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Abstract: The validation of surrogate endpoints has been studied by Prentice
(1989). He presented a definition as well as a set of criteria that are equivalent if
the surrogate and true endpoints are binary. Freedman (1992) supplemented these
criteria with the so-called proportion explained. Buyse and Molenberghs (1998)
proposed to replace the proportion explained by two quantities: (1) the relative
effect linking the effect of treatment on both endpoints and (2) the adjusted
association, an individual-level measure of agreement between both endpoints.
In this paper, we argue that a meta-analytic approach should be adopted because
it overcomes difficulties which necessarily surround validation efforts based on a
single trial.
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1 Introduction

Surrogate endpoints are referred to as endpoints that can replace or supplement
other endpoints in the evaluation of experimental treatments or other interven-
tions. For example, surrogate endpoints are useful when they can be measured
earlier, more conveniently, or more frequently than the endpoints of interest,
which are referred to as the “true” endpoints (Ellenberg and Hamilton 1989).
Prentice (1989) proposed a formal definition of surrogate endpoints and outlined
how potential surrogate endpoints could be validated. This framework was ex-
tended by Freedman’s proportion explained Freedman et al 1992). Buyse and
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Molenberghs (1998) proposed the relative effect and adjusted association. All of
these concepts are developed within the context of a single trial. In this paper,
we will show how they exhibit some fundamental problems that can be overcome
when shifting to a multiple-trial framework.

The paper starts with the case of a single trial (Section 2). In Section 2 we briefly
review Prentice’s definition and criteria. The proportion explained is introduced
in Section 2.1, and the relative effect and adjusted association in Section 2.2.
Problems with these concepts are discussed. The second part of the paper is
devoted to the case of multiple trials (Section 3), with further illustration of the
problems surrounding the proportion explained.

2 Data from a Single Trial

Throughout the paper, we will adopt the following notation: T and S are random
variables that denote the true and surrogate endpoints, respectively, and Z is an
indicator variable for treatment. For ease of exposition, we will assume that S and
T are normally distributed. The effect of treatment on S and T can be modelled
as follows:

Si|Zi = µ
S

+ ÆZi + "
Si, (1)

Ti|Zi = µ
T

+ ØZi + "
T i, (2)

where i = 1, . . . , n indicates patients, and the error terms have a joint zero-mean
normal distribution with covariance matrix

Σ =
æ

SS

æ
ST

æ
T T

. (3)

In addition, the relationship between S and T can be described by a regression
of the form

Ti|Si = µ + ∞Si + "i. (4)

Prentice (1989, p. 432) proposed to define a surrogate endpoint as “a response
variable for which a test of the null hypothesis of no relationship to the treatment
groups under comparison is also a valid test of the corresponding null hypothesis
based on the true endpoint”.

Prentice derived operational criteria that are equivalent to his definition. These
criteria require that: (1) treatment has a significant impact on the surrogate
endpoint; (2) treatment has a significant impact on the true endpoint; (3) the
surrogate endpoint has a significant impact on the true endpoint; and (4) the
full effect of treatment upon the true endpoint is captured by the surrogate. The
last criterion is verified through the conditional distribution of the true endpoint,
given treatment and surrogate endpoint, derived from (1)–(2):

Ti|Zi, Si = µ̃
T

+ Ø
S

Zi + ∞
Z

Si + "̃
T i, (5)
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where

Ø
S

= Ø ° æ
T S

æ°1
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Æ, (6)

∞
Z
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T S

æ°1

SS

, (7)

and the variance of "̃
T i is given by

æ
T T

° æ2

T S

æ°1

SS

. (8)

It is usually stated that the fourth criterion requires that the parameter Ø
S

be
equal to zero (see also Section 2.2). Buyse and Molenberghs (1998) showed that
the last two criteria are necessary and sufficient for binary responses, but not in
general.

2.1 The Proportion Explained

Freedman et al (1992) argued that the last Prentice criterion raises a conceptual
difficulty since it requires the statistical test for treatment effect on the true
endpoint to be non-significant after adjustment for the surrogate and proposed
to calculate the proportion of the treatment effect mediated by the surrogate:

PE =
Ø ° Ø

S

Ø
,

with Ø
S

and Ø obtained respectively from (5) and (2). In this paradigm, a valid
surrogate would be one for which the proportion explained (PE) is equal to one.
In practice, a surrogate would be deemed acceptable if the lower limit of its
confidence interval of PE was “sufficiently” large.

Some difficulties surrounding the PE have been described in the literature (Buyse
and Molenberghs 1998, Daniels and Hughes 1997, Volberding et al 1990, Choi et
al 1993, Lin et al 1997, Flandre and Saidi 1999). PE will tend to be unstable when
Ø is close to zero, a situation that is likely to occur in practice. The confidence
limits of PE will tend to be rather wide (and sometimes even unbounded if Fieller
confidence intervals are used), unless large sample sizes are available or a very
strong effect of treatment on the true endpoint is observed. Another complication
arises when (5) is not the correct conditional model, and an interaction term
between Zi and Si needs to be included. In that case, defining the PE becomes
problematic.

2.2 The Relative Effect and Adjusted Association

Buyse and Molenberghs (1998) suggested to calculate another quantity for the
validation of a surrogate endpoint: the relative effect (RE), which is the ratio of
the effects of treatment upon the final and the surrogate endpoint. Formally:

RE = Ø/Æ. (9)
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They also considered the treatment-adjusted association between the surrogate
and the true endpoint: Ω

Z

= æ
ST

/
p

æ
SS

æ
T T

. Now, a simple relationship can be
derived between PE, RE, and Ω

Z

. Let us define ∏2 = æ
T T

æ°1

SS

. It follows that
∏Ω

Z

= æ
ST

æ°1

SS

and, from (6), Ø
S

= Ø ° Ω
Z

∏Æ. As a result, we obtain

PE = ∏Ω
Z

Æ
Ø

= ∏Ω
Z

1
RE

. (10)

2.3 Problems With Single-Trial Measures

Expression (10) allows us to make several useful observations. It is clear from (10)
that the PE is not a proportion. Indeed, each of ∏ and RE can take values over
the entire real line. Further, it is hard to interpret PE because it amalgamates
three sources of information: (1) the adjusted assocation Ω

Z

, which is a measure of
association between the surrogate and the true endpoints at the individual level ;
(2) the RE, which expresses the relationship between the treatment effects on
the surrogate and the true endpoint at the trial level ; (3) the variance ratio ∏2,
which is a nuisance parameter, not to be viewed as a useful validation measure.

The fact that the PE is ill defined, except in trivial cases, and the relation-
ship between the three measures introduced above, will be studied by means of
three thought experiments. The first two experiments concentrate on “perfect”
conditions, while the last one focuses on general conditions.

Thought Experiment 1. The PE is obviously equal to one in simple situations
of perfect surrogacy, for instance if T is linearly related to S (T = aS + b), for
then (1) and (2) can be rewritten as

Si|Zi = µ
S

+ ÆZi + "
Si, (11)

Ti|Zi = b + aµ
S

+ aÆZi + a"
Si, (12)

and obviously Ω
Z

= 1, ∏ = a and RE = a.

However, it is possible to construct examples where PE can be chosen to take
any arbitrary (positive) value, depending on the values of Ω

Z

, ∏ and RE. To this
end we conduct two further thought experiments.

Thought Experiment 2. Assume Ω
Z

= 1 and RE = 1, and suppose further that
we could reduce (increase) the variance of the surrogate endpoint while keeping
all other quantities unaffected, say by improving (deteriorating) the precision of
its measurement. Then, (1)–(2) would become

Si|Zi = µ
S

+ ÆZi + "
Si, (13)

Ti|Zi = µ
S

+ ÆZi + ∏"
Si. (14)

∏ is arbitrary and hence so is PE, despite the fact that (13)–(14) describe a very
desirable situation. The key behind this somewhat artificial and counterintuitive
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thought experiment is that the systematic components are kept constant, the ran-
dom error terms are in perfect correlation. Then, knowledge about the surrogate
endpoint enables exact prediction of the true endpoint: E[Ti|Zi, Si] = Ti. Now,
we would like to call the situation described by (13)–(14) “perfect”, even though
PE may not be equal to one, nor Ø

S

equal to zero. This casts doubts on the
fourth Prentice criterion, which states that the full effect of treatment should be
captured by the surrogate, even though this criterion has much intuitive appeal.
In the above example, the conditional distribution of the true endpoint, given
treatment and surrogate endpoint, is

Ti|Zi, Si = µ̃
T

+ Æ(1° ∏)Zi + ∏Si, (15)

which shows that the true endpoint does depend on treatment, although the
residual, unexplained, variability in the true endpoint has been eliminated. Then,
(8) vanishes, which is equivalent to stating that Ω

Z

= 1. This suggests to focus
on the adjusted association, rather than on the adjusted treatment effect upon
the true endpoint. Note that perfection in this context has no implication for the
surrogate across trials. To study the latter very important quality it is necessary
to turn to RE or even to a multi-trial setting (Section 3).

Thought Experiment 3. We will now switch to general conditions and consider
two transformations of the surrogate endpoint:

S(1)

i = ¡Si + √ = (¡µ
S

+ √) + ¡ÆZi + ¡"
Si, (16)

S(2)

i = µ
S

+ ÆZi + ¡"
Si. (17)

Note that the second transformation cannot be conducted through a simple trans-
formation of a dataset variable. It might refer, for example, to a situation in a
sequence of trials where at some point the precision changed due to a change in
instrument or method used to measure the surrogate.

Transformation (16) operates on the fixed and random parts of the surrogate end-
point alike whereas transformation (17) operates on the random part only. The
second transformation is similar to one in the second thought experiment, except
that we now consider the general rather than the perfect situation. It is easy to
show that the following relationships hold between the validation measures:

RE(1) = RE/¡, Ω(1)

Z

= Ω
Z

, ∏(1) = ∏/¡, PE(1) = PE,

RE(2) = RE, Ω(2)

Z

= Ω
Z

, ∏(2) = ∏/¡, PE(2) = PE/¡,

with obvious notation. Thus, for transformation (16) there is no impact on the
PE, but under (17), PE is rescaled with an arbitrary amount.

There are also problems with the RE. Indeed, while the adjusted association
expresses agreement between both endpoints at the individual level, the trialist
will want to know how the trial-specific treatment effect on T can be predicted
from the treatment effect on S. RE serves this purpose, but it is typically based
on information from only one trial. It might not be constant for all trials testing
the therapeutic question under consideration. The constancy of RE implies that
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the relation between Æ and Ø is linear through the origin. This assumption may
be untenable in practice, and it cannot be verified from a single trial. Therefore,
it will prove useful to adopt an alternative definition of surrogacy based on a
meta-analysis of several trials.

3 Data from Several Trials

Using ideas from Buyse et al (2000), we now extend the setting and notation
by supposing we have data from i = 1, . . . , N trials, in the ith of which j =
1, . . . , ni subjects are enrolled. We denote the true and surrogate endpoints and
the treatment indicator by Tij , Sij , and Zij , respectively.

Linear models (1) and (2) can be rewritten as:

Sij |Zij = µ
Si + ÆiZij + "

Sij , (18)

Tij |Zij = µ
T i + ØiZij + "

T ij , (19)

where µ
Si and µ

T i are trial-specific intercepts, Æi and Øi are trial-specific effects
of treatment Z on the endpoints in trial i, and "

Si and "
T i are correlated error

terms, assumed to be mean-zero normally distributed with covariance matrix (3),
as before. Due to the replication at the trial level, we can impose a distribution
on the trial-specific parameters with mean (µ

S

, µ
T

, Æ, Ø)T and covariance matrix

D =

d
SS

d
ST

d
Sa d

Sb

d
T T

d
Ta d

Tb

daa dab

dbb

. (20)

These authors introduced trial-level and individual-level measures of surrogacy:

R2

trial

=

d
Sb

dab

T
d

SS

d
Sa

d
Sa daa

°1

d
Sb

dab

dbb
. (21)

and

R2

indiv

= R2

"
T i

|"
Si

=
æ2

ST

æ
SS

æ
T T

,

We have argued at the end of Section 2 that, while the concept behind the
fourth Prentice criterion has intuitive appeal, it is not captured by the PE. We
also argued that RE is based on too strong assumptions to be useful. Having
introduced measures of surrogacy at the trial-level and at the individual-level, it
is now possible to explore these issues further.

The proportion explained (10), derived in Section 2.1 for the single-trial case, can
be calculated for each trial within the meta-analysis:

PEi = ∏Ω
Z

1
REi

, (22)
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where REi = Øi/Æi.

Let us now examine how the PEi behaves relative to the R2 measures. To make
the point clearly, it is useful to concentrate on a “perfect” surrogate, i.e., one for
which R2

trial

= 1 and R2

indiv

= Ω2

Z

= 1.

Perfect Surrogate at the Trial Level. Let us first assume that the surrogate
is perfect at the trial level, i.e., R2

trial

= 1. Then the relationship between Æi and
Øi is deterministic, and (22) becomes

PEi = Ω
Z

∏
Æi

µ
0

+ µaÆi + µmµ
Si

, (23)

with obvious notation. Thus, even if the important condition R2

trial

= 1 is satisfied,
and one can predict the treatment effect on the true endpoint without error from
the treatment effect on the surrogate endpoint, PEi cannot be constant across
trials, and consequently would not be equal to unity in all of them. Note that
also REi is not constant across trials. The reason is that for REi to be constant
the relationship between Æi and Øi must be multiplicative.

Perfect Surrogate at the Individual Level. Let us now make the additional
assumption that the surrogate is also perfect at the individual level, i.e., Ω

Z

= 1.

In this case, (23) becomes

PEi = ∏
Æi

µ
0

+ µaÆi + µmµ
Si

. (24)

and the property of non-constant PEi and REi persists, again due to the linear
but non-multiplicative relationship between Æi and Øi.

Constant Relative Effect. Let us make the final assumption that a simple
multiplicative relationship holds between Æi and Øi, i.e., µ

0

= µm = 0 and hence
REi = µa. Thus,

PE = PEi =
∏
µa

. (25)

Now, REi is constant and so is PEi, but the latter is still a function of two
quantities: (1) the multiplicative factor µa linking the treatment effects in each
trial and (2) the multiplicative factor ∏ linking the two error terms in each patient.

Clearly, under the three asumptions made above, the surrogate and true end-
points are identical, up to scaling factors that translate the treatment effects
within a trial and the subject-specific deviations within each patient. Yet, de-
pending on the values of µa and ∏, the PE can assume any positive real value.

4 Discussion

In this note, we have argued that a classical approach to surrogate marker valida-
tion, based on the Prentice criteria and measures derived therefrom, such as the
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proportion explained and the relative effect, is surrounded with difficulties. We
have argued a meta-analytic framework is both more elegant and more principled.
Meta-analytic developments, similar to the ones done here for normal outcomes,
have been done for binary, survival, and longitudinal outcomes, and for situations
where the true and surrogate outcomes are of a different type.
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