems plausible
to describe the data of each person separately. However, different persons tend
to have different intercepts and different slopes. One can therefore assume that
the j th outcome Yi j of subject i (i = 1, . . . , N , j = 1, . . . , ni ), measured at
time ti j satisfies Yi j = b̃i0 + b̃i1ti j + εi j . Assuming the vector b̃i = (b̃i0, b̃i1)

′

of person-specific parameters to be bivariate normal with mean (β0, β1)
′ and

2 × 2 covariance matrix D and assuming εi j to be normal as well, this leads
to a so-called linear mixed model. In practice, one will often formulate the
model as

Yi j = (β0 + bi0) + (β1 + bi1)ti j + εi j ,

with b̃i0 = β0+bi0 and b̃i1 = β1+bi1, and the new random effects bi = (bi0, bi1)
′

are now assumed to have mean zero.
The above model can be viewed as a special case of the general linear

mixed model which assumes that the outcome vector Yi of all ni outcomes for
subject i satisfies

Yi = Xiβ + Zi bi + εi , (3.1)

in which β is a vector of population-average regression coefficients called fixed
effects, and where bi is a vector of subject-specific regression coefficients. The
bi are assumed normal with mean vector 0 and covariance D, and they de-
scribe how the evolution of the i th subject deviates from the average evolution
in the population. The matrices Xi and Zi are (ni × p) and (ni × q) matri-
ces of known covariates. Note that p and q are the numbers of fixed and
subject-specific regression parameters in the model, respectively. The residual
components εi are assumed to be independent N (0, �i), where �i depends on
i only through its dimension ni . Model (3.1) naturally follows from a so-called
two-stage model formulation. First, a linear regression model is specified for
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Figure 3. Hypothetical example of continuous longitudinal data which can be well described by a linear
mixed model with random intercepts and random slopes. The thin lines represent the ob-
served subject-specific evolutions. The bold line represents the population-averaged evolution.
Measurements are taken at six time-points 0, 1, 2, 3, 4, 5.

every subject separately, modelling the outcome variable as a function of time.
Afterwards, in the second stage, multivariate linear models are used to relate
the subject-specific regression parameters from the first-stage model to subject
characteristics such as age, gender, treatment, etc.

Estimation of the parameters in (3.1) is usually based on maximum like-
lihood (ML) or restricted maximum likelihood (REML) estimation for the
marginal distribution of Yi which can easily be seen to be

Yi ∼ N (Xiβ, Zi DZ ′
i + �i) . (3.2)

Note that model (3.1) implies a model with very specific mean and covariance
structures, which may or may not be valid, and hence need to be checked for
every specific data set at hand. Note also that, when �i = σ 2 Ini , with Ini equal
to the identity matrix of dimension ni , the observations of subject i are inde-
pendent conditionally on the random effect bi . The model is therefore called
the conditional independence model. Even in this simple case, the assumed
random-effects structure still imposes a marginal correlation structure for the
outcomes Yi j . Indeed, even if all �i equal σ 2 Ini , the covariance matrix in (3.2)
is not the identity matrix, illustrating that, marginally, the repeated measure-
ments Yi j of subject i are not assumed to be uncorrelated. Another special
case arises when the random effects are omitted from the model. In that case,
the covariance matrix of Yi is modeled through the residual covariance matrix
�i . In the case of completely balanced data, i.e., when ni is the same for all
subjects, and when the measurements are all taken at fixed time-points, one
can assume all �i to be equal to a general unstructured covariance matrix �,
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which results in the classical multivariate regression model. Inference in the
marginal model can be done using classical techniques including approximate
Wald tests, t-tests, F-tests, or likelihood ratio tests. Finally, Bayesian meth-
ods can be used to obtain “empirical Bayes estimates” for the subject-specific
parameters bi in (3.1). We refer to Henderson et al. (1959), Harville (1974,
1976, 1977), Laird and Ware (1982), Verbeke and Molenberghs (2000) for more
details about estimation and inference in linear mixed models.

As an illustration, we analyse the unaffected naillength response in the
toenail example. The model proposed by Verbeke, Lesaffre and Spiessens
(2001) assumes a quadratic evolution for each subject, with subject-specific
intercepts, and with correlated errors within subjects. More formally, they
assume that Yi j satisfies

Yi j (t) =
{

(βA0 + bi) + βA1t + βA2t2 + εi(t), in group A

(βB0 + bi) + βB1t + βB2t2 + εi(t), in group B,
(3.3)

where t = 0, 1, 2, 3, 6, 9, 12 is the time in the study, expressed in months.
The error components εi(t) are assumed to have common variance σ 2, with
correlation of the form corr(εi(t), εi(t − u)) = exp(−ϕu2) for some unknown
parameter ϕ. Hence, the correlation between within-subject errors is a decreas-
ing function of the time span between the corresponding measurements. Fitted
average profiles are shown in Figure 4. An approximate F-test shows that, on
average, there is no evidence for a treatment effect (p = 0.2029).
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Figure 4. Toenail data: Fitted average profiles based on model (3.3).

Note that, even when interest would only be in comparing the treatment groups
after 12 months, this could still be done based on the above fitted model.
The average difference between group A and group B, after 12 months, is
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given by (βA0 − βB0) − 12(βA1 − βB1) + 122(βA2 − βB2). The estimate for this
difference equals 0.80 mm (p = 0.0662). Alternatively, a two-sample t-test
could be performed based on those subjects which have completed the study.
This yields an estimated treatment effect of 0.77 mm (p = 0.2584) illustrating
that modelling the whole longitudinal sequence also provides more efficient
inferences at specific time-points.

4. Models for discrete outcomes

Whenever discrete data are to be analysed, the normality assumption in the
models in the previous section is no longer valid, and alternatives need to be
considered. The classical route, in analogy to the linear model, is to specify the
full joint distribution for the set of measurements Yi j , . . . , Yini per individual.
Clearly, this implies the need to specify all moments up to order ni . Examples
of marginal models can be found in Bahadur (1961), Altham (1978), Efron
(1986), Molenberghs and Lesaffre(1994, 1999), Lang and Agresti (1994), and
Fahrmeir and Tutz (2001).

Especially for longer sequences and/or in cases where observations are not
taken at fixed time-points for all subjects, specifying a full likelihood, as well
as making inferences about its parameters, traditionally done using maximum
likelihood principles, can become very cumbersome. Therefore, inference is
often based on a likelihood obtained from a random-effects approach. Asso-
ciations and all higher-order moments are then implicitly modelled through a
random-effects structure. This will be discussed in Section 4.1. A disadvantage
is that the assumptions about all moments are made implicitly, and are very
hard to check. As a consequence, alternative methods have been in demand,
which require the specification of a small number of moments only, leaving
the others completely unspecified. In a large number of cases, one is primarily
interested in the mean structure, whence only the first moments need to be
specified. Sometimes, there is also interest in the association structure, quan-
tified, for example using odds ratios or correlations. Estimation is then based
on so-called generalized estimating equations, and inference no longer directly
follows from maximum likelihood theory. This will be explained in Section 4.2.
In Section 4.3, both approaches will be illustrated in the context of the toenail
data. A comparison of both techniques will be presented in Section 4.4.

4.1. Generalized linear mixed models (GLMM)

As discussed in Section 3, random effects can be used to generate an as-
sociation structure between repeated measurements. This can be exploited to
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specify a full joint likelihood in the context of discrete outcomes. More specifi-
cally, conditionally on a vector bi of subject-specific regression coefficients, it is
assumed that all responses Yi j for a single subject i are independent, satisfying
a generalized linear model with mean µi j = h(x′

i jβ + z′
i j bi) for a pre-specified

link function h, and for two vectors xi j and zi j of known covariates belonging
to subject i aht the j th time point. Let fi j (yi j |bi) denote the corresponding
density function of Yi j , given bi . As for the linear mixed model, the random
effects bi are assumed to be sampled from a normal distribution with mean
vector 0 and covariance D. The marginal distribution of Yi is then given by

f (yi) =
∫ ni∏

j=1

fi j (yi j |bi) f (bi)dbi (4.4)

in which dependence on the parameters β and D is suppressed from the notation.
Assuming independence accross subjects, the likelihood can easily be obtained,
and maximum likelihood estimation becomes available.

In the linear model, the integral in (4.4) could be worked out analyti-
cally, leading to the normal marginal model (3.2). In general however, this
is no longer possible, and numerical approximations are needed. Broadly, we
can distinguish between approximations to the integrand in (4.4), and methods
based on numerical integration. In the first approach, Taylor series expansions
to the integrand are used, simplifying the calculation of the integral. Depending
on the order of expansion and the point around which one expands, slightly
different procedures are obtained. We refer to Breslow and Clayton (1993) and
to Wolfinger and O’Connell (1993) for an overview of estimation methods. In
general, such approximations will be accurate whenever the responses yi j are
“sufficiently continuous” and/or if all ni are sufficiently large. This explains
why the approximation methods perform poorly in cases with binary repeated
measurements, with a relatively small number of repeated measurements avail-
able for all subjects (Wolfinger 1998). Especially in such examples, numerical
integration proves very useful. Of course, a wide toolkit of numerical integra-
tion tools, available from the optimization literature, can be applied. A general
class of quadrature rules selects a set of abscissas and constructs a weighted
sum of function evaluations over those. We refer to Hedeker and Gibbons
(1994, 1996) and to Pinheiro and Bates (2000) for more details on numerical
integration methods in the context of random-effects models.

4.2. Generalized estimating equations (GEE)

Liang and Zeger (1986) proposed so-called generalized estimating equations
(GEE) which require only the correct specification of the univariate marginal
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distributions provided one is willing to adopt “working” assumptions about the
association structure. More specifically, a generalized linear model (McCullagh
and Nelder 1989) is assumed for each response Yi j , modelling the mean µi j as
h(x′

i jβ) for a pre-specified link function h, and a vector xi j of known covariates.
In case of independent repeated measurements, the classical score equations for
the estimation of β are well known to be

S(β) =
∑

i

∂µ′
i

∂β
V −1

i (Yi − µi) = 0 (4.5)

where µi = E(Yi) and Vi is a diagonal matrix with vi j = Var(Yi j ) on the
main diagonal. Note that, in general, the mean-variance relation in generalized
linear models implies that the elements vi j also depend on the regression co-
efficients β. Generalized estimating equations are now obtained from allowing
non-diagonal “covariance” matrices Vi in (4.5). In practice, this comes down
to the specification of a “working correlation matrix” which, together with the
variances vi j results in a hypothesized covariance matrix Vi for Yi .

Solving S(β) = 0 is done iteratively, constantly updating the working cor-
relation matrix using moment-based estimators. Note that, in general, no max-
imum likelihood estimates are obtained, since the equations are not first-order
derivatives of some log-likelihood function for the data under some statistical
model. Still, very similar properties can be derived. More specifically, Liang
and Zeger (1986) showed that β̂ is asymptotically normally distributed, with
mean β and with a covariance matrix that can easily be estimated in prac-
tice. Hence, classical Wald-type inferences become available. This result holds
provided that the mean was correctly specified, whatever working assumptions
were made about the association structure. This implies that, strictly speaking,
one can fit generalized linear models to repeated measurements, ignoring the
correlation structure, as long as inferences are based on the standard errors that
follow from the general GEE theory. However, efficiency can be gained from
using a more appropriate working correlation model (Mancl and Leroux 1996).

The original GEE approach focusses on inferences for the first-order mo-
ments, considering the association present in the data as nuisance. Later on,
extensions have been proposed which also allow inferences about higher-order
moments. We refer to Prentice (1988), Lipsitz, Laird and Harrington (1991),
and Liang, Zeger and Qaqish (1992) for more details on this.

4.3. Application to the toenail data

As an illustration of GEE and GLMM, we analyse the severity of infection
binary outcome in the toenail example. We will first apply GEE, based on the



Longitudinal and incomplete clinical studies 155

marginal logistic regression model

log
[

P(Yi(t) = 1)

1 − P(Yi(t) = 1)

]
=
{

βA0 + βA1t, in group A

βB0 + βB1t, in group B.
(4.5)

Furthermore, we use an unstructured 7 × 7 working correlation matrix. The
results are reported in Table 3, and the fitted average profiles are shown in
the top graph of Figure 5. Based on a Wald-type test we obtain a significant
difference in the average slope between the two treatment groups (p = 0.0158).

Table 3: Toenail data: Parameter estimates (standard errors) for a generalized linear mixed
model (GLMM) and a marginal model (GEE).

GLMM GEE

Parameter Estimate (s.e.) Estimate (s.e.)

Intercept group A (βA0) −1.63 (0.44) −0.72 (0.17)
Intercept group B (βB0) −1.75 (0.45) −0.65 (0.17)
Slope group A (βA1) −0.40 (0.05) −0.14 (0.03)
Slope group B (βB1) −0.57 (0.06) −0.25 (0.04)
Random intercepts s.d. (σ ) 4.02 (0.38)

Alternatively, we consider a generalized linear mixed model, modelling the
association through the inclusion of subject-specific (random) intercepts. More
specifically, we will now assume that

log
[

P(Yi(t) = 1|bi)

1 − P(Yi(t) = 1|bi)

]
=
{

βA0 + bi + βA1t, in group A

βB0 + bi + βB1t, in group B
(4.7)

with bi normally distributed with mean 0 and variance σ 2. The results, obtained
using numerical integration methods, are also reported in Table 3. As before,
we obtain a significant difference between βA1 and βB1 (p = 0.0255).
4.4. Marginal versus hierarchical parameter interpretation

Comparing the GEE results and the GLMM results in Table 3, we observe
large differences between the parameter estimates. This suggests that the pa-
rameters in both models need to be interpreted differently. Indeed, the GEE
approach yields parameters with a population-averaged interpretation. Each
regression parameter expresses the average effect of a covariate on the proba-
bility of having a severe infection. Results from the generalized linear mixed
model however, require an interpretation conditionally on the random effect,
i.e., conditionally on the subject. In the context of our toenail example, consider
model (4.7) for treatment group A only. The model assumes that the probabil-
ity of severe infection satisfies a logistic regression model, with the same slope
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Marginal average evolutions (GEE)

Time

Time

Treatment:

Treatment:

Evolution for subjects with random effects zero (GLMM)

Figure 5. Toenail Data. Treatment-specific evolutions. (a) Marginal evolutions as obtained from the
marginal model (4.6) fitted using GEE, (b) Evolutions for subjects with random effects in
model (4.7) equal to zero.

for all subjects, but with subject-specific intercepts. The population-averaged
probability of severe infection is obtained from averaging these subject-specific
profiles over all subjects. This is graphically presented in Figure 6. Clearly,
the slope of the average trend is different from the subject-specific slopes, and
this effect will be more severe as the subject-specific profiles differ more, i.e.,
as the random-intercepts variance σ 2 is larger. Formally, the average trend for
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group A is obtained as

P(Yi(t) = 1) = E [P(Yi(t) = 1|bi)]

= E
[

exp(βA0 + bi + βA1t)

1 + exp(βA0 + bi + βA1t)

]
�= E

[
exp(βA0 + βA1t)

1 + exp(βA0 + βA1t)

]

Hence, the population-averaged evolution is not the evolution for an “average”
subject, i.e., a subject with random effect equal to zero. The bottom graph
in Figure 5 shows the fitted profiles for an average subject in each treatment
group, and these profiles are indeed very different from the population-averaged
profiles shown in the top graph of Figure 5 and discussed before. In general, the
population-averaged evolution implied by the GLMM is not of a logistic form
any more, and the parameter estimates obtained from the GLMM are typically
larger in absolute value than their marginal counterparts (Neuhaus, Kalbfleisch
and Hauck 1991). However, one should not refer to this phenomenon as bias
since the two sets of parameters target at different scientific questions. Note
that this difference in parameter interpretation between marginal and random-
effects models immediately follows from the non-linear nature, and therefore is
absent in the linear mixed model, discussed in Section 3. Indeed, the regression
parameter vector β in the linear mixed model (3.1)is the same as the regression
parameter vector modelling the expectation in the marginal model (3.2).

Time

Subject-specific and average evolutions

Figure 6. Graphical representation of a random-intercepts logistic model. The thin lines represent the
subject-specific logistic regression models. The bold line represents the population-averaged
evolution.
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5. Methods in common use for incomplete data

Turning to the incomplete data problem, we will focus on two relatively
simple methods that have been and still are in extensive use. A detailed account
of simple methods to handle missingness is given in Verbeke and Molenberghs
(2000).

5.1. Complete case analysis

A complete case analysis includes only those cases for analysis, for which
all measurements were recorded. This method has obvious advantages. It is
very simple to describe and since the data structure is as would have resulted
from a complete experiment, standard statistical software can be used without
additional work. Further, since the entire estimation is done on the same subset
of completers, there is a common basis for inference. Unfortunately, the method
suffers from severe drawbacks. First, there is nearly always a substantial loss
of information. The impact on precision and power is dramatic. Further, such
an analysis will only be representative for patients who remain on study. Of
course a complete case analysis could have a role as an auxiliary analysis,
especially if a scientific question relates to it. A final important issue about a
complete case analysis is that it is only valid when the missingness mechanism
is MCAR. However, severe bias can result when the missingness mechanism is
MAR but not MCAR. This bias can go both ways, i.e., either overestimating
or underestimating the true effect.

5.2. Last observation carried forward

A method that has received a lot of attention (Siddiqui and Ali 1998,
Mallinckrodt et al. 2003) is last observation carried forward (LOCF). As al-
ready noted before, in the LOCF method, whenever a value is missing, the
last observed value is substituted. For the LOCF approach, the MCAR as-
sumption is necessary but not sufficient for an unbiased estimate. Indeed, it
further assumes that subjects’ responses would have been constant from the
last observed value to the endpoint of the trial. These conditions seldom hold
(Verbeke and Molenberghs 2000). In a clinical trial setting, one might be-
lieve that the response profile changes as soon as a patient goes off treatment
and even that it would flatten. However, the constant profile assumption is
even stronger. Therefore, carrying observations forward may bias estimates of
treatment effects and underestimate the associated standard errors (Verbeke and
Molenberghs 2000, Gibbons et al. 1993, Heyting, Tolboom and Essers 1992,
Lavori et al. 1995, Mallinckrodt et al. 2001ab). Further, this method artifi-
cially increases the amount of information in the data, by treating imputed and
actually observed values on equal footing.
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Despite its shortcomings, LOCF has been the longstanding method of
choice for the primary analysis in clinical trials because of its simplicity, ease
of implementation, and the belief that the potential bias from carrying obser-
vations forward leads to a “conservative” analysis in comparative trials. An
analysis is called conservative when it leads to no treatment difference, while
in fact there is treatment difference. However, reports of anti-conservative or
liberal behavior of LOCF are common (Kenward et al. 2004, Molenberghs et
al. 2004, Mallinckrodt et al. 2004, Little and Yau 1996, Liu and Gould 2002).
This means that a LOCF analysis can create treatment effect when none exists.
Thus the statement that LOCF analysis has been used to provide a conservative
estimate of treatment effect is unacceptable.

Historically, an important motivation behind the simpler methods was their
simplicity. Indeed, the main advantage, shared with complete case analysis,
is that complete data software can be used. However, with the availability of
commercial software tools, such as, for example, the SAS procedures MIXED
and NLMIXED and the SPlus and R nlme libraries, this motivation no longer
applies.

It is often quoted that LOCF or CC, while problematic for parameter esti-
mation, produce randomization-valid hypothesis testing, but this is questionable.
First, in a CC analysis partially observed data are selected out, with probabili-
ties that may depend on post-randomization outcomes, thereby undermining any
randomization justification. Second, if the focus is on one particular time point,
e.g., the last one scheduled, then LOCF plugs in data. Such imputations, apart
from artificially inflating the information content, may deviate in complicated
ways from the underlying data (Kenward et al. 2004). Third, although the size
of a randomization based LOCF test may reach its nominal size under the null
hypothesis of no difference in treatment profiles, there will be other regions of
the alternative space where the power the LOCF test procedure is equal to its
size, which is completely unacceptable.

6. An alternative approach to incomplete data

We will first provide a graphical illustration, using an artificial example,
of the various simple methods we have considered and then turn to so-called
direct likelihood analysis.

6.1. Illustration of simple methods

Let us take a look at an artificial but insightful example, depicted in
Figure 7, which displays the results of the traditional methods, CC and LOCF,
next to the result of an MAR method. In this example, the mean response
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is supposed to be linear. For both groups (completers and dropouts), the
slope is the same, but intercepts differ. Patients with incomplete observations
dropped out half way of the study, e.g., because they reached a certain level
of the outcome. This is obviously an MAR missingness mechanism. Using
a method, valid under the MAR assumption, yields the correct mean profile,
being a straight line centered between the mean profiles of the completers
and incompleters. If one would perform a CC analysis, the fitted profile will
coincide with the mean profile of the complete cases (bold line). Next, under
LOCF, data are imputed (dashed line). The resulting fitted profile will be
the bold dashed line. Clearly, both traditional methods produce an incorrect
result.

Figure 7. Artificial situation, illustrating the results of the traditional MCAR methods – CC and LOCF –
next to the result of the direct likelihood method.

Further, in a traditional available case analysis (AC), one makes use of the in-
formation actually available. One such set of estimators could be the treatment-
specific mean at a number of designed measurement occasions. With a decreas-
ing sample size over time, means later in time would be calculated using less
subjects than means earlier in time. Figure 7 shows a dramatic instance of this,
due to the rather extreme nature of this illustrative example. The key message
is that such an approach is unable to remove major sources of bias.



Longitudinal and incomplete clinical studies 161

6.2. Direct likelihood analysis

For continuous outcomes, Verbeke and Molenberghs (2000) describe like-
lihood-based mixed-effects models, which are valid under the MAR assumption.
Indeed, for longitudinal studies, where missing data are involved, a mixed
model only requires that missing data are MAR. As opposed to the traditional
techniques, mixed-effects models permit the inclusion of subjects with missing
values at some time points (both dropout and intermittent missingness).

This likelihood-based MAR analysis is also termed likelihood-based ignor-
able analysis, or, as we will be using in the remainder of this entry, a direct
likelihood analysis. In such a direct likelihood analysis, the observed data are
used without deletion nor imputation. In doing so, appropriate adjustments are
made to parameters at times when data are incomplete, due to the within-patient
correlation.

Thus, even when interest lies, for example, in a comparison between the
two treatment groups at the last occasion, such a full longitudinal analysis is
a good approach, since the fitted model can be used as the basis for inference
at the last occasion.

In many clinical trials the repeated measures are balanced in the sense that
a common (and often limited) set of measurement times is considered for all
subjects, which allows the a priori specification of a “saturated” model. For
example, a full group-by-time interaction for the fixed effects combined with
an unstructured covariance matrix. The direct likelihood analysis is equivalent
to a classical MANOVA analysis when data are complete, but more generally
valid when they are incomplete. This is a strong answer to the common
criticism that a direct likelihood method is making strong assumptions. Indeed,
its coincidence with MANOVA for data without missingness shows that the
assumptions made are very mild. Therefore, it constitutes a very promising
alternative for CC and LOCF. When a relatively large number of measurements
is made within a single subject, the full power of random effects modeling can
be used (Verbeke and Molenberghs 2000).

The practical implication is that a software module with likelihood esti-
mation facilities and with the ability to handle incompletely observed subjects,
manipulates the correct likelihood, providing valid parameter estimates and
likelihood ratio values.

A few cautionary remarks are warranted. First, when at least part of
the scientific interest is directed towards the nonresponse process, obviously
both processes need to be considered. Under MAR, both questions can be
answered separately. This implies that a conventional method can be used to
study questions in terms of the the outcomes of interest, such as treatment
effect and time trend, whereafter a separate model can be considered to study
missingness. Second, likelihood inference is often surrounded with references to
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the sampling distribution (e.g., to construct measures of precision for estimators
and for statistical hypothesis tests, Kenward and Molenberghs 1998). However,
the practical implication is that standard errors and associated tests, when based
on the observed rather than the expected information matrix and given that the
parametric assumptions are correct, are valid. Thirdly, it may be hard to rule
out the operation of an MNAR mechanism. This point was brought up in the
introduction and will be discussed further in Section 8.

7. Illustration: orthodontic growth data

The simple methods and direct likelihood method from Sections 5 and 6
are now compared using the growth data. For this purpose, a linear mixed
model is used, assuming unstructured mean, i.e., assuming a separate mean
for each of the eight age×sex combinations, together with an unstructured
covariance structure, and using maximum likelihood (ML) as well as restricted
maximum likelihood (REML). The mean profiles of the linear mixed model
using maximum likelihood for all four data sets, for boys, are given in Figure 8.
The girls’ profiles are similar and hence not shown.
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Direct Likelihood (Fitted)
Direct Likelihood (Observed)

Figure 8. Orthodontic Growth Data. Profiles for the original data, CC, LOCF, and direct likelihood for
boys.

Next to this longitudinal approach, we will consider a full MANOVA analysis
and a univariate ANOVA analysis, i.e., one per time point. For all of these
analyses, Table 4 shows the estimates and standard errors for boys at ages 8
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and 10, for the original data and all available incomplete data, as well as for
the CC and the LOCF data.

First, we consider the group means for the boys in the original data set in
Figure 8, i.e., we observe relatively a straight line. Clearly, there seems to be
a linear trend in the mean profile.

In a complete case analysis of the growth data, the 9 subjects which lack
one measurement are deleted, resulting in a working data set with 18 subjects.
This implies that 27 available measurements will not be used for analysis, a
quite severe penalty on a relatively small data set. Observing the profiles for
the CC data set in Figure 8, all group means increased relative to the original
data set but mostly so at age 8. The net effect is that the profiles overestimate
the average length.

For the LOCF data set, the 9 subjects that lack a measurement at age
10 are completed by imputing the age 8 value. It is clear that this procedure
will affect the apparently increasing linear trend found for the original data set.
Indeed, the imputation procedure forces the means at ages 8 and 10 to be more
similar, thereby destroying the linear relationship. Hence, a simple, intuitively
appealing interpretation of the trends is made impossible.

Table 4: Orthodontic Growth Data. Comparison of analyses based on means at (completely
observed age 8 and incompletely observed age 10 measurement).

Method Boys at Age 8 Boys at Age 10

Original Data

Direct likelihood, ML 22.88 (0.56) 23.81 (0.49)
Direct likelihood, REML 22.88 (0.58) 23.81 (0.51)
MANOVA 22.88 (0.58) 23.81 (0.51)
ANOVA per time point 22.88 (0.61) 23.81 (0.53)

All Available Incomplete Data

Direct likelihood, ML 22.88 (0.56) 23.17 (0.68)
Direct likelihood, REML 22.88 (0.58) 23.17 (0.71)
MANOVA 24.00 (0.48) 24.14 (0.66)
ANOVA per time point 22.88 (0.61) 24.14 (0.74)

Complete Case Analysis

Direct likelihood, ML 24.00 (0.45) 24.14 (0.62)
Direct likelihood, REML 24.00 (0.48) 24.14 (0.66)
MANOVA 24.00 (0.48) 24.14 (0.66)
ANOVA per time point 24.00 (0.51) 24.14 (0.74)

Last Observation Carried Forward Analysis

Direct likelihood, ML 22.88 (0.56) 22.97 (0.65)
Direct likelihood, REML 22.88 (0.58) 22.97 (0.68)
MANOVA 22.88 (0.58) 22.97 (0.68)
ANOVA per time point 22.88 (0.61) 22.97 (0.72)
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In case of direct likelihood, we now see two profiles. One for the observed
means and one for the fitted means. These two coincide at all ages except age
10. As mentioned earlier, the complete observations at age 10 are those with
a higher measurement at age 8. Due to the within-subject correlation, they are
the ones with a higher measurement at age 10 as well, and therefore the fitted
model corrects in the appropriate direction. The consequences of this are very
important. While we are inclined to believe that the fitted means do not follow
the observed means all that well, this nevertheless is precisely what we should
observe. Indeed, since the observed means are based on a non-random subset
of the data, the fitted means take into account all observed data points, as well
as information on the observed data at age 8, through the measurements that
have been taken for such children, at different time points.

As an aside to this, note that, in case of direct likelihood, the observed
average at age 10 coincides with the CC average, while the fitted average does
not coincide with anything else. Indeed, if the model specification is correct,
then a direct likelihood analysis produces a consistent estimator for the average
profile, as if nobody had dropped out. Of course, this effect might be blurred
in relatively small data sets due to small-sample variability. Irrespective of the
small-sample behavior encountered here, the validity under MAR and the ease
of implementation are good arguments that favor this direct likelihood analysis
over other techniques.

Let us now compare the different methods by means of Table 4, which
shows the estimates and standard errors for boys at age 8 and 10, for the
original data and all available incomplete data, as well as for the CC data and
the LOCF data.

Table 4 shows some interesting features. In all four cases, a CC analysis
gives an upward biased estimate, for both age groups. This is obvious, since
the complete observations at age 10 are those with a higher measurement at
age 8, as we have seen before. The LOCF analysis gives a correct estimate
for the average outcome for boys at age 8. This is not surprising since there
were no missing observations at this age. As noted before, the estimate for
boys of age 10 is biased downwards. When the incomplete data are analyzed,
we see from Table 4 that direct likelihood produces good estimates. The
MANOVA and ANOVA per time point analyses give an overestimation of the
average of age 10, like in the CC analysis. Further, the MANOVA analysis also
yields an overestimation of the average at age 8, again the same as in the CC
analysis.

Thus, direct likelihood shares the elegant and appealing features of ANOVA
and MANOVA for fully observed data, but is superior with incompletely ob-
served profiles.
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8. Sensitivity analysis

When there is residual doubt about the plausibility of MAR, one can con-
duct a sensitivity analysis. While many proposals have been made, this is
still a very active area of research. Obviously, a number of MNAR models
can be fitted, provided one is prepared to approach formal aspects of model
comparison with due caution. Such analyses can be complemented with appro-
priate (global and/or local) influence analyses (Verbeke et al. 2001). Another
route is to construct pattern-mixture models, where the measurement model is
considered, conditional upon the observed dropout pattern, and to compare the
conclusions with those obtained from the selection model framework, where
the reverse factorization is used (Michiels et al. 2002, Thijs et al. 2002). Al-
ternative sensitivity analyses frameworks are provided by Robins, Rotnitzky,
and Scharfstein (1998), Forster and Smith (1998) who present a Bayesian sen-
sitivity analysis, and Raab and Donnelly (1999). A further paradigm, useful
for sensitivity analysis, are so-called shared parameter models, where common
latent or random effects drive both the measurement process as well as the
process governing missingness.

Nevertheless, ignorable analyses may provide reasonably stable results,
even when the assumption of MAR is violated, in the sense that such analyses
constrain the behavior of the unseen data to be similar to that of the observed
data. A discussion of this phenomenon in the survey context has been given
in Rubin, Stern, and Vehovar (1995). These authors firstly argue that, in well
conducted experiments (some surveys and many confirmatory clinical trials),
the assumption of MAR is often to be regarded as a realistic one. Secondly, and
very important for confirmatory trials, an MAR analysis can be specified a pri-
ori without additional work relative to a situation with complete data. Thirdly,
while MNAR models are more general and explicitly incorporate the dropout
mechanism, the inferences they produce are typically highly dependent on the
untestable and often implicit assumptions built in regarding the distribution of
the unobserved measurements given the observed ones. The quality of the fit
to the observed data need not reflect at all the appropriateness of the implied
structure governing the unobserved data. Based on these considerations, we
recommend, for primary analysis purposes, the use of ignorable likelihood-
based methods or appropriately modified frequentist methods. To explore the
impact of deviations from the MAR assumption on the conclusions, one should
ideally conduct a sensitivity analysis (Verbeke and Molenberghs 2000).

9. Concluding remarks

No doubt repeated measurements occur very frequently in a variety of
contexts. This leads to data structures with correlated observations, hence no
longer allowing standard statistical modelling assuming independent observa-
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tions. Here, we gave a general overview of the main issues in the analysis
of repeated measurements, with focuss to a few general classes of approaches
often used in practice, and available in many commercially available statis-
tical software packages. A much more complete overview can be found in
Diggle et al. (2002). Many linear models proposed in the statistical literature
for the analysis of continuous data are special cases of linear mixed models
discussed in Section 3. We refer to Verbeke and Molenberghs (2000) for more
details. We did not discuss non-linear models for continuous data, but the
non-linearity implies important numerical and interpretational issues similar to
those discussed in Section 4 for discrete data models, and these are discussed
in full detail in Davidian and Giltinan (1995) and Vonesh and Chinchilli (1997).
An overview of many models for discrete data can be found in Fahrmeir and
Tutz (2001). One major approach to the analysis of correlated data is based
on random-effects models, both for continuous as well as discrete outcomes.
These models are presented in full detail in Pinheiro and Bates (2000).

A variety of models is nowadays available for the analysis of longitudinal
data, all posing very specific assumptions. In many other contexts, procedures
for model checking or for testing goodness of fit have been developed. For
longitudinal data analysis, relatively few techniques are available, and it is
not always clear to what extent inferences rely on the underlying parametric
assumptions. We refer to Verbeke and Molenberghs (2000) and to Verbeke
and Lesaffre (1997) for a selection of available methods for model checking,
and for some robustness results, in the context of linear mixed models. Since
model checking is far from straightforward, attempts have been made to relax
some of the distributional assumptions (Verbeke and Lesaffre 1996).

Regarding incomplete data, a direct likelihood analysis is preferable since
it uses all available information, without the need neither to delete nor to
impute measurements or entire subjects. It is theoretically justified whenever
the missing data mechanism is MAR, which is a more relaxed assumption
than MCAR, necessary for simple analyses (CC, LOCF). There is no statistical
information distortion, since observations are neither removed (such as in CC
analysis) nor added (such as in LOCF analysis). There is software available,
such that no additional programming is involved to perform a direct likelihood
analysis.

It is very important to realize that, for complete sets of data, direct likeli-
hood, especially with the REML estimation method, is identical to MANOVA
(see Table 4). Given the classical robustness of MANOVA, and its close agree-
ment with ANOVA per time point, this provides an extra basis for direct
likelihood. Indeed, it is not as assumption-driven as is sometimes believed.
This, in addition with the validity of direct likelihood under MAR (and hence
its divergence from MANOVA and ANOVA for incomplete data) provides a
strong basis for the direct likelihood method.
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Comment

I congratulate Verbeke and Molenberghs for providing an expository over-
view of modern methods for the analysis of longitudinal data arising from
clinical studies. The authors review regression models for both continuous
and discrete outcomes and highlight many of the subtle issues that arise in the
analysis of the latter type of outcome variable. Many of the distinctions between
the so-called “marginal” and “mixed effects” models for discrete longitudinal
data are not always well-understood by statisticians and empirical researchers
alike; the authors are to be commended for the clarity with which they have
discussed and illustrated the key issues.

A major focus of their article is on the thorny problem of incomplete data,
in particular, the monotone missing data patterns produced by dropout in clinical
studies. As noted by the authors, a variety of ad hoc procedures for handling
dropout are widely used. The rationale for many of these procedures is not
well-founded and they can result in biased estimates of treatment comparisons.
The authors quite rightly point out the limitations of these ad hoc techniques.
Methods such as “complete-case” (CC) analysis or imputation based on “last
observation carried forward” (LOCF), occasionally referred to as “last value
carried forward” (LVCF), make strong, and often very unrealistic, assumptions
about the responses following dropout. Despite the fact that the shortcomings
of these methods are relatively well known, their use in the analysis of clinical
studies has persisted. The article by Verbeke and Molenberghs is a very timely
reminder of the problems associated with the routine use of these ad hoc
methods for handling dropout and missingness more generally.

I find myself in wholehearted agreement with the authors when they rec-
ommend that the missing at random (MAR) assumption should be at the basis
of the default primary analysis of clinical studies. As mentioned by the authors,
the MAR assumption can be relaxed in various ways. However, a fundamen-
tally difficult problem arises when the probability of dropout is thought to be
related to the specific value that in principle should have been obtained, i.e.,
when the dropout process is MNAR or non-ignorable. As noted by Verbeke
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and Molenberghs, the results of analyses based on non-ignorable models for
dropout are highly dependent on assumptions that are unverifiable from the data
at hand. Consequently, they should be considered a component of a sensitivity
analysis rather than a single, final analysis.

It is quite unfortunate that the current status of methods for handling
dropout in clinical studies lags so far behind the recent advances in statistical
methodology. Despite frequent and well-founded criticisms by statisticians (e.g.,
Laird, 1988; Heyting et al., 1992; Fitzmaurice, 2003; and many others), LOCF
is widely used to handle dropout in clinical studies. Indeed, some regulatory
agencies (e.g., the U.S. Food and Drug Administration) seem to actively en-
courage the continuing use of LOCF as a method for handling dropout, despite
all of its obvious shortcomings. One can only hope that the article by Verbeke
and Molenberghs, and similar recommendations by others, will quickly remedy
this situation.

Because I find myself in substantial agreement with the authors on most of
the issues raised in their paper, I will restrict my remaining discussion to one
important aspect of the paper that deserves some amplification: the objectives of
the analysis of longitudinal clinical studies when there is dropout. When there
is dropout, the goals of the analysis need to be clearly specified. Verbeke and
Molenberghs have alluded to this in their discussion of the intention-to-treat
(ITT) principle. Because many of the currently used methods for handling
dropout make unforeseen assumptions about the goals of the analysis, it is
worth reviewing the subtle distinctions between two main types of analyses of
clinical studies: “pragmatic” and “explanatory” analyses.

Many clinical studies embrace the intention-to-treat (ITT) principle. Broa-
dly speaking, an intention-to-treat analysis follows two main principles: (i)
outcome data at all occasions on all subjects randomized to a treatment group
should be included in the analysis, including data from those who deviate in
any way from the study protocol (e.g., those who dropout), and (ii) the data on
all subjects should be analyzed “as randomized” rather than “as treated”. That
is, if a subject is randomized to one treatment but switches to another treat-
ment prior to completion of the study, that subject is included in the initially
assigned treatment group for the purpose of an intention-to-treat analysis. The
intention-to-treat analysis is often regarded as a “pragmatic” analysis (Schwartz
and Lellouch, 1967), providing an unbiased estimate of the effect of treat-
ment assignment or of the practical “utility” of a treatment after taking into
account the “cost” (e.g., withdrawal from treatment due to side effects) of pre-
scribing the treatment. A pragmatic analysis addresses the following scientific
question: “What is the effect of starting on one particular treatment rather
than another?” In contrast, an “explanatory” analysis (Schwartz and Lellouch,
1967), often referred to as an “as treated” analysis, focuses on what is thought
to be the true underlying effects of the different treatments (e.g., the effects
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due to the biological or pharmacological properties of drug regimens). An
explanatory analysis addresses the following scientific question: “What is the
effect of a particular treatment if somehow all subjects randomized could be
persuaded to remain on their treatment assignment throughout the duration of
the study?” Regardless of the relative merits of pragmatic and explanatory
analyses, a pragmatic analysis is usually one of the required analyses that are
requested by the regulatory agencies (e.g., the U.S. Food and Drug Admin-
istration) for approval of new therapies or treatments. Consequently, clinical
study investigators often have the goal of producing a pragmatic analysis of
their data.

When there is dropout, and further repeated measures of the response can
be obtained following dropout (or, at least, on a random sample of those who
dropout), both pragmatic and explanatory analyses can be conducted. Further-
more, the results from pragmatic and explanatory analyses can be compared.
However, when no further repeated measures of the response are obtained fol-
lowing dropout, many of the methods widely used for analyzing longitudinal
data provide either an explanatory analysis or are somewhat ambiguous regard-
ing the type of analysis that is being conducted. Consequently, the results of
the analysis do not necessarily match the intended goal of the study.

To highlight the main differences between the pragmatic and explanatory
analysis, some additional notation is required. Let Y ∗

i j denote the response
for the i th subject at the j th occasion assuming that the subject remains on the
assigned treatment throughout the duration of the study. Note that this will be
“counter-factual” if the i th subject is a dropout. Let Yi j denote the actual
response for the i th subject at the j th occasion. Note that if a subject remains
on his or her treatment assignment throughout the study, then Yi j = Y ∗

i j . To
understand the key differences between the pragmatic and explanatory analysis,
we assume in what follows that further repeated measures of the response
can be obtained following dropout. The goal of a pragmatic analysis is to
make inferences about µi = E(Yi |Xi). In a longitudinal clinical study the
pragmatic analysis compares the treatment groups, as randomized, in terms of
the average rate of change in the outcome at all occasions, regardless of whether
measures were made when a subject was on or off the study protocol. Note
that the pragmatic analysis follows the intention-to-treat principle by including
all repeated measures on all individuals, without excluding any subjects or any
outcomes. In contrast, the goal of an explanatory analysis is to make inferences
about µ∗

i = E(Y ∗
i |Xi). Note that the explanatory analysis includes only outcome

data from individuals prior to dropout; the outcomes following dropout need
to be imputed in some manner, with the method of imputation conditioning
on the treatment group to which an individual was randomized rather than the
treatments actually received following dropout. Since the explanatory analysis
does not include “off-treatment” outcomes when they are available, it is in
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violation of the intention-to-treat principle of including outcome data from all
subjects at all possible occasions.

Next, consider some of the widely used ad hoc methods for handling
dropout discussed by Verbeke and Molenberghs. In the complete-case (CC)
analysis it is somewhat unclear what is the goal of the analysis since the referent
population can be somewhat ambiguous. However, if it can be assumed that
dropout is an MCAR process (i.e., the “study completers” are a random subset
of the sample), then the complete-case analysis provides an explanatory, rather
than a pragmatic, analysis. With an ad hoc imputation method such as LOCF, it
is unclear whether it represents an attempt to impute Y ∗

i j or Yi j ; as a result, it is
ambiguous whether the goal of the analysis is explanatory or pragmatic. More
principled methods for handling dropout, e.g., imputations based on propensity
scores, the direct likelihood approach advocated by Verbeke and Molenberghs,
and inverse probability weighting methods (e.g., Heyting et al., 1992; Robins,
Rotnitzky and Zhao, 1995), effectively impute Y ∗

i j since these methods condition
on the treatment to which the subject was randomized rather than the treatments
actually received. As a result, even these more principled methods provide an
explanatory, rather than a pragmatic, analysis.

In summary, when there is dropout in longitudinal clinical studies, it is not
generally appreciated that most of the commonly used methods for handling
dropout, including the direct likelihood approach recommended by the authors,
come closest to providing an inherently explanatory analysis. This fact appears
to have escaped the attention of many of the regulatory agencies that require
a pragmatic analysis as part of the approval process for new therapies or
treatments.

Finally, careful consideration of the objectives of the analysis of longitudi-
nal clinical studies raises important implications for study design. In particular,
when the main analytic goal is to produce a pragmatic analysis, studies should
be designed to take further measures of the outcomes following dropout, if
not on all subjects who dropout, then at least on a random subsample. The
additional outcome data following dropout can then be used for imputation
of the incomplete data, and both pragmatic and explanatory analysis can be
conducted. For example, Hogan and Laird (1996) describe a pattern-mixture
model-based approach for conducting a pragmatic analysis when further mea-
sures of the outcomes are available on a random sample of subjects who
dropout. An appealing aspect of their model is that it can be used to produce
both pragmatic and explanatory analyses. When it is not feasible to obtain
repeated measures of the outcome following dropout, then information on the
treatments actually received following dropout should be collected. The latter
information can then be used in an “imputation model” that conditions on the
treatments that were received rather than the treatment to which a subject was
randomized. Little and Yau (1996) refer to these as “as treated” imputations
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rather than “as randomized” imputations. If information on the treatments ac-
tually received following dropout cannot be collected, an imputation model
needs to be adopted that conditions on the treatments that were assumed to
have been received (Little and Yau, 1996). Given these imputed values, a
pragmatic analysis can then proceed by conducting analyses, applied to the
observed and imputed data, that compare the treatments as randomized. As
noted by Little and Yau (1996), in a pragmatic analysis the critical distinction
is between the model used for imputation and the model used for analysis. The
imputation model conditions on the treatments actually received (or makes as-
sumptions about the treatments actually received in the context of a sensitivity
analysis) rather than on the treatment randomized; while the analysis model is
based on the treatments as randomized, rather than on the treatments actually
received.

Once again, I congratulate Verbeke and Molenberghs for their interesting
overview of recent methods for the analysis of longitudinal data arising from
clinical studies and for highlighting the shortcomings of many ad hoc, but
widely used, methods for handling dropout. The methods for handling dropout
in current use lag far behind the advances in statistical methodology over the
last 25 years. Verbeke and Molenberghs have made sound recommendations
for the proper handling of missing data in the analysis of a longitudinal clinical
study; their article should be required reading for all statisticians and regulators
involved in the analysis of such a study.
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