
LogicGlue: Hardware-Independent Embedded Programming
Through Platform-Independent Drivers

MANNU LAMBRICHTS, Lancaster University, United Kingdom and Hasselt University, Flanders Make,
Belgium
RAF RAMAKERS, Hasselt University, Flanders Make, Belgium
STEVE HODGES, Lancaster University, United Kingdom

Fig. 1. Overview of LogicGlue. (a) The novel driver specification of LogicGlue encodes the behaviour of
drivers in bytecode to ensure platform independence and compatibility across various microcontrollers and
programming languages. (b) The LogicGlue interpreter is responsible for processing the bytecode driver
specifications and executing platform-specific commands. (c) The LogicGlue programming library is designed
to facilitate interaction with electronic components through the interpreter.

The growing capabilities of microcontrollers, sensors, and actuators, coupled with decreasing costs, have
led to a proliferation of embedded interactive systems. Prototyping such electronic systems has become
democratized across a broad audience, including students, hobbyists, professional engineers, and programmers.
Central to this evolution is the ease of software development, and in particular, the availability of low-level
drivers and programming libraries which have significantly lowered the barriers to programming these
systems. However, this ecosystem often presents challenges due to the tight coupling between programming
libraries, drivers, and the underlying sensors and actuators. This frequently leads to compatibility issues. This
paper introduces LogicGlue, which addresses these challenges by providing a platform-independent driver
specification format. LogicGlue driver specifications allow hardware-independent application logic to be

Authors’ Contact Information: Mannu Lambrichts, Lancaster University, School of Computing and Communications,
Lancaster, United Kingdom and Hasselt University, Flanders Make, Digital Future Lab, Hasselt, Limburg, Belgium, m.
lambrichts@lancaster.ac.uk; Raf Ramakers, Hasselt University, Flanders Make, Digital Future Lab, Hasselt, Limburg, Belgium,
raf.ramakers@uhasselt.be; Steve Hodges, Lancaster University, School of Computing and Communications, Lancaster,
United Kingdom, steve.hodges@lancaster.ac.uk.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2573-0142/2025/6-ARTEICS017
https://doi.org/10.1145/3735498

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

HTTPS://ORCID.ORG/0000-0002-8733-4585
HTTPS://ORCID.ORG/0000-0001-6466-0663
HTTPS://ORCID.ORG/0000-0001-9314-7762
https://orcid.org/0000-0002-8733-4585
https://orcid.org/0000-0001-6466-0663
https://orcid.org/0000-0001-9314-7762
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://doi.org/10.1145/3735498
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3735498&domain=pdf&date_stamp=2025-06-27

EICS017:2 Lambrichts, et al.

written, facilitating the process of interchanging components with minimal-to-no code adjustments. Unlike
existing solutions, LogicGlue supports efficient interfacing via native communication protocols. This approach
not only simplifies electronics prototyping but also ensures compatibility between various types of electronic
components from different vendors. By reducing the complexity of hardware integration, LogicGlue enables a
more seamless exploration of novel interactive behaviours and interfaces, forming a new tool for engineering
interactive computing systems.

CCS Concepts: • Hardware→ Embedded systems; Sensor devices and platforms; • Software and its
engineering → Software libraries and repositories; Abstraction, modeling and modularity; • Human-
centered computing → Ubiquitous and mobile computing systems and tools; Interaction devices.

Additional Key Words and Phrases: Platform-Independent Drivers, Embedded Programming, Software Com-
patibility, Electronics Prototyping

ACM Reference Format:
Mannu Lambrichts, Raf Ramakers, and Steve Hodges. 2025. LogicGlue: Hardware-Independent Embedded
Programming Through Platform-Independent Drivers. Proc. ACM Hum.-Comput. Interact. 9, 4, Article EICS017
(June 2025), 46 pages. https://doi.org/10.1145/3735498

1 Introduction
Over the past decade, advances inmicrocontrollers, sensors, and actuators have integrated embedded
systems intomany aspects of daily life. At the same time, prototyping embedded systems has become
democratized, enabling student [32], hobbyist [4], and professional engineers and programmers
to create electronic projects quickly and easily [22]. A key factor in this democratization is the
extensibility of microcontrollers with various third-party components and the availability of
software libraries, such as the popular Arduino libraries [5], which facilitate programming. Easy
iteration of diverse hardware configurations can greatly streamline a user-centred design process
and support rapid prototyping of interactive applications, from tangible interfaces to connected
IoT environments [21].

Software for embedded systems typically includes three essential elements: low-level drivers, high-
level programming libraries, and application logic. Low-level drivers manage direct communication
between electronic components and the microcontroller, handling hardware-specific registers and
protocols. For example, the SSD1306 OLED display1 driver controls hardware registers via I2C
or SPI protocols to update pixels and adjust settings like brightness. These drivers simplify the
complex details of communication protocols and hardware registers, enabling programmers to
program application logic using higher-level constructs instead of dealing with intricate timings
and specific sequences required for hardware operations. High-level programming libraries provide
an additional layer of abstraction, simplifying hardware interaction and making components more
accessible to programmers. For instance, the Adafruit_SSD1306 library2 allows developers to display
text on the SSD1306 display without dealing with pixel-level operations.

While low-level drivers and high-level libraries simplify embedded programming, they often come
as tightly coupled packages specific to certain components and platforms, limiting compatibility
and flexibility. For instance, the DHT sensor high-level library3 abstracts sensor interaction but is
tightly integrated with low-level drivers tailored to the DHT sensor series. This coupling enforces
predefined data reading methods and communication protocols, making the library unsuitable
for other sensor types like the DS18B20, despite both providing temperature readings in Celsius
or Fahrenheit. Additionally, many libraries are platform-specific, such as those for Arduino [4],
rendering them incompatible with alternative platforms like Raspberry Pi [39] or micro:bit [7, 32].
1https://www.arduino.cc/reference/en/libraries/ssd1306/
2https://github.com/adafruit/Adafruit_SSD1306
3https://www.arduino.cc/reference/en/libraries/dht-sensor-library/

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

https://doi.org/10.1145/3735498
https://www.arduino.cc/reference/en/libraries/ssd1306/
https://github.com/adafruit/Adafruit_SSD1306
https://www.arduino.cc/reference/en/libraries/dht-sensor-library/

LogicGlue: Hardware-Independent Embedded Programming Through Platform-Independent Drivers EICS017:3

This fragmentation forces developers to search for or rewrite drivers to ensure compatibility with
different hardware and ecosystems.

Some generic libraries, such as the Adafruit GFX Graphics Library4, improve compatibility with
third-party components by abstracting various low-level drivers. However, they often fail to fully
leverage hardware-specific capabilities, and extending them requires deep architectural knowledge.
For example, Adafruit GFX is primarily designed for SPI-based displays, and additional libraries are
needed to support I2C displays like the SSD1306.

Moreover, enhancing these generic libraries with more advanced features is particularly chal-
lenging because such additions must remain compatible with a broad range of supported devices.
For example, in the GFX graphics library, supporting hardware- or software-based scrolling is
difficult due to multiple constraints. Scrolling often relies on hardware acceleration, which is not
universally available, requires framebuffer read access that some displays lack, or necessitates
modifications to the GFX API—changes that would impact numerous subclasses. The library’s
maintainers have acknowledged these limitations, noting that the GFX API is largely ”set,” making
significant changes impractical5. As a result, while abstraction layers simplify development, they
can also restrict access to component-specific features, forcing developers to either accept these
limitations or implement complex workarounds.

High-level communication protocols like Jacdac [14] and CoAP [37] offer an alternative approach
by abstracting low-level drivers into standardized interfaces. Jacdac, for instance, uses services
to separate application logic from low-level drivers, increasing compatibility and significantly
lowering the barrier for embedded programming. However, since electronic components cannot
communicate directly with these high-level protocols, an additional microcontroller is required
for each electronic component to handle the conversion, introducing latency and potential loss of
unique component features that are not captured by the protocol.

In this paper, we introduce LogicGlue, a novel software stack that supports platform-independent
drivers and, as such, allows hardware-independent application logic to be written. To realize
this, LogicGlue consists of a novel driver specification (Figure 1(a) for expressing the behaviour
of electronic components. The LogicGlue driver specification defines the complete functionality
and characteristics of an electronic component, ranging from specific communication protocols
to data formats and units. As these definitions are specified in bytecode, the LogicGlue driver
specifications can be processed by any microcontroller and any programming language, making
them platform-independent. As such, users are not restricted to a single microcontroller or platform.

The LogicGlue interpreter (Figure 1(b) runs on the system’s microcontroller and translates the
instructions from the driver specification into platform-specific commands.The high-level LogicGlue
programming library (Figure 1(c) further facilitates interfacing with electronic components via
the interpreter. Unlike high-level communication protocols such as Jacdac [14], LogicGlue does
not require the translation of features of electronic components to services nor the conversion of
communication messages to a single protocol. Instead, the driver commands of LogicGlue ensure
all components’ features remain available, and interfacing is done via the native signals supported
by the electronic components, avoiding latency.

LogicGlue empowers developers to write hardware-independent application logic. Swapping, for
example, a temperature sensor working over the I2C protocol, with one outputting analog voltage
readings, does not require rewriting application logic as LogicGlue automatically handles the
required data conversions. Furthermore, our buildup ensures that microcontrollers or development
platforms that implement the LogicGlue interpreter and the LogicGlue programming library are

4https://learn.adafruit.com/adafruit-gfx-graphics-library/overview
5https://github.com/adafruit/Adafruit-GFX-Library

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

https://learn.adafruit.com/adafruit-gfx-graphics-library/overview
https://github.com/adafruit/Adafruit-GFX-Library

EICS017:4 Lambrichts, et al.

instantly compatible with all electronic components for which LogicGlue driver specifications are
available. Likewise, electronic components for which a LogicGlue driver specification is available
are compatible with any microcontroller that supports LogicGlue. By abstracting hardware-specific
details, LogicGlue allows developers to focus on prototyping and refining interactivity rather
than managing low-level communication and compatibility issues. This aligns with the findings
of Raffaillac and Huot [42], which highlight the importance of development tools that reduce
hardware-related complexities in interactive system research.

In summary, we contribute:

(1) A LogicGlue driver specification format for defining how electronic components behave—
including protocol details, data formatting, and parameter units—expressed as a portable
bytecode.

(2) A LogicGlue interpreter that executes these bytecode-based driver specifications on a micro-
controller, translating abstract instructions into platform-specific commands.

(3) A high-level programming library that helps developers to interface with the interpreter, pre-
serving access to all component features while using the components’ native communication
protocols.

(4) An optional block-based programming interface that simplifies the creation of driver specifi-
cations by assembling bytecode visually rather than using text.

2 LogicGlue
LogicGlue is a software abstraction layer designed to change how electronic components, such
as sensors, actuators, and displays, are interfaced at the hardware level. It introduces a platform-
independent driver format that enables consistent initialization, communication, and data han-
dling across diverse microcontroller platforms and component types. LogicGlue does not process
interaction-level events such as mouse clicks, gestures, or key mappings. Instead, it operates at
a lower level, transferring data with a component in its native format and making it available to
application logic through a unified interface.

This positions LogicGlue as an infrastructural layer within the prototyping stack: it bridges
the gap between the raw hardware interface – often fragmented and vendor-specific – and the
high-level behaviours that developers typically want to use, such as providing visual feedback,
sending network messages, or responding to user input. By decoupling hardware access from
behaviour, LogicGlue allows developers to iterate on hardware choices without needing to modify
their application code. This is especially critical in early-stage prototyping, adaptive systems, and
exploratory interaction design, where hardware configurations frequently change as ideas are
tested and refined.

Consider, for instance, a physical button used in a custom-built mouse. In a traditional system,
replacing that button with a capacitive touchpad or proximity sensor might require rewriting the
low-level code that detects input, interprets signal thresholds, and triggers events. With LogicGlue,
the application can continue to treat the input as a binary signal – “pressed” or “not pressed” –
regardless of whether it comes from a mechanical switch, a capacitive sensor, or even an optical
trigger. The developer simply swaps the LogicGlue driver; the logic that generates the USB click
remains unchanged.

This hardware-independence becomes particularly valuable in public or adaptive installations.
In a museum exhibit, for example, the original interaction may rely on a push-button physically
embedded into an exhibit. If that button proves fragile or inaccessible to some visitors, it could
be replaced with a pressure sensor, a capacitive plate, or a gesture-detecting sensor – each using
different protocols and signal types. Yet, the media playback logic, animation triggers, and exhibit

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

LogicGlue: Hardware-Independent Embedded Programming Through Platform-Independent Drivers EICS017:5

control systems remain untouched because LogicGlue abstracts the interaction as a consistent
binary input.

In smart-home interfaces, the benefits of hardware abstraction extend to sensors with varied
performance characteristics. Developers might alternate between analog and digital temperature
sensors, or swap light sensors with differing sampling rates or output formats. LogicGlue enables
this flexibility without requiring changes to the code that evaluates conditions (e.g., “turn on fan if
temperature > 25℃”) or updates to display elements. The application logic remains focused on what
to do with the data, not how to extract or interpret it. In handheld or wearable devices, developers
often face trade-offs between display size, resolution, power consumption, and interface protocols.
LogicGlue allows them to replace, for example, an I2C OLED display with one that uses SPI, while
preserving the rendering logic that populates the screen with text or status icons. This simplifies
experimentation with the form factor and hardware integration without entangling it with the
specific behaviour or interface logic of the device.

In all these cases, LogicGlue serves as a layer of abstraction that insulates application logic
from hardware variability. It empowers developers to adapt, iterate, and refine their systems
rapidly, whether for prototyping, deployment in the field, or personalization, while ensuring that
functionality remains intact as the physical components evolve.

2.1 Writing Application Logic
To explain the procedure for writing the application logic, we will provide an example from the
perspective of a DIY enthusiast, Alex, who integrates a temperature sensor into a prototype with the
help of LogicGlue. Considering the wide variety of temperature sensors available, such as analog,
digital, and infrared temperature sensors, Alex wants to experiment with different models to find
the most suitable one for his project. Traditionally, this would be a lengthy and complex process,
as each component might use a different protocol and require different signal processing methods.
In the best-case scenario, a software library is available for a component, and Alex only needs
to rewrite the application logic to integrate the library. For example, the library of the MCP9808
digital temperature sensor6 embeds features for initializing and using the I2C protocol, while the
library for an analog temperature sensor handles all analog-to-digital conversions. If no library is
available that is compatible with the development platform used, an additional driver has to be
written first based on the specifications in the datasheet. Figure 2 shows the major differences in
code for interacting with the MCP9808 digital temperature sensor over I2C, using the Adafruit
library, and the TMP36 analog temperature sensor using analog readings, on the Arduino platform.
Besides differences in protocols between the sensors, there are also major differences in output
readings, as one temperature sensor outputs temperatures in Celsius while the other outputs a
voltage. Additional processing is thus needed.

Using LogicGlue, Alex does not need to write multiple versions of the application logic to
test different temperature sensors. Instead, he can include the respective driver specification file
and test each temperature sensor using the same application logic code. Figure 3(c) shows the
LogicGlue code to interact with the MCP9808 digital temperature sensor working over I2C, and
the TMP36 analog temperature sensor using analog readings. As shown in Figures 3(a) and (b),
only the preamble changes when swapping between the two very different temperature sensors.
These changes include the driver specification file, the parameter passed in the constructor, and the
references to the microcontroller pins that the component is connected to. Despite the difference
in output readings (Celsius versus voltages), Alex specifies in both code snippets that he prefers

6https://www.arduino.cc/reference/en/libraries/mcp9808/

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

https://www.arduino.cc/reference/en/libraries/mcp9808/

EICS017:6 Lambrichts, et al.

Fig. 2. The traditional application code that needs to be written to interact with a) the TMP36 analog
temperature sensor and b) the MCP9808 digital temperature sensor.

temperature readings in Fahrenheit (line 20). The LogicGlue interpreter automatically converts the
readings into the format Alex prefers.

Fig. 3. a) Preamble for including the LogicGlue driver specification for the TMP36 analog temperature sensor.
b) Preamble for including the LogicGlue driver specification for the MCP9808 digital temperature sensor. c)
Application logic interacting with either temperature sensor using temperatures in Fahrenheit.

2.2 Writing Driver Specifications
LogicGlue driver specifications include all the functionality for driving an electronic component.
To streamline writing driver specifications, we developed a block-based specification interface
based on Blockly7. As shown in Figure 4, users compose commands by selecting command blocks
representing various functionalities. When the specifications are complete, the interface stores this
7https://developers.google.com/blockly

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

https://developers.google.com/blockly

LogicGlue: Hardware-Independent Embedded Programming Through Platform-Independent Drivers EICS017:7

graphical representation of the driver specifications as a bytecode sequence in a header file. This file
is then included in the application logic code as demonstrated in Section 2.1. To correctly compose
driver specifications, a good understanding of the component’s datasheet is required. However,
this is a one-time effort, best done by component manufacturers or experienced engineers, and
then shared with all customers or users.

It is important to emphasize that the block-based interface is merely a convenient tool for writing
driver specifications— it does not define the LogicGlue driver specification language itself.The actual
specification is written in bytecode, which is processed and executed by the LogicGlue interpreter
on the microcontroller. The block-based interface abstracts the complexities of writing bytecode
manually, embedding constraints such as required parameters for each instruction. However, it
does not introduce novel contributions in visual programming paradigms, nor does it influence
LogicGlue beyond aiding in the initial creation of driver specifications.

Fig. 4. LogicGlue’s graphical interface for creating drivers using the driver specification.

The following example illustrates composing the driver specifications for the MCP9808 tem-
perature sensor8. In the init procedure, we initialize the component’s communication protocol,
which, in this case, is I2C. As shown in Figure 5, we insert a configure block (line 1), select I2C as
the protocol, and set the frequency to 400kHz as specified in the sensor’s datasheet. The datasheet
further details that this component is available via address 0x18 on the I2C bus, and uses 16-bit
registers (line 2). A common practice for I2C devices then involves verifying the component’s
presence by reading out the manufacturer ID register (0x06) and comparing it to the ID detailed in
the datasheet (0x54) using an assert (line 3). The last block in the start procedure involves setting
the sensor’s default configuration, using a write command, to ensure the sensor uses its default
settings at startup. As shown in line 4, we set the data of the configuration register (0x01) to its
default value (0) as specified in the sensor’s datasheet.

8Datasheet: https://ww1.microchip.com/downloads/en/DeviceDoc/25095A.pdf

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

https://ww1.microchip.com/downloads/en/DeviceDoc/25095A.pdf

EICS017:8 Lambrichts, et al.

Fig. 5. LogicGlue driver specification for the MCP9808 temperature sensor.

The next step involves defining the features supported by the MCP9808 temperature sensor, such
as temperature readings, resolution updates, and sleep and wake-up functionalities. Each function-
ality is created using a functionality block. For specifying the temperature reading functionality,
we select GetData as the function category. This field defines the primary functionality of the
component, compared to, for example, the resolution feature. Within the definitions of this block,
we specify the return parameter type and instructions for reading the temperature. The return type
is set using a output block (line 5), which characterizes the return type. As specified in the datasheet,
the MCP9808 temperature sensor returns temperature readings in Celsius. Alternatively, this block
can support other function categories, such as setting data, triggering specific features like sending
the pixel buffer to a display, or reading internal parameters like the internal temperature of an
electronic component.

To read the temperature (line 6), we follow the instructions specified in the sensor’s datasheet.
Using a read block, we first read the temperature register (0x5) from the MCP9808 temperature
sensor and store the data in a temporary variable. As the data is in two’s complement format, we
follow the calculations in the datasheet to convert the bits to a decimal temperature. First, we
split the 16-bit value into upper and lower bytes (lines 7 and 8) and clear the flag bits in the upper
byte. As the positive and negative temperature data are computed differently, we use an if block
(lines 9-12) to check if the sign bit (0x10) indicates a negative value (line 9). If this bit is set, the
if-test evaluates to true, and lines 10 and 11 are executed. Line 10 resets the sign bit, while line 11
executes the mathematical operations specified in the datasheet to calculate a negative temperature
in Celsius and stores the result in the output variable. If the bit indicating a negative value is not
set, line 12 is executed, which calculates and stores a positive temperature in Celsius.

Once all the functionality is defined the LogicGlue interface automatically stores this driver
specification as a bytecode sequence in a header file.

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

LogicGlue: Hardware-Independent Embedded Programming Through Platform-Independent Drivers EICS017:9

3 Related Work
This section discusses the contributions that have influenced the development of LogicGlue, focusing
on advancements in software abstraction, standardized communication interfaces, and intermediate
representation layers. Detailed descriptions of all LogicGlue instructions and their semantics are
provided in Appendix A.

3.1 Software Abstraction
Over the years, embedded systems have been significantly shaped by the advent of software plat-
forms and frameworks aimed at abstracting hardware complexities. Notable platforms such as
PlatformIO [40], Mbed OS [31], and Zephyr [46] have been instrumental in offering operating
system-like functionalities to microcontrollers. These platforms mask the intricacies of hardware,
allowing developers to concentrate on application logic. Easy-to-use hardware and software plat-
forms such as Arduino [4] and micro:bit [32] have also played an important role in democratizing
embedded programming for a broad audience.

Real-time operating systems (RTOSes) like FreeRTOS [17], provide concise, scalable, and flexible
software management for embedded devices. Similarly, TinyOS [28] has played a pivotal role in
promoting the development of networked sensor systems, highlighting the importance of specialized
platforms in the advancement of IoT and embedded applications.

Despite these advances, challenges persist in integrating external hardware components. Zephyr’s
implementation of device drivers [45] provides a framework for hardwaremanagement, yet adapting
these drivers for new components requires a deep understanding of hardware-software interac-
tion. While Zephyr’s device drivers share a concept similar to the LogicGlue driver specification,
LogicGlue focuses on interacting with external hardware. At the same time, Zephyr is designed to
offer a standardized approach for setting up hardware peripherals. Furthermore, LogicGlue offers a
convenient block-based interface for creating the drivers.

In parallel, frameworks like CODAL [13] and Arduino [4] have significantly eased microcontroller
programming, streamlining direct hardware interaction. However, they often fall short in addressing
the complexities of integrating external components, a task that still poses considerable challenges.
Libraries such as the Adafruit GFX Graphics library [12] aim to bridge this gap by abstracting
hardware communication. But these libraries typcially can’t leverage the unique features of each
component, and integrating them in the application logic requires a good understanding of the
functionality offered by the library.

Integrated development environments (IDEs) have made significant inroads in addressing these
challenges. The Arduino IDE [6], DeviceScript [33], and Microsoft MakeCode [9] integrate tools
that facilitate the discovery, selection, and integration of software libraries, enhancing the efficiency
of the development workflow. These IDEs, alongside advanced environments like Visual Studio
Code [34] with its rich features for embedded development, play a pivotal role in lowering the
entry barriers to embedded programming.

In general, while existing software platforms and frameworks have significantly simplified work-
ing with hardware, they often come with a standardized abstraction layer that doesn’t account for
the unique functionalities of individual components or the varied needs of developers. LogicGlue
introduces a novel approach by offering platform-independent driver specification alongside a ver-
satile programming library, ensuring developers can write hardware-independent application logic.
This eliminates the limitations posed by the tight coupling of drivers and libraries in conventional
systems, allowing for seamless hardware changes without extensive code adjustments.

Beyond enabling hardware-independence, LogicGlue also provides a foundation upon which
higher-level interaction frameworks, such as ICON [15], can be built. ICON-like systems address the

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

EICS017:10 Lambrichts, et al.

remapping of application-level input semantics, such as assigning mouse actions to keyboard keys
or redirecting gestures across contexts, operating at a layer above the hardware. While LogicGlue
does not influence how input is interpreted at the application level, it ensures consistent, low-level
communication between diverse components and the user application. This makes it an ideal
substrate for systems like ICON by providing uniform access to and reconfiguration of a broad
range of input and output hardware. Together, this complementary layering would enable the
development of modular, adaptable interactive systems, where both hardware connectivity and
user interaction logic can be flexibly redefined.

In this broader landscape of input abstraction, prior work by Accot et al. has introduced formal
models such as transducers to describe how physical devices mediate between user actions and
system responses [1, 2]. These contributions provide a valuable theoretical foundation for under-
standing device behaviour in terms of structured state and signal transitions. While LogicGlue does
not directly implement such formal transducer models, its architecture – by exposing structured,
platform-independent access to device-level behaviour – offers a practical foundation upon which
such models could be realized or operationalized in real-world systems.

3.2 Standardized Communication Interfaces
The concept of integrated modular systems has seen substantial development, with ecosystems
like Jacdac [14], Modular-Things [43], and .NET Gadgeteer [20] leading the way in standardized
communication interfaces.These systems offer a range of compatible components that communicate
through standardized protocols, enabling easy system assembly and expansion. The Raspberry Pi
platform [39], with its extensive ecosystem of hardware add-ons and HATs (Hardware Attached on
Top), exemplifies the power of modular design in promoting system scalability and interoperability.

SoftMod [25], a concept that emphasizes configuring component behaviour through their physical
arrangement, represents a novel approach in this domain. This strategy facilitates a tangible and
intuitive method for modifying system functionalities, showcasing the potential for physical
configuration to impact software behaviour directly. Further contributions to this field include
the Intel Edison [16] and PMod [41] platforms, which were designed to foster innovation in
IoT and embedded projects through modular components and standardized interfaces. Similarly,
the BeagleBone [11] series offers an open-source platform that encourages experimentation and
development with its cape plug-in boards, underlining the versatility of modular design in embedded
systems.

Interoperability in embedded systems necessitates interacting over diverse communication
protocols like SPI, I2C, and UART. While these protocols are frequently used to interact with
electronic components, using them requires significant knowledge in embedded development [23].
High-level protocols such as Jacdac [14] provide a simplified method for device communication,
wrapping low-level communication protocols like I2C and SPI into a high-level communication stan-
dard. In practice, they introduce an ecosystem of modules that all share the same communication
interface to streamline system assembly. In addition, high-level protocols tailored for IoT applica-
tions, like MQTT [38] and CoAP [37], have become prominent, offering lightweight solutions for
resource-constrained environments. These protocols exemplify advances in ensuring devices from
various manufacturers can communicate seamlessly, fostering a more cohesive ecosystem. Here,
frameworks like TinyOS [28] and Static TypeScript [10] have made contributions by focusing on
networked systems and providing platforms for building complex, interconnected devices. However,
compared to low-level communication protocols like SPI and I2C, these approaches often introduce
additional translation steps to make electronic components compatible with the communication
interface. In particular, each feature of an electronic component needs to be able to be exposed

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

LogicGlue: Hardware-Independent Embedded Programming Through Platform-Independent Drivers EICS017:11

through the standardized interface, potentially leading to the loss of unique features and latency
issues.

In contrast, high-level libraries such as the Adafruit CircuitPython Register library [3] provide a
structured approach to interfacing with hardware registers. This library utilizes data descriptors,
which act as Python attributes, allowing developers to define device drivers in an intuitive manner.
By encapsulating I2C and SPI register access within these descriptors, the library abstracts low-level
communication while maintaining direct hardware interaction. While such approaches simplify
device driver development, they are inherently limited to register-based communication protocols,
such as I2C and SPI, and cannot be used for components that rely on analog signals, digital
GPIO interactions, or pulse-based communication. This restricts their applicability to a subset
of electronic components. LogicGlue extends this concept by offering a platform-independent
driver specification that supports a broader range of hardware interfaces, ensuring that hardware
interactions remain decoupled from language-specific implementations and enabling seamless
integration across different microcontrollers and development environments.

LogicGlue stands out by supporting direct interfacing with hardware components through their
native protocols without resorting to standardized interfaces. This ensures the unique features of
each component are preserved, offering developers a more efficient and feature-rich integration
experience. Furthermore, the platform-independent nature of LogicGlue driver specifications en-
sures that any microcontroller or development platform implementing the LogicGlue interpreter
and programming library becomes instantly compatible with all supported electronic components.
Developers can switch between components with different communication protocols or function-
alities without rewriting application logic, significantly reducing complexity and improving the
adaptability of embedded systems development. This approach not only streamlines development
but also enhances the potential for creative hardware solutions by simplifying the integration of
diverse components.

3.3 Intermediate Representation Layers
The adoption of high-level programming languages and abstraction layers has significantly trans-
formed software development practices. Platforms like Node-RED [36], which provides a visual
programming environment for IoT applications, illustrate the effectiveness of abstracting complex
code into more accessible formats. Similarly, the introduction of TypeScript [10] has offered de-
velopers a powerful tool for building large-scale applications by providing types and high-level
syntax that compile down to JavaScript, suitable for web and server environments.

An alternative approach to cross-platform embedded software is to execute high-level code on
microcontrollers using lightweight virtual machines (VMs) or interpreters. Early examples such as
Maté for TinyOS [27] demonstrated this in sensor networks, while modern systems like MicroPy-
thon and CircuitPython [18] embed Python interpreters to support rapid prototyping with access to
hardware features. These VMs offer uniform abstractions and enable dynamic code updates, though
they introduce memory and processing overhead [30]. To address this, bytecode-based systems like
OMicroB [44] and WARDuino [19] compile high-level code into efficient, portable representations.
WARDuino, for instance, adapts WebAssembly to embedded use, achieving significantly improved
performance over interpreted JavaScript. Offloading dynamic compilation to host systems fur-
ther enhances runtime efficiency on microcontrollers [35]. Additionally, frameworks employing
design patterns can streamline application development across diverse hardware platforms [8].
Collectively, these systems illustrate that well-designed interpreters can balance portability and
runtime efficiency, though they require careful handling of debugging and memory management
in constrained environments [30].

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

EICS017:12 Lambrichts, et al.

Intermediate representation layers (IRL) are key in bridging high-level programming constructs
with the lower-level code required by microcontrollers and embedded devices. For instance,
LLVM [29] provides a wide range of tools and libraries that support converting high-level language
code into machine code, facilitating cross-platform application development. This concept is cru-
cial in understanding how abstract code structures can be effectively translated into executable
commands that run on hardware devices.

Traditional software development practices for embedded systems often rely on converting
the whole application logic into an IRL, focusing primarily on programming the microcontrollers
themselves. This approach is instrumental in bridging the gap between high-level programming
constructs and the lower-level executable code required by microcontrollers, as seen in platforms
leveraging LLVM [29] or similar technologies. The primary objective here is to streamline the
development process for the microcontroller’s software, ensuring that high-level abstractions are
effectively translated into machine-level commands that the hardware can execute.

LogicGlue, while embracing a conceptually similar use of IRLs, diverges in its application and ob-
jectives. Rather than focusing on the microcontroller’s entire application logic, LogicGlue facilitates
the interactions with hardware components. Its driver specification outlines the commands for
interfacing with hardware components. This specificity ensures that developers can engage with
the unique functionalities of each component directly, without the intermediary step of translating
general-purpose application logic into hardware-specific commands.

4 LogicGlue Driver Specification
The LogicGlue driver specification provides a comprehensive framework to characterize the com-
plete functionality of an electronic component. This ranges from initialization procedures to read
and write actions, as well as fine-tuning the component’s settings. The LogicGlue driver specifica-
tion is based on the RISC (reduced instruction set computer) architecture and is Turing complete,
ensuring it can fully express and execute any existing component drivers, given sufficient resources.
LogicGlue supports the full spectrum of low-level operations, including data handling, conditional
execution, hardware communication protocols, and program flow control. As a result, LogicGlue
provides a universal abstraction layer that eliminates the need for hardware-specific code, enabling
seamless interoperability across different microcontrollers and embedded platforms. By focusing
on platform-independent, bytecode-based specifications, LogicGlue ensures that developers can
engineer the interactive behaviours of embedded systems without becoming entangled in each
component’s low-level specifications.

Each instruction in the LogicGlue driver specification is represented by a predefined numeric
code, organized within an enumeration (enum). Using an enum allows each instruction to be
given a descriptive name, which enhances code readability and maintainability. While the driver
specification itself is physically stored as a traditional array of bytes, this section presents all
instructions using their enum names, along with indentation and colour coding, to improve clarity
and comprehension. Additionally, we have included a side-by-side visualization of the optional
block-based representation in the LogicGlue interface to further aid understanding. For complete
examples demonstrating how these instructions are applied in practice, we refer the reader to
Appendices E, F, and G.

4.1 Function Definitions
The LogicGlue driver specification comprises several functions that represent the available features
of an electronic component. This section explains how these functions are defined within the
LogicGlue driver specification, using the driver for the HC-SR04 ultrasonic distance sensor as an
example (Figure 6).

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

LogicGlue: Hardware-Independent Embedded Programming Through Platform-Independent Drivers EICS017:13

Fig. 6. Driver specification for the HC-SR04 ultrasonic distance sensor. a) shows the bytecode definition, b)
the boot function, and c) contains all function definitions.

The specification begins with the bytecode definition (Figure 6(a)), specifying the required mi-
crocontroller resources for the environment in which the driver will run, including communication
protocols and memory allocation requirements. These details ensure that the electronic component
is compatible with the intended microcontroller or platform, which is crucial for correct operation
within a given hardware setup. For example, if a sensor requires an I2C communication protocol
and specific GPIO pins, these requirements are explicitly stated to prevent issues related to in-
compatibility. When using the LogicGlue visual interface, the bytecode definition is automatically
determined and added when storing the driver specification header file.

Following the bytecode definition, the boot function (Figure 6(b)) provides instructions necessary
for configuring both the microcontroller and the electronic component. This includes configuring
communication protocols, initializing GPIO pins, and setting configuration registers. For instance,
configuring an I2C temperature sensor would involve setting the I2C address and preparing the
necessary registers to read temperature data. These steps ensure the electronic component is
correctly initialized and ready for operation. The boot section is executed automatically.

The next section of the LogicGlue driver specification defines the functions of the component
(Figure 6(c)). Each function is described by its name and the format of its input and output parameters,
followed by a series of instructions that detail the steps required to perform the function. The
function name indicates the type of functionality, such as light sensing, temperature reading, or
display output. Parameters are characterized by the format name and a scale, which allows for
adjusting the data value according to predefined standards such as metric scales. These details are
crucial for LogicGlue’s automated data conversion (section 5.2) and, ultimately, allow for swapping
between electronic components without rewriting application logic. For instance, if Fahrenheit
is used in the application logic, LogicGlue offers readings in this unit regardless of whether the
temperature sensor returns readings as Fahrenheit, Celsius, or Kelvin.

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

EICS017:14 Lambrichts, et al.

Like function overloading in traditional programming, LogicGlue supports multiple alternative
implementations of similar functionalities that are differentiated by their input or output parameters.
This is useful when, for example, defining driver instructions for the MPU-6050 accelerometer9
which has built-in support to output quaternions and Euler angles. To determine the best driver
function, LogicGlue prioritizes functions based on the number of required data converters to match
the data format used in the application logic.

In addition to functions, the driver specification also details the properties of the electronic
component, such as display size, gain, and sensor integration time. Properties are managed similarly
to functions but do not require data format conversions for input and output values. Instead,
properties are defined by a name and the range of values they accept, which can be a predefined
set (e.g., sensor gain) or numeric values (e.g., display size). LogicGlue automatically verifies the
compatibility of a given value with a property. For example, when setting the gain of a sensor,
LogicGlue supports various generic gain settings of 1x, 2x, 4x, 8x, and so on. However, the TCS34725
color sensor10 specifically only supports gain settings of 1x, 4x, 16x, or 64x. By defining the property
with a set of accepted values, as illustrated in Figure 7, LogicGlue ensures that only compatible
gain settings are accepted, maintaining consistent behaviour when swapping between different
electronic components and showing an error in case incompatible values are used.

Fig. 7. Defining a property for setting the gain of the TCS34725 colour sensor.

Finally, properties can be defined as static when they return a constant value, providing a
straightforward way to access static information about the component. For example, Figure 8 shows
the definition of the static properties for getting the display size of the SSD1306 OLED display,
which will never change and thus can be defined as static.

Fig. 8. Defining static properties for getting the size of the SSD1306 OLED display.

9https://invensense.tdk.com/products/motion-tracking/6-axis/mpu-6050/
10https://ams-osram.com/products/sensors/ambient-light-color-spectral-proximity-sensors/ams-tcs34725-color-sensor

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

https://invensense.tdk.com/products/motion-tracking/6-axis/mpu-6050/
https://ams-osram.com/products/sensors/ambient-light-color-spectral-proximity-sensors/ams-tcs34725-color-sensor

LogicGlue: Hardware-Independent Embedded Programming Through Platform-Independent Drivers EICS017:15

4.2 Numeric Instructions
LogicGlue features a versatile subsystem for handling numeric instructions. A numeric instruction is
an instruction that evaluates to a numeric value, such as an integer or floating-point number. These
instructions can represent constant values, the results of mathematical operations like addition
and subtraction, or values received from hardware peripherals like GPIO pins or communication
protocols. For each numeric instruction, LogicGlue keeps track of its data type and supports
unsigned integers (U8, U16, U32), signed integers (I8, I16, I32), and numbers in both floating (FLT)
and fixed (FIX) point formats. Detailed descriptions of all numeric values and their specific semantics
are included in Appendix B.

A key feature of the numeric subsystem is its ability to use numeric instructions as inputs for
other numeric instructions, enabling the nesting of operations. This allows for the creation of
complex numerical expressions and operations. For example, Figure 9 illustrates various numeric
operations: a) the sum of two integers, b) multiple nested mathematical operations, c) the state of a
GPIO pin, and d) an inline if-test.

It is important to note that since the LogicGlue driver specification is stored as an array of
unsigned bytes, signed numbers must be cast, and large integers or floating-point numbers must
be split across multiple bytes. LogicGlue provides convenient macros to handle these conversions
automatically.

Fig. 9. Illustration of the numeric subsystem within the LogicGlue driver specification, demonstrating various
numeric operations.

4.3 List Instructions
List instructions in LogicGlue function similarly to numeric instructions, providing a flexible way
to handle arrays of data. Like numeric instructions, LogicGlue maintains the data type of each
list to ensure type consistency. Lists are commonly used as data buffers in drivers for displays or
as a convenient method for sending multiple bytes over a communication protocol. For example,
Figure 10 shows an example of the instructions for sending the pixel buffer to the SSD1306 OLED

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

EICS017:16 Lambrichts, et al.

display using a list for the data commands (line 2) and a list for the pixel buffer (line 4). Detailed
descriptions of all list items and their specific semantics are included in Appendix C.

Fig. 10. Illustration of the list subsystem within the LogicGlue driver specification, demonstrating the
instructions for sending the pixel buffer to the SSD1306 OLED display.

LogicGlue supports various list types, including integer lists, floating-point lists, and binary
arrays. Binary arrays are a special type of array where 8 bits are grouped and stored as a regular
byte but can be individually addressed. LogicGlue supports two variants of binary arrays: one
where the 8 bits in the x-direction are combined into one byte, and another where the 8 bits in
the y-direction are combined. Binary arrays are typically used for single-colour displays like the
SSD1306 and dot-matrix displays, where each pixel can either be on or off.

When developing a LogicGlue driver for displays like the SSD1306 OLED, it is necessary to
define functions that set the colour of pixels based on specified x and y coordinates. Typically,
this involves updating the pixel colour by writing a new value to the internal pixel buffer. While
straightforward, this method becomes inefficient when updating a large number of pixels in a
loop because each iteration requires evaluating the input values and executing update instructions,
leading to significant computational overhead.

To address this inefficiency, LogicGlue introduces specialized function types that execute prede-
fined actions more effectively. For example, the OP_DEFINE_FUNCTION_TYPE instruction allows
developers to define optimized driver functions, such as SET_LIST_LOOP, which streamlines the
process of updating multiple values in a list. This function type enables developers to specify a
range of indices to be updated at once and to provide either a static value or a callback function
that determines the new value for each pixel. By employing an optimized loop within the Log-
icGlue interpreter, the SET_LIST_LOOP function significantly reduces the computational load by
minimizing the repetitive evaluation of values. This efficient approach ensures rapid updates while
maintaining the capability to automatically convert values as necessary, enhancing the overall
performance and responsiveness of the display updates. As demonstrated in Section 7, updating
the values for the SSD1306 OLED display is as efficient as traditional approaches.

4.4 Branching Instructions
LogicGlue offers a range of instructions that facilitate complex control flows, similar to traditional
programming languages. For instance, the IF, IF_ELSE, and IF_ELIF_ELSE instructions allow for
conditional branching, akin to their counterparts in conventional programming. The LOOP instruc-
tion requires start, end, and increment values, executing the subsequent instruction multiple times
based on these parameters. Additionally, the FOREACH and FOREACH_BYTE instructions iterate
over the items in a list, using each list item or byte, respectively. While FOREACH returns a single
item, FOREACH_BYTE is particularly useful for binary arrays or lists storing 16- or 32-bit values,

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

LogicGlue: Hardware-Independent Embedded Programming Through Platform-Independent Drivers EICS017:17

as it returns each byte separately, regardless of the list type. For example, in Figure 11, the driver
for the dot-matrix display uses a binary array as a pixel buffer and requires the row address to be
sent before each data byte. Using the FOREACH_BYTE instruction, this operation becomes more
efficient as it allows the driver to iterate through each byte of the binary array, sending the row
address and the corresponding data byte in a streamlined manner.

Fig. 11. Example of the FOREACH_BYTE instruction.

LogicGlue supports various methods for branching the program flow. Labels act as designated
jump points within the LogicGlue driver specification, with the CALL instruction leveraging these
labels to dynamically direct the program counter. The CALL instruction functions similarly to
traditional programming functions, supporting arguments and creating a separate environment
for the function that is called. The RETURN instruction reverts the flow of execution back to its
original position before the jump, effectively managing the program’s execution stack.

In addition to control flow, LogicGlue driver specification supports various types of data storage
and manipulation, distinguishing between global and local variable scopes. Global variables are
persistent and accessible throughout the entire driver specification, while local variables are
temporary and only exist within specific functions, managed via a stack mechanism. This stack-
based approach allows for the dynamic allocation and deallocation of local variables as functions
are called and returned.

When functions are invoked, arguments are passed by reference, linking them to global variables.
This method allows functions to alter different variables by updating the references passed as
arguments, enabling reusable functions to operate on varying data without redundancy. Figure 12
illustrates the different scopes of variables within the LogicGlue driver specification.

4.5 Advanced Instructions
In addition to using labels as jump points for function calls, labels can also be utilized with the GOTO
instruction, which moves the program counter while maintaining the current context. Beyond the
basic GOTO instruction, LogicGlue driver specification includes conditional instructions such as
GOTO_IF and GOTO_IF_NOT, which perform jumps only when specified conditions are met. These
instructions enable the creation of more advanced behaviours, such as complex looping mechanisms.
Figure 13 and Figure 14 demonstrate how an if-elif-else test and a for-loop, respectively, can be
constructed using a series of labels and GOTO instructions.

5 LogicGlue Interpreter
The LogicGlue interpreter runs on the user’s microcontroller and translates the instructions in
the driver specification into platform-specific commands. The LogicGlue high-level programming
library complements the interpreter and offers an interface for developers to interact with elec-
tronic components via the interpreter. Unlike high-level communication standards like Jacdac [14],
LogicGlue maintains the native signals and features of the components, avoiding the need for
translation to a standardized protocol and the associated overhead.

Figure 15 illustrates the LogicGlue program flow for requesting a temperature reading in Kelvin
from an I2C temperature sensor that natively reports in Celsius. The process begins with the

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

EICS017:18 Lambrichts, et al.

Fig. 12. Example of the LogicGlue driver specification, demonstrating the scope of variables.

Fig. 13. Example of advanced instructions of the LogicGlue driver specification, demonstrating how an
if-elif-else test can be created using GOTO instructions and labels.

Fig. 14. Example of advanced instructions of the LogicGlue driver specification, demonstrating how a for-loop
can be created using GOTO instructions and labels.

high-level API receiving a request for the temperature in Kelvin (Step 1). This request is forwarded
as a read operation (Step 2) and mapped to the corresponding driver function (Step 3). The driver
specification provides the bytecode representation of the function (Step 4), which the interpreter
translates into platform-specific commands, including an I2C read to the sensor (Step 5). The sensor

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

LogicGlue: Hardware-Independent Embedded Programming Through Platform-Independent Drivers EICS017:19

returns the temperature in Celsius (Step 6), prompting the LogicGlue interpreter to apply a data
format conversion to Kelvin (Step 7). Finally, the converted value is sent back through the high-level
API and returned to the user (Step 8).

Fig. 15. Illustration of LogicGlue’s program flow when requesting a temperature reading in Kelvin from an
I2C temperature sensor that natively reports in Celsius.

5.1 LogicGlue High-Level Programming Library
The LogicGlue high-level programming library simplifies interaction with various electronic com-
ponents by providing functions that serve as wrappers around interpreter calls. These functions
handle the initialization, configuration, and operation of components, offering default values for
parameters to streamline the process. For instance, Figure 16 illustrates a traditional example of
how the driver specification is used in a typical application that changes the colour of an RGB
LED based on the measured distance from an ultrasonic distance sensor. This example highlights
the standard use of LogicGlue for most components, demonstrating its effectiveness in managing
component interactions efficiently.

Initializing components with LogicGlue involves loading the bytecode driver and setting con-
figuration parameters, such as which GPIO pins are connected. This process creates a special
environment for the driver to run, managing all the necessary resources, variables, and data buffers
for the drivers to work properly. This environment also keeps track of variable states and configura-
tions, ensuring that components operate consistently. This is particularly useful for complex tasks
that require multiple steps and need to keep intermediate results. Additionally, the environment
can buffer sensor readings, which is helpful for sensors with limited sampling rates, like DHT
temperature sensors. In Figure 16, lines 19 and 20 show how the distance sensor and LED are
initialized.

After initializing the component, LogicGlue provides specific functions to interact with different
types of components. The create_sensor function sets up sensors so that data can be read in the
right format. The create_actuator function sets up actuators, allowing data to be sent to them

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

EICS017:20 Lambrichts, et al.

Fig. 16. Example of the application logic for interacting with an ultrasonic distance sensor and RGB LED.

correctly. For displays or other buffer-based components, special functions are available to fill pixel
buffers with data. These functions make it easier to work with components by simplifying complex
interactions and providing default settings.

In Figure 16, lines 23 and 25 demonstrate how to create a distance sensor that measures in
centimetres and an LED actuator that accepts colours in HSL format. Using LogicGlue’s high-level
functions, interacting with these components becomes straightforward. For example, line 30 shows
how the distance sensor is sampled five times to get an average reading. Line 35 shows how the
LED colour is set based on the calculated HSL hue value from the distance measurement.

Figure 17 illustrates an example of application logic for interacting with the SSD1306 display
using the optimized LogicGlue functions to write a set of colours to the internal display buffers.
In this example, a callback function determines the colour of the pixels in the top-left rectangle
of the display, while a constant colour is applied to the bottom-right. It is important to note that
this exact same code can also be used for other types of displays, such as a dot-matrix display,
with no modifications needed beyond the preamble (lines 1-6), as demonstrated in Figure 3. This
underscores the flexibility of LogicGlue in managing various components with minimal to no
changes to the application logic.

5.2 Converting Data Formats
When using traditional software libraries and drivers to interact with electronic components,
developers need to adhere to the data formats outlined by the components. In comparison, LogicGlue
allows developers to select their preferred data format for each component in the application logic,
independent of the characteristics of the electronic component. For example, in the walkthrough
detailed in Section 2, temperature readings are specified in Fahrenheit, as shown in Figure 3, line 15.
In contrast, the MCP9808 and TMP36 temperature sensors that are being used, provide readings in
Celsius and relative voltages, respectively.

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

LogicGlue: Hardware-Independent Embedded Programming Through Platform-Independent Drivers EICS017:21

Fig. 17. Example of the application logic for interacting with the SSD1306 OLED display.

To facilitate seamless data conversions, the LogicGlue interpreter automatically applies a series of
built-in data converter functions. These functions, all written in bytecode, convert between the data
format provided by the application logic and the data format specified in the driver specification.
Rather than adopting the impractical approach of including a separate converter function for every
possible data format—which would be infeasible given the memory constraints on prototyping
platforms—LogicGlue leverages two complementary approaches to reduce the number of required
data converters:

(1) Converting Scalable Formats:
Scalable data formats use metric prefixes like centi-, milli-, and kilo- to adjust measurement
units. Instead of separate converters for each unit pair, LogicGlue uses a generic scale con-
verter that calculates the conversion factor based on these prefixes. This factor is derived
from the difference in metric scale steps, each representing a power of 10. For example,
converting from milli- to deci- involves moving two steps to the right on the scale, resulting
in a conversion factor of 102 = 100. For imperial measurements, LogicGlue uses predefined
ratios relative to a base unit (foot). The conversion factor is found by dividing the ’from’
ratio by the ’to’ ratio. For example, converting inches to miles uses the ratios 1

12 and 5280,
respectively, giving a factor of 1

12/5280 = 0.00001578. When converting between metric and
imperial formats, LogicGlue first converts to the base units before applying the appropriate
conversion.

(2) Converter Chaining:
LogicGlue automatically chains a set of converters if no single converter is available. For
example, if there are converters available for HSL colours to RGB colours and RGB colours

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

EICS017:22 Lambrichts, et al.

to CMYK colours, LogicGlue automatically chains these to convert HSL colours directly
to CMYK colours. Finding a compatible converter chain is managed by representing all
data formats as a graph, where each node represents a specific data format, and each edge
represents a converter that can transform data from one format to another. To find the most
efficient conversion path between two data formats, LogicGlue employs a breadth-first search
(BFS) algorithm.

As LogicGlue uses bytecode to represent drivers, the compiler cannot automatically determine
which data converters are necessary. Consequently, all available converters are included in the
microcontroller’s embedded code by default, resulting in significant memory overhead. To optimize
memory usage, LogicGlue employs C preprocessor definitions in the driver header files to selectively
enable only the relevant converters during the compilation process, ensuring that unnecessary
converters are excluded from the final code.

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

LogicGlue: Hardware-Independent Embedded Programming Through Platform-Independent Drivers EICS017:23

5.3 Interrupt Handling
To enable responsive, event-driven workflows, LogicGlue supports interrupt-driven behaviour for
GPIO pins. Interrupts are configured within the LogicGlue driver specification format using the
OP_INTERRUPT instruction, which defines the pin and the edge condition to monitor. Figure 18
illustrates a complete LogicGlue driver for a button component, including its interrupt configuration
for detecting falling edges. At the application level, developers can use the logicglue_register_in-
terrupt function to attach a callback that will be executed when the corresponding interrupt is
triggered. Figure 19 presents an example of application code that uses this functionality to respond
to button presses.

Fig. 18. Logicglue bytecode driver demonstrating how interrupts can be defined.

Fig. 19. Example of application code using the LogicGlue bytecode driver for the button, demonstrating how
a callback function can be specified for a given interrupt.

6 Supporting LogicGlue on a new Platform
The implementation of the LogicGlue interpreter consists of two parts: (a) An implementation, in C,
for parsing the platform-independent driver specifications (bytecodes) and converting data formats.

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

EICS017:24 Lambrichts, et al.

(b) A platform-specific implementation for communication protocols, GPIO pin access, and memory
allocation. This architecture allows for convenient porting of the LogicGlue interpreter to different
microcontrollers. Porting LogicGlue to a platform that uses the C programming language only
requires implementing the platform-specific functions in Appendix D. Since most microcontroller
platforms support C and C++ programming, LogicGlue can be easily implemented on a wide variety
of microcontrollers. We already have support for the Arduino and nRF52 platforms.

Supporting LogicGlue is more complex for platforms that run on programming languages that
do not build on the C language, such as CircuitPython or DeviceScript. Applications written in
these languages are compiled into custom binaries and interpreted on the microcontroller. In these
situations, developers must make a one-time effort to fully reimplement both the LogicGlue library
and the LogicGlue interpreter in this programming language. Alternatively, LogicGlue could be
integrated into the runtime or the language’s SDK that executes the custom binaries, as these are
typically written in C or C++.

7 LogicGlue Benchmark
While software abstraction layers can introduce some degree of overhead, LogicGlue aims to
minimize performance impact by directly interfacing with electronic components using their
native protocols and communication signals. Unlike high-level communication protocols such
as Jacdac [14], which require translating each interaction into a standardized format, LogicGlue
preserves the original communication structure, reducing the need for additional processing.
However, unlike traditional C and C++ drivers, which are compiled into optimizedmachine code that
runs directly on the microcontroller, LogicGlue drivers are executed as bytecode by the LogicGlue
interpreter at runtime. This means they do not benefit from compiler-level optimizations such as
inlining, loop unrolling, and instruction scheduling, resulting in a slight performance overhead
compared to low-level drivers. In this section, we benchmark the performance of LogicGlue and
demonstrate that its software stack, including the interpreter and high-level programming library,
does not significantly impact the performance of interacting with electronic components compared
to using component-specific libraries.

To benchmark our system, we measured the execution times for interacting with electronic
components using component-specific libraries (baseline condition) and using LogicGlue. We
mainly focused on the primary functions of reading and writing data to and from electronic
components. Benchmarking initialization procedures is not considered as this typically is a short
one-time process and thus has limited impact on the performance. Although LogicGlue embeds
many data converters, we did not use this automated conversion of data formats to ensure a
fair performance comparison with the baseline condition, as component-specific libraries do not
support such features.

We benchmarked the performance of both basic and advanced interactions using three different
sensors: an RGB LED controlled via three PWM pins (basic), a DHT22 temperature sensor (interme-
diate), and an SSD1306 display operating over SPI (advanced). All our tests were conducted on an
Arduino Mega microcontroller running the Arduino platform. In the baseline condition, we interact
with the RGB LED using Arduino’s “AnalogWrite” function. For the DHT22 temperature sensor, we
use the Adafruit DHT sensor library11, and for the SSD1306 display, we use the Adafruit SSD1306
library12. For the LogicGlue condition, we used the corresponding LogicGlue bytecode drivers
provided in Appendices E, F, and G for the RGB LED, DHT22 temperature sensor and SSD1306
display respectively.

11https://github.com/adafruit/DHT-sensor-library
12https://github.com/adafruit/Adafruit_SSD1306

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

https://github.com/adafruit/DHT-sensor-library
https://github.com/adafruit/Adafruit_SSD1306

LogicGlue: Hardware-Independent Embedded Programming Through Platform-Independent Drivers EICS017:25

For a precise measurement of execution times, we connected a logic analyzer (Saleae Logic Pro
8) to an additional GPIO pin and pulled it to Vcc and ground at, respectively, the start and end of
the interaction. The logic analyzer measures the time this GPIO pin is high, which represents the
duration of the interaction. This measurement technique is common as it allows for precise and
reliable measurements of execution times on a microcontroller. Each test was repeated 100 times
for reliability.

Electronic Component
Component-

Specific
Library

LogicGlue Difference Relative
Difference

RGB LED 0.03 ms 0.38 ms 0.35 ms +1088%

DHT22 Temperature Sensor 4.26 ms 4.21 ms -0.05 ms -1.1%

SSD1306 Display 5.44 ms 8.60 ms 3.16 ms +58.1%

Table 1. Execution times for interacting with electronic components using component-specific libraries versus
LogicGlue.

The results are summarized in Table 1 and present themedian execution times for both the baseline
and LogicGlue conditions. Across all components tested, timing variability remained low (±0.002
milliseconds), confirming the consistency and reliability of the measurements. While LogicGlue
introduces some overhead, most notably for the SSD1306 display, the overall performance remains
within acceptable bounds for typical interactive applications. For instance, the RGB LED operation
shows a notable relative increase in execution time due to LogicGlue’s additional abstraction layers.
However, the absolute time remains under 1 millisecond, which is negligible in most use cases. As
a reference point, the frame time of a 60 Hz display is approximately 16 milliseconds, so even a 10×
increase here is unlikely to affect perceptual responsiveness in embedded systems.

The DHT22 temperature sensor shows near-identical performance in both configurations, with
LogicGlue slightly outperforming the component-specific library, likely due to reduced overhead
in its simpler driver structure. In contrast, the SSD1306 display exhibits a measurable increase in
latency, from 5.44 ms to 8.60 ms. This reflects the cost of interpreting display-related bytecode and
constructing the pixel buffer during execution. Still, the resulting throughput corresponds to a
refresh rate above 100 frames per second, far exceeding the practical needs of such low-resolution
displays, which are typically updated in response to discrete user actions rather than rendered
continuously.

A closer analysis of the results indicates that the primary source of overhead introduced by
LogicGlue is not the communication latency itself, but the additional processing required to inter-
pret bytecode instructions and manage component environments. Communication over standard
protocols such as I2C, SPI, and GPIO, handled natively by the LogicGlue interpreter, remains largely
comparable to component-specific libraries. The physical signalling, bus access time, and device
readiness constraints are fundamentally the same in both cases. In contrast, LogicGlue introduces
additional logic for evaluating driver bytecode, managing variable environments, and dispatching
commands. Even simple operations, such as toggling an LED via PWM, show measurable overhead
due to the setup and interpretation stages, despite the actual GPIO or timer interaction being
minimal. This illustrates that fixed processing costs, such as initializing execution contexts and in-
terpreting parameter bindings, can dominate performance in lightweight, single-shot operations. In
contrast, for more complex drivers, like those managing multi-step I2C transactions or long update

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

EICS017:26 Lambrichts, et al.

sequences, the relative overhead becomes less significant, as apparent for the DHT22 temperature
sensor. The overhead is most apparent in operations involving sequential or looped updates, such
as those required to construct and send pixel buffers to displays.

Benchmarking the memory usage of LogicGlue compared to traditional low-level drivers reveals
a notable difference in resource consumption. Since LogicGlue drivers are interpreted at runtime,
they do not benefit from compiler optimizations such as the zero-overhead abstraction principle
in C++. As a result, the LogicGlue software stack requires, dependent on compiler settings and
optimizations, approximately 35KB of flash memory when compiled for Arduino and 55KB for the
nRF52840 microcontroller. Despite the overhead introduced by the interpreter, LogicGlue bytecode
drivers themselves remain compact. The driver for the RGB LED requires only 56 bytes, while
the DHT22 temperature sensor and SSD1306 display drivers require 134 bytes and 154 bytes,
respectively. These figures highlight the resource efficiency of the driver specifications, even as the
interpreter adds some runtime overhead.

8 Discussion and Future Work
8.1 Interchanging Components
LogicGlue’s platform-independent drivers allow for writing hardware-independent application
logic. This significantly simplifies integrating electronic components, as one does not need to
consider technical characteristics, such as protocols and registers. As a result, LogicGlue also
facilitates transitions between different microcontrollers and electronic components, which fosters
experimentation and iterative development. As such, developers can easily swap components
without extensive modifications to the application logic.

Furthermore, because LogicGlue bytecode drivers are processed at runtime, they can be dynami-
cally replaced without the need to recompile or reflash the application logic. This makes it possible
to develop applications that update LogicGlue drivers on the fly using, for example, communication
protocols like Serial, I2C, or SPI. As a result, testing multiple component types becomes seamless,
eliminating the need for manual reprogramming and further enhancing the design of interactive
embedded systems.

However, while LogicGlue automatically handles all data format conversions, developers must
still understand the functionalities and limitations of both the original and replacement components.
For instance, swapping a high-precision I2C temperature sensor with a low-precision analog sensor
will result in correct data format conversions. Still, it may impact the application’s workings due to
the inherent differences in precision.

Display components present another example where careful consideration is needed. Swapping
an RGB display with another of a different size requires that the visual interface scales correctly.
Replacing an RGB display with a single-colour display necessitates adjustments to accommodate
the lack of colour, which LogicGlue can convert but not adapt in terms of design. For example,
while LogicGlue automatically converts the RGB colour to a binary colour, it can not adjust the
interface to accommodate the lack of colour. Similarly, transitioning from a high-resolution OLED
display to a low-resolution dot-matrix display will require application-level modifications to handle
the reduced resolution appropriately. Likewise, replacing, for example, a stepper motor with a DC
motor involves recognizing the differences in control mechanisms and precision. A stepper motor
offers precise position control, which is essential for applications like 3D printing. In contrast, a
DC motor provides continuous rotation but lacks the same level of positional accuracy, making it
suitable for applications like driving an RC car or a fan.

While LogicGlue enables seamless component interchangeability in most scenarios, some limita-
tions remain. In particular, components that rely on interrupt-driven behaviour cannot be trivially

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

LogicGlue: Hardware-Independent Embedded Programming Through Platform-Independent Drivers EICS017:27

swapped with components that do not support interrupts. For example, replacing a button driver
that uses falling-edge interrupts with a capacitive touch sensor that requires polling would require
changes in the application structure. Although the functional goal, detecting user input, may be
equivalent, the timing model and event-triggering mechanism differ fundamentally. Future versions
of LogicGlue could explore abstractions to unify interrupt- and polling-based components under a
shared event model, further enhancing the modularity of interactive systems.

8.2 Performance
LogicGlue introduces a hardware-independent approach that allows application logic to interact
with electronic components using their native signals and protocols. As demonstrated in the bench-
mark (Section 7), its performance closely matches that of component-specific libraries, and for most
real-time processing applications, the slight increase in latency is negligible. However, in scenarios
requiring strict synchronization, such as certain robotic applications, the minor delay introduced
by bytecode interpretation may be a limiting factor, prompting engineers to consider native code
for optimal performance. Although our current evaluation focuses on isolated components, we
acknowledge the importance of assessing system-wide performance when multiple devices are
active. We did not yet benchmark scenarios involving concurrent driver environments or event-
driven chains (e.g., a sensor triggers an actuator via an interrupt), but we identify this as a key
direction for future work. Particularly, scalability testing under realistic interactive workloads will
help further characterize the suitability of LogicGlue in more complex prototyping and deployment
scenarios.

Similar challenges arise in alternative approaches like Jacdac [14], which achieves compatibility
through an ecosystem of standardized modules. Each module in the Jacdac system contains a
dedicated microcontroller that translates component-specific signals into the Jacdac protocol,
introducing processing overhead. Additionally, the asynchronous nature of the Jacdac data bus
can contribute to further delays and may limit access to component-specific features not explicitly
supported by the protocol. Like LogicGlue, Jacdac trades some performance for flexibility, requiring
engineers to assess these trade-offs based on their application’s timing constraints.

While LogicGlue simplifies hardware interaction, our approach introduces additional memory
consumption to store the bytecode, the interpreter, and programming libraries, as discussed in
the benchmark (Section 7). Each of these, in turn, introduces additional runtime memory usage.
While memory availability on microcontrollers and development boards increases every year, the
additional memory consumption of LogicGlue can be an issue for embedded systems with scarce
memory resources. To mitigate this issue, future work can look into strategies for optimizing
memory usage by refining the bytecode and interpreter. For instance, simplifying the data format
converters within LogicGlue could reduce their memory demands. Alternatively, considering the
feasibility of offloading certain processing tasks to external devices like a connected computer or
leveraging cloud computing resources could help conserve the microcontroller’s memory.

8.3 LogicGlue Driver Specification
LogicGlue also eases the work of component manufacturers and engineers of development plat-
forms as electronic components for which LogicGlue driver specifications are written, are instantly
compatible with all development platforms that support LogicGlue. Likewise, new development
platforms that implement LogicGlue are instantly compatible with the wide variety of electronic
components that are on the market today. While LogicGlue requires a one-time effort for a com-
ponent manufacturer or engineer to write LogicGlue driver specifications for new electronic
components, artificial intelligence could be used in the future to generate driver specifications from
a component’s datasheet automatically.

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

EICS017:28 Lambrichts, et al.

LogicGlue’s driver specifications are stored in bytecode format. They are thus very compact and
can be stored in the cloud or on a developer’s computer. As these driver specifications include
all information to interface with the component, we believe it also makes sense to store this
bytecode in the future on a memory chip located on every component. As this would require
component manufacturers to follow a new standard, a similar, more practical implementation
is the use of a shield that extends any electronic component with a memory chip, as shown in
Figure 20. This memory chip could communicate with the LogicGlue Interpreter over I2C or 1-wire,
making it possible to recognize plugged-in components and load their bytecode driver specifications
automatically. We also envision the memory chip hosting additional information, such as the pinout
and operating voltage. This enables new opportunities to assist the wiring process. To further ease
or avoid the component wiring, we see opportunities for synergies between our research efforts on
lowering the barrier for embedded programming and state-of-the-art solutions to avoid or facilitate
component wiring, such as CircuitGlue [24] or VirtualWire [26]. These synergies could lead to
novel solutions in which any electronic component becomes plug-and-play, similar to the use of
USB to simplify device connectivity.

Fig. 20. A conceptual illustration of an extension shield equippedwith amemory chip allows for the embedding
of a component’s driver, ensuring automatic recognition and configuration by LogicGlue upon connection.

9 Conclusion
In this paper we introduced LogicGlue, a novel framework that streamlines electronics prototyping
by creating platform-agnostic drivers for hardware components and enabling the development of
hardware-independent application logic. At the core of LogicGlue lies a custom driver specification
format and interpreter, which enables the definition of a component’s functionalities, regardless of
platform types or programming languages. Furthermore, we provide a visual block-based program-
ming interface that simplifies writing these specifications. Together, these innovations make the
process of developing embedded and interactive systems that draw upon a diverse set of hardware
components more accessible to a broad range of individuals.

Acknowledgments
We thank Prof. Dr. Davy Vanacken for providing initial feedback on our paper. This research was
supported in part by the Special Research Fund (BOF) project BOF19KP04 and in part by the U.K.
Engineering and Physical Sciences Research Council Grant EP/W020564/1.

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

LogicGlue: Hardware-Independent Embedded Programming Through Platform-Independent Drivers EICS017:29

References
[1] Johnny Accot, Stéphane Chatty, Sébastien Maury, and Philippe Palanque. 1997. Formal Transducers: Models of Devices

and Building Bricks for the Design of Highly Interactive Systems. In Design, Specification and Verification of Interactive
Systems ’97, Michael Douglas Harrison and Juan Carlos Torres (Eds.). Springer Vienna, Vienna, 143–159.

[2] Johnny Accot, Stéphane Chatty, and Philippe Palanque. 1996. A Formal Description of Low Level Interaction and
its Application to Multimodal Interactive Systems. In Design, Specification and Verification of Interactive Systems ’96,
Francois Bodart and Jean Vanderdonckt (Eds.). Springer Vienna, Vienna, 92–104.

[3] Adafruit. 2024. Adafruit CircuitPython Register. https://github.com/adafruit/Adafruit_CircuitPython_Register
[4] Arduino. 2024. Arduino - Home. https://www.arduino.cc/
[5] Arduino. 2024. Arduino - Libraries. https://www.arduino.cc/reference/en/libraries/
[6] Arduino. 2024. Arduino IDE. https://www.arduino.cc/en/software
[7] Jonny Austin, Howard Baker, Thomas Ball, James Devine, Joe Finney, Peli De Halleux, Steve Hodges, Michał Moskal,

and Gareth Stockdale. 2020. The BBC micro:bit: from the U.K. to the world. Commun. ACM 63, 3 (Feb. 2020), 62–69.
doi:10.1145/3368856

[8] Marek Babiuch and Petr Foltynek. 2024. Implementation of a Universal Framework Using Design Patterns for
Application Development on Microcontrollers. Sensors 24, 10 (2024), 3116. doi:10.3390/s24103116

[9] Thomas Ball, Abhijith Chatra, Peli de Halleux, Steve Hodges, Michał Moskal, and Jacqueline Russell. 2019. Microsoft
MakeCode: embedded programming for education, in blocks and TypeScript. In Proceedings of the 2019 ACM SIGPLAN
Symposium on SPLASH-E (Athens, Greece) (SPLASH-E 2019). Association for Computing Machinery, New York, NY,
USA, 7–12. doi:10.1145/3358711.3361630

[10] Thomas Ball, Peli de Halleux, and Michał Moskal. 2019. Static TypeScript: an implementation of a static compiler for
the TypeScript language. In Proceedings of the 16th ACM SIGPLAN International Conference on Managed Programming
Languages and Runtimes (Athens, Greece) (MPLR 2019). Association for Computing Machinery, New York, NY, USA,
105–116. doi:10.1145/3357390.3361032

[11] BeagleBoard. 2024. BeagleBone. https://www.beagleboard.org/boards/beaglebone-black
[12] Phillip Burgess. 2024. Adafruit GFX Graphics Library. https://learn.adafruit.com/adafruit-gfx-graphics-library/

overview
[13] James Devine, Joe Finney, Peli de Halleux, Michał Moskal, Thomas Ball, and Steve Hodges. 2018. MakeCode and

CODAL: intuitive and efficient embedded systems programming for education. SIGPLAN Not. 53, 6 (jun 2018), 19–30.
doi:10.1145/3299710.3211335

[14] James Devine, Michal Moskal, Peli de Halleux,Thomas Ball, Steve Hodges, Gabriele D’Amone, David Gakure, Joe Finney,
Lorraine Underwood, Kobi Hartley, Paul Kos, and Matt Oppenheim. 2022. Plug-and-play Physical Computing with
Jacdac. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 6, 3, Article 110 (9 2022), 30 pages. doi:10.1145/3550317

[15] Pierre Dragicevic and Jean-Daniel Fekete. 2001. Input Device Selection and Interaction Configuration with ICON. In
Proceedings of the International Conference IHM-HCI 2001, A Blandford, J Vanderdonckt, and P Gray (Eds.). Springer
Verlag, Lille, France, 543–448. https://inria.hal.science/hal-00877336

[16] Intel Edison. 2024. Intel Edison Compute Module. https://ark.intel.com/content/www/us/en/ark/products/84572/intel-
edison-compute-module-iot.html

[17] FreeRTOS. 2024. FreeRTOS: Real-time operating system for microcontrollers. https://www.freertos.org/index.html
[18] Damien George. 2024. MicroPython: Python for microcontrollers. https://micropython.org/
[19] Robbert Gurdeep Singh and Christophe Scholliers. 2019. WARDuino: a dynamic WebAssembly virtual machine

for programming microcontrollers. In Proceedings of the 16th ACM SIGPLAN International Conference on Managed
Programming Languages and Runtimes (Athens, Greece) (MPLR 2019). Association for Computing Machinery, New
York, NY, USA, 27–36. doi:10.1145/3357390.3361029

[20] Steve Hodges, James Scott, Sue Sentance, Colin Miller, Nicolas Villar, Scarlet Schwiderski-Grosche, Kerry Hammil,
and Steven Johnston. 2013. .NET gadgeteer: a new platform for K-12 computer science education. In Proceeding of the
44th ACM Technical Symposium on Computer Science Education (Denver, Colorado, USA) (SIGCSE ’13). Association for
Computing Machinery, New York, NY, USA, 391–396. doi:10.1145/2445196.2445315

[21] Steve Hodges, Stuart Taylor, Nicolas Villar, James Scott, Dominik Bial, and Patrick Tobias Fischer. 2013. Prototyping
Connected Devices for the Internet of Things. Computer 46, 2 (2013), 26–34. doi:10.1109/MC.2012.394

[22] Steve Hodges, Nicolas Villar, James Scott, and Albrecht Schmidt. 2012. A New Era for Ubicomp Development. IEEE
Pervasive Computing 11, 1 (2012), 5–9. doi:10.1109/MPRV.2012.1

[23] Mannu Lambrichts, Raf Ramakers, Steve Hodges, Sven Coppers, and James Devine. 2021. A Survey and Taxonomy of
Electronics Toolkits for Interactive and Ubiquitous Device Prototyping. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol. 5, 2, Article 70 (June 2021), 24 pages. doi:10.1145/3463523

[24] Mannu Lambrichts, Raf Ramakers, Steve Hodges, James Devine, Lorraine Underwood, and Joe Finney. 2023. CircuitGIue:
A Software Configurable Converter for Interconnecting Multiple Heterogeneous Electronic Components. Proc. ACM

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

https://github.com/adafruit/Adafruit_CircuitPython_Register
https://www.arduino.cc/
https://www.arduino.cc/reference/en/libraries/
https://www.arduino.cc/en/software
https://doi.org/10.1145/3368856
https://doi.org/10.3390/s24103116
https://doi.org/10.1145/3358711.3361630
https://doi.org/10.1145/3357390.3361032
https://www.beagleboard.org/boards/beaglebone-black
https://learn.adafruit.com/adafruit-gfx-graphics-library/overview
https://learn.adafruit.com/adafruit-gfx-graphics-library/overview
https://doi.org/10.1145/3299710.3211335
https://doi.org/10.1145/3550317
https://inria.hal.science/hal-00877336
https://ark.intel.com/content/www/us/en/ark/products/84572/intel-edison-compute-module-iot.html
https://ark.intel.com/content/www/us/en/ark/products/84572/intel-edison-compute-module-iot.html
https://www.freertos.org/index.html
https://micropython.org/
https://doi.org/10.1145/3357390.3361029
https://doi.org/10.1145/2445196.2445315
https://doi.org/10.1109/MC.2012.394
https://doi.org/10.1109/MPRV.2012.1
https://doi.org/10.1145/3463523

EICS017:30 Lambrichts, et al.

Interact. Mob. Wearable Ubiquitous Technol. 7, 2, Article 63 (6 2023), 30 pages. doi:10.1145/3596265
[25] Mannu Lambrichts, Jose Maria Tijerina, and Raf Ramakers. 2020. SoftMod: A Soft Modular Plug-and-Play Kit for

Prototyping Electronic Systems. In Proceedings of the Fourteenth International Conference on Tangible, Embedded, and
Embodied Interaction (Sydney NSW, Australia) (TEI ’20). Association for Computing Machinery, New York, NY, USA,
287–298. doi:10.1145/3374920.3374950

[26] Woojin Lee, Ramkrishna Prasad, Seungwoo Je, Yoonji Kim, Ian Oakley, Daniel Ashbrook, and Andrea Bianchi. 2021.
VirtualWire: Supporting Rapid Prototyping with Instant Reconfigurations of Wires in Breadboarded Circuits. In
Proceedings of the Fifteenth International Conference on Tangible, Embedded, and Embodied Interaction (Salzburg, Austria)
(TEI ’21). Association for Computing Machinery, New York, NY, USA, Article 4, 12 pages. doi:10.1145/3430524.3440623

[27] Philip Levis and David Culler. 2002. Maté: a tiny virtual machine for sensor networks. In Proceedings of the 10th Inter-
national Conference on Architectural Support for Programming Languages and Operating Systems (San Jose, California)
(ASPLOS X). Association for Computing Machinery, New York, NY, USA, 85–95. doi:10.1145/605397.605407

[28] Philip Levis, Samuel Madden, Joseph Polastre, Robert Szewczyk, Kamin Whitehouse, Alec Woo, David Gay, Jason
Hill, Matt Welsh, Eric Brewer, and David Culler. 2005. TinyOS: An Operating System for Sensor Networks. Vol. 00.
Springer-Verlag, New York, 115–148. doi:10.1007/3-540-27139-2_7

[29] LLVM. 2024. The LLVM Compiler Infrastructure. https://llvm.org/
[30] Elmin Marevac, Esad Kadušić, Nataša Živić, Nevzudin Buzađija, and Samir Lemeš. 2025. Framework Design for the

Dynamic Reconfiguration of IoT-Enabled Embedded Systems and “On-the-Fly” Code Execution. Future Internet 17, 1
(2025), 1–41. doi:10.3390/fi17010023

[31] Mbed. 2024. Mbed OS. https://os.mbed.com/mbed-os/
[32] BBC micro:bit. 2024. Micro:bit Educational Foundation. https://microbit.org/
[33] Microsoft. 2024. DeviceScript TypeScript for Tiny IoT Devices. https://microsoft.github.io/devicescript/
[34] Microsoft. 2024. Visual Studio Code. https://code.visualstudio.com/
[35] Fumika Mochizuki, Tetsuro Yamazaki, and Shigeru Chiba. 2024. Interactive Programming for Microcontrollers by

Offloading Dynamic Incremental Compilation. In Proceedings of the 21st ACM SIGPLAN International Conference on
Managed Programming Languages and Runtimes (MPLR ’24). Association for Computing Machinery, New York, NY,
USA, 1–13. doi:10.1145/3679007.3685062

[36] Node-RED. 2024. Node-RED - Low-code programming for event-driven applications. https://nodered.org/
[37] OASIS. 2024. CoAP - Constrained Application Protocol. https://coap.space/
[38] OASIS. 2024. MQTT. https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
[39] Raspberry Pi. 2024. Raspberry Pi. https://www.raspberrypi.com/
[40] PlatformIO. 2024. PlatformIO. https://platformio.org/
[41] PMod. 2024. PMod. https://digilent.com/reference/pmod/start
[42] Thibault Raffaillac and Stéphane Huot. 2022. What do Researchers Need when Implementing Novel Interaction

Techniques? Proc. ACM Hum.-Comput. Interact. 6, EICS, Article 159 (June 2022), 30 pages. doi:10.1145/3532209
[43] Jake Robert Read, Leo Mcelroy, Quentin Bolsee, B Smith, and Neil Gershenfeld. 2023. Modular-Things: Plug-and-Play

with Virtualized Hardware. In Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems
(Hamburg, Germany) (CHI EA ’23). Association for Computing Machinery, New York, NY, USA, Article 210, 6 pages.
doi:10.1145/3544549.3585642

[44] Steven Varoumas, Basile Pesin, Benoît Vaugon, and Emmanuel Chailloux. 2020. Programming microcontrollers through
high-level abstractions. In Proceedings of the 12th ACM SIGPLAN International Workshop on Virtual Machines and
Intermediate Languages (Virtual, USA) (VMIL 2020). Association for Computing Machinery, New York, NY, USA, 5–14.
doi:10.1145/3427765.3428495

[45] Zephyr. 2024. Device Driver Model. https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/zephyr/kernel/
drivers/index.html

[46] Zephyr. 2024. Zephyr. https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/zephyr/index.html

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

https://doi.org/10.1145/3596265
https://doi.org/10.1145/3374920.3374950
https://doi.org/10.1145/3430524.3440623
https://doi.org/10.1145/605397.605407
https://doi.org/10.1007/3-540-27139-2_7
https://llvm.org/
https://doi.org/10.3390/fi17010023
https://os.mbed.com/mbed-os/
https://microbit.org/
https://microsoft.github.io/devicescript/
https://code.visualstudio.com/
https://doi.org/10.1145/3679007.3685062
https://nodered.org/
https://coap.space/
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://www.raspberrypi.com/
https://platformio.org/
https://digilent.com/reference/pmod/start
https://doi.org/10.1145/3532209
https://doi.org/10.1145/3544549.3585642
https://doi.org/10.1145/3427765.3428495
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/zephyr/kernel/drivers/index.html
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/zephyr/kernel/drivers/index.html
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/zephyr/index.html

LogicGlue: Hardware-Independent Embedded Programming Through Platform-Independent Drivers EICS017:31

A Instructions in the Driver Specification

OP_NOP()

No operation

OP_BOOT()

Marks the start of the boot section

OP_FUNCTION(name:8, args:8, props:8)

Define a function with arguments and properties

OP_INTERRUPT(pin:num, event:num)

Define an interrupt for the provided pin and event

OP_PROPERTY(name:8, n:8, accepts:8[n])

Define a property for the current function

OP_PROPERTY_CONST(name:8, val:num)

Define a constant property for the current function

OP_DEFINE_INPUT_VALUE(num:8, (type:8)[n])

Define the type of value of the input parameters

OP_DEFINE_INPUT_FORMAT(num:8, (format:8, scale:8)[n])

Define the format and scale of input parameters

OP_DEFINE_OUTPUT_VALUE(num:8, (type:8)[n])

Define the type of value of the output parameters

OP_DEFINE_OUTPUT_FORMAT(num:8, (format:8, scale:8)[n])

Define the format and scale of output parameters

OP_DEFINE_FUNCTION_TYPE(type:8)

Define the type of the function

OP_SET_VAR(id:8, val:num)

Save value in a variable

OP_SET_VAR_INITIAL(id:8, val:num)

Save value only if the variable is not set

OP_SET_ARG(id:8, idx:8, val:num)

Save value in argument at specified index

OP_SET_PROP(val:num)

Save value in the current property

OP_SET_LOCAL(id:8, val:num)

Save value in a local variable

OP_SET_PARAM(id:8, val:num)

Save value in a cross-context parameter

OP_SET_LIST(id:8, lst:list)

Save list in a list variable

OP_LIST_CREATE_1D(id:8, type:8(list_e), n:num)

Create a 1D list

OP_LIST_CREATE_2D(id:8, type:8(list_e), n:num, m:num)

Create a 2D list

OP_LIST_SET_1D(id:8, idx:num, val:num)

Set value in a 1D list

OP_LIST_SET_2D(id:8, idx:num, idy:num, val:num)

Set value in a 2D list

OP_LIST_FILL(id:8, val:num)

Fill list with value

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

EICS017:32 Lambrichts, et al.

OP_PRINT(val:num)

Print the value

OP_PRINT_LIST(lst:list)

Print the list

OP_LABEL(label:8)

Mark a label

OP_GOTO(label:8)

Go to a label

OP_GOTO_IF(label:8, val:num)

Conditional goto if truthy

OP_GOTO_IF_NOT(label:8, val:num)

Conditional goto if falsy

OP_CALL(label:8)

Call label and store index on stack

OP_CALL_ARGS(label:8, n:8, idx[n])

Call label with argument list

OP_CALL_INTERNAL(internal:8)

Call internal function

OP_CALL_INTERNAL_ARGS(internal:8, n:8, idx[n])

Call internal with arguments

OP_RETURN()

Return from current call

OP_BLOCK(n:8, instruction[n])

Execute a block of instructions

OP_BREAK()

Exit the current block or return

OP_BREAK_IF(val:num)

Break if truthy

OP_IF(val:num, instruction)

Execute instruction if truthy

OP_IF_ELSE(val:num, instruction, instruction)

If-else conditional

OP_IF_ELIF_ELSE(n:8, (val:num, instruction)[n], instruction)

If-elif-else with default

OP_SWITCH(n:8, switch:num, (case:num, instruction)[n], instruction)

Switch-case logic

OP_LOOP(start:num, end:num, incr:num, instruction)

Loop over range

OP_FOREACH(lst:list, instruction)

Loop over list items

OP_FOREACH_BYTE(lst:list, instruction)

Loop over list bytes

OP_EXIT()

Exit the program

OP_EXIT_CODE(code:num)

Exit with code

OP_ASSERT(val:num)

Assert value is truthy

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

LogicGlue: Hardware-Independent Embedded Programming Through Platform-Independent Drivers EICS017:33

OP_ASSERT_CODE(val:num, code:num)

Assert value or exit with code

HW_DELAY_MS(duration:num)

Delay in milliseconds

HW_DELAY_US(duration:num)

Delay in microseconds

HW_GPIO_CONFIG(pin:num, mode:num)

Configure GPIO pin mode

HW_GPIO_WRITE(pin:num, state:num)

Set GPIO pin state

HW_GPIO_PULSE_MS(pin:num, state:num, duration:num)

Pulse pin for milliseconds

HW_GPIO_PULSE_MS_n(pin:num, state:num, duration:num, interval:num, n:num)

Repeated pulse in ms

HW_GPIO_PULSE_US(pin:num, state:num, duration:num)

Pulse pin for microseconds

HW_GPIO_PULSE_US_n(pin:num, state:num, duration:num, interval:num, n:num)

Repeated pulse in µs

HW_GPIOTE_CONFIG(pin:num, edge:num, label:8)

Configure edge-triggered GPIO interrupt

HW_ADC_CONFIG(pin:num)

Configure ADC on pin

HW_PWM_CONFIG(pin:num, period:num)

Configure PWM signal

HW_PWM_WRITE(pin:num, duty:num)

Set PWM duty cycle

HW_I2C_CONFIG(addr:num, freq:8)

Configure I2C interface

HW_I2C_WRITE(val:num)

Write single value to I2C

HW_I2C_WRITE_2(val:num, val:num)

Write two values to I2C

HW_I2C_WRITE_LIST(lst:list)

Write list to I2C

HW_SPI_CONFIG(cs:num, freq:8, mode:8, order:8)

Configure SPI interface

HW_SPI_WRITE(val:num)

Write value to SPI

HW_SPI_WRITE_2(val:num, val:num)

Write two values to SPI

HW_SPI_WRITE_LIST(lst:list)

Write list to SPI

HW_UART_CONFIG(baudrate:8, mode:8)

Configure UART

HW_UART_WRITE(val:num)

Write to UART

HW_UART_WRITE_2(val:num, val:num)

Write two values to UART

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

EICS017:34 Lambrichts, et al.

HW_UART_WRITE_LIST(lst:list)

Write list to UART

HW_DTH_CONFIG(pin:num)

Configure DTH sensor

HW_WS2812_CONFIG(pin:num)

Configure WS2812 LED

HW_WS2812_WRITE(val:num)

Write value to WS2812

HW_WS2812_WRITE_LIST(lst:list)

Write list to WS2812

Listing 1. Full instruction set with parameters and descriptions

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

LogicGlue: Hardware-Independent Embedded Programming Through Platform-Independent Drivers EICS017:35

B Numeric Subsystem in the Driver Specification

Instruction(\textbf{Parameters})

Description

_U8(val:8)

Define an 8-bit unsigned integer constant

_U16(val:16)

Define a 16-bit unsigned integer constant

_U32(val:32)

Define a 32-bit unsigned integer constant

_I8(val:8)

Define an 8-bit signed integer constant

_I16(val:16)

Define a 16-bit signed integer constant

_I32(val:32)

Define a 32-bit signed integer constant

_FLT(val:32)

Define a 32-bit floating point constant

_FLT_HEX(val:32)

Define a 32-bit floating point constant in hexadecimal format

_FIX(val:32, frac:8)

Define a fixed-point constant

_CONFIG(id:8)

Get configuration value

_ARG(id:8, idx:num)

Get the value at specified index from the argument

_PROP(No parameters)

Get the value of the current property

_VAR(id:8)

Get variable value

_VAR_LOCAL(id:8)

Get local variable value

_VAR_PARAM(id:8)

Get parameter value

LIST_GET_1D(id:8, idx:num)

Get the value at specified index from the 1D list

LIST_GET_2D(id:8, idx:num, idy:num)

Get the value at specified index from the 2D list

LIST_SIZE(id:8)

Get the number of items in the list

CAST(type:8(num_e), val:num)

Cast the numeric value to the given type

MATH_ADD(val_a:num, val_b:num)

Add two numeric values

MATH_SUB(val_a:num, val_b:num)

Subtract second numeric value from the first

MATH_MUL(val_a:num, val_b:num)

Multiply two numeric values

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

EICS017:36 Lambrichts, et al.

MATH_DIV(val_a:num, val_b:num)

Divide the first numeric value by the second

MATH_MOD(val_a:num, val_b:num)

Get the remainder of division of the first numeric value by the second

MATH_POW(val_a:num, val_b:num)

Raise the first numeric value to the power of the second

MATH_SQRT(val:num)

Get the square root of the numeric value

MATH_AND(val_a:num, val_b:num)

Perform bitwise AND operation on two numeric values

MATH_OR(val_a:num, val_b:num)

Perform bitwise OR operation on two numeric values

MATH_XOR(val_a:num, val_b:num)

Perform bitwise XOR operation on two numeric values

MATH_NOT(val:num)

Perform bitwise NOT operation on the numeric value

MATH_SHL(val_a:num, val_b:num)

Shift the first numeric value left by the number of bits specified by the second

MATH_SHR(val_a:num, val_b:num)

Shift the first numeric value right by the number of bits specified by the second

MATH_MIN(val_a:num, val_b:num)

Get the minimum of two numeric values

MATH_MAX(val_a:num, val_b:num)

Get the maximum of two numeric values

MATH_CLAMP(val:num, low:num, high:num)

Clamp the numeric value within the range specified by low and high values

MATH_ABS(val:num)

Get the absolute value of the numeric value

MATH_CEIL(val:num)

Get the ceiling value of the numeric value

MATH_FLOOR(val:num)

Get the floor value of the numeric value

MATH_ROUND(val:num)

Round the numeric value

MATH_SIN(val:num)

Get the sine of the numeric value

MATH_COS(val:num)

Get the cosine of the numeric value

MATH_TAN(val:num)

Get the tangent of the numeric value

MATH_ASIN(val:num)

Get the arcsine of the numeric value

MATH_ACOS(val:num)

Get the arccosine of the numeric value

MATH_ATAN(val:num)

Get the arctangent of the numeric value

MATH_ATAN2(val:num)

Get the arctangent of the quotient of the two numeric values

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

LogicGlue: Hardware-Independent Embedded Programming Through Platform-Independent Drivers EICS017:37

BITS_BIT(val:num, n:num)

Get the value of the nth bit of the numeric value

BITS_MASK_NEG(type:8(num_e), mask:num)

Create a mask with background 1 and the nth bit 0

BITS_MASK_POS(type:8(num_e), mask:num)

Create a mask with background 0 and the nth bit 1

IF_EQ(val_a:num, val_b:num, val_if:num, val_else:num)

Evaluate to val_if if val_a == val_b, otherwise evaluate to val_else

IF_NE(val_a:num, val_b:num, val_if:num, val_else:num)

Evaluate to val_if if val_a != val_b, otherwise evaluate to val_else

IF_GT(val_a:num, val_b:num, val_if:num, val_else:num)

Evaluate to val_if if val_a > val_b, otherwise evaluate to val_else

IF_GE(val_a:num, val_b:num, val_if:num, val_else:num)

Evaluate to val_if if val_a >= val_b, otherwise evaluate to val_else

IF_LT(val_a:num, val_b:num, val_if:num, val_else:num)

Evaluate to val_if if val_a < val_b, otherwise evaluate to val_else

IF_LE(val_a:num, val_b:num, val_if:num, val_else:num)

Evaluate to val_if if val_a <= val_b, otherwise evaluate to val_else

BOOL_AND(val_a:num, val_b:num)

Evaluate to the boolean val_a AND val_b

BOOL_OR(val_a:num, val_b:num)

Evaluate to the boolean val_a OR val_b

BOOL_NOT(val:num)

Evaluate to the boolean NOT val

EVAL_EQ(val_a:num, val_b:num)

Evaluate to 1 if val_a == val_b, otherwise 0

EVAL_NE(val_a:num, val_b:num)

Evaluate to 1 if val_a != val_b, otherwise 0

EVAL_GT(val_a:num, val_b:num)

Evaluate to 1 if val_a > val_b, otherwise 0

EVAL_GE(val_a:num, val_b:num)

Evaluate to 1 if val_a >= val_b, otherwise 0

EVAL_LT(val_a:num, val_b:num)

Evaluate to 1 if val_a < val_b, otherwise 0

EVAL_LE(val_a:num, val_b:num)

Evaluate to 1 if val_a <= val_b, otherwise 0

NUM_SWITCH(n:8, switch:num, (case:num, val:num)[n], def:num)

Switch the value over cases and evaluate to val if switch == case, if no match,
evaluate to def

NUM_LOOP_IDX_0()

Get the current loop index 0

NUM_LOOP_IDX_1()

Get the current loop index 1

HW_MILLIS()

Returns the number of milliseconds since the board was powered up

HW_MICROS()

Returns the number of microseconds since the board was powered up

HW_GPIO_READ(pin:num)

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

EICS017:38 Lambrichts, et al.

Read the value of a GPIO pin

HW_GPIO_PULSE_READ(pin:num, state:num)

Get the duration of a pulse on the pin

HW_GPIO_PULSE_READ_T(pin:num, state:num, timeout:num)

Get the duration of a pulse on the pin or timeout

HW_ADC_READ(pin:num)

Read the value of an ADC pin

HW_I2C_READ_U8()

Read an 8-bit unsigned integer from the I2C device

HW_I2C_READ_U16()

Read a 16-bit unsigned integer from the I2C device

HW_I2C_READ_U32()

Read a 32-bit unsigned integer from the I2C device

HW_I2C_READ_I8()

Read an 8-bit signed integer from the I2C device

HW_I2C_READ_I16()

Read a 16-bit signed integer from the I2C device

HW_I2C_READ_I32()

Read a 32-bit signed integer from the I2C device

HW_I2C_READ_FLT()

Read a 32-bit floating point number from the I2C device

HW_I2C_WRITE_READ_U8(val:num)

Write a numeric to the I2C device, then read an 8-bit unsigned integer

HW_I2C_WRITE_READ_U16(val:num)

Write a numeric to the I2C device, then read a 16-bit unsigned integer

HW_I2C_WRITE_READ_U32(val:num)

Write a numeric to the I2C device, then read a 32-bit unsigned integer

HW_I2C_WRITE_READ_I8(val:num)

Write a numeric to the I2C device, then read an 8-bit signed integer

HW_I2C_WRITE_READ_I16(val:num)

Write a numeric to the I2C device, then read a 16-bit signed integer

HW_I2C_WRITE_READ_I32(val:num)

Write a numeric to the I2C device, then read a 32-bit signed integer

HW_I2C_WRITE_READ_FLT(val:num)

Write a numeric to the I2C device, then read a 32-bit floating point number

HW_SPI_READ_U8()

Read an 8-bit unsigned integer from the SPI device

HW_SPI_READ_U16()

Read a 16-bit unsigned integer from the SPI device

HW_SPI_READ_U32()

Read a 32-bit unsigned integer from the SPI device

HW_SPI_READ_I8()

Read an 8-bit signed integer from the SPI device

HW_SPI_READ_I16()

Read a 16-bit signed integer from the SPI device

HW_SPI_READ_I32()

Read a 32-bit signed integer from the SPI device

HW_SPI_READ_FLT()

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

LogicGlue: Hardware-Independent Embedded Programming Through Platform-Independent Drivers EICS017:39

Read a 32-bit floating point number from the SPI device

HW_SPI_WRITE_READ_U8(val:num)

Write a numeric to the SPI device, then read an 8-bit unsigned integer

HW_SPI_WRITE_READ_U16(val:num)

Write a numeric to the SPI device, then read a 16-bit unsigned integer

HW_SPI_WRITE_READ_U32(val:num)

Write a numeric to the SPI device, then read a 32-bit unsigned integer

HW_SPI_WRITE_READ_I8(val:num)

Write a numeric to the SPI device, then read an 8-bit signed integer

HW_SPI_WRITE_READ_I16(val:num)

Write a numeric to the SPI device, then read a 16-bit signed integer

HW_SPI_WRITE_READ_I32(val:num)

Write a numeric to the SPI device, then read a 32-bit signed integer

HW_SPI_WRITE_READ_FLT(val:num)

Write a numeric to the SPI device, then read a 32-bit floating point number

HW_UART_READ_U8()

Read an 8-bit unsigned integer from the UART device

HW_UART_READ_U16()

Read a 16-bit unsigned integer from the UART device

HW_UART_READ_U32()

Read a 32-bit unsigned integer from the UART device

HW_UART_READ_I8()

Read an 8-bit signed integer from the UART device

HW_UART_READ_I16()

Read a 16-bit signed integer from the UART device

HW_UART_READ_I32()

Read a 32-bit signed integer from the UART device

HW_UART_READ_FLT()

Read a 32-bit floating point number from the UART device

Listing 2. Numeric instructions with parameters and descriptions

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

EICS017:40 Lambrichts, et al.

C List Subsystem in the Driver Specification

_LIST_U8(n:8)

Create a list of 8-bit unsigned integers

_LIST_U16(n:8)

Create a list of 16-bit unsigned integers

_LIST_U32(n:8)

Create a list of 32-bit unsigned integers

_LIST_I8(n:8)

Create a list of 8-bit signed integers

_LIST_I16(n:8)

Create a list of 16-bit signed integers

_LIST_I32(n:8)

Create a list of 32-bit signed integers

_LIST_FLT(n:8)

Create a list of 32-bit floating point numbers

_LIST(id:8)

Get list with specified id

_LIST_PARAM(id:8)

Get list parameter with specified id

HW_I2C_READ_LIST()

Read a list from the I2C device

HW_I2C_WRITE_READ_LIST()

Write a list to the I2C device, then read a list

HW_SPI_READ_LIST()

Read a list from the SPI device

HW_SPI_WRITE_READ_LIST()

Write a list to the SPI device, then read a list

HW_UART_READ_LIST()

Read a list from the UART device

HW_UART_WRITE_READ_LIST()

Write a list to the UART device, then read a list

HW_DTH_READ_LIST(variant:8, pin:num)

Read a list from the DHT sensor with specified variant and pin

Listing 3. List instructions with parameters and descriptions

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

LogicGlue: Hardware-Independent Embedded Programming Through Platform-Independent Drivers EICS017:41

D Platform-Specific Functions

Fig. 21. Header file detailing the platform-specific functions needed to be implemented when porting Log-
icGlue to a new platform.

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

EICS017:42 Lambrichts, et al.

E KY-016 RGB LED LogicGlue Driver

#include "../common.h"

#include "../language.h"

// custom defines

#define PIN_RED CONFIG(CFG_0)

#define PIN_GREEN CONFIG(CFG_1)

#define PIN_BLUE CONFIG(CFG_2)

// KY-016 RGB LED module driver

static const uint8_t ky016_bytecode[] PROGMEM = {

 // bytecode size in bytes

 U16_ARR(56),

 // bytecode definition

 B_VERSION(1), // version

 B_REQUIRES(REQ_PWM), // hardware requirements

 B_NUM_STACK(0), // number of stack elements

 B_NUM_LABELS(0), // number of labels

 B_NUM_VARS(0), // number of variables

 B_NUM_LOCALS(0), // number of local variables

 B_NUM_CONFIGS(3), // number of config variables

 B_NUM_LISTS(0), // number of lists

 B_NUM_PARAMS(0), // number of parameters

 B_NUM_FUNCTIONS(1), // number of functions

 B_NUM_PROPERTIES(0), // number of properties

 // boot section

 OP_BOOT,

 HW_PWM_CONFIG, PIN_RED, U8(255),

 HW_PWM_CONFIG, PIN_GREEN, U8(255),

 HW_PWM_CONFIG, PIN_BLUE, U8(255),

 OP_EXIT,

 // function for setting the color in RGB format

 OP_FUNCTION, FUNC_SET_DATA, PARAMETERS(1),

 OP_DEFINE_INPUT_FORMAT, 1, COLOR_RGB, SCALE_NONE,

 HW_PWM_WRITE, PIN_RED, ARG(ARG_0,0),

 HW_PWM_WRITE, PIN_GREEN, ARG(ARG_0,1),

 HW_PWM_WRITE, PIN_BLUE, ARG(ARG_0,2),

 OP_EXIT,OP_EXIT,

};

Fig. 22. LogicGlue driver for the KY-016 RGB LED.

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

LogicGlue: Hardware-Independent Embedded Programming Through Platform-Independent Drivers EICS017:43

F DHT22 Temperature Sensor LogicGlue Driver

#include "../common.h"

#include "../language.h"

// custom defines

#define DHT22_PIN CONFIG(CFG_0)

#define DHT22_READ LABEL_0

// DHT22 temperature and humidity sensor driver

static const uint8_t dht22_bytecode[] PROGMEM = {

 // bytecode size in bytes

 U16_ARR(134),

 // bytecode definition

 B_VERSION(1), // version

 B_REQUIRES(REQ_DHT), // hardware requirements

 B_NUM_STACK(1), // number of stack elements

 B_NUM_LABELS(1), // number of labels

 B_NUM_VARS(1), // number of variables

 B_NUM_LOCALS(1), // number of local variables

 B_NUM_CONFIGS(1), // number of config variables

 B_NUM_LISTS(1), // number of lists

 B_NUM_PARAMS(0), // number of parameters

 B_NUM_FUNCTIONS(2), // number of functions

 B_NUM_PROPERTIES(0), // number of properties

 // boot section

 OP_BOOT,

 HW_DTH_CONFIG, DHT22_PIN,

 OP_EXIT,

 // Read the temperature from DHT22 sensor

 OP_FUNCTION, FUNC_GET_DATA, PARAMETERS(1),

 OP_DEFINE_OUTPUT_FORMAT, 1, TEMPERATURE_CELSIUS, SCALE_UNIT,

 OP_CALL, DHT22_READ,

 SET_ARG(ARG_0,0),

 MATH_MUL,

 MATH_MUL,

 MATH_OR,

 MATH_SHL, CAST,TYPE_U16,

 MATH_AND,

 LIST_GET_1D,LIST_0, U8(2),

 U8(0x7f),

 U8(8),

 LIST_GET_1D,LIST_0, U8(3),

 FLT(0.1f),

 IF_EQ, MATH_AND, LIST_GET_1D,LIST_0, U8(2), U8(0x80), U8(0),

 U8(1),

 I8(-1),

 OP_EXIT,

 // Read the humidity from DHT22 sensor

 OP_FUNCTION, FUNC_GET_DATA, PARAMETERS(1),

 OP_DEFINE_OUTPUT_FORMAT, 1, HUMIDITY_PERCENT, SCALE_UNIT,

Fig. 23. LogicGlue driver for the DHT22 Temperature Sensor (part 1/2).

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

EICS017:44 Lambrichts, et al.

 OP_CALL, DHT22_READ,

 SET_ARG(ARG_0,0),

 MATH_MUL,

 MATH_OR,

 MATH_SHL, CAST,TYPE_U16,

 LIST_GET_1D,LIST_0, U8(0),

 U8(8),

 LIST_GET_1D,LIST_0, U8(1),

 FLT(0.1f),

 OP_EXIT,

 // Read data from DHT22 sensor

 OP_LABEL, DHT22_READ,

 SET_VAR_INITIAL(VAR_0), U8(0),

 COMMAND("data can only be read once every 2 seconds")

 // if (millis() - last_read < 2000 || VAR_0 == 0) { ... }

 OP_IF,

 BOOL_OR,

 EVAL_GT, MATH_SUB, HW_MILLIS, VAR(VAR_0), U16(2000),

 EVAL_EQ, VAR(VAR_0), U8(0),

 OP_BLOCK, 2,

 SET_LIST(LIST_0), HW_DTH_READ_LIST,DHT_22, DHT22_PIN,

 SET_VAR(VAR_0), HW_MILLIS,

 OP_RETURN,

};

Fig. 24. LogicGlue driver for the DHT22 Temperature Sensor (part 2/2).

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

LogicGlue: Hardware-Independent Embedded Programming Through Platform-Independent Drivers EICS017:45

G SSD1306 Display LogicGlue Driver

#include "../common.h"

#include "../language.h"

// custom defines

#define SSD1306_DC_PIN CONFIG(CFG_0)

#define SSD1306_CS_PIN CONFIG(CFG_1)

#define SSD1306_RST_PIN CONFIG(CFG_2)

#define SSD1306_WRITE LABEL_0

// SSD1306 OLED display driver

static const uint8_t ssd1306_bytecode[] PROGMEM = {

 // bytecode size in bytes

 U16_ARR(154),

 // bytecode definition

 B_VERSION(1), // version

 B_REQUIRES(REQ_GPIO,REQ_SPI), // hardware requirements

 B_NUM_STACK(1), // number of stack elements

 B_NUM_LABELS(3), // number of labels

 B_NUM_VARS(0), // number of variables

 B_NUM_LOCALS(1), // number of local variables

 B_NUM_CONFIGS(3), // number of config variables

 B_NUM_LISTS(1), // number of lists

 B_NUM_PARAMS(0), // number of parameters

 B_NUM_FUNCTIONS(2), // number of functions

 B_NUM_PROPERTIES(2), // number of properties

 // boot section

 OP_BOOT,

 HW_SPI_CONFIG, SSD1306_CS_PIN, U8(SPI_FREQ_8M), U8(SPI_MODE_0), U8(SPI_ORDER_MSB),

U8(0),

 HW_GPIO_CONFIG, SSD1306_DC_PIN, U8(GPIO_MODE_OUTPUT),

 HW_GPIO_CONFIG, SSD1306_CS_PIN, U8(GPIO_MODE_OUTPUT),

 HW_GPIO_CONFIG, SSD1306_RST_PIN, U8(GPIO_MODE_OUTPUT),

 // reset display

 HW_GPIO_WRITE, SSD1306_RST_PIN, U8(PIN_HIGH),

 HW_DELAY_MS, U8(1),

 HW_GPIO_WRITE, SSD1306_RST_PIN, U8(PIN_LOW),

 HW_DELAY_MS, U8(10),

 HW_GPIO_WRITE, SSD1306_RST_PIN, U8(PIN_HIGH),

 // enable command mode

 HW_GPIO_WRITE, SSD1306_DC_PIN, U8(PIN_LOW),

 HW_SPI_WRITE_LIST, LIST_U8(26),

 0xAE, // display off

 0xD5, // set display clock div

 0x80, // the suggested ratio 0x80

 0xA8, // set multiplex

 0x3F, // 63

 0xD3, // set display offset

 0x00, // no offset

 0x40, // set start line

 0x8D, // charge pump

 0x14, // enable charge pump

 0x20, // memory mode

Fig. 25. LogicGlue driver for the SSD1306 Display (part 1/2).

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

EICS017:46 Lambrichts, et al.

 0x00, // horizontal addressing

 0xA1, // set segment remap

 0xC8, // set com output scan direction

 0xDA, // set com pins

 0x12, // com pins hardware configuration

 0x81, // set contrast

 0xCF, // contrast level

 0xD9, // set pre-charge

 0xF1, // pre-charge level

 0xDB, // set vcom detect

 0x40, // vcom detect

 0xA4, // display all on resume

 0xA6, // normal display

 0x2E, // deactivate scroll

 0xAF, // display on

 OP_LIST_CREATE_2D, LIST_0, LIST_TYPE_U1_Y, U8(128), U8(64),

 OP_CALL, SSD1306_WRITE, // transmit data buffer

 OP_EXIT,

 COMMENT("Update display")

 OP_FUNCTION, FUNC_UPDATE_DATA, PARAMETERS(0),

 OP_CALL, SSD1306_WRITE,

 OP_EXIT,

 COMMENT("Set pixel color in data buffer")

 OP_FUNCTION, FUNC_SET_DATA, PARAMETERS(1),

 OP_DEFINE_INPUT_FORMAT, 1, COLOR_BINARY, SCALE_NONE,

 OP_DEFINE_FUNCTION_TYPE, FUNC_TYPE_LIST_2D,

 OP_EXIT,

 COMMENT("Transmit data buffer to display")

 OP_LABEL, SSD1306_WRITE,

 // enable command mode, prepare data transfer

 HW_GPIO_WRITE, SSD1306_DC_PIN, U8(PIN_LOW),

 HW_SPI_WRITE_LIST, LIST_U8(6),

 0x21, // set column address

 0, // start at 0

 127, // end at 127

 0x22, // set page address

 0, // start at 0

 7, // end at 7

 // enable data mode, transfer data

 HW_GPIO_WRITE, SSD1306_DC_PIN, U8(PIN_HIGH),

 HW_SPI_WRITE_LIST, LIST(LIST_0),

 OP_EXIT,

 COMMENT("property for getting the width of the SSD1306 display")

 OP_PROPERTY_CONST, PROP_GET_WIDTH, U8(128),

 COMMENT("property for getting the height of the SSD1306 display")

 OP_PROPERTY_CONST, PROP_GET_HEIGHT, U8(64),

};

Fig. 26. LogicGlue driver for the SSD1306 Display (part 2/2).

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS017. Publication date: June 2025.

	Abstract
	1 Introduction
	2 LogicGlue
	2.1 Writing Application Logic
	2.2 Writing Driver Specifications

	3 Related Work
	3.1 Software Abstraction
	3.2 Standardized Communication Interfaces
	3.3 Intermediate Representation Layers

	4 LogicGlue Driver Specification
	4.1 Function Definitions
	4.2 Numeric Instructions
	4.3 List Instructions
	4.4 Branching Instructions
	4.5 Advanced Instructions

	5 LogicGlue Interpreter
	5.1 LogicGlue High-Level Programming Library
	5.2 Converting Data Formats
	5.3 Interrupt Handling

	6 Supporting LogicGlue on a new Platform
	7 LogicGlue Benchmark
	8 Discussion and Future Work
	8.1 Interchanging Components
	8.2 Performance
	8.3 LogicGlue Driver Specification

	9 Conclusion
	Acknowledgments
	References
	A Instructions in the Driver Specification
	B Numeric Subsystem in the Driver Specification
	C List Subsystem in the Driver Specification
	D Platform-Specific Functions
	E KY-016 RGB LED LogicGlue Driver
	F DHT22 Temperature Sensor LogicGlue Driver
	G SSD1306 Display LogicGlue Driver

