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Abstract

Kriging is an established methodology for predicting spatial data in geostatistics. Current

kriging techniques can handle linear dependencies on spatially referenced covariates. Al-

though splines have shown promise in capturing nonlinear dependencies of covariates, their

combination with kriging, especially in handling count data, remains underexplored. This

paper proposes a new Bayesian approach to the low-rank representation of geoadditive mod-

els, which integrates splines and kriging to account for both spatial correlations and nonlinear

dependencies of covariates. The proposed method accommodates Gaussian and count data

inherent in many geospatial datasets. Additionally, Laplace approximations to selected pos-

terior distributions enhances computational efficiency, resulting in faster computation times

compared to Markov chain Monte Carlo techniques commonly used for Bayesian inference.

The performance of our novel method is assessed through a simulation study, demonstrating

the effectiveness of the proposed approach. The methodology is applied to the analysis of

heavy metal concentrations in the Meuse river and vulnerability to coronavirus disease 2019

in Belgium.

Keywords: Kriging, Geoadditive models, Bayesian P-splines, Laplace approximations, Low-

rank model.



1 Introduction

Observations characterized by spatial locations often exhibit inherent correlations, with closer

observations demonstrating stronger dependencies than those farther apart. This spatial cor-

relation phenomenon is a fundamental aspect of spatial data analysis, especially in disciplines

such as geostatistics, where the spatial arrangement of data points provides valuable insights

into underlying processes where proximity often implies similarity. Cressie (1993) categorized

spatial data into three main types: areal (or lattice) data, geostatistical (continuous) data, and

point patterns. Our primary focus here is on the analysis of geostatistical data. Geostatistics

is a field dedicated to studying phenomena that are continuously distributed over spatial do-

mains. For example, in environmental studies, nearby soil samples are likely to have similar

characteristics due to shared environmental conditions and geological processes. The princi-

ples and methodologies of geostatistics can also be applied to phenomena that are not strictly

continuous (e.g. areal data), including those related to epidemic modeling and public health

outcomes. For instance, geostatistical methods can be used to assess the impact of spatially

referenced exposure/covariates on health outcomes, model the spatial variation in disease inci-

dence rates, identify high-risk areas, and assess the spatial dependence of disease transmission

(see e.g. Waller and Gotway, 2004; Diggle and Giorgi, 2019). In addition, spatial interpolation

techniques, similar to those used in geostatistics, can also help to estimate disease prevalence in

regions with sparse or missing data.

One of the primary applications in geostatistics is spatial prediction/interpolation, where missing

or unobserved values at specific (unsampled) locations within a spatial domain are estimated.

Kriging, a widely used geostatistical technique, relies on spatial correlations to interpolate and

predict values across a spatial domain. Kriging methods estimate the spatial variability by con-

sidering the spatial arrangement and correlation between observations, resulting in predictions

that minimize estimation errors. The strength of kriging lies in its ability to incorporate both

the spatial trend and the spatial correlation structure of the data, making it a powerful tool



for spatial data analysis. Although theories about kriging are well established, dealing with

larger sample sizes presents a significant computational burden, which is particularly evident

in the inversion of the covariance matrix. The computational cost increases as the dimension

of the covariance matrix grows with the sample size. A promising solution comes in the form

of low-rank representations of spatial models using basis functions, which substantially improve

computation time. One such approach is the fixed rank kriging (FRK) proposed by Cressie and

Johannesson (2008), for which the spatial component is modeled as a linear combination of basis

functions and spatially correlated random coefficients. This methodology was further extended

to accommodate non-Gaussian spatial and spatio-temporal data (Sainsbury-Dale et al., 2024).

For low-rank Bayesian approaches, one example is the predictive process model (Banerjee et al.,

2008; Eidsvik et al., 2012). Another approach that motivates the method proposed here is that

of Kammann and Wand (2003), which involves reducing the spatial locations to a subset, called

“knots”, using a space-filling algorithm (Johnson et al., 1990; Nychka and Saltzman, 1998). They

adopted a spline-basis approach and relied upon the commonly used stationary covariance ma-

trix in kriging as the basis functions. Their approach offers not only computational advantages

for handling big data but also ease of implementation through standard mixed models software.

Another basis function method that gained significant attention in recent years is the Stochastic

Partial Differential Equation (SPDE) framework introduced by Lindgren et al. (2011). Their

method offers a computationally efficient representation of Gaussian Random Fields (GRFs) by

linking Gaussian spatial processes with the Matérn covariance function as a solution to a specific

SPDE. This connection allows dense covariance matrices to be transformed into sparse precision

matrices, enabling more efficient analysis of large spatial datasets and is implemented using

Integrated Nested Laplace Approximations (INLA) (Rue et al., 2009). For a review of low-rank

or basis function approaches, see Wikle (2010b) and Cressie et al. (2022). Stein (2014) noted

the limitations of low-rank covariance approximations for Gaussian models and demonstrated

that an independent-block approach can yield more accurate approximations in certain scenarios,

mainly when the observations are sufficiently dense with a small enough nugget variance. Never-

theless, Stein (2014) also mentioned that the conclusions primarily consider cases when the true

model is stationary, and it remains an open question whether these limitations extend directly

to nonstationary spatial processes. Another alternative to low-rank approaches is covariance



tapering, which approximates the covariance matrix with a sparse matrix, achieving computa-

tional efficiency by using sparse matrix techniques (Furrer et al., 2006; Kaufman et al., 2008).

Sang and Huang (2012) combined covariance tapering with low-rank covariance approximations,

thereby leveraging the strengths of both methods to improve modeling accuracy and addressing

limitations inherent in either approach when used independently. Another approach that induces

sparsity in the precision matrix is to work with Vecchia approximations (Vecchia, 1988) gener-

alized by Katzfuss and Guinness (2021), which include several special cases. One example is the

nearest-neighbor Gaussian process (Datta et al., 2016; Finley et al., 2019) implemented within

a Bayesian hierarchical modeling framework and leveraging sparsity for computational efficiency.

While the methods mentioned above offer practical solutions for modeling large spatial datasets,

their explicit integration with nonlinear additive covariate effects, especially in the context of

non-Gaussian observations, has remained underexplored. Kammann and Wand (2003) modeled

nonlinear covariates using mixed-model representations of additive models (Wand, 2003; Rup-

pert et al., 2003), combining penalized splines to model nonlinear effects with spatial smoothing,

a method called “geoadditive models”. On the other hand, the method of Lindgren et al. (2011)

handles the nonlinear effect of covariates using random walk or autoregressive processes, inte-

grated into the R-INLA software. Vandendijck et al. (2017) extended the method of Kammann

and Wand (2003) by proposing to estimate the spatial decay parameter rather than assuming it

fixed. Kammann and Wand (2003) and Vandendijck et al. (2017) used likelihood-based estima-

tion methods and implemented their approach in the context of Gaussian data.

This paper proposes a Bayesian methodology for geoadditive models where the spatial compo-

nent is modeled in a similar way as in Kammann and Wand (2003). The Laplace approximation

is used to approximate the posterior distribution of regression parameters, so as to significantly

reduce the computational time to carry out inference as compared to traditional Markov chain

Monte Carlo (MCMC) algorithms. P-splines (Eilers and Marx, 1996) are used to model the non-

linear effects of covariates. This smoother offers the advantage of a penalty matrix that can be

easily constructed and naturally translated into a Bayesian framework (Lang and Brezger, 2004).

The combination of Laplace approximations and P-splines (Laplacian-P-splines) in generalized



additive models developed by Gressani and Lambert (2021) offers a computationally efficient

alternative to classic MCMC approaches and serves as a backbone to the methodology developed

here. We extend the Laplacian-P-splines methodology to a geoadditive model. Additionally, a

novel approach is proposed for handling count data in combination with linear and nonlinear

dependencies on covariates, an aspect not well explored in the literature on geostatistical mod-

eling. Typically, a Poisson distribution is assumed for count data. However, this assumption is

inadequate for handling overdispersion, as the Poisson model implies equality between mean and

variance. In contrast, the negative binomial distribution, although more complex, accounts for

overdispersion and permits more sophisticated modeling of count data. This paper implements

both Poisson and negative binomial distributions, providing a robust and flexible approach for

handling spatial count data.

The article is organized as follows. Section 2 introduces the geoadditive model, explaining

how the smooth covariates and spatial components are modeled. It also presents the Bayesian

geoadditive model and discusses the use of Laplace approximations. Section 3 conducts a simu-

lation study to assess the proposed methodology using various performance measures, including

bias, relative bias, and credible and prediction interval coverage. Additionally, we compare

our method to the approach of Lindgren et al. (2011). In Section 4, the proposed model

is applied to the analysis of two real-world datasets: the Meuse river data and the coron-

avirus disease 2019 (COVID-19) vulnerability data in Belgium. Finally, Section 5 concludes

the paper. Code to reproduce the results of this article is available on the following repository

https://github.com/bryansumalinab/Geoadditive-Modeling.

2 Important concepts and methodology

2.1 Geoadditive model

Consider spatially indexed observations denoted by yi(wi), where wi = (w1i, w2i)
⊤ ∈ R2 denotes

the spatial coordinates for observations i = 1, ..., n. The observations yi(wi), conditional on

the covariates, are typically assumed to have a distribution from an exponential family as in

generalized linear models. The geoadditive model can be written as:



g(µi) = β0 +

p∑
r=1

βrxr(wi)︸ ︷︷ ︸
Linear predictors

+

q∑
j=1

f(hj(wi))︸ ︷︷ ︸
Smooth terms

+ s(wi)︸ ︷︷ ︸
Spatial component

, (1)

where g(·) is the link function and E(yi(wi)) = µi. Model (1) consists of three different com-

ponents. The first component contains the linear predictors (1, x1(wi), . . . , xp(wi)), with corre-

sponding parameters (β0, β1, . . . , βp). The second component captures nonlinear dependencies

of g(µi) on the covariates hj(wi) through the smooth function f(·), for j = 1, . . . , q. The third

component, s(wi), accounts for unobserved or unmeasured spatial structures that are not fully

explained by the covariates. In practice, it is also often difficult to obtain all relevant spatial

covariates, and thus bias may be present due to unmeasured factors. Note that the classical

kriging model can be equivalently represented using basis functions derived from the spatial

covariance function (see supplementary material S1). By constructing the basis functions from

commonly used spatial covariance functions in kriging, our proposed model also accounts for

spatial dependency. For ease of notation, we let xir := xr(wi) and hij := hj(wi) for r = 1, . . . , p

and j = 1, . . . , q. Each smooth covariate hij can be modeled as:

f(hij) =
K∑
k=1

θjkbjk(hij), j = 1, . . . , q,

where bjk(·) is a basis function and θjk is the coefficient for k = 1, . . . ,K. In our case, B-

spline basis functions are used with a discrete difference penalty on successive B-spline coeffi-

cients proposed by Eilers and Marx (1996). The penalty controls the roughness of the fit and

can be naturally extended to the Bayesian framework in formulating the joint prior distribu-

tion of the B-spline coefficients (Lang and Brezger, 2004). A Gaussian prior is assumed on

θj = (θj1, θj2, . . . , θjK)⊤, i.e. (θj |λj) ∼ NK(0, (λjP )−1) where λj > 0 is the penalty parameter

for the j th smooth model component and P = D⊤
mDm where Dm denotes the mth order differ-

ence matrix (m = 2 in this paper). To ensure that the penalty matrix is full rank, a diagonal

matrix is added to P with small entries on the main diagonal ( i.e., 10−12).

The spatial term, s(wi), can be modeled in several ways depending on the type of spatial data.



In kriging or classical geostatistics, the observations yi(wi) are assumed to be continuous in the

spatial domain wi, and s(wi) is assumed to be a Gaussian process with mean 0 and variance

σ2
w. An important assumption of kriging is that s(wi), for i = 1, . . . , n, are correlated, such that

Cov(s(wi), s(wj)) = R(wi −wj), which satisfies the stationarity assumption, meaning that the

covariance function R(·) does not depend on spatial locations but only on the distance between

locations (refer below for possible choices of R(·)). The main goal of kriging is to predict ob-

servations at a given location. For Gaussian data, the best linear unbiased prediction for an

arbitrary location is analytically available along with the corresponding prediction uncertainty

(Zimmerman and Stein, 2010). For non-Gaussian data, one can rely, for example, on a Bayesian

approach (Wikle, 2010a) or a maximum likelihood approach (Zimmerman, 2010).

Kriging predictions require to compute the inverse of the covariance matrix R(·) which is of

dimension n × n. With increasing sample size, the computational burden associated to these

predictions becomes non-negligible. One way to address this problem is to write the spatial

component in terms of the basis function model as follows:

s(wi) =
L∑
l=1

αlbl(wi) + ε(wi), (2)

where bl(wi) is a known basis function evaluated at location wi and αl are the coefficients for

l = 1, . . . , L with L < n. The vector α = (α1, . . . , αL)
⊤ is assumed to have a multivariate

Gaussian distribution, α ∼ NL(0,Σα), and the error term ε(wi) is usually assumed to have

a Gaussian distribution with mean 0 and constant variance. The addition of the error term

ε(wi) accounts for the errors stemming from approximating the underlying spatial process with

a finite set of basis functions or its low-dimensional representation (Wikle, 2010b; Cressie et al.,

2022). Several choices can be made for the basis functions. One such choice is the method

proposed by Kammann and Wand (2003) using the stationary covariance function in kriging,

defined earlier, as the basis function. By replacing the coordinates with a set of points, called

two-dimensional knots (κs), this approach allows for a low-rank representation of the covariance

function. Due to the evaluation thereof in a finite and limited set of knots, the computational

cost is significantly reduced. The spline approach is used for a smoothing perspective regarding



the stationary covariance function. Therefore, this approach does not scale with sample size.

The spatial component s(wi) is modeled as follows:

s(wi) = βw1w1i + βw2w2i +
S∑

s=1

zis(ρ)us, (3)

where w1i and w2i are the spatial coordinates with corresponding coefficients βw1 and βw2 ,

zis(ρ) = Rρ(wi − κs) and u = (u1, u2, . . . , uS)
⊤ are assumed to be normally distributed such

that (u|λspat, ρ) ∼ NS(0, (λspatΩρ)
−1), where λspat > 0 and Ωρ = Rρ(κs−κs′) is an S×S matrix

for all s, s′ ∈ 1, . . . , S. Here, Rρ(·) is the covariance function used in kriging and κs (s = 1, . . . , S)

is a subset of the spatial coordinates. One way to efficiently choose these two-dimensional knots

(κs) is through the use of a space-filling algorithm (Johnson et al., 1990; Nychka and Saltzman,

1998). In addition, ρ represents the range parameter in kriging. In this paper, we consider

covariance models commonly used for stationary processes in kriging (Fahrmeir et al., 2013, pp.

453–456):

Exponential : Rρ(d) = λ−1
spat exp(−ρ||d||),

Matérn : Rρ(d) = λ−1
spat exp(−ρ||d||)(1 + ρ||d||),

Spherical : Rρ(d) = λ−1
spat(1− 1.5ρ||d|| + 0.5ρ3||d||3) I(||d||≤ ρ−1),

Circular : Rρ(d) = λ−1
spat exp(−ρ2||d||2),

where ||·|| refers to the Euclidean norm and I(·) is the indicator function. In the Gaussian

scenario, the error term in (2) is not identifiable because of the presence of another error com-

ponent for the response conditional on the mean. Nevertheless, even without the inclusion of

the additional error term in (2), model (3) is capable of generating accurate predictions for

yi(wi). This is primarily due to the fact that any extra variance introduced by ε(wi) tends to

be absorbed by the measurement error variance inherent in the Gaussian model. However, the

same cannot be said for count data when the Poisson distribution is assumed. To address this,

we propose the use of a negative binomial model. In this way, the error term ε(wi) is regarded

as excess variability, which can be effectively managed by the overdispersion parameter in the

negative binomial model. This overdispersion parameter quantifies the additional variance not

captured by the Poisson model and can be interpreted as arising from the error variance in



the outcome distribution. This link is evident when considering the general formulation of the

exponential dispersion family (EDF) (see Section 2.2 below), where the variance function in-

cludes a dispersion parameter that corresponds to the overdispersion in the negative binomial

model. This allows for a more accurate estimation of the prediction uncertainty. However, if

this excess variability is small, then the Poisson assumption may be sufficient. Furthermore, it

is also important to note that equation (3) represents a model for the average spatial process.

2.2 Bayesian model formulation

For ease of notation let yi := yi(wi). To generalize the derivations, we can write the probability

distributions of yi as an exponential dispersion family, yi ∼ EDF(γi, ϕ), with probability distri-

bution given by p(yi; γ, ϕ) = exp{[yiγi−b(γi)]/a(ϕ)+c(yi, ϕ)} where ϕ is a dispersion parameter

and γi is a natural parameter with mean E(yi) = b′(γi) = µi and variance V(yi) = a(ϕ)b′′(γi).

The log-link function is used for the Poisson and negative binomial model, such that g(µi) =

log(µi). Note that an offset term Ni (e.g. population size for each location) may be added so

that µi = exp(g(µi))×Ni. In matrix form, (1) can be written as:

log(µ) = Xβ +

q∑
j=1

Bjθj + Z(ρ)u, (4)

where µ = (µ1, . . . , µn)
⊤, X is a matrix of dimension n × (p + 3) with ith row vector

xi = (1, xi1, xi2, . . . , xip, w1i, w2i)
⊤ and coefficient vector β = (β0, β1, β2, · · · , βp, βw1 , βw2)

⊤,

Bj is an n × K matrix with ith row bij = (bj1(hij), bj2(hij), . . . , bjK(hij))
⊤ and coefficients

θj = (θj1, θj2, . . . , θjK)⊤, Z(ρ) is an n×S matrix with ith row zi(ρ) = (zi1(ρ), zi2(ρ), . . . , ziS(ρ))
⊤

and coefficients u = (u1, u2, . . . , uS)
⊤ for i = 1, . . . , n and j = 1, . . . , q.

A Gaussian prior is assumed for β, i.e., β ∼ Ndim(β)(0, V
−1
β ) where Vβ = ζI with small ζ (e.g.

ζ = 10−5), implying a large prior variance and thus a noninformative Gaussian prior. Denote

the global design matrix by Cρ = [X : B1 : B2 : · · · : Bq : Z(ρ)] and the corresponding

parameter vector ξ = (β⊤,θ⊤
1 , . . . ,θ

⊤
q ,u

⊤)⊤ such that equation (4) becomes log(µ) = Cρξ.

Moreover, let λspat := λq+1 and λ = (λ1, . . . , λq, λq+1)
⊤. Denote the precision of ξ by Qλ

ξ =



blkdiag(Vβ, λ1P, . . . , λqP, λq+1Ωρ), where blkdiag(·) is a block diagonal matrix. The full

Bayesian model is given by:

(yi|ξ) ∼ EDF(γi, ϕ), i = 1, . . . , n,

(ξ|λ, ρ) ∼ Ndim(ξ)(0, (Q
λ
ξ )

−1),

(λj |δj) ∼ G
(
ν

2
,
νδj
2

)
, j = 1, . . . , q + 1,

δj ∼ G(aδ, bδ), j = 1, . . . , q + 1,

p(ρ) ∝ ρ−1,

p(ϕ) ∝ ϕ−1,

where G(a, b) denotes a Gamma distribution with shape parameter a and rate parameter b,

which corresponds to a mean of a/b and variance a/b2. This robust prior specification on

the penalty parameters follows from Jullion and Lambert (2007) where aδ = bδ are chosen to

be small enough, say 10−5, with fixed ν (e.g. ν = 3 in this paper). Furthermore, to address

identifiability issues between the smooth terms and the spatial component, we imposed centering

by constraining the basis matrix for smooth and spatial terms to have columns with zero mean.

2.3 Laplace approximation

The Laplace approximation is used to approximate the conditional posterior p(ξ|λ, ρ, ϕ,D)

by a Gaussian distribution. This posterior approximation is particularly advantageous for its

computational efficiency, significantly reducing computational time, as it eliminates the need

for sampling compared to MCMC methods. In the case of a Gaussian response, the derived

conditional posterior is exactly Gaussian, and the derivations are provided in supplementary

material S3. Denote the (Poisson or negative binomial) likelihood function by L(ξ, ρ, ϕ;D)

where D is the observed data. Using Bayes’ rule, the conditional posterior of ξ can be written

as p(ξ|λ, ρ, ϕ,D) ∝ L(ξ, ρ, ϕ;D)p(ξ|λ, ρ). The gradient and Hessian of the log-conditional

posterior, log p(ξ|λ, ρ, ϕ,D), with respect to ξ are analytically derived and used in a Newton-

Raphson algorithm to approximate the mode of the conditional posterior of ξ. The availability

of the derived analytic gradient and Hessian further enhances the computational speed. After



convergence, the Laplace approximation of p(ξ|λ, ρ, ϕ,D) is a multivariate Gaussian density

denoted by p̃G(ξ|λ, ρ, ϕ,D) = Ndim(ξ)(ξ̂λ, Σ̂λ) where ξ̂λ is the mode and Σ̂λ is the inverse of

the negative Hessian matrix evaluated at the posterior mode. The derivations of the approxi-

mate posterior distributions of the hyperparameters are presented in supplementary material S2.

3 Simulation study

A simulation study is conducted to evaluate the performance of our proposed methodology. For

the count data, samples are generated from a Poisson distribution with rate parameter µ ·exp(ε).

The inclusion of exp(ε) preserves the stochasticity of the true spatial process in agreement with

equation (2). This is equivalent to simulating a spatial component from a two-dimensional

smooth function plus an error term (s(w1, w2) + ε). For the Gaussian data, ε represents the

error term of the Gaussian distribution, such that observations y are generated from a normal

distribution with mean µ and variance σ2. In the simulation, the following mean structure is

assumed:

µ = β0 + β1x1 + f(x2) + s(w1, w2),

where β0 = 3, β1 = −0.5, and f(x2) = cos(2πx2). The covariates x1 and x2 are randomly

simulated from a uniform distribution over the unit interval, and ε is drawn from a zero mean

Gaussian distribution with standard deviation σ = 0.25 for the count data and σ =
√
0.10 for

the Gaussian data. The spatial component s(w1, w2) is a two-dimensional smooth function, for

which the following three different forms are considered:

s1(w1, w2) = 0.5− w2
1 + w2

2

18
,

s2(w1, w2) =
w3
1 + w1w2 + w2

2

25
,

s3(w1, w2) = −(w1 − w2)
2

15
+ sin(w1) cos(w2).

Here, the spatial coordinates w1 and w2 are simulated from a uniform distribution on the interval

(−3, 3). The plot for the two-dimensional smooth functions considered in the simulation is shown

in Figure 1.



(a) Function s1 (b) Function s2 (c) Function s3

Figure 1: Two-dimensional smooth functions.

The performance measures used in our study are bias, relative bias (%Bias), and credible interval

(CI) coverage. These quantities are computed for µ, the smooth term f(x2), and the spatial term

s(w1, w2). Additionally, the prediction interval (PI) coverage for the samples y is calculated.

The details of obtaining the prediction and prediction interval are provided in supplementary

material S4. For smooth and spatial terms, a grid of values for x2 and a two-dimensional grid for

(w1, w2) are created. Using these grids, f(x2) and s(w1, w2) are computed, and the corresponding

relative bias and PI coverage are obtained. To avoid identifiability issues, column mean centering

is imposed for the basis functions associated with the smooth and spatial components and the

performance measures are computed on the mean centered f(x2) and s(w1, w2). Due to this

centering, the bias is only computed for µ. If the quantity of interest is denoted by ω with

corresponding estimate ω̂, then the bias and relative bias are computed as follows:

Bias =
1

C ×M

C∑
c=1

M∑
m=1

(ωcm − ω̂cm),

%Bias =
1

C ×M

C∑
c=1

M∑
m=1

∣∣∣∣ωcm − ω̂cm

ωcm

∣∣∣∣× 100%,

where M = 100 is the length of the grid created for the covariates, and C = 500 is the number

of simulations or generated realizations, each based on a generated dataset of size 1000..

Moreover, CI or PI coverage is determined by calculating the percentage of ω values that fall

within the computed credible/prediction interval.



Table 1 presents the results for function s3 across various covariance structures (circular,

exponential, Matérn, and spherical) and different model distributions (negative binomial,

Poisson, and Gaussian). The results for functions s1 and s2 are presented in supplementary

material S6. The percentage bias for the smooth term is around 4% to 7% for all scenarios,

demonstrating low bias and suggesting robust performance in estimating smooth effects using

our proposed method. For all functions (s1, s2 and s3), the negative binomial model has

coverage rates associated to the smooth term that are generally closer to the 95% nominal level

as compared to the Poisson model which shows undercoverage, with rates ranging from 73%

to 80%. The Gaussian models, on the other hand, also demonstrate good coverage, ranging

from 91% to 94%, which is slightly lower than the nominal level. Note that the relative bias for

Gaussian data is very low, around 4% to 5%.

Regarding the spatial term, the Gaussian model generally exhibits the lowest relative bias,

followed by the negative binomial model, while the Poisson model has the highest bias. Notably,

all covariance functions show similar relative biases across each model for the spatial term,

except for the Matérn covariance function. For the Poisson model, the Matérn covariance

consistently shows lower bias. In the negative binomial and Gaussian models, the Matérn

covariance has a relatively low bias for function s1 but a higher bias for functions s2 and s3.

The coverage for the spatial term is highest for the negative binomial model, ranging from

97% to 99%, except for the Matérn covariance, which has lower coverage for functions s2 and

s3, with rates of 83% and 69%, respectively. This pattern is similar to the Gaussian data,

with coverage mostly close to the 95% nominal level, although there is undercoverage for the

Matérn covariance for functions s2 and s3. Thus, for the spatial term, the Matérn covariance

perform better for function s1. In contrast, the other covariance functions demonstrate

robust performance across all three shapes of the underlying spatial structure. However, it is

important to note that the Matérn covariance considered here is just a special case where we

fixed the smoothness parameter ν = 1.5. Whereas, when ν = 0.5, it reduces to the exponential

covariance, which works well across various scenarios. In practice, the choice among these

models could be guided by model selection criteria, such as the Bayesian information criterion

(BIC) (see supplementary material S5).



For the mean response, biases are generally close to zero for all scenarios, with the percentage

bias being lowest for the Gaussian data, ranging between 1% to 3%, except for the Matérn

covariance with function s3, where the relative bias is around 6%. The relative bias for µ is

mostly lower for the negative binomial model compared to the Poisson model, but their values

are very similar, ranging around 4% to 9%, except for function s3 with the Matérn covariance in

the negative binomial model, which has a relative bias of 13%. We repeated this scenario with

different seeds to investigate the observed difference between the Poisson and negative binomial

models for function s3. However, the results seem to be consistent for different samples.

We believe this might be due to function s3, which is the most complex of the functions

considered. In addition, when looking at the simulation results for INLA-SPDE in Table S7.1

(supplementary material S7), the function s3 has the highest percentage bias for the mean

response µ. Finally, for the response y, the Gaussian model has prediction interval coverage

very close to the nominal level. For count data, the Poisson model shows undercoverage,

while the negative binomial model has high prediction interval coverage. Overall, the negative

binomial and Gaussian models demonstrate robust performance, characterized by low bias and

high coverage rates across all quantities of interest. In contrast, although the Poisson model

exhibits low bias, it suffers from lower coverage rates due to the presence of an additional error

term, treated as an overdispersion parameter, that is unaccounted for when working with a

Poisson model.

The simulation results using INLA-SPDE (Lindgren et al., 2011) are presented in Table S7.1

in supplementary material S7. For discussion purposes, we call our approach LPS (Laplacian-

P-splines). For the Gaussian case, it can be observed that both LPS and INLA-SPDE

demonstrate comparable relative bias for the smooth term, with minimal differences across

functions. INLA-SPDE exhibits a tendency for over-coverage for the smooth term, while LPS

shows under-coverage. For the parameter µ, the bias is similar between the two methods, but

LPS provides a lower percentage bias. For the prediction interval coverage of y, LPS tends

to have higher coverage closer to the nominal level, although the differences are minor. For

the negative binomial case, the point estimates show similar patterns to those observed in



the Gaussian case, with comparable results between the two methods. LPS exhibits slightly

lower bias percentages for µ compared to INLA-SPDE. In terms of coverage, INLA-SPDE

demonstrates a tendency for over-coverage in the smooth term, while LPS shows slight

under-coverage. When it comes to prediction interval coverage for y, INLA-SPDE appears to

perform better, maintaining coverage closer to the nominal level, while LPS tends to exhibit

over-coverage. The spatial component is not centered in INLA-SPDE, therefore there is no

common ground for comparison. Furthermore, the computation time is compared using the

microbenchmark package in R with 10 functions evaluations. The analysis is implemented on

a device with an Intel(R) Core(TM) i5-1135G7 CPU running at a base frequency of 2.40GHz,

and having 4 cores with 16GB of RAM. Our proposed method demonstrates significantly faster

performance compared to INLA-SPDE, with average computation times of approximately 14

seconds for the Gaussian case and 15 seconds for the negative binomial case. In contrast,

INLA-SPDE requires an average of around 85 seconds for the Gaussian case and 109 seconds

for the negative binomial case (see Table S7.2 in supplementary material S7). These results

highlight the computational benefit of our methodology. It is worth noting that INLA-SPDE

involves code written in the C-family programming language, which is generally optimized for

computational efficiency. This highlights the computational advantage of our methodology even

more as our code is entirely based on the R programming language.

Additional simulation results without covariates are presented in supplementary material S8,

comparing the proposed model with the classical kriging approach for the Gaussian data using

the geoR package, yielding comparable results, although the low-rank approach has a slightly

larger percentage bias in terms of the mean. The average real elapsed time for the proposed

Bayesian approach is around 1 second, while the classical kriging approach takes around 110

seconds on average (see Table S8.2 in supplementary material S8).



Table 1: Simulation results for function s3. Model - distributional assumption for the response.
Covariance - covariance functions used in modeling the spatial component. CP(%) - indicates
95% credible/prediction interval coverage.

Model Covariance Smooth term f(x2) Spatial term s(w1, w2) µ y

Bias(%) CP(%) Bias(%) CP(%) Bias Bias (%) CP(%)

Negative
binomial

Circular 6.06 93.95 13.44 97.16 -0.34 8.05 98.15
Exponential 5.83 94.62 13.60 97.17 -0.33 8.03 98.25
Matérn 7.31 91.99 19.86 69.01 -0.20 13.09 99.15
Spherical 5.95 94.93 13.28 97.60 -0.34 7.97 98.26

Poisson

Circular 6.51 79.43 15.82 83.74 -0.53 8.92 87.19
Exponential 6.46 79.82 15.84 82.86 -0.51 9.03 87.29
Matérn 6.22 78.44 12.75 70.28 -0.64 8.26 86.65
Spherical 6.28 79.42 15.85 83.77 -0.45 8.98 87.36

Gaussian

Circular 5.01 92.66 11.10 95.28 -0.01 2.85 94.70
Exponential 4.97 92.41 11.24 94.76 -0.02 2.87 94.64
Matérn 5.32 94.14 22.74 44.49 -0.02 5.91 96.31
Spherical 5.00 93.25 11.23 95.17 -0.02 2.87 94.55

4 Data application

The proposed methodology is applied to the analysis of two datasets: (1) Meuse river data using

the Gaussian model and (2) vulnerability to coronavirus 2019 disease (COVID-19) in Belgium

using the negative binomial model.

4.1 Meuse river data

The Meuse dataset contains measurements of heavy metal concentrations in topsoil collected

from the flood plain of the Meuse River near the village of Stein, Netherlands. It also includes

the geographic coordinates of each sampling location and is commonly used to demonstrate

kriging and other geostatistical techniques. This analysis focuses on zinc concentrations in the

topsoil, using two covariates: (1) distance to the Meuse river (dist), and (2) relative elevation

above the local riverbed (elev). The dataset is available in the R package sp.



(a) (b) (c)

Figure 2: (a) Observed log-zinc values over the sampling locations (w1, w2); (b) Scatterplot
of observed log-zinc with the covariate distance; (c) Scatterplot of observed log-zinc with the
covariate elevation.

Figure 2 displays the observed logarithm of zinc (log-zinc) values at sampling locations (w1, w2)

and scatterplots illustrating the relationship between log-zinc and the variables, distance, and

elevation. Based on the graphical exploration, a nonlinear relation between distance and the

log-transformed zinc concentrations is observed, while for the relation between log-zinc and

elevation, linearity seems a plausible assumption. Classical geostatistical methods typically ac-

commodate only the linear effects of covariates. Therefore, transformation is commonly applied

(e.g. a square root transformation of distance) in order to fit a linear geostatistical model. One

benefit of our method is the direct incorporation of nonlinear covariates without the need for any

transformation. The distance and elevation are included as smooth covariates, using a Gaussian

model for the log-zinc, with various covariance structures. Table 2 shows that the BIC values

are similar for different model covariances, with the circular covariance having the lowest BIC.

Consequently, the model using circular covariance is examined further. Both tests for the signif-

icance of the two smooth covariates yield a p-value < 0.0001, indicating a statistically significant

relationship between the covariates and log-zinc. The details for testing the nonlinear effect of

covariates are presented in supplementary material S5. Since Figure 2c indicates a linear effect

of elevation, a model is fitted with elevation as a linear covariate, resulting in a BIC of -126.89,

slightly higher than the BIC (-128.94) obtained when elevation is included as a smooth covariate.

Therefore, the final model includes both distance and elevation as smooth covariates given by:

log(zinci) = β0 + f1(disti) + f2(elevi) + s(w1i, w2i) + ϵi, (5)



for i = 1, . . . , 155. Figure 3 presents the estimated effects of the covariates. Figure 4 shows the

estimated spatial surface and the comparison between fitted and observed log-zinc values based

on model (5).

Table 2: Results for the Gaussian model fitted on Meuse river data.

Covariance BIC

Circular -128.94

Exponential -128.12

Matérn -126.61

Spherical -127.14

Figure 3: Estimated effects of smooth covariates on log-zinc. 95% credible interval is shown by
the red lines.

(a) (b)

Figure 4: Results for the Meuse data using model (5). (a) Estimated continuous surface for the
spatial term s(w1, w2); (b) Estimated mean vs observed log-zinc values.



4.2 COVID-19 vulnerability data

The proposed negative binomial model is applied to the analysis of the COVID-19 incidence

data with respect to confirmed cases from Flanders and Brussels regions in Belgium from

September 1, 2020, to December 31, 2020. The study area is divided into 9627 statistical

sectors, each with a population ranging from a minimum of 7 to a maximum of 6082, with an

average population of approximately 740 inhabitants. The population per 100 inhabitants of

each statistical sector is used as an offset term in the model. The centroid of each statistical

sector serves as the coordinate for the spatial analysis. The dataset includes the total

number of positive cases for the considered period and various risk factors for each statistical

sector. Variables identified in the literature as risk factors for vulnerability to COVID-19 are

considered. Correlations between these variables are then examined, with only one variable

retained from each pair that had an absolute Pearson correlation greater than 0.5. The final

factors include median net income (med inc) (Rozenfeld et al., 2020; Wachtler et al., 2020), the

proportion of retired people (pensinr) (Rozenfeld et al., 2020; Pijls et al., 2021), the proportion

of non-Belgian residents (nonBel) (Hayward et al., 2021), the proportion of single parents

(Sung, 2021) (snglprn), the yearly average black carbon level (bc) (Rozenfeld et al., 2020; Wu

et al., 2020), and the proportion of females (female) (Wu and Qian, 2022). All these variables

are standardized.

Initially, all factors are considered as smooth covariates. Various covariance functions are fitted

with the spherical covariance having the lowest BIC value, as shown in Table 3. Therefore,

further data analysis is conducted using spherical covariance, showing that all factors have

statistically significant effects (p-value < 0.0001). The plot illustrating the estimated smooth

effects is shown in Figure S9.2 in supplementary material S9. To investigate the linear effects,

each smooth effect for a given covariate is subsequently replace by a linear effect, and the

BIC value is compared to that of the full model (BIC = 1221406), where all factors are smooth

covariates. As shown in Table 4, the factors med inc and bc resulted in lower BIC when included

as linear covariates rather than smooth covariates.



Table 3: BIC results for the negative binomial model fitted
on COVID-19 data using different covariance functions.

Covariance BIC

Circular -1221386

Exponential -1221397

Matérn -1221187

Spherical -1221406

Table 4: BIC comparison for the COVID-19 data using spherical
covariance when the variables are added as linear covariates.

Variables BIC with linear Difference from BIC
covariate with smooth covariate

med inc -1221420 -14

pensinr -1221388 18

nonBel -1221403 3

snglprn -1221351 55

bc -1221422 -16

female -1221388 18

Therefore, the final model is given by:

log(µi) =β0 + β1med inci + β2bci + f(pensinri) + f(nonBeli)+

f(snglprni) + f(femalei) + s(w1i, w2i) + log(Ni), (6)

where Ni is the offset term per 100 inhabitants for i = 1, . . . , 9627. The estimated coefficients

for the linear covariates in Table 6 indicate that areas with higher median net income are

negatively correlated with the number of COVID-19 cases, while areas with high levels of black

carbon are positively correlated with the number of cases. Table 5 shows the results for the

nonlinear covariates in model (6) and the plot of the estimated smooth effects is shown in

Figure 5. The latter figure shows that areas with higher proportions of pensioners and single

parents exhibit higher vulnerability to COVID-19 compared to the average. However, areas

with average or lower proportions of these groups correspond to average vulnerability. For

the covariate pensinr, the smooth trend for higher values shows a wider 95% credible interval,

indicating higher uncertainty in the trend direction, which could potentially go up or down.

This is due to the limited number of observations (only five) for pensinr values greater than 5.



Other covariates also show higher uncertainty at the right tail because of few observations, with

the empirical distributions exhibiting right skewness (see Figure S9.1 in supplementary material

S9). Areas with higher proportions of non-Belgians and lower proportions of females appear

to be less vulnerable to COVID-19. Finally, the plot for the estimated spatial surface and the

comparison between fitted and observed cases is shown in Figure 6.

Figure 5: Estimated effects of smooth covariates for COVID-19 data using spherical covariance.
95% credible interval is shown by the red lines.

Table 5: Results for the smooth covariates in model 6.
ED - effective degrees of freedom; Tr - test statistic.

Variables ED Tr p-value

pensinr 5.10 37.95 < 0.0001

nonBel 4.92 26.27 < 0.0001

snglprn 5.87 45.68 < 0.0001

female 3.43 63.86 < 0.0001



Table 6: Results for the linear covariates in model 6. Estimate - estimated
coefficient; SE - standard error; CI lower - 95% lower credible interval; CI
upper - 95% upper credible interval.

Variables Estimate SE CI lower CI upper

(Intercept) 1.180 0.005 1.170 1.190

med inc -0.073 0.007 -0.088 -0.059

bc 0.047 0.010 0.028 0.066

(a) (b)

Figure 6: Results for the COVID-19 data using model (6). (a) Estimated continuous surface
for the spatial term s(w1, w2) overlaying the map of the study region; (b) Estimated mean vs
observed number of COVID-19 positive cases.

5 Discussion

This paper presents a novel Bayesian method for geostatistical modeling that combines Laplace

approximations, P-splines, and low-rank representations for spatial processes. The proposed

model offers several advantages, including the ability to perform spatial interpolation and

investigate the effects of both linear and nonlinear covariates. Its computational efficiency is

substantially improved by using Laplace approximations and a low-rank representation of the

spatial process, leading to faster computation times. Additionally, the model extends beyond

Gaussian responses to accommodate Poisson and negative binomial models, thereby providing

robust options for handling count data. Thus, the proposed approach not only enhances the

flexibility and speed of geostatistical analyses but also broadens their applicability across

different types of data.



While the model in equation (1) may initially appear to be a simple extension of the generalized

additive model proposed by Gressani and Lambert (2021), there are several important aspects

that add to its complexity. First, we extend their framework by adopting a negative binomial

distribution for the count response, which introduces additional challenges beyond the Poisson

setting. Second, the incorporation of the spatial component adds another layer of complexity.

Third, unlike the standard approach where basis functions are fixed, the basis function for the

spatial effect in our model depends on a spatial range parameter that must be estimated. These

factors together require a re-derivation, especially the gradient and Hessian matrices, and make

the implementation less straightforward.

Simulation studies demonstrate that the proposed model exhibits low relative bias and has

credible intervals close to the nominal coverage with respect to the underlying target smooth

function and spatial process. These results are consistent across all covariance functions, except

for the Matérn covariance, which did not perform well in terms of credible interval coverage

for the spatial component in non-symmetric two-dimensional functions. Additionally, the

proposed model demonstrates good predictive interval coverage across all covariance functions,

highlighting its robust predictive ability. In the presence of overdispersion, the Poisson model,

as expected, results in undercoverage, but the availability of the negative binomial model within

our proposed framework effectively addresses this issue.

The proposed model has been applied to the Meuse river data and COVID-19 vulnerability

data in Belgium, demonstrating its practical applicability. The analysis of COVID-19 data

reveals that areas with lower median incomes are more vulnerable to the virus, highlighting

the economic disparities exacerbated by the pandemic (Rozenfeld et al., 2020; Wachtler et al.,

2020). Additionally, areas with a higher proportion of pensioners who are at increased risk for

severe COVID-19 outcomes show higher vulnerability (Rozenfeld et al., 2020; Pijls et al., 2021).

Environmental factors, such as higher levels of black carbon, further contribute to increased

susceptibility, underscoring how air pollution contributes to health disparities (Rozenfeld et al.,

2020; Wu et al., 2020). Social demographics also play a significant role, for instance, areas

with higher proportions of females (Wu and Qian, 2022) and single parents (Sung, 2021) are



more vulnerable to the virus. Interestingly, while studies indicate that migrants are generally

at high risk for COVID-19 (Hayward et al., 2021), our findings suggest that areas with a high

proportion of non-Belgians are less vulnerable to the disease.

Our method shares similarity with the approach of Lindgren et al. (2011) in modeling the

spatial field based on a basis function approach. While the method of Lindgren et al. (2011)

uses triangulation to define basis functions with a sparse precision matrix for the random

field, our approach derives both the basis functions and the precision matrix directly from

the covariance function. Although the precision matrix in our method is not sparse, it still

achieves significant computational gains. Our method is also conceptually simpler and can

accommodate other covariance functions, such as circular and spherical covariance functions,

whereas the approach of Lindgren et al. (2011) is restricted to the Matérn covariance. On the

other hand, the method of Lindgren et al. (2011), through the use of the R-INLA software, can

accommodate a wider range of advanced models, such as those involving spatio-temporal data,

point processes, and multivariate responses (Krainski et al., 2018). While the INLA-SPDE

approach is well-established and widely used, we have demonstrated that our method similarly

produces accurate estimates and predictions with notable computational advantages. Therefore,

our approach serves as a complementary or an alternative framework to existing methods, such

as the one of Lindgren et al. (2011) and other low-rank methodologies in geostatistical modeling

for which very few include nonlinear effects of covariates.

A common limitation in low-rank spatial modeling approaches is selecting the number of basis

functions. However, this issue is not unique to our method or to other low-rank approaches, such

as those of Cressie and Johannesson (2008). For example, the SPDE approach of Lindgren et al.

(2011) requires mesh construction, which determines the number of basis functions. Similarly,

Vecchia approximations involve choosing the size of the conditioning set (i.e., the number

of neighbors), a choice that also affects both computational efficiency and model accuracy.

Nevertheless, we have shown in the simulation study that our proposed approach generally

yields accurate results. Moreover, Cressie et al. (2022) reviewed basis-function approaches in

spatial statistics and highlighted their significance in modeling nonstationary processes, with



illustrations in Gaussian, non-Gaussian, multivariate, and spatio-temporal settings.

Finally, an interesting extension of this work is to assume a binomial distribution for the count

response, considering the population size. This could enhance model performance in scenarios

such as disease prevalence modeling, where count data naturally follow a binomial distribution

due to the presence of binary outcomes (e.g. disease vs. no disease) within a given population

size.
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