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Abstract: Research on the spread of dengue fever is typically measured periodically,
producing longitudinally structured data. The varying coefficient model for longitudinal
data allows the coefficient to vary as a smooth function of time. The data in this study have
a longitudinal structure that offers a long-term presentation of dengue fever in Bandung
City, Indonesia, influenced by a set of covariates that vary over time and space. The
former are temperature, rainfall, and humidity, and the latter is residential location, such
as vector index and population density. Considering space- and time-varying effects, a
space-time varying coefficient model was proposed. The model parameters were estimated
by minimizing the P-splines quantile objective function. The results implemented on the
data show that the model and method satisfy the condition of the data, which means the
coefficients vary over space and time. Based on the three quantile levels, each subdistrict
in Bandung City has a different level of incidence rate category. Due to differences in
covariate effects both over time and over space, Bandung City also exhibits a heterogeneous
incidence rate pattern based on its three quantile levels. The result provides a quantile
pattern that can be used as a guide for high-performance dengue fever classification.

Keywords: dengue fever; longitudinal data; P-splines; quantile regression; space-time
varying coefficient models; Indonesia
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1. Introduction
Dengue is one of the world’s most serious vector-borne viral diseases, with a transmis-

sion pattern that shows significant variations in time and space [1] and which has recently
grown dramatically, according to the World Health Organization (WHO). Studies on the
spread of infectious diseases such as dengue fever (DF) are generally measured periodically.
For example, dengue fever data in Bandung City, provided by the Public Health Office of
Bandung City [2], have been observed spatially and measured monthly. The outbreaks
are affected by ecological, socio-economic, and environmental factors that vary over time
and space. The data need to be presented longitudinally to study individual changes
by observations of infections and covariates measured cross-sectionally and repeatedly
at different times. A linear mixed model is commonly used for longitudinal data, but it
requires many assumptions such as linearity, error distribution, and fixed coefficients [3].
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Studies of dengue fever disease have been published by many authors with examples
as follows: ref. [4] using a spatiotemporal clustering method; ref. [5] using Bayesian
spatial modeling; ref. [1] using machine-learning; ref. [6] using geographical information
systems (GIS) approach; ref. [7] et al. using spatiotemporal clustering; ref. [8] based on a
spatiotemporal generalized additive-Gaussian Markov random field framework.

Varying coefficient models (VCM) are generalizations of linear regression models that
allow the coefficient to vary as a smooth function of time [9]. Several researchers have
implemented this model with different estimation approaches including [10–12] in the
context of mean regression. Concerning quantile regression in varying coefficient models,
there are studies on longitudinal data including, for example, a B-splines approach to
estimate partially linear varying coefficient models [13], variable selection technique in this
context [14,15], and flexible P-splines estimation methods [16].

When observations are areas, VCM is applied as a spatially varying coefficient model.
Research applying this model in relation to spatial heterogeneity can be found in works
such as [17], which employs geographically weighted regression for the selection of band-
width, and [18], which conducts a comparison of geographically weighted regression and
eigenvector spatial filtering.

When the data have a longitudinal structure, in which the observations involve loca-
tion, the models need to involve both space and time and are called space-time varying
coefficient models (ST-VCM). In the context of mean regression, this model was imple-
mented by several authors such as [19–21]. In the context of quantile regression in ST-VCM,
there was a study on longitudinal data using P-splines estimation methods [22].

A study in 2018 reported that the annual dengue fever incidence per 100,000 popula-
tion increased from 0.05 in 1968 to 24 in 2018 [23]. According to The Indonesian Ministry of
Health, the highest level occurred in 2016, with the incidence reaching 78.85 per 100,000 pop-
ulation and 463 potentially infected districts in Indonesia, almost 90% of them reported to be
endemic [23]. Already more than 10 years ago, WHO noted that Indonesia was the country
with the highest dengue fever incidence in Southeast Asia [24]. The dengue risk fluctuates
in Indonesia and the numbers of case incidence and infected regions are increasing.

Bandung, the capital city of West Java, has one of the highest incident rates. The
increasing number of people with high mobility causes health problems. According to
the Public Health Office of Bandung City [23], the incidence rate in the city of 113 per
100,000 population was more than 50% of the rate of the previous year. The three sub-
districts with the most dengue cases at that time were Cibeunying Kidul (222 cases),
Coblong (187 cases), and Batununggal (162 cases).

The variability of the incidence rate implies the need for classification. Hence, in this
study, the incidence rate is classified by groups, so that the position of a region at a certain
time based on the incidence rate can be known. These classifications are important for the
determination of treatment priority. In this study, the observation is a spatial location, and
the effect of the covariates varies over time and location. A robust, flexible technique called
quantile regression in space-time VCM is proposed here. The incidence rate is classified into
four groups, such as low, moderate, high, and very high with regard to dengue incidence.
As their effects cannot be specified parametrically, a flexible technique based on P-splines
quantile objective functions was implemented due to the low sensitivity to the number of
knots to overcome the overfitting problem.

The data structure in this study indicates the importance of using a space-time varying
coefficient model, to capture the variation of coefficients in spatial and temporal aspects.
This study chose to use quantile regression rather than mean regression. The selection
of this method is based on the consideration that the incidence rate of dengue fever is
more appropriately analyzed by dividing it up based on quantiles, where low quantiles
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reflect a low level of risk. In addition, in areas with asymmetric data distribution, a
more robust approach is needed. The results of data exploration indicate the need for
a clear determination of the effect of covariates on the response variable. To estimate
the relationship flexibly, the P-spline approach is used. P-spline was chosen because of
its ability to avoid overfitting, especially because it is not too sensitive to the number of
knots used. This model incorporates coefficients that vary independently over space and
time, without including any interaction effects. The primary emphasis of this paper is on
applying the ST-VCM with separable spatial and temporal variations in the coefficients.

The rest of the paper is organized as follows. Section 2 presents the space-time varying
coefficient model including the procedure of estimation. The application of the method for
the dengue fever data in Bandung City is presented in Section 3. Furthermore, in Section 4
the results are discussed. The conclusions of the paper are given in Section 5.

2. Materials and Methods
This section presents the space-time varying coefficient models. In general, not all

covariates need to vary in both time and space. The modeling procedure allows for
various predictor forms, i.e., scalar, time-varying, spatially varying, or space-time varying.
Although it may be possible that the times and spaces need to be combined in the model, in
this setting the model was constrained where the spaces and times are formed separately.
In addition, the model did not consider spatial dependency due to the complexity in
parameter estimation. Spatial effects are determined by different coefficients than for
time effects.

The following formulations represent the space-time varying coefficient model:

Y
(
si, tj

)
= ∑P

p= 0 βp
(
tj
)
X(p)(tj

)
+ ∑Q

q=1

∼
βq(si)Z(q)(si) + ε

(
si, tj

)
, (1)

where Y(si, tj) is the response at time t and space s at i and j, X(t) and Z(s) are variables
that vary over time and space, respectively, si is the ith location unit where i = 1, 2, . . . , n, tj

is the jth time unit where j = 1, 2, . . . , Ni, βp
(
tj
)

is the pth regression coefficient at time tj,
∼
βq(si) is the qth regression coefficient at location si, P the number of variables associated
with time, and Q the number of variables associated with location. The error term ε

(
si, tj

)
is a homoscedastic error. The τ-th quantile of ε

(
si, tj

)
is equal to zero and independent of X

and Z.
Quantile regression, proposed by [25], is a robust technique with a conditional quantile

function of the response Y
(
si, tj

)
given covariates X

(
tj
)

and Z(si) of the model (1). It is
expressed by the following formula:

qτ

(
Y
(
si, tj

)∣∣X(tj
)
, Z(si)

)
= ∑P

p=0 βτ
p
(
tj
)
X(p)(tj

)
+ ∑Q

q=1

∼
β

τ

q (si)Z(q)(si), (2)

where τ-th level of quantile (0 < τ < 1), β0
(
tj
)

is the regression coefficient of X(0)(tj
)
= 1

for all j = 1, 2, . . . , Ni. The robust quantile regression produces a non-differentiable objective
function, which causes the model (2) to become more complex. In addition to that, the esti-
mation procedure of the space-time varying coefficient model involves high-dimensional
matrices [26]. This requires computational speed and stability, which is critical for large
spatio-temporal data sets. The coefficient estimation of the model can be approximated by
a linear combination of the basis B-splines.
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B-splines in [26] was defined as piecewise polynomial functions with local support
with respect to a given degree and domain of partition. The B-splines basis functions of
degree v are defined recursively using the following formula:

Bj(x; v) =
x − tj

tj+v−1 − tj
Bj(x; v − 1) +

(
1 −

x − tj+1

tj+v − tj+1
Bj+1(x; v − 1)

)
, (3)

where

Bj(x; 0) =

{
1 i f tj ≤ x ≤ tj+1

0 otherwise.
, (4)

The normalized B-splines are reached when ∑v+u
j=1 Bj(x; v) = 1 for every x. The linear

combination of basis B-splines of Equation (2) are as follows:

βp
(
tj
)
≈ ∑mp

l=1 αpl Bpl
(
tj; vl

)
, (5)

∼
βq(si) ≈ ∑

∼
mq
∼
l =1

∼
α

q
∼
l
B

q
∼
l

(
si;

∼
v∼

l

)
, (6)

where αl and
∼
α∼

l
are coefficients of the B-splines basis Bl(.; .) and B∼

l
(.; .), respectively.

The objective function of (1) is the following goodness of fit quantity:

n

∑
i=1

1
Ni

Ni

∑
j=1

ρτ

Y
(

si; tj

)
−

P

∑
p=0

mp

∑
l=1

αpl Bpl

(
tj; vl

)
X(p)

(
tj

)
−

Q

∑
q=1

∼
mq

∑
∼
l=1

∼
α

q
∼
l
B

q
∼
l

(
si;

∼
v∼

l

)
Z(q)(si)

 (7)

where ρ(.) is a check function analogue to the squared loss function [27] with the
following expression:

ρτ(z) =

{
τz i f z > 0

−(1 − τ)z otherwise.
(8)

Large numbers of B-splines basis functions can lead to overfitting. To overcome this
situation, ref. [28] proposed the combination of B-splines and penalties on the coefficients
of the B-splines objective function which is called P-splines. Penalties of space and time
variables were added into B-splines objective functions (7), then the quantity to evaluate is
the following:

S
(∼

α
)

=
n
∑

i=1

1
Ni

Ni
∑

j=1
ρτ

{
Y
(
si; tj

)
−

P
∑

p=0

mp

∑
l=1

αpl Bpl
(
tj; vl

)
X(p)(tj

)
−

Q
∑

q=1

∼
mq

∑
∼
l =1

∼
α

q
∼
l
B

q
∼
l

(
si;

∼
v∼

l

)
Z(q)(si)

+
P
∑

p=0

mp

∑
l= dp+1

λp

∣∣∣∆dp αpl

∣∣∣γ

+
Q
∑

q=0

∼
mq

∑
∼
l =

∼
dq+1

∼
λq

∣∣∣∣∣∣∼∆
∼
dq∼

α
q
∼
l

∣∣∣∣∣∣
∼
γ

(9)

Using matrix notation, (9) can be rewritten as follows:

S
(∼

α
)
=

n
∑

i=1

1
Ni

Ni
∑

j=1
ρτ

(
Y
(
si; tj

)
− UT

ijα −
∼
U

T

ij
∼
α

)
−

P
∑

p=0
λp

∥∥∥D
dp
p αp

∥∥∥γ

γ

−
Q
∑

q=0

∼
λq

∥∥∥∥∥∥∼D
∼
dq

q
∼
αq

∥∥∥∥∥∥
γ

γ

(10)
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where UT
ij = XT

ijBp
(
tj
)
,
∼
U

T

ij = ZT
ijBq(si), XT

ij =
(

X(0)
ij , . . . , X(P)

ij

)
, ZT

ij =
(

Z(0)
ij , . . . , Z(Q)

ij

)
,∥∥αp

∥∥γ
γ

= ∑
mp
l=1

∣∣∣αpl

∣∣∣γ,
∥∥∥∼αq

∥∥∥γ

γ
= ∑

∼
mq
∼
l =1

∣∣∣∣∼αq
∼
l

∣∣∣∣γ, ∆
dp
p αpj = ∑

dp
t=0 (−1)t

(
dp

t

)
αp(j−t), and

∼
∆

∼
dq

q
∼
αqj = ∑

∼
dq
t=0 (−1)t

(∼
dq

t

)
∼
αq(j−t). D

dp
p and D

∼
dq
q is matrix representation of differencing

operators ∆dp and
∼
∆

∼
dq

.
Equation (10) is the quantile objective function of the model (2) with the B-splines

approach. This study focused on a special case where γ = 1 and hence the objective
function (10) has an L1—penalty. When using check function ρτ (8) in (10), estimation of αp

and α̂q can be obtained by minimizing the following expression:

min
all uij, vij, αp ,

∼
αq

τ
n

∑
i=1

Ni

∑
j=1

uij + (1 − τ)
n

∑
i=1

Ni

∑
j=1

vij −
P

∑
p=0

λp

∣∣∣Ddp
p αp

∣∣∣− Q

∑
q=0

∼
λq

∣∣∣∣∣∣∼D
∼
dq

q
∼
αq

∣∣∣∣∣∣
 (11)

Subject to uij − vij = Yij/Ni − UT
ijα/Ni −

∼
U

T

ij
∼
α/Ni, uij ≥ 0, vij ≥ 0, i = 1, 2, . . ., n,

j = 1, 2, . . ., Ni, where uij and vij are the positive and negative parts of weighted regression
residuals. The above LP-Problem is called primal formulation which can be reformed into
a dual formulation.

In general, space and time coefficients in (2) are approximated by B-spline functions (5)
and (6). Then, the coefficient of B-splines has the estimated minimizing objective function
(10). The objective function (10) is a non-differentiable that cannot be optimized by ordinary
methods. As proposed by [16], the quantile loss function with L1—penalty is translated
into a linear programming (LP) problem such that some techniques on this method can
be implemented. Ref. [29] shows that the Frisch–Newton interior point algorithm in the
quantile LP Problem is efficient even for a very large problem, particularly when dealing
with sparse matrices.

The matrix notation of Equation (11) produces a high-dimensional matrix. This results
in complexity in the estimation computation. Thus, software is needed to support it. R
is a flexible open-source software that allows a function to be created for the estimation
procedure with a high-dimensional matrix.

P-splines apply penalties to control the smoothness of the fitted function. Minimizing
quantile objective function (11) involves smoothing parameters λ0, . . . , λp for space effects

and
∼
λ0, . . . ,

∼
λp for time effects. Selection of smoothing parameters is an important step to

obtain a good performance in parameter estimations.
In the quantile regression context, all smoothing parameters for locations are first

assumed to be equal to λ, λ0 = · · · = λp = λ and also for the times,
∼
λ0 = · · · =

∼
λp =

∼
λ.

There are several alternatives for selecting the smoothing parameters. Refs. [30,31] proposed
Bayesian information criterion (BIC), and Schwarz information criterion (SIC) was proposed
by [32]. Several researchers have implemented SIC in the context of multiple quantile
regression including [33,34].

Modifying SIC in [28] in the context of quantile regression for space-time varying
coefficient models can be written as follows:

SIC
(

λ,
∼
λ

)
= log

(
1
n∑n

i=1
1
Ni

∑Ni
j=1 ρτ

(
Yij − q̂τ

(
Yij
∣∣Xij, tij

)))
+

log(N)

2N
p

λ,
∼
λ

, (12)

where N = ∑n
i=1 Ni and p

λ,
∼
λ

is the effective degree of freedom of the fitted model. Ref. [35]

mentioned that p
λ,

∼
λ

is similar to computing the number of zero residuals for the fitted
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model. Therefore, p
λ,

∼
λ
=

∣∣∣∣ελ,
∼
λ

∣∣∣∣ where ε
λ,

∼
λ

is called the elbow set which is expressed

as follows:
ε

λ,
∼
λ
=
{
(i, j) : Yij − q̂τ

(
Yij

∣∣∣Xij,tij

)
= 0

}
. (13)

The optimal values of λ and
∼
λ can be obtained by minimizing SIC

(
λ,

∼
λ

)
.

Based on [33], evaluation of the performance of the quantile estimator can be done
at all quantile levels, and then the median of the data is used because it is the point that
divides the data equally. The performance evaluation of the quantile estimator is obtained
by using the approximate integrated squared error (AISE) as follows:

AISE(q̂0.05(.)) =
n

∑
i=1

1
Ni

Ni

∑
j=1

(
q̂0.05

(
si, tj

)
− Y

(
si, tj

))2 (14)

where q̂0.05
(
si, tj

)
is the 0.50 quantile estimator at location si and time tj.

For analysis purposes, the data must be prepared in a long format where each row is a
single time point for a subject. The covariate consists of two parts, namely time-varying
covariates and space-varying covariates, and the outcome variable is typically measured
repeatedly over time. R software version 4.3 is a good choice for spatio-temporal analysis
because it has specialized libraries called packages, statistical modeling power, visualization
tools, and an active research community. When modeling, tracking the spread of a disease,
such as dengue fever data, R provides a comprehensive open-source environment designed
specifically for the task. Based on [36], the procedure for the estimation of the space-
time varying coefficient model was made. There is already a package called “QRegVCM”
developed by [36] for estimation of the coefficient in VCM, but the package only works
for time VCM. Several functions in this package are modified by involving a space-time
varying coefficient model. Additional packages that need to be attached are “lattice”,
“latticeExtra”, “sf”, “ggplot2”, and “raster” for plotting and mapping the results.

3. Results
The proposed method was applied to the monthly incidence rate of dengue fever

for 30 sub-districts in Bandung City from 2014 to 2018. Dengue epidemics are impacted
by climate, population density, and environmental factors that also change over time
and location. Dengue transmission exhibits considerable temporal and spatial variability.
Disease-causing factors include the following: climate (such as rainfall), humidity, tempera-
ture [37], and high population density [38]. A major factor impacting dengue’s spatial and
temporal spread is climate variability, which has made dengue more prevalent recently.
Temperature and rainfall may have a direct or indirect impact on vector development,
reproduction, and survival, which in turn affects the spatial and temporal abundance and
spread of dengue disease [37]. Rainfall causes containers to fill with water, which can
serve as a breeding environment for dengue disease vectors, while humidity supports
Aedes fecundity. Temperature increases affect both virus development and vector survival,
which increases the fraction of infectious vectors, mosquito dissemination, and bite rates.
Additionally, transmission is considerably more efficient than it would be otherwise when
the time needed for viral production shortens, as it does at higher temperatures and humid-
ity [37]. In addition, the variation of incidence rate is strongly influenced by environmental
factors such as larva-free and healthy houses (see, for example [5,24,39,40]).

Based on what has been previously discussed, the incidence rate is a response variable
and risk factors are covariates. The time covariates are temperature, rainfall, and humidity,
whereas healthy house, larva-free index, and population density are spatial covariates.
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To have four equal ranges of incidence rate classifications, three levels of quantiles, 0.25,
0.50, and 0.75 are implemented. When the objective function consists of a penalty term, as
suggested by [41], the number of knots needs to be fixed and the smoothing parameters
optimized. During the analysis, multiple combinations of knot and degree values were
tested, and the optimal combination identified was as follows: for the space variables the
number of knots were fixed equal to 2 with quadratic degree of splines, while for the time
variables the knots were set equal to 3 with the same degree of splines as the space variables.
The grid of smoothing parameters was set from 1 to 2 with increment 0.2. The results are
presented in Figure 1.

Figure 1. Quantile plot over months of dengue fever in Bandung City Three quantile levels (orange
for 0.25, green for 0.5, and blue for 0.75). The gray dots are values of the data.

Figure 1 shows a quantile plot of dengue fever data for every district in Bandung
City. Three quantiles are shown in different colors: orange for quantile 0.25, green for
quantile 0.50, and blue for quantile 0.75. There is no crossing issue on the quartile curves.
In Sukasari, Cinambo, and Mandalajati sub-districts from October to December, the 0.25
and 0.50 quantile levels look like a coincidence, but the quantile value for the 0.50 quantile
level is actually still higher than the 0.25 quantile level.

As can be seen in Figure 1, the quantile estimator patterns are quite similar from
one area to another area. The curves generally increase up to February and are relatively
constant until June. After June all curves decrease slowly until December. This means that
in general, the incidence rate of dengue fever increases at the beginning of the year and
then decreases until the end of the year. It also means that the incidence of dengue fever is
high between February and June. In addition, there are variations in the distance between
the quantile curves of every district. The highest risk occurred in the Rancasari sub-district
while the lowest risk was in the Mandalajati sub-district.



Mathematics 2025, 13, 1995 8 of 13

Based on the spatial location, the results are displayed through a quantile map. The
map shows quantile values based on color gradations. Smaller quantile values are shown
by the lighter color (yellow), and the darker the color (dark green), the higher are the
quantile values.

Figure 2 presents three representative spatial maps of quantiles of dengue fever data
in Bandung City for January, June, and December. In each map, three quantile levels are
presented: (a) for quantile 0.25, (b) for quantile 0.50, and (c) for quantile 0.75. In general, the
quantile values increase from January to June. From June to December the values decline
clearly for each quantile level. The highest fluctuations are in the Rancasari sub-district.
This means the widest variability of the incidence rates is shown in Rancasari and the
smallest variability in Mandalajati.

 

 

Figure 2. Quantile maps during January, June, and December with three levels.

Figure 3 depicts coefficient plots of time variables for three quantile levels. Plots of
coefficient estimates (β̂1, β̂2, β̂3) for quantile 0.25 are shown in (a)–(c), for quantile 0.50
in (d)–(f), and for quantile 0.75 in (g)–(i). In general, all estimates of slope 1 (a), (d), and
(g) vary over time and decrease monotonically with different characteristics. The slope 2
estimators decrease drastically from January to July, then tend to be flat or increase slightly
until December. In addition to that, estimates of slope 3 (c), (f), (i) are monotonically
increased with different patterns.
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Figure 3. Time coefficients plot for quantile level 25 (a)–(c), 50 (d)–(f), and 75 (g)–(i) (orange for β1,
green for β2, and blue for β3).

Figure 3a–c depicts coefficient plots of time variables for quantile level 25. In general,
all coefficients vary over time and decrease monotonically with similar characteristics. This
means that temperature, rainfall, and humidity have a high effect at the beginning of the
year and then decrease slowly until the end of the year.

Coefficient plots of time variables for quantile level 50 are shown in Figure 3d–f. The
time-varying coefficient of β1 decreases monotonically but the coefficient β2 increases
gently in October after a monotonical decrease. This means that temperature and rainfall
have a high effect at the beginning of the year and then decrease slowly until December.
In different situations for β3, the coefficient increases from the beginning until May, then
decreases gently until December. This means that the effect of humidity increases until
May and then decreases slowly until the end of the year.

Figure 3g–i shows coefficient plots of time variables for quantile level 75. The time-
varying coefficient of β1 has a different performance from other coefficients. It increases to
April, then decreases drastically to September, then increases again until December. This
means that the effect of temperature is high from May to June, and very low from September
to October. Coefficient β2 increases gently in September after a monotonic decrease. But the
time coefficient β3 increases from the beginning until March, then decreases until December.
Something similar happens with the humidity effect which is high from May to June, but
lowest in November.
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Figure 4 shows maps of the spacing coefficient for three quantile levels. Effects of
spatial coefficients are generally random because there is no spatial dependency. However,
in general, they have similar patterns. The lighter color shows in the eastern and western
areas but the darkest shows in the southern area. This means the effect of healthy house,
larva-free index, and population density in all quantile levels is similar; the lower effect
shows in the eastern and western area and the higher effect in the southern area.

Figure 4. Coefficient maps of space variable: (a)
∼
β1 of quantile 25, (b)

∼
β2 of quantile 25, (c)

∼
β3 of

quantile 25, (d)
∼
β1 of quantile 50, (e)

∼
β2 of quantile 50, (f)

∼
β3 of quantile 50, (g)

∼
β1 of quantile 75,

(h)
∼
β2 of quantile 75, and (i)

∼
β3 of quantile 75.

To evaluate the model, AISE is used, as previously mentioned. The AISE value of the
model is 0.0116. The value of this result is relatively small, which means the model shows
good performance.

4. Discussion
The incidence rate of dengue fever data in Bandung City has longitudinal structures.

The covariates of the data vary over time and spatial location. The time-varying covariates
are temperature, rainfall, and humidity, whereas healthy house, larva free-index, and
population density vary over spatial location.

According to the result, although on quantile curves there is no intersection at some
sub-districts, there are potential crossing issues. The quantile estimates of dengue fever’s
incidence rate have similar patterns. In the beginning, low incidence rates for the year
appear, from the middle to the end of the year lower, and the highest in the middle of the
year. Moreover, the highest range between quantiles occurs in Rancasari. It shows the wide
variability of the incidence rates over time in that area. On the other hand, Mandalajati
shows the smallest incidence rate variability compared to the others. This corresponds to
the variation of incident rates over time.

The time-varying effect of temperature monotonically decreases from January until
December for quantiles 25 and 50, but a different effect occurs at quantile 75 which increases
to April, then decreases until September, and increases until December. The effect of rainfall
monotonically decreases from January until December for quantiles 25 and 50, but a
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different effect occurs at quantile 75 which decreases until October and increases until
December. The effect of humidity monotonically decreases from January until December
for quantile 25 and for quantile 50 increases from May and then decreases until December,
but for quantile 75 there is a small increase to April then it monotonically decreases
until December.

Based on the coefficient map, the spatial effects for the healthy house, larva-free index,
and population density are not significantly dependent. The effects are generally random
and have a similar pattern; the lower effects show in the eastern and western area but the
highest in the southern area.

5. Conclusions
The dengue fever data in Bandung City have longitudinal structures. In addition to

that, some covariates vary over time, while others vary over spatial location. The space-
time varying coefficient model was used for the data. According to the results, it can be
concluded that the effects of temperature, rainfall, and humidity vary for each quantile
level. In general, the effects are high at the beginning of the year and then monotonically
decrease until the end of the year at quantile 25. Different situations occur for temperature
and humidity that have fluctuation effects at quantiles 50 and 75. However, the effects
of healthy house, larva-free index, and population density have similar patterns for each
quantile level even though they vary over time.

Based on the discussions, there are potential issues of crossing between quantile
levels. This situation should not occur between quantile levels, as it causes the estimator to
become inconsistent. Thus, this situation must be addressed so that it does not occur in
the quantile estimator. The VCM with the non-crossing issue was developed by [35], so
accommodating this issue on the space-time varying coefficient model is something that
needs to be considered for future research.
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