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A B S T R A C T

Background: Asthma and allergic diseases are among the common causes of morbidity and mortality globally.
Various environmental pollutants are linked to the development of asthma and allergic diseases. Evidence on the
role of oxidative stress and immune markers in the association of environmental pollutants with asthma and
allergy is scant. We examined cross-sectional associations between environmental pollutants and asthma and
allergy, investigated mixture effects and possible mediation by oxidative stress or immune markers.
Methods: We used data from the Flemish Environment and Health Study 2016–2020 (FLEHS IV), including 409
adolescents aged 13–16 years. Fifty-four pollutants, including metals, phthalates, Di(isononyl) cyclohexane-1,2-
dicarboxylate (DINCH), bisphenols, currently used and legacy pesticides, flame retardants, per- and poly-
fluoroalkyl substances (PFAS), polyaromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) were
analyzed. Outcomes were self-reported asthma, rhinitis, eczema, allergies, respiratory infection, and airway
inflammation, measured through fractional exhaled nitric oxide (FeNO). Single pollutant models using multiple
regression analysis and multipollutant models using Bayesian Kernel Machine Regression (BKMR) were fitted. As
sensitivity analysis, Bayesian model averaging (BMA) and elastic net (ENET) models were also performed. For
Bayesian models, posterior inclusion probabilities (PIP) were used to identify the most important chemicals.
Mediation analysis was performed to investigate the role of oxidative stress, measured by urinary 8-hydroxy-2’
-deoxyguanosine (8-OHdG), and immune markers (eosinophils, basophils, InterLeukin 8, InterLeukin 6, and
Interferon-ᵧ in blood).
Results: In single pollutant models, FeNO was significantly higher by 20% (95% CI: 6, 36%) and 13% (95% CI: 2,
25%) per interquartile range (IQR) fold in mono-n-butyl phthalate (MnBP) and mono-benzyl phthalate (MBzP),
respectively. In BKMR analysis, the group PIPs indicated phthalates and DINCH as the most important group
(group PIP = 0.509), with MnBP being the most important pollutant within that group (conditional PIP = 0.564;
%change = 28%; 95%CI: 6, 54%). Similar patterns were observed in all multipollutant models. Eosinophil count
mediated 37.8% (p = 0.018) and 27.9% (p = 0.045) of the association between MBzP and FeNO, and the as-
sociation between MnBP and FeNO, respectively. 8-OHdG plays a significant mediating role in the association of
2,4-Dichlorophenoxyacetic acid (2,4-D) (55.4%), 3,5,6-Trichloro-2-pyridinol (TCPY) (48.1%), and 1-Naphthyl-
amine (1-NAP) (32.7%) with rhinitis, while the total effects of these chemicals on rhinitis were not statisti-
cally significant.
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Conclusions: This study found associations between phthalates, MnBP and MBzP, and elevated FeNO, which
appeared to be mediated by eosinophil count. 8-OHdG plays a significant mediating role in the association
between 2,4-D, TCPY, and 1-NAP with rhinitis, while their direct effects remain non-significant. Use of in-
flammatory and oxidative stress markers can enhance the understanding of inflammatory processes in asthma
and allergic diseases due to environmental pollutants.

Abbreviations

1-OH PYR 1-Hydroxypyrene
2,4-D 2,4-Dichlorophenoxyacetic acid
2-OH NAPH 2-Hydroxynaphthtalene
2-OH PHE 2-Hydroxyphenantrene
3-OH PHE 3-Hydroxyphenantrene
3-PBA 3-Phenoxybenzoic acid
4-OH PHE 4-Hydroxyphenantrene
4-OH-DPHP 4-hydroxyphenyl phenyl phosphate
5cx-MEPP mono(2-ethyl-5-carboxy- pentyl) phthalate
5-OH-EHDPHP 2-ethyl-5-hydroxyhexyl diphenyl phosphate
5OH-MEHP mono-2-ethyl-5-hydroxyhexyl phthalate
5oxo-MEHP mono-2-ethyl-5-oxohexyl phthalate
8-OHdG 8-hydroxy-2’ -deoxyguanosine
AMPA Aminomethylphosphonic acid
As III Arsene(III)
As V Arsene(V)
AsB Arsenobetaïne
BBOEHEP 2-hydroxyethyl bis(2-butoxyethyl) phosphate
BBOEP bis(2-butoxyethyl) phosphate
BCIPHIPP 1-hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate
BCIPP bis(1-chloro-2-propyl) phosphate
BDCIPP bis(1,3-dichloro-2-propyl) phosphate
BDE Brominated diphenylether
BKMR Bayesian kernel machine regression
BMA Bayesian model averaging
BPA Bisphenol A
BPAF Bisphenol AF
BPB Bisphenol B
BPF Bisphenol F
BPS Bisphenol S
BPZ Bisphenol Z
Cd Cadmium
Cd Cadmium
cPIP Conditional posterior inclusion probability
Cu Copper
CXMIDP mono(6-carboxy-isodecyl) phthalate
DDE Dichloro-diphenyl-dichloroethylene
DDT Dichloro-diphenyl-trichloroethane
DINCH Di-(iso-nonyl)-cyclohexane-1,2-dicarboxylate
DMA Dimethyl arsenate
DNBP di-n-butyl phosphate
DPHP diphenyl phosphate
EHPHP 2-ethylhexyl phenyl phosphate
ENET Elastic net
FeNO Fractional exhaled nitric oxide
FLEHS Flemish Environment and Health Study
Gly Glyphosate
gPIP Group posterior inclusion probability
HCB Hexachlorobenzene
IFN-ᵧ Interferon gamma
IL Interleukin
ISCED International Standard Classification of Education
LOD Limit of detection
LOQ Limit of quantification
MBzP mono-benzyl phthalate
MCOCH cyclohexane-1,2-dicarboxylic mono carboxyisooctyl ester
MCOCH cyclohexane-1,2-dicarboxylic mono carboxyisooctyl ester
MCOP mono(7-carboxy-isononyl) phthalate
MEHA mono(2-ethylhexyl) adipate
MEHP mono-2-ethylhexyl phthalate
MEHTP mono(2-ethylhexyl) terephthalate
MEP Monoethyl phthalate
MHNCH cyclohexane-1,2-dicarboxylic mono hydroxyisononyl ester
MHNP mono(7-hydroxy-isononyl) phthalate
MiBP mono-isobutyl phthalate
MINCH cyclohexane-1,2-dicarboxylic mono isononyl ester
MMA Mono methyl arsenate

(continued on next column)

(continued )

Mn Manganese
MnBP mono-n-butyl phthalate
OHMEHA mono(2-ethyl-5-hydroxyhexyl) adipate
OHMEHTP mono(2-ethyl-5-hydroxyhexyl) terephthalate
OHMIDP mono(6-hydroxy-isodecyl) phthalate
OH-TPHP hydroxyphenyl diphenyl phosphate
OXC Oxychlordane
OXOMIDP mono(6-oxo-isodecyl) phthalate
PAH Polycyclic aromatic hydrocarbon
Pb Lead
PCB Polychlorinated biphenyls
PFAS Per- and Polyfluoroalkyl Substances
PFBS perfluorobutaansulnoic acid
PFDA perfluorodecnoic acid
PFDoDA perfluorododecaanoic acid
PFHpA perfluoroheptanoic acid
PFHpS perfluoroheptaansulfnoic acid
PFHxA perfluorohexanoic acid
PFHxS perfluorohexaansulfnoic acid
PFNA perfluorononnoic acid
PFOA perfluorooctnoic acid
PFOS perfluorooctaansulnoic acid
PFPeA perfluoroplonganoic acid
PFUnDA perfluoroundecaanoic acid
PIP Posterior inclusion probability
SDEHTM di(2-ethylhexyl) trimellitate
SG Specific gravity
t,t’-MA T,t’-muconic acid
TC Total cholesterol
TCEP tris(chloroethyl) phosphate
TCPᵧ 3,5,6-Trichloro-2-pyridinol
TG Triglycerides
Tl Thallium
TN Trans-nonachlor
β-HCH Beta hexachlororcyclohexane

1. Background

Asthma and allergic diseases are prevalent conditions affecting mil-
lions of people worldwide, impacting quality of life and, in severe cases,
posing significant health risks (World Health Organization). Asthma is a
chronic condition characterized by inflammation of airways, leading to
symptoms such as wheezing, coughing, and shortness of breath (World
Health Organization, 2024). It is a significant cause of hospitalizations
and emergency visits (Kang et al., 2023). Allergic rhinitis involves an
immune response to allergens that leads to swelling of nasal mucosa and
excessive mucus production, resulting in symptoms resembling common
cold, such as runny nose, sneezing, and itching. Eczema manifests as
inflamed, itchy, and dry skin due to an immune response. In 2019, the
global prevalence of asthma was estimated to exceed 260 million cases,
while atopic dermatitis (eczema) affected over 170 million individuals
(Shin et al., 2023a), posing a substantial burden on healthcare systems
worldwide. Allergic rhinitis is the most common airway disease and
most costly respiratory condition at population level due to high prev-
alence (Dierick et al., 2020).

The development of asthma and allergic diseases involves a complex
interplay between genetic and environmental factors. Various environ-
mental pollutants may increase the risk of developing asthma and al-
lergy and/or aggravate symptoms (Thomsen, 2015). Exposure to
allergens from trees and grasses (pollen), mold, animals such as cats and
dogs, insects, and pollutants are environmental risk factors (Murrison
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et al., 2019). Although findings are mixed, exposure to per- and poly-
fluoroalkyl substances (PFAS), persistent pollutants most widely used in
industry and consumer products, are related to immune responses,
asthma and allergy related diseases (Kvalem et al., 2020). Systemic and
inhaled PFAS are found to trigger pulmonary pro-inflammatory re-
sponses (Ryu et al., 2014). However, epidemiological studies show
inconsistent results, with some studies on children and adolescents
reporting no significant associations between PFAS and asthma or al-
lergies (Rappazzo et al., 2017; Gaylord et al., 2019), while few studies
reported a significant positive association (Jackson-Browne et al., 2020;
Averina et al., 2019) or a significant inverse relationship (van Larebeke,
2023). Similarly, some phthalates, a group of pollutants mainly used as
plasticizers, might increase the risk of asthma and allergies through
pathological changes or exacerbate already-existing conditions and in-
crease severity of symptoms (Franken et al., 2017; Zhou et al., 2020).
Exposure to metals including cadmium, molybdenum, copper, chro-
mium, and selenium is suggested to be linked with increased incidence
of asthma and allergic symptoms in children (Gasana et al., 2012; Huang
et al., 2016). Limited epidemiological studies have examined the asso-
ciation of pesticides, including organophosphates, organochlorines and
pyrethroids, with asthma, yielding inconsistent findings (Ratanachina
et al., 2020; Ye et al., 2016). Exposure to PCBs during the prenatal
period has also been linked to increased risk of eczema in childhood
(Parker-Lalomio, 2018; Hara, 1985). Moreover, exposure to poly-
aromatic hydrocarbons (PAHs) has been linked to inflammation and
impairment of lung function (Mattila et al., 2021). Moreover, PAHs are
found to induce oxidative stress (Gammon et al., 2008), which could
lead to lung inflammation.

Various biological mechanisms have been shown to play a role in the
pathogenesis of asthma including inflammation, immune modulation,
oxidative stress, and epithelial and endothelial dysfunctions (Karimi
et al., 2015). Internal exposure to environmental pollutants, such as
dioxins, metals, PFAS, and phthalates, has been shown to increase the
production of reactive oxygen species (ROS), leading to oxidative stress
and DNA damage (Omoike et al., 2021; Brassea-Pérez, 2022). Oxidative
stress may underlie various physiological and pathological processes,
which in turn might result in systemic inflammation and chronic dis-
eases (Verheyen et al., 2021). While the role of oxidative stress has been
extensively studied in diseases like diabetes mellitus, cardiac diseases,
cancer, and neurodegenerative disorders (Senoner et al., 2019; Hayes
et al., 2020), limited evidence exists regarding its involvement in the
development of asthma and allergies (Franken et al., 2017). Likewise,
exposure to environmental pollutants is related to adverse effects on the
immune system (Rogers et al., 2021; Suzuki et al., 2020). Environmental
pollutants and chemicals can trigger immune responses, resulting in the
production of immune markers like cytokines, chemokines, and immu-
noglobulin E (IgE) (Ehrlich et al., 2023). These markers contribute to
airway inflammation, bronchoconstriction, and mucus overproduction,
all of which are characteristic of asthma. Pollutant exposure also dis-
rupts immune function and induces oxidative stress, further driving
inflammation (Suzuki et al., 2020). Due to chronic inflammation,
oxidative stress and immune markers may play a crucial role in the
development and progression of asthma and other allergic diseases (Kim
et al., 2007; Lombardi et al., 2022). Thus, it is necessary to investigate
the role of oxidative stress and immune markers in the association be-
tween environmental pollutants and asthma and allergic diseases.
8-hydroxy-2-deoxyguanosine (8-OHdG), a urinary product of oxidative
damage to 2′-deoxyguanosine, is stabile in urine, making it a sensitive
and important biomarker for oxidative stress (Valavanidis et al., 2009).

Many studies primarily focus on assessing the effects of individual
pollutants, providing limited knowledge about the impact of exposure to
multiple pollutants. In real life, people are exposed to multiple pollut-
ants simultaneously, and it is crucial to investigate individual and
multipollutant associations with the occurrence of asthma and allergy.
Therefore, this study examined the association of a mixture of pollutants
on asthma, exhaled nitric oxide (FeNO), and allergy-related health

outcomes, and evaluated the individual contributions of each pollutant
to the overall mixture association. We also investigated the mediation
role of oxidative stress and immune markers in the association between
environmental pollutants and asthma and allergy.

2. Methods and materials

2.1. Study setting and population

This study used data from the Flemish Environment and Health
Study 2016–2020 (FLEHS IV). The sampling process took place between
September 2017 and June 2018, employing a two-stage clustered
stratified sampling procedure. The first stage involved stratification
based on provinces of Flanders. The number of participants was pro-
portional to the number of inhabitants per province. The second stage
sampling units were schools, randomly selected within each province.
To improve representativeness in terms of geographical coverage,
schools had to be at least 20 km apart, and to ensure representation of all
socio-economic categories, one school with a higher proportion of so-
cially deprived students was included in each province. A total of 20
schools were selected across 5 provinces. Inclusion criteria were: 1)
participants needed to reside in Flanders for at least five years, and 2)
study participants and parents needed to have sufficient proficiency in
Dutch to complete questionnaires. Exclusion criteria were: 1) failure to
complete all questionnaires, 2) missing blood and urine samples, 3)
repeating a school year more than once, or 4) attending a boarding
school. Further details about the study are available elsewhere
(Schoeters et al., 2022). A total of 428 adolescents aged 13–16 years
participated in the FLEHS IV study. Among them, 19 either reported as
current smokers or had missing data on smoking and were excluded
from this analysis, resulting in a final sample size of 409 participants.

2.2. Sample collection and processing

During the clinical examination, spot urine and blood samples were
obtained. Urine samples were stored in clean, metal-free polyethylene
containers at 4 ◦C and processed for further storage within 24 h. Poly-
propylene tubes were used for measuring biomarkers related to benzene,
PAHs, and arsenic species, whereas metal-free polyethylene tubes were
used for measurement of other metal biomarkers. Arsenic species were
measured in urine samples that were stored at 4 ◦C and analyzed within
24 h. All samples, except those for benzene and 8-OHdG biomarkers,
were stored at − 20 ◦C until analysis. The samples for benzene bio-
markers were kept at − 80 ◦C. Blood samples were immediately pro-
cessed, and separate portions of whole blood and serum were obtained.
These aliquots were carefully preserved at 4 ◦C and then stored either at
− 20 ◦C or − 80 ◦C within 12 h in a centralized laboratory (Flemish
Institute for Technological Research (VITO), Belgium). For blood cell
count measurement, samples were stored at 4 ◦C and analyzed within
24 h. After the completion of the field work, all samples, along with field
work blanks and control samples, were shipped to the analytical labo-
ratories for analysis.

2.3. Measurement of exposure biomarkers

2.3.1. Biomarkers measured in urine
Metals including inorganic arsenic (As), cadmium (Cd) and thallium

(Tl) were measured in urine. Metabolites of PAHs and benzene were also
measured in urine. Plastic compounds including metabolites of phtha-
lates, DINCH, bisphenols and organophosphate flame retardants
(OPFRs) were measured in urine. To assess exposure to currently used
pesticides, biomarkers of pyrethroids, chlorpyrifos, phenoxy herbicide
2,4-dichlorophenoxyacetic acid (2,4-D) and glyphosate (GLY) and its
metabolite aminomethylphosphonic acid (AMPA) were measured in
urine.
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2.3.2. Biomarkers measured in blood
Metals including copper (Cu), lead (Pb), and manganese (Mn) were

measured in whole blood. Legacy pesticides, such as beta-and gamma-
hexachlorocyclohexane (β-HCH and γ-HCH), p,p’-dichloro-diphenyl-
trichloroethane (DDT) and metabolites were measured in serum sam-
ples. PFAS, markers of PCBs and polybrominated diphenyl ethers
(PBDEs) were measured in blood serum samples. Details of the measured
pollutants, analytical methods and limits of detection and quantification
are available elsewhere (Schoeters et al., 2022) and in the supplement
(Table S1).

Total cholesterol (TC) and triglycerides (van Larebeke, 2023) were
also measured in blood serum. The total lipid (TL) concentration was
calculated using the formula: TL(mg /dL) = 2.27 * TC+ TG+ 62.3 mg/
dL (Bernert et al., 2007), and was used to standardize lipid-soluble
serum biomarkers (biomarkerlipid = 100* biomarkermeas/lipid). Likewise,
specific gravity was determined in urine and urinary biomarker con-
centrations were normalized for SG using the following formula:
biomarkerSG = biomarkermeas*(1.024 − 1) /(SG − 1), where biomarkerSG
is the normalized biomarker concentration, biomarkermeas is the
measured biomarker concentration per liter urine and SG as the specific
gravity of the urine sample (Pearson et al., 2009).

2.3.3. Assessment of health outcome and effect biomarkers
Before clinical examination, teenagers filled out questionnaires on

health status and lifestyle patterns. The presence/absence of asthma
(last year), rhinitis (ever), eczema (ever), skin allergy to products (last 5
years), any kinds of allergy (food, medicines, insect bites, metal, care
products, household and maintenance products) (last 5 years), and
respiratory infection (last year) were obtained from a questionnaire
adapted from the International Study of Asthma and Allergies in
Childhood (ISAAC) (Asher et al., 1995). The questions and algorithm
used to determine health outcomes is available in the supplementary
materials (Table S3). Furthermore, FeNO was measured using a breath
test with the NIOX Vero device (Circassia AB, Belgium).

2.3.4. Assessment of mediators (oxidative stress and immune markers)
The level of 8-OHdG was determined in urine using a competitive

enzyme-linked immunosorbent assay (ELISA) kit (Japan Institute for the
Control of Aging, Shizuoka, Japan), according to manufacturer’s in-
structions. The determination range was 0.5–200 ng/mL and the anti-8-
oxodG mouse monoclonal antibody (clone N45.1) was used as a primary
antibody, which has an established specificity (Toyokuni et al., 1997).
The values from each urine sample were calculated based on calibration
sigmoid plots of absorbance (450 nm) of an 8-oxodG standard at various
concentrations.

Leukocyte count and leukocyte subtype (neutrophils, lymphocytes,
monocytes, eosinophils, and basophils) distribution (percentage) were
assessed using a Sysmex XE-2100 instrument for hematology analysis
(Sysmex Corporation, Kobe, Japan), a widely used automated hema-
tology system that combines flow cytometry with fluorescence detec-
tion, using a diode laser bench (Nakul-Aquaronne, 2003). Counts of
leukocyte subtypes were subsequently calculated by multiplying the
subtype fraction with the total leukocyte count. To determine cytokine
levels, a validated pro-inflammatory cytokine panel from MSD was
selected (Meso Scale Discovery, Rockville, MD, USA), consisting of nine
cytokines that play an important role in the immune response:
interferon-gamma (IFN-ᵧ), tumor necrosis factor alpha (TNF-α) and the
interleukins IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-13. Individual cytokine
concentrations were determined using a high-performance immuno-
assay (MSD MESO QuickPlex) (MESO QuickPlex SQ 120, 2024). Each
sample was measured twice according to the manufacturer’s protocol to
optimize the accuracy of the measurement results and expressed as pi-
cograms per milliliter of serum (pg/mL) and the average of the two
measurements is used for the statistical analyses.

2.3.5. Covariate assessment
Before sample collection, adolescents and their parents filled out

questionnaires on health status and lifestyle patterns. Participant age,
sex, highest educational level of the household (the highest of either of
the parents), passive smoking (being in the house or elsewhere where
people smoke at least once a week) and other relevant participant
characteristics were obtained from questionnaires. The classification of
the highest educational level of the household was based on the Inter-
national Standard Classification of Education (ISCED) developed by the
United Nations Educational, Scientific and Cultural Organization
(Statistics, 2012). Low education was defined as no secondary to lower
secondary education (ISCED level 0–2), medium education as having
attained upper secondary to post-secondary non-tertiary education
(ISCED level 3–4), and high education as having attained tertiary edu-
cation or higher (ISCED level ≥5).

2.3.6. Statistical analysis
We assessed the distribution of variables, including measures of ex-

posures, mediators, and effect biomarkers. To mitigate distributional
skewness, we applied natural log-transformation to exposure bio-
markers, mediators, and FeNO. Exposure biomarkers and mediators
with detection rates below 70% were excluded from further analysis. As
a result, a total of 54 exposure biomarkers including 5 metals, 3 pesti-
cides, 6 PCBs, 6 Organochlorine (OC) pesticides, 4 PFAS, 4 PAHs, 1
benzene metabolite - trans,trans-muconic acid, 6 OPFRs, 3 bisphenols,
16 phthalates, DINCH & alternative plasticizers, and 5 mediators (8-
OHdG, eosinophils (total), basophils (total), IL8, IFN-ᵧ) were included in
the present analysis. Limit of detection/Limit of quantification (LOD/
LOQ) and percent above the limit are available in the supplementary
material (Tables S1 and S2). For exposures and mediators included in
the analysis, values below the LOD/LOQ were imputed using single
random imputation from a censored lognormal distribution. Urinary
exposure markers and 8-OHdG were normalized for SG and lipid-soluble
blood markers (PCBs and BDEs) were standardized for total lipid using
this formula: biomarkerlipid = 100* biomarkermeas/lipid).

Characteristics of participants and health outcomes were summa-
rized using absolute and relative frequencies for categorical variables
and median with 1st (P25) and 3rd quartile (P75) for continuous mea-
sures. Exposure biomarkers and mediators were also summarized using
median with P25 and P75. To describe the correlations between con-
centrations of exposure biomarkers, pairwise Pearson correlations were
computed on ln-transformed values.

Associations between pollutant concentrations and FeNO were
assessed using (single pollutant) linear regression models, adjusted for
covariates, age (in years), sex, ISCED (low/medium/high), and passive
smoking (yes/no), which were selected based on Directed Acyclic Graph
(DAG) (Fig. S1). In addition, in case of pollutants measured in urine, the
model incorporated SG, while for lipid-soluble biomarkers, total lipid
was included as a covariate as suggested by O’Brien KM et al. (O’Brien
et al., 2016). Ln-transformed pollutant concentrations and FeNO were
used in the regression analysis. Associations between exposures and
binary health outcomes were assessed using logistic regression adjusted
for the same set of covariates.

In addition to single pollutant models, we performed multi-pollutant
analysis using Bayesian kernel machine regression (BKMR). BKMR is a
non-parametric approach that models the exposure-response relation-
ship using a kernel function that considers potential interactions be-
tween exposures and captures possible nonlinear associations between
exposure and outcomes (Bobb et al., 2015). The BKMR model was per-
formed with at least 50,000 iterations by Markov chain Monte Carlo
(MCMC) sampler with a hierarchical selection to group of pollutants a
priori using the bkmr package in R. We used a Gaussian distribution for
continuous outcome (FeNO) and a binomial distribution with a probit
link function for binary health outcomes. Models were adjusted for the
same set of covariates as in the single-pollutant models. We estimated
the group (gPIP) and conditional (within-group) posterior inclusion
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probabilities (cPIP), the univariate exposure-outcome relationships with
all other exposures fixed to their 50th quantile, and the overall pollutant
mixture association with asthma and allergy related outcomes. To check
for consistency, we performed additional multi-pollutant models using
Bayesian Model Averaging (BMA) (Clyde et al., 2011) and elastic net
(ENET) models (Zou et al., 2005). BMA is an algorithm for Bayesian
variable selection and model averaging that operates on sampling
without replacement. The BMA algorithm calculates marginal posterior
inclusion probabilities (PIPs) for each pollutant. The analysis employed
the R package BAS, utilizing the Jeffreys-Zellner-Siow prior for regres-
sion coefficients (Liang et al., 2008). To obtain estimates and 95%
Bayesian credible intervals (CrI), the full posterior distribution of all
regression coefficients was employed. ENET is a penalization approach
incorporating regularization techniques of both lasso and ridge regres-
sion (Agier et al., 2016). By leveraging the strengths of both methods,
ENET achieves a balanced regularization effect. To determine the
optimal level of penalization, a 10-fold cross-validation error minimi-
zation approach was employed, followed by stability selection to allow
finite sample control of error rates (PFER = 0.5), and mixing parameter
(α) was set at 0.5. R packages glmnet (Friedman et al., 2010) and stabs
(Hofner et al., 2017) were used for ENET analysis and stability selection,
respectively.

We examined the conditions of mediation analysis: i) exposure as-
sociation with mediator, and ii) mediator with the outcome (Richiardi
et al., 2013). For those that satisfied the conditions, we explored the
mediating role of oxidative stress and immune markers on the associa-
tion of environmental pollutants with FeNO and health outcomes using
medflex package in R (Steen et al., 2017). The medflex package is based
on fitting natural effect models, which parameterize both direct and
indirect effects. The mediation analysis was performed for single
pollutant-outcome associations adjusting for the same set of covariates.

Estimated regression coefficients are presented as the percentage
change in FeNO per interquartile range (IQR) change in pollutant con-
centrations. For binary health outcomes, coefficients are presented as
the Odds Ratio (OR) for an IQR increase in pollutant concentrations. All
analyses were performed in R version 4.3.1 (R Co re Team and R, 2022).

3. Results

3.1. Descriptive statistics

3.1.1. Characteristics of study participants
Table 1 shows characteristics of the study participants. Of a total of

409 participants, the median age was 14.8 (P25: 14.5, P75: 15.1), 46%
were boys, and 62%were from a household ISCED level of above 5. Over
one-fourth (27%) of the participants were exposed to passive smoking.
The most prevalent health outcome was rhinitis (26.8%), followed by
skin allergy (24.0%), eczema (21.9%) and asthma (13.8%). The median
FeNO and 8-OHdG were 12 ppb (P25: 7, P75: 20) and 17 μg/L (13, 22)
respectively. The median eosinophil and basophil count was 141 per μL
(85, 250) and 28 per μL (19, 39) respectively.

3.1.2. Exposure levels
Table 2 shows exposure biomarker concentrations of the study par-

ticipants. The metal with the highest blood concentration was Cu, with a
median of 795 μg/L, followed by Mn (M = 9.35 μg/L). TCPY was the
highest exposure pollutant observed within the group of pesticides, with
a median of 4.5 μg/L. PCB138 was the highest among all PCBs with a
median of 6.9 ng/g lipid. The highest organochlorine (OC) pesticide was
p,p’-DDE (M= 36 ng/g lipid), followed by HCB (M= 7.6 ng/g lipid). For
the PFAS compounds, the highest concentration was observed for PFOS
(M = 2.10 μg/L), whereas within PAHs, 2-NAP had the highest exposure
concentration, (M = 3.7 μg/L). The median concentration was 101 μg/L
for TTMA and 1.14 μg/L for BPA. EHPHP had the highest exposure
concentration from the OPFRs (M = 4.1 μg/L). Among biomarkers of
phthalate, the highest concentration was found for MEP (M = 27 μg/L),

whereas the highest observed DINCH was MHNCH (M = 1.16 μg/L).
Highest correlations were observed for exposures within pollutant

groups, mainly PCBs (from r = 0.62 to 0.98). Within phthalates, high
correlation was observed between 5OH-MEHP and 5oxo-MEHP (r =
0.97) followed by 5oxo-MEHP and 5cx-MEPP (r = 0.79). Detailed cor-
relation and heatmap plots are available in the supplementary material
(Fig. S2). There were only weak correlations between oxidative stress
and the immune markers, except between eosinophil and basophil (r =
0.26) (Fig. S3)

3.1.3. Association of exposure biomarkers with asthma and allergy related
outcomes

In a single pollutant model adjusted for covariates, the estimated
FeNO was significantly higher by 20% (95% CI: 6, 36%) per IQR in-
crease in MnBP. Likewise, each IQR increase in MBzP was significantly
associated with 13% (95%CI: 2, 25%) higher level of FeNO. No other
pollutants were significantly associated with FeNO level. The odds of
having eczema were significantly higher for each IQR increase in
PCB153 (OR: 1.54; 95%CI: 1.05, 2.27), PCB180 (OR: 1.52; 95%CI: 1.04,
2.21), PCB170 (1.50; 95%CI: 1.03, 2.18), OXC (OR: 1.40, 95%CI: 1.03,
1.92), and TN (OR: 1.52, 95%CI: 1.10, 2.12). In contrast, the odds of
asthma were significantly lower per IQR increase in PCB118 (OR: 0.58;
95%CI: 0.38, 0.88), PCB153 (OR: 0.58; 95%CI: 0.36, 0.93), and PCB138
(OR: 0.56; 95%CI: 0.34, 0.88). The odds of rhinitis were significantly
lower per IQR increase in Tl (OR: 0.67; 95%CI: 0.48, 0.92), p,p’-DDT
(OR: 0.79; 95%CI: 0.63, 1.00), MEP (OR: 0.72; 95%CI: 0.52, 0.99),
MHNCH (OR: 0.64; 95%CI: 0.46, 0.86), and MCOCH (OR: 0.70; 95%CI:
0.50, 0.95). Detailed results of the single pollutant regression analyses
are available in the supplementary material (Table S4).

3.1.4. Association of exposure mixture with asthma and allergy related
outcomes

Upon checking for correlation, one of the correlated exposure
markers with r≥ 0.90 was excluded from the multipollutant analysis. As

Table 1
Characteristics of adolescents (13–16 years) in FLEHS IV (2016–2018) included
in this study (n = 409).

Characteristics N n (%)/Median (P25, P75)

Sociodemographic and behavioral
Age (years) 409 14.8 (14.5, 15.1)
Sex 409 
Boy  188 (46.0)
Girl  221 (54.0)
Household education level 401 
ISCED level 0–2  25 (6.2)
ISCED level 3–4  128 (31.9)
ISCED level ≥5  248 (61.8)
Passive smoking 398 109 (27.2)
Health outcomes and effect biomarker
Asthma (last year) 400 55 (13.8)
Rhinitis (ever) 400 107 (26.8)
Eczema (ever) 362 88 (21.9)
Skin allergy to products (last 5 years) 353 87 (24.0)
Allergy of any typea (last 5 years) 353 143 (40.5)
Respiratory infection (last year) 382 44 (11.5)
FeNO (ppb) 406 12 (7, 20)
Oxidative stress and immune markers
8-OHdG (μg/L) (normalized for SG) 396 17 (13, 22)
Total basophil (n/μL) 396 28 (19, 39)
Total eosinophil (n/μL) 397 141 (85, 250)
IL8 (pg/mL) 361 7 (5, 11)
IL6 (pg/mL) 361 0.34 (0.19, 0.49)
IFN-ᵧ (pg/mL) 361 4 (3, 5)

ISCED: International Standard Classification of Education; FeNO: Fractional
exhaled nitric oxide; 8-OHdG: 8-hydroxy-2’ -deoxyguanosine; IL6: Interleukin-6;
IL8: Interleukin-8; IFN-ᵧ: Interferon gamma.
a Allergy; allergy to food, medicines, insect bites, metal, care products,

household, maintenance products.

H.Y. Hassen et al. Environmental Research 265 (2025) 120445 

5 



a result, PCB153, PCB180, PCB138, MCOCH, 5oxo-MEHPwere excluded
from the mixture analyses. Therefore, BKMR, BMA, and ENET were used
to analyze a total of 49 pollutants. For FeNO, using BKMR the group PIPs
indicated phthalates and DINCH as the most important group (gPIP =

0.509), with MnBP being the most important pollutant within group
(cPIP = 0.564, %change = 28% (95%CI: 6, 54%)). Results of BMA also
showed that phthalates and DINCH are the most important group (gPIP
= 0.305), and MnBP has the greatest importance within the group (cPIP
= 0.752; %change = 3%; 95%CI: 0, 25%)). In the ENET model, MnBP
showed the highest selection probability (0.70). For asthma, the BKMR
model showed that PCBs (gPIP= 0.758) were the most important group,
followed by bisphenols (gPIP = 0.479) and OC pesticides (gPIP =

0.471). The conditional-PIPs show that PCB118 (cPIP = 0.746), BPS
(cPIP = 0.522) and HCB (0.279) had the greatest importance within
respective pollutant groups. In the BMA analysis, PCBs were the most
important pollutant groups (gPIP = 0.224). For rhinitis, using BKMR,
metals showed the greatest group importance (gPIP = 0.705), with Cu
being the most important pollutant within group (cPIP = 0.609). The
BMA showed phthalates and DINCH are the most important group (gPIP
= 0.247), and MHNCH the most important pollutant within group (cPIP
= 0.766). The ENET model showed MHNCH as the most important with
selection probability of 0.640. Further details of mixture analyses results
and plots are available in the supplementary material (Tables S7–S13,
Figs. S4–S13).

3.1.5. Mediating role of 8-OHdG and immune markers
For FeNO, two exposure biomarkers (MBzP and MnBP) and one

mediator (total eosinophil) met the conditions for mediation analysis.
The results of the mediation analysis indicated that total eosinophil
mediated 37.8% of the positive association between MBzP and FeNO (p
= 0.018). Both direct and mediated associations are positive; however,
the direct path is not statistically significant (p = 0.143). Similarly, total
eosinophil mediated 27.9% of the positive association between MnBP
and FeNO (p = 0.045). Both the direct and mediated associations are
significantly positive (Table 3). Regarding health outcomes, three
exposure biomarkers (2,4-D, TCPY, and 1-NAP), 1 mediator (8-OHdG), 1
outcome (rhinitis) met the condition for mediation analysis. The total
effect of these exposure markers with rhinitis was not statistically sig-
nificant. However, the statistically significant association between
exposure biomarkers and mediators, as well as between mediators and
outcomes, prompted further investigation through mediation analysis.
The result showed that 8-OHdG significantly mediated 55.4%, 48.1%,
and 32.7% of the association of 2,4-D, TCPY, and 1-NAP, respectively,
with rhinitis. In all three cases, the direct effects were negative but not
statistically significant, while the mediated effects were positive and
significantly associated with rhinitis (as shown in Table 3). For a more

Table 2
Biomarker levels measured in FLEHS IV adolescents normalized to specific
gravity (urinary markers) or standardized for serum lipids (lipid-soluble serum
biomarkers) (n = 409).

Group Exposure Median (P25,
P75)

Metals (μg/L) Pb (blood) 7.59 (5.96,
9.40)

Mn (blood) 9.35 (7.90,
11.26)

Cu (blood) 795 (724, 877)
Cd (urine) 0.29 (0.23,

0.39)
Tl (urine) 0.36 (0.29,

0.43)
Pesticide (μg/L) 3-PBA 0.87 (0.58,

1.58)
2,4-D 0.27 (0.15,

0.45)
TCPY 4.5 (2.9, 6.4)

PCBs (ng/g lipid) PCB118 2.13 (1.55,
2.95)

PCB153 10 (6, 16)
PCB138 6.9 (4.7, 10.1)
PCB187 1.10 (0.65,

1.89)
PCB180 4.3 (2.7, 7.3)
PCB170 2.00 (1.24,

3.26)
OC pesticides (ng/g lipid) OXC 1.18 (0.82,

1.74)
TN 0.80 (0.51,

1.17)
p,p’-DDE 36 (24, 63)
p,p’-DDT 2.4 (1.1, 4.5)

 HCB 7.6 (5.7, 9.8)
 β-HCH 1.13 (0.81,

1.50)
PFAS (μg/L) PFOA 1.10 (0.84,

1.30)
 PFNA 0.31 (0.23,

0.44)
 PFHxS 0.48 (0.35,

0.65)
 PFOS 2.10 (1.40,

3.15)
PAH (μg/L) 1-NAP 0.07 (0.05,

0.09)
 2-NAP 3.7 (2.1, 6.9)
 2-PHEN 0.07 (0.05,

0.10)
 3-PHEN 0.07 (0.05,

0.10)
Benzene (μg/L) TTMA 101 (57, 146)
OPFRs (μg/L) DPHP 1.32 (0.88,

2.05)
 BDCIPP 0.34 (0.15,

0.69)
 BCIPHIPP 0.65 (0.30,

1.47)
 EHPHP 4.1 (2.8, 6.7)
 BBOEHEP 0.04 (0.02,

0.07)
 5-OH-

EHDPHP
0.09 (0.06,
0.16)

Bisphenol (μg/L) BPA 1.14 (0.68,
1.91)

BPF 0.15 (0.08,
0.30)

BPS 0.14 (0.07,
0.22)

Phthalates, DINCH & other alternative
plasticizers (μg/L)

MEP 27 (15, 71)
5cx-MEPP 16 (12, 22)
5OH-MEHP 6.6 (4.3, 10.1)
MiBP 22 (15, 41)
MnBP 19 (12, 31)
5oxo-MEHP 4.1 (2.8, 6.6)

Table 2 (continued )

Group Exposure Median (P25,
P75)

 MBzP 2 (1, 6)
 MEHP 1.32 (0.83,

2.13)
 OHMEHTP 0.58 (0.35,

1.02)
 MHNP 4.3 (2.8, 6.5)
 MCOP 1.88 (1.29,

2.84)
 MHNCH 1.16 (0.72,

2.28)
 MCOCH 1.07 (0.74,

1.68)
 OHMIDP 0.73 (0.45,

1.21)
 CXMIDP 1.25 (1.06,

1.58)
 OXOMIDP 0.41 (0.28,

0.68)
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comprehensive understanding of the mediation analysis results, we refer
to the supplementary material (Tables S5 and S6).

4. Discussion

This cross-sectional analysis was performed using the FLEHS IV data
aiming to explore the association of multiple environmental pollutants
on asthma and allergy outcomes among adolescents and investigate the
role of mediators. Our findings from a single analysis highlighted that
phthalates, mainly MnBP and MBzP, were significantly associated with
elevated FeNO, which is a biomarker of airway inflammation related to
asthma. The multi-pollutant analysis also indicated that MnBP exhibits
consistently positive associations with FeNO in various mixture analysis
methods. Regarding other health outcomes, the single pollutant analysis
revealed a higher risk of eczema with an increase in PCBs particularly
PCB153, PCB180, PCB170, and OC pesticides including OXC and TN. In
contrast, there was an inverse association observed between exposure to
PCBs, specifically PCB118, PCB153, and PCB138, and the risk of asthma.
Furthermore, Tl, p,p’-DDT, MEP, MHNCH, and MCOCH exhibited in-
verse associations with rhinitis. However, all these associations with
health outcomes did not reach significance in multi-pollutant analysis.
In the mediation analysis, we found that eosinophil count significantly
mediated the association of MnBP and MBzP with FeNO. Likewise, 8-
OHdG significantly mediated the association of 2,4-D, TCPY and 1-
NAP with rhinitis.

Epidemiological studies have used fractional exhaled nitric oxide
(FeNO) as a biomarker of airway inflammation in response to air pol-
lutants (McCreanor et al., 2007; Delfino et al., 2006). The present study
showed that phthalates, particularly MnBP and MBzP, were significantly
positively associated with elevated FeNO. MnBP remained significant in
the multi-pollutant analysis indicating that it is an independent pre-
dictor. Previous studies have also shown that phthalates are positively
associated with FeNO in children (Just et al., 2012) and adults (Wu
et al., 2022). These results suggest that exposure to phthalates is asso-
ciated with a biomarker of airway inflammation among adolescents.
Primary exposure to phthalates among adolescents and adults occurs
through the consumption of foods and drinks that contain phthalates
due to packaging or processing, as well as inhalation of particles in the
air. Consequently, reducing exposure sources could be beneficial in
lowering the risk of airway inflammation, particularly for individuals
with a higher susceptibility to asthma.

The present study found that eosinophil count significantly mediated
the association of MnBP and MBzP with FeNO. Consistently, a previous
study showed that absolute eosinophil count mediated the association
between another phthalate, diethyl phthalate (DEP), and lung function
(Wang et al., 2021). Elevated immune markers particularly eosinophils

have been linked to exposure to phthalates (Jaakkola et al., 2008; Shin
et al., 2023b). Phthalates may trigger oxidative stress and disrupt
endocrine pathways, which can activate cytokines (Franken et al., 2017;
Zhou et al., 2020). Cytokines promote the production and migration of
eosinophils, key immune cells involved in allergic and respiratory
inflammation, into the airways (Chan et al., 2019). When eosinophils
accumulate, they produce nitric oxide (NO) through inducible nitric
oxide synthase (iNOS), which elevates fractional exhaled nitric oxide
(FeNO) levels—a marker of airway inflammation (Zamora et al., 2000).
This mediation pathway provides an insight into the underlying mech-
anisms through which phthalate exposure influences airway inflam-
mation, highlighting the potential role of eosinophils. Understanding
the pathway could help to develop targeted interventions aimed at
halting the impact of environmental pollutants on respiratory health.
Future studies should explore additional mediators and elucidate mul-
tiple pathways linking phthalate exposure to airway inflammation.

The present study indicated 8-OHdG significantly mediated the as-
sociation of pesticides 2,4-D and TCPY on rhinitis although the total
effect did not reach statistical significance. This finding implies a crucial
role of oxidative stress in the pathway between pesticide exposure and
rhinitis development. Several pesticides such as chlorpyrifos, 2,4-
dichlorophenol, deltamethrin, and paraquat have been shown to
induce oxidative stress (Makris et al., 2022). Activation of nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB) and
thioredoxin-interacting protein (TXNIP) are possible pathways of
oxidative stress leading to inflammatory processes in allergic rhinitis
(Han et al., 2021). However, the contrasting directions of direct and
mediated effects introduce complexity, which could be due to the
involvement of intricate biological mechanisms or a result of unac-
counted confounding variables. Thus, further research is needed to
elucidate the interplay between pesticide exposure, oxidative stress, and
rhinitis.

Although PCBs were banned from production worldwide in 2001
(United Nations Environmental Programme, 2008), due to their prop-
erties of a long half-life and fat solubility, they are still preserved in soil,
water, and food chain, and consequently in human tissues (Domingo,
2012). The present study reveals an association between PCBs (PCB153,
PCB180, PCB170) and OC pesticides (OXC, TN), and an increased risk of
eczema in single pollutant analysis. This suggests a potential role for
these pollutants in the development or exacerbation of eczema. How-
ever, the significance of this association diminishes in multipollutant
analysis. This discrepancy underscores the complexity of environmental
exposures and their effects on health outcomes. It’s possible that the
observed association in the single pollutant analysis is influenced by
confounding factors or interactions between pollutants that are not
captured when analyzing them individually. Further research is needed

Table 3
The mediating role of eosinophils and 8-OHdG in the association between exposure biomarkers and FeNO and rhinitis.

Outcome Mediator Exposure Effect % change per IQR (95%CI) P value Proportion mediated

FeNO Eosinophil MBzP Direct 8 (− 3, 200) 0.143 37.8%
Mediated 5 (1, 9) 0.018
Total 13 (2, 25) 0.015

MnBP Direct 15 (1, 258) 0.027 27.9%
Mediated 5 (0.1, 201) 0.045
Total 20 (6, 36) 0.005
 OR (95% CI)  

Rhinitis 8-OHdG 2,4-D Direct 0.75 (0.56, 1.01) 0.056 55.4%
Mediated 1.11 (1.01, 1.21) 0.025
Total 0.82 (0.61, 1.11) 0.197

TCPY Direct 0.81 (0.56, 1.16) 0.239 48.1%
Mediated 1.07 (1.01, 1.15) 0.034
Total 0.89 (0.67, 1.19) 0.430

1-NAP Direct 0.73 (0.48, 1.12) 0.149 32.7%
Mediated 1.08 (1.01, 1.16) 0.033
Total 0.86 (0.65, 1.13) 0.282

CI: confidence interval; IQR: Interquartile range; OR: odds ratio.
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to investigate the complex relationships between multiple pollutants
and their mixture effect on eczema risk.

The main strength of this study is using various methods of single and
multi-pollutant regression approaches to explore the possible associa-
tions. In addition, this study explored the association of a wide range of
pollutants with asthma and allergy outcomes, which provides a basis for
further research and analysis. In the mediation analysis, we used natural
effect models that enable flexible estimation of direct and indirect as-
sociations (Lange et al., 2012). However, interpretation of results from
this study should consider the following limitations. Firstly, the data
collection was cross-sectional, meaning that blood and urine samples for
exposure markers, mediators, effect biomarkers, and health outcomes
were collected simultaneously. Consequently, the temporal sequence of
exposure, mediator, and outcome could not be established. Neverthe-
less, given the assumption that exposure markers serve as indicators of
long-term and ubiquitous exposure, particularly for persistent pollut-
ants, the finding of this study provides baseline evidence for further
exploration and more in-depth analysis. Prospective studies are recom-
mended to investigate temporality and causality from exposure, medi-
ators, and health outcomes. Secondly, urine samples were collected on
spot, relatively easy but larger variability in predicting urinary exposure
markers due to individual differences in kidney function and water
consumption (Aylward et al., 2017). Thirdly, health outcomes were
measured using self-reported questionnaires on symptoms and medica-
tions used, which is prone to recall bias. In future studies, the utilization
of physician-diagnosed health outcomes through linkage to routine
health records or databases could improve measurement error. Finally,
this study did not adjust for some characteristics such as dietary habit,
use of products, comorbidities, etc. which might confound the associa-
tion between pollutants with health outcomes. A comprehensive
assessment of lifestyle and other characteristics are recommended in
future studies aimed to investigate the causal association of environ-
mental pollutants with asthma and allergic diseases.

5. Conclusions

In summary, this study showed that considering simultaneous
exposure to pollutants from 10 different chemical groups, MnBP and
MBzP were positively associated with FeNO levels in adolescents.
Notably, eosinophil count emerged as a significant mediator in the as-
sociation between phthalates, particularly MnBP and MBzP, and FeNO.
Additionally, PCBs and OC pesticides demonstrated an association with
eczema, contributing to the existing body of evidence. 8-OHdG, a
marker of oxidative stress, seems to mediate the association between
certain pesticides and PAHs and allergic rhinitis. Therefore, minimizing
exposure to environmental pollutants such as phthalates and pesticides
could be helpful to halt the growing burden of asthma and allergic
diseases. Monitoring of inflammatory and oxidative stress markers is
crucial for understanding of the inflammatory processes in asthma and
allergic diseases, which will aid in improving prevention strategies.
Furthermore, future prospective studies gathering all relevant individ-
ual and environmental characteristics are recommended.
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