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Abstract
Introduction: Heart rate (HR) monitors could objectively measure physical activity intensity in patients with cardiac
disease. However, thorough validation of HR monitors in cardiac populations during daily life, compared to gold-standard
Holter monitoring, remains limited. Photoplethysmography (PPG)-based HR data provides near-continuous data, span-
ning longer periods, but improved algorithms to filter unreliable data are needed.
Methods: This observational, prospective pilot study compared the accuracy of two wearables for HR monitoring (elec-
trocardiogram [ECG]-based Polar H10 chest strap and PPG-based Fitbit Inspire 2 wrist tracker) against Holter monitor-
ing in 15 patients with atrial fibrillation (AF), heart failure (HF) and coronary artery disease referred for cardiac
rehabilitation (CR). All devices were worn simultaneously for 24 h. We developed and assessed an artefact removal pro-
cedure (ARP) using logistic regression machine learning models to detect unreliable PPG data.
Results: The ECG-based chest strap showed a strong correlation (r= 0.94) and clinically acceptable errors (mean abso-
lute error, MAE= 3.4 bpm; mean absolute percentage error, MAPE= 4.9%). Photoplethysmography data exhibited
weaker correlation (r= 0.69) and higher errors (MAE= 8.3 bpm, MAPE= 14.3%), with highest accuracies in CR and low-
est in HF and especially AF. After implementing the ARP, PPG-based HR data improved to a correlation of 0.75, with
MAE of 7.2 bpm and MAPE of 12.4%. The procedure removed nearly one-third of unreliable data, achieving an 81%
accuracy.
Conclusions: While ECG-based monitors provide HR data with clinical acceptable accuracy, PPG-based monitors pre-
sent accuracy challenges. Our machine learning procedure showed potential to filter unreliable PPG-based HR data,
which could help measure physical activity intensity in cardiac disease continuously.
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Introduction
Physical inactivity is closely linked to cardiovascular dis-
ease, emphasising the importance of monitoring and enhan-
cing physical activity (PA) in several cardiac populations.1,2

Existing literature demonstrates the significant role of PA in
mitigating the risk and burden of atrial fibrillation (AF),3–5

in decreasing the risk of developing heart failure (HF) and
reducing associated (re)hospitalisations,6–8 and in improv-
ing health-related quality of life for both patients with AF
and HF.9,10 In addition, PA is essential in cardiac rehabili-
tation (CR) programmes where it contributes to reducing
morbidity and mortality and improving cardiovascular
risk factors for patients with coronary artery disease.11

Heart rate (HR) is a key indicator of PA intensity, reflect-
ing metabolic demand and correlating with oxygen con-
sumption and energy expenditure.12 This makes it a
crucial parameter for personalised exercise prescrip-
tion.13,14 As modern healthcare moves more towards home-
based care, near-continuous HR monitoring could also be
valid to track daily PA in cardiac (tele)rehabilitation pro-
grams.15 Furthermore, HR monitoring could facilitate
objective, continuous and non-invasive telemonitoring of
PA in a broader population of cardiac patients.

Heart rate monitors exist in various formats. Chest
straps, which are electrocardiogram (ECG)-based, are
highly accurate but are not suitable for continuous daily
monitoring. Wrist-worn devices using the optical photo-
plethysmography (PPG) technology offer user-friendly
alternatives, but PPG accuracy can be impacted by motion
and noise artefacts (i.e., under- and overshooting of the real
HR).16,17 While several validation studies have investigated
HR monitors in controlled settings, they are mostly limited
to short-duration protocols in healthy volunteers. Profound
validations in daily-life settings and across different cardiac
patient populations are still lacking, particularly studies that
compare HR monitors against gold-standard Holter moni-
toring.18–20

Recent advances in machine learning (ML) offer power-
ful opportunities for processing large and complex datasets,
exploring relations between variables and identifying trends
and insights from extensive data.21 These techniques have
been widely used in healthcare, enhancing the accuracy of
data interpretation, and hence quality of care and patient
outcomes.22 Machine learning is also a promising approach
to artefact recognition and removal in PPG signals, but it is
important to distinguish between two levels at which these
methods can operate. The first level involves ML algo-
rithms that filter artefacts from raw PPG signals, that is, pul-
sating physiological waveforms representing changes in
blood volume due to heartbeats.23–25 These algorithms are
either proprietary, embedded within PPG devices and
potentially validated by the manufacturers, but they are
not accessible to users or researchers. Alternatively, aca-
demic research-based algorithms exist that can only be

applied to raw PPG signals, which are typically accessible
only through specialised research equipment and have lim-
ited validation.26 At this level, the ability of researchers to
improve and validate artefact detection is limited. The
second level involves applying ML to the derived HR
values obtained from raw PPG signals, obtained as output
from commercially available consumer PPG-based HR
monitors. Currently, there is a lack of ML algorithms tai-
lored to work directly with these more readily available
HR data, with the aim to be used for HR-based assessment
of PA load in a medical setting.

The aim of this study was to assess the accuracy of two
commercially available HR monitors (Fitbit Inspire 2 wrist-
worn fitness tracker and Polar H10 chest strap) compared to
gold-standard Holter in patients with AF, HF and following
CR after a coronary event or intervention, worn during daily
activities. Additionally, this study assessed the potential of
ML models to recognise artefacts that impact the accuracy
of PPG-HR data, striving for an improved and automatic
way to near-continuously track HR in patients with cardiac
disease.

Methods

Participants and study design
An observational, prospective, pilot study was designed to
explore the accuracy of commercially available HR moni-
tors in patients with cardiac disease and to inform the devel-
opment of artefact recognition and removal procedures. The
study protocol was approved by the Ethics Committee of
Antwerp University Hospital and the University of
Antwerp (EC reference: 19/21/264, BUN:
B300201941069), and all participants provided written
informed consent prior to enrolment.

Fifteen participants aged ≥18 years with a scheduled
24-h Holter monitor participated between September 2021
and February 2022. All participants simultaneously wore
the Fitbit Inspire 2 wrist-worn fitness tracker and the
Polar H10 chest strap along with the gold-standard Holter
monitor that served as the reference device. These devices
will be further referred to as Fitbit, Polar and Holter.
Participants wore the devices simultaneously and continu-
ously in their home environment for 24 h (experimental
setup in Supplementary Figure 1). They were advised to
maintain their usual routines and asked to record their activ-
ities in a diary.

The study comprised three groups of patients with car-
diac disease. Inclusion and exclusion criteria were defined
per group as follows: (1) Patients with AF (n= 5): inclusion
criteria were age ≥18 years and a diagnosis of permanent or
persistent AF, with confirmed AF rhythm at the time of
Holter monitoring. Patients were excluded if they had a
pacemaker or concomitant HF with reduced ejection frac-
tion (HFrEF). (2) Patients with HF (n= 5): inclusion
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criteria were age ≥18 years and a diagnosis of HFrEF (left
ventricular ejection fraction, LVEF, <40%) with New York
Heart Association classification≥ 2, in a clinically stable
condition. Patients were excluded if they had AF. (3)
Patients in CR (n= 5): inclusion criteria were age≥18 years
and participation in a hospital-based CR programme fol-
lowing a recent coronary event or intervention (e.g., myo-
cardial infarction, percutaneous coronary intervention or
cardiac surgery). Patients with HFrEF or AF were excluded.

The recorded activities varied among participants and
included: two supervised training sessions (1 h) by two
patients in CR, three home exercise sessions (15–75 min)
by two patients in CR and one with AF, and ten cycling ses-
sions (20–90 min) across two patients with AF, two in CR
and one with HF.

Heart rate monitors and data collection
The Fitbit utilises optical PPG technology, while the Polar
employs electrical field signals to measure HR, both of
which are processed through proprietary algorithms exclu-
sive to the respective manufacturers. These devices were
selected because they allow export of continuous 24-h
HR data, a crucial requirement for this study, which is not
supported by many other HR monitors. During data collec-
tion, HR data was stored locally on each device, so no
active internet or phone connection was required during
the recording period. Following the 24-h monitoring period,
both Fitbit and Polar data was synchronised by trained
study staff to pseudonymised accounts through the Fitbit
and Polar Beat smartphone applications, respectively.
Subsequently, HR data was exported as comma-separated
values (CSV) files using the Polar Flow web service and
a Fitbit Web Application Programming Interface. HR data
was received at different sampling frequencies: 1-s intervals
for Polar and at 5-s intervals for Fitbit. Holter data was
exported as CSV files using Sentinel software (Spacelabs
Healthcare).

Data processing and alignment
The Holter data, represented as successive beats with time-
stamps, was converted into HR data as beats per minute
(bpm) at 1-s intervals. Extreme values, defined as a 20% dif-
ference or more from surrounding HRs, were replaced by
their average values. To be comparable with Polar and
Fitbit data, Holter data was further processed as a moving
average of 3 data points or aggregated into 5-s HR data,
respectively. For both the Fitbit and Polar data, extreme out-
liers beyond the range of physiological plausibility (HR≤
25 bpm, HR≥ 220 bpm) were removed from the data.
Next, missing data points were estimated using a polyno-
mial interpolation method, which fits a smooth curve
through existing data points when the duration of data
absence was less than 30 s. For longer gaps, no

interpolation was applied. The proportion of missing data
was 39.7% for Fitbit and 0.3% for Polar. For Fitbit, these
missing data points predominantly occurred in short gaps
due to its default 5-s sampling interval and occasional inter-
ruptions. Specifically, 46.3% of the gaps lasted 10 s (one
missing HR value), 51.8% lasted 15 s (two missing HR
values) and only 1.7% exceeded 15 s. Furthermore, all three
devices were perfectly aligned in time by applying data
shifts as needed.

Artefact removal procedure
An ML approach was developed to recognise artefacts in
Fitbit PPG-HR data and to distinguish these from real activ-
ities (based on Holter and diary information). The goal of
our procedure was to detect and reject unreliable data sec-
tions and only retain trustable data. Such approach was
not developed for the Polar data as it already had proven
high accuracy in our data and in literature.27,28 This artefact
removal procedure (ARP) includes three steps: (1) Dataset
preparation, consisting of feature calculation, episode
detection, episode labelling and data aggregation (illu-
strated in Figures 1–3); (2) Model training for artefact and
activity detection; and (3) Combining both models and
removing unreliable data.

Step 1: dataset preparation. This involved manually creat-
ing a dataset required for training two models to recognise
artefacts and activities. First, several features for dynamics
analysis were calculated at the 5-s HR level. Second, HR
data was split into episodes, which are variable-length seg-
ments of the HR time series data determined based on
changes in HR dynamics and diary information. Next, tar-
get labels for both activity and artefact models were
assigned to every episode. Finally, all data was aggregated,
transforming each episode into a single data point with its
associated features and target labels (Figure 1).

Feature creation: The generated features were designed
to capture HR dynamics considering various windows and
analysis types. The Savitsky–Golay (SG) filter was
employed as a convolutional filter to examine signal wave-
forms and identify periods of rapid HR changes, such as
steep increases and decreases. These changes often corres-
pond to the onset and end of artefacts. Additionally, the
Z-score (i.e., a peak detection algorithm implemented in
Python) was employed to detect intervals of consecutive
signal increases or decreases, disregarding minor fluctua-
tions. This algorithm is used to determine the onset and
end points of activities. The scipy.signal package (v1.9.3)
was used for the calculations.

Episode detection: The prominence method, implemen-
ted in the scipy.signal package, was used to slice the HR
data into episodes of varying length, which might represent
activities and/or artefacts (Figure 2). This technique isolates
independent HR peaks based on their prominence and
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determines the start and end points of episodes. Prominence
is defined as the vertical distance in bpm between a peak
and its surrounding baseline, which corresponds to the low-
est contour line separating the peak from others. Episode
detection for Fitbit data followed a two-step procedure.
First, the detection algorithm was applied to Holter HR
data using diary-reported activities as true labels to optimise
a set of four parameters: prominence, width, relative height
and rolling window. Episodes with HR peaks meeting the
threshold for high prominence (as determined through par-
ameter optimisation) – indicating high HR compared to sur-
rounding baseline – were labelled as ‘Holter activity
episodes’. Second, the same procedure was applied to
detect episodes in Fitbit HR data, using the ‘Holter activity
episodes’ as true labels for parameter optimisation.

Episode labelling: Each episode was attributed two inde-
pendent target labels – one for activity and another for arte-
fact (Figure 3). Fitbit episodes that aligned with 50% of the
Holter activity episodes were labelled as activities, corre-
sponding to real PA detected by the golden standard device.
The artefact label was assigned to episodes in which at least
30% of the data deviated from the values recorded by the
golden standard device (mean absolute percentage error
[MAPE] ≥10%). The 10% MAPE threshold is based on

previous literature,18,29,30 while the 50% activity and the
30% artefact threshold were selected as practical and clinic-
ally meaningful by expert consensus within our research
team, consisting of clinicians and data scientists.

Data aggregation: HR data at 5-s level was aggregated
to the Fitbit HR episodes, applying aggregation functions
for the calculated features (e.g., minimum, maximum,
mean, standard deviation) and assigning the corresponding
target labels. Aggregation functions were applied to the fol-
lowing features: HR data, SG filter values, Z-score values
and prominence values (height and length of the episode).

Step 2: model training for artefact and activity episode
detection. As episodes may represent both artefacts and
activities, two independent logistic regression classification
models were trained. The models were trained with 5-fold
cross-validation, where 80% of the data were used for train-
ing and 20% for validation within each fold. The testing
dataset consisted of the full dataset (100%) to evaluate mod-
els’ performance. Feature selection was performed within
each fold using LASSO regularisation, which automatically
retained only the most important features, and feature cor-
relation analysis to remove redundant features that provide
overlapping information. Additionally, hyperparameter

Figure 1. Artefact removal procedure: overview of the manual dataset preparation for model training.
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optimisation was conducted by assessing several parameter
combinations, with their performance evaluated using
cross-validation. This ensured the final models used the
best possible settings for optimal performance. The classifi-
cation models were evaluated separately by calculating
following metrics: area under the receiver operating charac-
teristic curve (AUC), accuracy, sensitivity and specificity,
with performance metrics averaged across the five folds
of the cross-validation process for the validation data.

The computational complexity of the procedure was
assessed based on training and application time. Model
training using logistic regression, cross-validation and
hyperparameter tuning was performed on a standard desk-
top computer (Intel(R) Core(TM) i5-9500 T CPU @ 2.20
GHz, 8 GB RAM). The training of both the artefact and
activity models combined took approximately one hour.
Once trained, the models were lightweight and fast to apply
to new data: inference on 24 h of HR data for a single user

took approximately five seconds, including preprocessing
and both model predictions.

Step 3: combining both models and removing unreliable data.
The two trained models were applied to the full dataset,
resulting in prediction scores at the episode level. The out-
puts of both models were combined by labelling episodes
with high scores of being artefacts and low scores of being
activities as ‘unreliable’, based on optimised thresholds tai-
lored to each model’s performance. Labels were merged
into the original Fitbit HR data at 5-s level to facilitate the
removal of unreliable datapoints. After combining the out-
puts of both models, the performance of the ARP was eval-
uated by calculating accuracy, sensitivity and specificity on
the testing dataset (100%). The ARP’s impact was further
assessed by comparing the cleaned data with the original
data. A visual example of the decisions of the ARP is pro-
vided in Supplementary Figure 4.

Figure 2. Artefact removal procedure: overview of the episode detection process using the prominence method.
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Statistical analysis
All statistical analyses were performed using SPSS
Statistics version 29 (IBM Corp) and Python version 3.9.
To assess the accuracy of Fitbit and Polar compared to
the Holter monitor, various analyses were conducted. The
Pearson’s correlation coefficient (r) was used to assess lin-
ear agreement between HR measurements from the Fitbit
and the Holter, and the Polar and the Holter, categorised
as negligible (r= 0.0–0.30), low positive (r= 0.30–0.50),
moderate positive (r= 0.50–0.70), high positive (r= 0.70–
0.90) or very high positive correlation (r= 0.90–1.00).
Next, device error was quantified using mean absolute error
(MAE) and MAPE, as commonly applied in validation
studies of HR monitors. Generally, an MAPE lower than
10% is considered acceptable based on previous research
and on the standard for HR monitors by the American
National Standards Institute.17,28,29 This 10% threshold
was also used for labelling artefacts. The percentage differ-
ence, without taking absolute values, was calculated to dif-
ferentiate between undershooting (percentage error
≤−10%) and overshooting (percentage error ≥10%). In a
Bland–Altman analysis, the mean bias and 95% CI limits
of agreement (LoA) were calculated and presented graphic-
ally to estimate any tendency for variation to change with
the magnitude of HR. Additionally, the MAPE was used
to categorise patients into PPG compatible (MAPE <
10%) and PPG incompatible (MAPE ≥10%) groups, in
order to account for potential patient-specific inaccuracies
influencing overall group trends and the performance of
the ARP.

All p-values were two-sided, and a significance level of p
< 0.05 was used throughout. Normality of continuous vari-
ables was assessed using the Shapiro–Wilk test and visual
inspection of histograms. When normality could not be

assumed, non-parametric tests were selected accordingly.
Group-level comparisons (AF, HF, CR) for demographic
and clinical baseline characteristics were performed using
Kruskal–Wallis tests for non-paired continuous variables
(e.g., age, weight) and Fisher’s exact test for categorical
variables (e.g., gender, skin type), appropriate for small
cell sizes. To compare mean HR values between devices
(Holter, Fitbit, Polar), the Friedman test was applied for
continuous paired variables. When significant, post hoc
pairwise comparisons were performed using the Wilcoxon
matched-pairs signed-rank test. Cohen’s d was calculated
to determine effect sizes for significant differences, using
established thresholds for interpretation (e.g., small: 0.2,
moderate: 0.5, large: 0.8).

Results

Demographics
Baseline characteristics of the 15 participants are sum-
marised in Table 1. Predominantly men (87%) participated
in the study, with a median age of 62.0 (interquartile range:
52.0–75.0) and a median weight of 81.6 kg (interquartile
range: 69.0–93.0). Most participants (80%) had light skin
colour. In the AF group, 100% of the recording time was
characterised by AF, while in the HF and CR groups, AF
was observed 0% of the time.

Accuracy of Fitbit Inspire 2 and Polar H10 before
artefact removal
Overall, 1,267,255 data points were collected with the
Holter monitor, 253,616 with the Fitbit device, and
1,251,366 with the Polar monitor, reflecting the devices’

Figure 3. Artefact removal procedure: overview of the episode labelling for activity and artefact classification.
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respective sampling frequencies as described in ‘HR
monitors and data collection’ section. The mean HR was
67.3± 18.0, 71.7± 16.1 and 67.5± 17.5 with the Holter,
Fitbit and Polar monitors, respectively, with significant
differences: Holter versus Fitbit (p < 0.001, Cohen’s d=
0.32) showing a small to moderate effect size, and
Holter versus Polar (p < 0.001, Cohen’s d= 0.03) showing
a very small effect size.

Correlation and device error analysis. Polar data exhibited a
very high positive correlation (r= 0.94) with the Holter
data, with an MAE of 3.4 bpm and an MAPE of 4.9%.
The MAPE remained below the 10% criterion across all
patient groups for Polar. Conversely, Fitbit Inspire 2 HR
data displayed a moderate positive correlation (r= 0.69),
with an MAE of 8.3 bpm and an MAPE of 14.3%. These
observations varied across patient groups (Table 2), with

Table 1. Baseline characteristics of the study population.

Total (n= 15) AF group (n= 5) HF group (n= 5) CR group (n= 5) p value

Demographic and clinical characteristics

Male, n (%) 13 (86.7) 5 (100.0) 3 (60.0) 5 (100.0) 0.29

Age (years), median (IQR) 62.0 (52.0–75.0) 75.0 (64.0–79.0) 63.0 (55.0–75.5) 52.0 (44.5–60.0) 0.04

Weight (kg), median (IQR) 81.6 (69.0–93.0) 90.0 (80.5–122.5) 69.0 (60.5–91.0) 78.0 (70.5–87.3) 0.14

BMI (kg/m2), median (IQR) 25.0 (23.3–29.7) 29.7 (26.1–42.6) 25.0 (22.1–30.6) 24.4 (23.0–26.9) 0.15

Skin type

Light skin, n (%) 12 (80.0) 5 (100.0) 4 (80.0) 3 (60.0) 0.73

Lightly toned skin, n (%) 2 (13.3) 0 (0) 1 (20.0) 1 (20.0) 1.00

Asian type, n (%) 1 (6.7) 0 (0) 0 (0) 1 (20.0) 1.00

Mean eGFR (mL/min/1.73m²) 71.3 73.0 61.4 77.4 0.06

eGFR ≤50 mL/min/1.73m², n (%) 2 (13.3) 0 (0) 2 (40) 0 (0) 0.45

Signs of congestion, n (%) 3 (20.0) 1 (20.0) 2 (40.0) 0 (0) 1.00

Cardiovascular risk factors

Diabetes mellitus, n (%) 2 (13.3) 1 (20.0) 0 (0) 1 (20.0) 1.00

Hypertension, n (%) 9 (60.0) 4 (80.0) 3 (60.0) 2 (40.0) 0.80

CVA/TIA, n (%) 0 (0) 0 (0) 0 (0) 0 (0) NA

Vascular disease, n (%) 11 (73.3) 2 (40.0) 4 (80.0) 5 (100.0) 0.23

Prior MI, n (%) 6 (40.0) 0 (0) 2 (40.0) 4 (80.0) 0.07

HFrEF, n (%) 6 (40.0) 0 (0) 5 (100.0) 1 (20.0) 0.006

Hypercholesterolemia, n (%) 12 (80.0) 4 (80.0) 4 (80.0) 4 (80.0) 1.00

Obesity, n (%) 4 (26.7) 2 (40.0) 2 (40.0) 0 (0) 0.45

Smoking, n (%) 0 (0) 0 (0) 0 (0) 0 (0) NA

AF: atrial fibrillation; HF: heart failure; CR: cardiac rehabilitation; IQR: interquartile range; BMI: body mass index; CVA: cerebrovascular accident; TIA:
transient ischemic attack; MI: myocardial infarction; HFrEF: heart failure with a reduced ejection fraction (left ventricular ejection fraction, LVEF, <40%);
eGFR: estimated glomerular filtration rate; NA: not applicable. Fluid status based on clinical signs (e.g., edema, orthopnea, jugular vein distension) and/or
echocardiographic signs of elevated filling pressures. P values in bold are statistically significant (p < 0.05).
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the highest accuracies observed in the CR group and the
lowest in the AF group (based on MAE/MAPE) and in
the HF group (based on correlation).

In Figure 4, the type of artefacts was analysed by distin-
guishing between undershooting (percentage difference
≤−10%) and overshooting (percentage difference ≥10%)
compared to the Holter HR. The Fitbit device exhibited
a higher percentage of overshooting (25.7%) compared
to undershooting (7.5%), a trend consistent across all par-
ticipant groups, with the highest overall percentage of
under/overshooting observed in the AF group (54.6%
compared to 24.0% in HF and 20.9% in CR). In contrast,
the Polar monitor demonstrated less overall under/over-
shooting (15.4% compared to 33.2% in Fitbit).
Similarly, in the AF group, Polar showed the highest per-
centage of under/overshooting (35.4% compared to 7.8%
in HF and 2.8% in CR).

Day and night differences. Based on the patients’ self-
reported sleep times, 34.8% of all data was classified as
night time. Fitbit showed moderate positive agreement (r
= 0.58) with the Holter monitor during the day, improving
to high positive agreement (r= 0.80) at night (Table 3,
Supplementary Figure 2). Additionally, MAE and MAPE
decreased by 4.9 bpm and 6.0%, respectively, and the per-
centage of under/overshooting was reduced by 14.6% dur-
ing the night. The Polar device demonstrated a high positive
correlation (r> 0.85) both during the day and night, with
similar patterns in other accuracy metrics. When distin-
guishing between the groups, improvements in accuracy
during the night were smallest in the AF group, or some-
times even absent (Supplementary Table 1).

Bland–Altman analysis. Bland–Altman analysis (Figure 5)
on the 24-h data showed that Fitbit generally tended to over-
estimate HR by a mean bias of 4.3 bpm, especially at lower
HRs, with more underestimation observed as HR increased,
while the Polar showed minimal bias (0.1 bpm). The LoA’s
for Fitbit (−22.4 to 31.0 bpm) were wider than those for
Polar (−12.7 to 12.9 bpm). Bland–Altman plots, presented
separately for each group, revealed that in the AF and HF
group, Fitbit tended to overestimate lower HRs (<±60
bpm), while higher HRs (>±90 bpm) were more likely to
be underestimated. In the CR group, Fitbit overestimated
lower HRs (<±60 bpm), but except for a few outliers, there
were no significant under- or overestimations when HRs
were higher than ±100 bpm. Colour-coding for individual
patients demonstrates that patient-specific tendencies in dif-
ferent directions can be prominent, particularly in the HF
and CR groups. For instance, HR data of patient 18 in the
HF group, who had a notably higher percentage of ventricu-
lar ectopic beats (18%) compared with 0–2% in the other
patients, showed an underestimation that deviated from
the group tendency. In the CR group, Polar data of patient
7 showed an off-trend underestimation, occurring before
and after a period of connectivity loss of the Polar device.

Bland–Altman analyses were also performed on daytime
data only (Supplementary Figure 3) given its relevance for
PA monitoring, but since the conclusions were unchanged,
the 24-h data are presented throughout the paper.

Performance of the ARP in Fitbit inspire 2 data
The total dataset consisted of 253,616 data points divided
into 636 HR episodes (average duration: 33m14 s±
57m36 s and range: 15 s – 9h40m10 s). A total of 65,525
datapoints were labelled as true artefacts and an additional
99,233 as true activities. The artefact model achieved
80% ± 1% accuracy, 92% ± 1% sensitivity, 59% ± 2% spe-
cificity and an AUC-value of 84% ± 2% based on the val-
idation data from the 5-fold cross-validation process, while
the activity model reached 81% ± 1% accuracy, 81% ± 1%

Table 2. Correlation and device error analysis, before artefact
removal.

Correlation
analysis

Device error

Pearson
correlation
coefficient (r)

MAE
(bpm),
mean±
SD

MAPE (%),
mean± SD

Fitbit Inspire 2
fitness
tracker

All patients (n
= 15)

0.69 8.3± 5.5 14.3± 13.6

AF (n= 5) 0.67 12.1± 5.6 21.1± 18.3

HF (n= 5) 0.57 6.8± 5.7 11.7± 12.9

CR (n= 5) 0.79 5.9± 3.9 10.0± 7.5

Polar H10
chest strap

All patients (n
= 15)

0.94 3.4± 2.6 4.9± 3.6

AF (n= 5) 0.92 6.4± 1.8 9.1± 1.4

HF (n= 5) 0.93 2.4± 2.0 3.4± 2.7

CR (n= 5) 0.99 1.5± 0.8 2.2± 1.3

MAE: mean absolute error; bpm: beats per minute; SD: standard deviation;
MAPE: mean absolute percentage error (criterion: ≤10%); AF: atrial
fibrillation; HF: heart failure; CR: cardiac rehabilitation. The strength of the
correlation was interpreted as negligible (r= 0.0–0.30), low positive (r=
0.30–0.50), moderate positive (r= 0.50–0.70), high positive (r= 0.70–0.90)
or very high positive (r= 0.90–1.00).
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sensitivity, 82% ± 5% specificity and an AUC-value of
87% ± 2% using the same validation approach.

Combining the results from both models, the testing
dataset (100% of the data) was used to assess the proce-
dure’s overall performance. Of the complete dataset,

19,994 data points (7.9%) were labelled as unreliable and
were removed by our procedure. Of these, 18,757 were
true artefacts (correctly labelled true positives) and 1237
were incorrectly labelled (false positives). The procedure
labelled 233,622 HRs as trustable data (92.1%), correctly
identifying 186,854 (true negatives) while incorrectly label-
ling 46,768 artefacts as reliable (false negatives). This
resulted in an overall accuracy of 81%, sensitivity of 28%
and specificity of 97%.

For illustrative purposes, Supplementary Figure 4 pro-
vides a visual representation of the ARP using example
data of a patient following CR, where our procedure identi-
fied multiple artefacts (though not all), without removing
activities from the data. Out of the 99,233 true activity
HRs, the procedure correctly removed 10,882 as true
under/overshootings (11.0%). However, 1169 activities
were mistakenly removed despite not being under/over-
shootings (1.2%). The procedure correctly retained 65,741
(66.2%) activities as trustable HR measurements, but incor-
rectly retained 21,441 (21.6%) activities that were still
under/overshootings of the HR.

The impact of the ARP on validity metrics, including the
correlation coefficient, MAE, MAPE and the total percent-
age of under- and overshooting, is depicted as absolute
values in Figure 6 and as percentage improvements in
Supplementary Figure 5. Across all groups, excluding unre-
liable data resulted in enhancements in all validity metrics:
correlation from 0.69 to 0.75, MAE from 8.3 to 7.2 bpm,
MAPE from 14.3% to 12.4% and under/overshooting
from 33.2% to 29.7%. The smallest gains were observed
in the AF group. To address potential patient-specific inac-
curacies in PPG-HR measurements, patients were cate-
gorised as exhibiting PPG compatibility (MAPE < 10%, n
= 7) or PPG incompatibility (MAPE ≥ 10%, n= 8), as

Figure 4. Percentages of under- and overshooting, before artefact removal. AF: atrial fibrillation; HF: heart failure; CR: cardiac
rehabilitation. Under- and overshooting were defined as a percentage difference of 10% or more compared to the Holter device.

Table 3. Day versus night accuracy analysis for all patients (n=
15), before artefact removal.

Fitbit Inspire 2
fitness tracker

Polar H10
chest strap

Day Night Day Night

Pearson correlation
coefficient (r)

0.58 0.80 0.94 0.93

MAE (bpm), mean± SD 10.0±
6.6

5.2±
5.6

3.5±
2.7

3.6±
3.2

MAPE (%), mean± SD 16.4±
14.3

10.3±
15.8

4.6±
3.4

5.6±
4.2

Under/overshooting,
total (%)

38.4 23.8 14.2 17.6

Undershooting (%) 8.8 5.8 6.2 5.9

Overshooting (%) 29.5 18.0 8.0 11.7

MAE: mean absolute error; bpm: beats per minute; SD: standard deviation;
MAPE: mean absolute percentage error. The strength of the correlation
was interpreted as negligible (r= 0.0–0.30), low positive (r= 0.30–0.50),
moderate positive (r= 0.50–0.70), high positive (r= 0.70–0.90) or very
high positive (r= 0.90–1.00). Under- and overshooting was defined as a
percentage difference of 10% or more compared to the Holter device. Day
and night times were personalised based on patients’ self-reported sleeping
time, except for one participant for whom no information was available,
and standard timing was used instead (sleep from 12:00 am to 6:00 am).
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Figure 5. Bland–Altman density plots for 24-h data before artefact removal: comparison between all patients (all) and the atrial
fibrillation (AF), heart failure (HF) and cardiac rehabilitation (CR) groups, colour-coded for individual patients. AF: atrial fibrillation; HF:
heart failure; CR: cardiac rehabilitation; HR: heart rate; SD: standard deviation. A positive mean (bias) indicates that the Fitbit/Polar
overestimates HR compared to the Holter, a negative mean (bias) indicates that the Fitbit/Polar underestimates HR; limits of
agreement (LoA, green dotted lines) indicate the range in which 95% of all differences between the two methods lie. Individual patient
data are colour coded.
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described in the Methods (Statistical analysis) section.
Accuracy improvements after removing unreliable data
with the ARP algorithm were more pronounced in the
PGG incompatible group (correlation from 0.62 to 0.68,
MAE from 11.7 to 10.1 bpm, MAPE from 22.0% to

19.2% and under/overshooting from 48.2% to 43.2%) and
were less pronounced but still relevant in the PPG compat-
ible group. However, the validity in the PPG incompatible
group remained insufficient based on the 10% MAPE
criterion.

Figure 6. Absolute values of the Pearson correlation coefficient (A), MAE (B), MAPE (C) and total percentage of under- and
overshooting (D) before and after removal of unreliable Fitbit data: original versus cleaned data. MAE: mean absolute error; bpm: beats
per minute; MAPE: mean absolute percentage error; AF: atrial fibrillation; HF: heart failure; CR: cardiac rehabilitation. Under- and
overshooting was defined as a percentage difference of 10% or more compared to the Holter device. Patients were categorised into
PPG-compatible (MAPE < 10%) and PPG-incompatible (MAPE≥ 10%) groups. Cleaned data refers to the data remaining after the
artefact removal procedure, with unreliable data removed and only trustable data retained.
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Discussion
Our study is the first to evaluate the accuracy of continuous
measurements of two commercially available HR monitors,
the PPG-based Fitbit Inspire 2 wrist-worn fitness tracker
and the ECG-based Polar H10 chest strap, during a 24-h
monitoring period in a clinical cohort of patients with car-
diac disease. Since cardiac-related pathophysiological fac-
tors such as peripheral edema, poor tissue perfusion and a
higher incidence of arrhythmias may influence the PPG sig-
nal,31 results obtained from healthy individuals may be
unsuitable for applications targeting patients with cardiac
disease.32 It is therefore important to validate PPG-based
HR monitors specifically in cardiac populations, which
was the goal of our study. Additionally, we explored ML
models to recognise and remove artefacts from HR data
obtained from PPG-based HR monitors to improve
HR-based PA load prediction.

Confirmed accuracy of ECG-based chest strap
The Polar H10 chest strap demonstrated very high correl-
ation (r= 0.94) and minimal error (MAE= 3.4 bpm,
MAPE= 4.9%) compared to the gold-standard Holter
monitor across all patient groups, both at night and during
daily activities. Previous studies had primarily evaluated
the Polar H10 in healthy volunteers and only during specific
exercise protocols. Schaffarczyk et al. and Merrigan et al.
reported, respectively, a Pearson correlation of 1.00 and
an MAPE of 1.3–3.4% in healthy volunteers during exer-
cise protocols,33,34 while Etiwy et al. reported a Lin’s con-
cordance correlation coefficient (CCC) of 0.99 for the
earlier version Polar H7 in cardiac patients during a CR ses-
sion.19 Our study is unique in its evaluation of 24-h continu-
ous recordings in specific cardiac patient groups. It
confirmed the accuracy and reliability of the Polar H10
chest strap across these cardiac patient populations and out-
side controlled testing conditions.

Challenges in accuracy of PPG-based wrist-worn HR
monitors across cardiac patient populations
The Fitbit Inspire 2 exhibited a moderate positive correl-
ation (r= 0.69) and higher error rates (MAE = 8.3 bpm,
MAPE = 14.3%) compared to the ECG-based chest strap.
The PPG-based device showed more overshooting
(25.7%) than undershooting (7.5%), often overestimating
HRs at lower levels and underestimating them above 100
bpm. Accuracy was higher at night, likely due to less move-
ment, consistent with prior findings.35 The poorer accuracy
compared to the chest strap was expected, given the limita-
tions of optical PPG technology, such as sensitivity to
motion artefacts and technical factors such as improper fit-
ting or skin contact.36

Comparisons between PPG-based devices, such as
Apple Watch, Garmin and Polar, suggest that device-
specific performance may vary, underscoring the need for
tailored validation of each device for clinical use.19,37

Although the Fitbit Inspire 2 HR monitor itself has not
yet been validated in the literature, analogous Fitbit devices
have been studied, and these data will be used as a basis for
comparison in this discussion. Regarding studies in healthy
volunteers, Nelson et al. reported lower error rates for the
Fitbit Charge 2 (MAE = 3.5 bpm, MAPE = 6.0%) com-
pared to our findings (MAE = 8.3 bpm, MAPE = 14.3%)
during a 24-h monitoring period with ECG validation.
However, their study only included one participant.18

Another study found a CCC of 0.83 for the Fitbit Charge
HR tracker in 10 healthy volunteers during activities, but
this comparison used a chest strap rather than Holter, and
the measurements were assessed in 1-min intervals rather
than continuously.38 Additionally, various studies validated
Fitbit devices in healthy volunteers during treadmill or bike
sessions, but these results vary widely (CCC: 0.50–0.89,
MAPE: 2.38–16.99%) and are hard to compare to our
24-h monitoring period due to the controlled set-
tings.16,17,27,39–43

Also, validation of PPG-based HR in patients with car-
diac disease is limited in prior research. In patients follow-
ing CR, the Fitbit Blaze demonstrated a correlation of 0.78
during an exercise session,19 aligning with the correlation of
0.79 found in our CR group during 24-h continuous
monitoring.

For patients with AF, our study’s results (r= 0.67, MAE
= 12.1 bpm) were consistent with previous findings. Quinn
et al. reported lower correlations (rest: r= 0.50, peak exer-
cise: r= 0.30) and higher errors (rest: MAE= 7.0 bpm,
peak exercise: MAE= 28.7 bpm) in patients with AF com-
pared to those in sinus rhythm (rest: r= 0.91, peak exercise:
r= 0.73; rest: MAE= 4.6 bpm, peak exercise: MAE= 13.8
bpm).37 Another study by Al-Kaisey et al. demonstrated a
similar correlation (r= 0.60) using a Fitbit Charge HR device
during 24-h monitoring.35 Both studies and our findings indi-
cate lower PPG accuracy in patients with AF compared to
those in sinus rhythm. The irregular heart rhythm and
beat-to-beat variability in cardiac output imply that not every
heartbeat generates a sufficiently strong pulse, leading to a
phenomenon known as pulse deficit, which affects the amp-
litude of the PPG signal and contributes to the accuracy chal-
lenges for AF rhythms.35,44 Our patients with AF were also
significantly older than the CR group (p= 0.02). Ageing con-
tributes to arterial stiffness and causes skin changes such as
thinning, wrinkles and hyperpigmentation, all of which affect
light interaction with blood vessels and reduce PPG signal
quality.29 Although BMI was higher in the AF group com-
pared to other study populations, it did not reach statistical
significance (p= 0.15), but could still contribute to lower
PPG accuracy due to its impact on skin thickness and blood
flow dynamics.36

12 DIGITAL HEALTH



No validation studies are available in the literature for
patients with HF. In our study, this group showed a weak
correlation (r= 0.57, inferior to AF and CR groups) and
moderate error (MAE= 6.8 bpm, MAPE= 11.7%, worse
than the CR group and better than the AF group). The path-
ology of HF likely contributes to this lower PPG accuracy
due to reduced peripheral circulation, fluid retention and
vasoconstriction, which affect light absorption and reflec-
tion in the skin.45 Although not statistically significant,
our baseline data suggested a trend towards lower renal
function and more signs of congestion in the HF group,
potentially contributing to the reduced PPG performance.

The observed artefacts and inaccuracies may be clinic-
ally important if PPG-based HR monitors were to be used
for monitoring PA or prescribing exercise with specific
HR targets. Artefacts in the data from these monitors may
lead to under/overshooting the amount of PA, false assur-
ance of good HR control or incorrect medication titration.37

In our study, PPG-based monitoring showed the highest
accuracy in the CR group, where MAPE values approached
the acceptable 10% threshold, suggesting potential clinical
utility in this population. In contrast, patients with AF and
HF showed poorer accuracy, indicating that clinical use of
PPG-based HR monitoring for PA assessment in these
populations remains premature at this stage. To address
artefacts and minimise their impact on PA assessments,
our research group explored two approaches: (1) an object-
ive preselection of patients based on PPG compatibility
(MAPE < 10%), and (2) an ML-based ARP for detecting
and eliminating unreliable PPG-HR data. These approaches
will be further discussed in ‘Necessity of patient preselec-
tion for PPG-HR monitoring in clinical settings’ and
‘Opportunities of the current ARP’ sections. While we
acknowledge that PPG-based HR measurements in patients
with AF and HF may not be suitable for clinical diagnoses
or treatment decisions (e.g., bradycardia detection or beta-
blocker titration), they may still provide a reasonable esti-
mate of daily PA intensity – particularly during daytime
periods when activity occurs, provided that appropriate
patient preselection and artefact removal strategies are
applied.

Necessity of patient preselection for PPG-HR
monitoring in clinical settings
The findings of our study suggest that PPG-based HR mon-
itoring may not be suitable for all patients, even after arte-
fact detection and removal using ML techniques.
Specifically, more than half of the patients (53%) in our
study showed low overall accuracy (MAPE ≥10%) in their
PPG-HR measurements, likely due to patient-related factors
impacting PPG reliability. In addition, the ARP was insuf-
ficiently effective in detecting artefacts and thus improving
accuracy in this group.

Therefore, we now suggest that, before PPG-HR moni-
toring can be considered for clinical use, an objective pre-
selection of patients may be necessary to determine their
suitability for this technology. Patients could be selected
based on their initial PPG accuracy (e.g., MAPE < 10%),
which would help minimise the risks associated with
inaccurate recorded HR data. For the selected patients, the
ARP could be applied to remove remaining artefacts and
further improve data accuracy. Further research could refine
this preselection criterion for routine clinical assessments of
PPG compatibility.

Opportunities of the current ARP
To our knowledge, our study is the first to develop a proced-
ure that uses ML techniques to identify artefacts in continu-
ous HR data obtained from commercially available
PPG-based HR monitors. Most existing artefact removal
methods require access to raw PPG waveforms, which are
either embedded in proprietary algorithms or available
only through research-grade equipment. In contrast, our
approach operates directly on derived HR data – the only
data accessible from most consumer devices – making it
feasible for real-world use. This approach bridges the gap
between academic research and clinical applicability and
supports long-term HR monitoring in outpatient settings.

The ARP approach also aligns with current recommen-
dations in the field of medical ML, which advocate for
explainable, resource-efficient models that can be applied
in real-world clinical environments.46 Unlike deep learning
methods, which are often complex and opaque, our use of
logistic regression enables transparent, fast and supervised
artefact detection suitable for outpatient settings.47 This
makes our approach suitable for integration into future clin-
ical workflows and mobile health solutions.

The current version of the ARP yielded mixed results. Of
all artefacts present, one-third was detected by the proced-
ure, thereby reducing the number of under/overshooting
in the HR data. Only 0.50% of the total data was incorrectly
labelled as unreliable, indicating minimal erroneous
removal of HR data. However, while only 1% of all phys-
ical activities in our dataset were incorrectly labelled as
unreliable, 21% of activities were considered reliable des-
pite being over- or underestimated conform our current def-
inition (MAPE≥10%). This could still pose challenges if
PPG-based HR monitors were used for PA follow-up,
potentially leading to an under/overestimation of performed
PA.

Notably, the ARP was found to be insufficiently effect-
ive in patients with AF, likely due to the irregular heartbeat
characteristics typical of this group, making it challenging
to distinguish from artefacts, as was already discussed in
a prior section.

While the overall results of the procedure appear prom-
ising, further training, refinement and validation using new
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data are necessary to enhance accuracy and reliability. This
will enable the procedure to better distinguish between
activities and artefactual high HRs and will hopefully lead
to improved usefulness across diverse patient profiles.

Limitations
Many noise sources can affect PPG signals, including indi-
vidual patient variations (e.g., skin tone, BMI, age, gender)
and external or environmental factors (e.g., strap tightness,
ambient light, temperature).36 We could not report or ana-
lyse all factors. The same investigators applied the wrist-
worn monitor aiming for uniformity (i.e., as tight as pos-
sible yet still comfortable), but strap tightness was subject-
ively determined without objective measurement of tension
or pressure. Consequently, device tightness may have var-
ied among participants. Additionally, sensor placement,
temperature and ambient light intensity were not reported,
although these factors can impact the PPG signal.32 The
data collection period spanned varying ambient tempera-
tures, which may have influenced peripheral circulation
and thus affected PPG signal quality. Future studies may
consider collecting environmental data or differentiating
indoor versus outdoor activities to explore this further.
Skin colour and gender were reported in our study, but
the variation within our relatively small patient population
was insufficiently balanced to perform detailed analyses
on differences in PPG accuracy. Previous studies have
shown that darker skin leads to reduced PPG signal quality
due to the higher concentration of melanin,36 and that men
show lower PPG accuracy compared to women due to
physiological differences in skin thickness and arterial stiff-
ness.42 Our study population was predominantly male
(87%) which is a common limitation in cardiovascular
research and may have introduced a potential gender
bias.48 Future studies should aim to recruit a more balanced
cohort, in terms of both skin colour and gender, to better
understand potential patient-related differences in PPG
accuracy and their implications for clinical practice.

Another limitation of this study is its small sample size
(n= 15), divided across three groups (n= 5 per group),
which may have reduced statistical power and generalisabil-
ity. However, the use of high-resolution continuous HR
data over 24 h per participant provided a sufficiently rich
dataset to explore device accuracy. Though our study
included three clinically relevant subgroups (AF, HF and
CR), the findings may not be generalisable to other popula-
tions or cardiac conditions, such as patients with pace-
makers or with preserved ejection fraction. Finally, we
acknowledge that the internal signal processing of the
Fitbit PPG device remains a black box. Specifically, the
algorithm’s handling of arrhythmias such as ventricular
ectopic beats is unknown, and this may have contributed
to some of the observed inaccuracies. Nevertheless, this
study was intentionally designed as a pilot to provide

preliminary insights into the accuracy of HR monitors in
cardiac populations and to support the development of the
ARP. To address the limitations, the follow-up
ARTEPHYISCAL study (NCT05901038) is currently
underway and aims to provide a larger and more diverse
dataset for more robust analyses and generalisable
conclusions.

The current ARP also has limitations as it was developed
using data from this small pilot study without the use of an
external, unseen testing dataset. This methodological choice
was necessary to maximise the use of the available data in
this initial development phase, but overfitting, where the
model learns patterns specific to the training data rather
than generalisable trends, may have inflated the reported
performance metrics. Moreover, the dataset included a lim-
ited variety of physical activities, complicating differenti-
ation between activities and artefacts. The target activity
labelling was partially based on self-reported diary entries,
in combination with HR data from the golden standard
Holter monitor. This reliance on self-reported data may
introduce bias due to potential inaccuracies in patient
reporting. Our current classification models use logistic
regression to detect artefacts and activities due to its simpli-
city and interpretability, but this technique may struggle
with complex, non-linear relationships, especially in imbal-
anced datasets like ours. Alternative tree-based methods
may offer improved performance in future work. Due to
the proprietary nature of PPG signal processing in consumer
devices, raw waveform data was not accessible. As a result,
our artefact detection procedure was applied to derived HR
values, which may limit certain signal-level corrections.
However, this reflects the type of data typically available
in clinical and real-world applications, supporting the prac-
tical relevance of our approach. Further refinement and val-
idation of the procedure is being pursued in the ongoing
ARTEPHYISCAL study (NCT05901038), which is collect-
ing a more extensive dataset with standardised physical
exertions to address the mentioned challenges, including
testing the procedure on independent datasets to ensure gen-
eralisability to unseen data.

Conclusions
Compared to gold-standard Holter monitoring, the
ECG-based Polar H10 chest strap is very accurate at asses-
sing HR over a 24-h time window, while the accuracy of
PPG-based Fitbit Inspire 2 tracker is weaker. The results
differ between individual patients and between several car-
diac patient groups. While neither device is intended or
appropriate to replace diagnostic ECG monitoring, both
show potential for supporting PA assessment. With current
technology, PPG-based HR estimation to assess PA is too
inaccurate for use in patients with AF but may be useful
in selected other patients with cardiac disease. Our
ML-based ARP showed potential to improve PPG-based
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HR data by identifying and removing unreliable sections,
but its mixed results and the small sample size in this study
underscore the need for refinement and independent valid-
ation. Further technical improvement may expand the group
of patients in whom continuous HR tracking could help
assess and guide PA to optimise cardiovascular outcomes.
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