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Background. Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) are 2 of the most common bacterial sexually 
transmitted infections. The prevalence of azithromycin resistance in NG (AR-NG) has increased from 1% to 47.9% in the past 
10 years among men who have sex with men (MSM) in Belgium. Dual therapy with ceftriaxone and azithromycin was until 
recently the standard-of-care in Belgium. Our objective was to reproduce the azithromycin-resistance epidemic among MSM in 
Belgium using dual therapy and to evaluate the counterfactual scenario of using ceftriaxone monotherapy on the emergence of 
AR-NG.

Methods. We developed a network-based model for CT and NG transmission among MSM in Belgium to estimate the 
prevalence of CT, NG, and AR-NG in the population. The model simulates transmission of NG among 3 anatomical sites in a 
population of 10 000 MSM over 10 years. The effect of different treatment strategies was evaluated in terms of CT, NG, and 
AR-NG prevalence as well as antibiotic consumption.

Results. Our model captured adequately well the observed azithromycin-resistance epidemic over a 10-year period in Belgium, 
with AR-NG increasing from 0% to 44%. Antibiotic consumption, and prevalences of NG and AR-NG decreased when ceftriaxone 
monotherapy was used against NG, while CT prevalence increased, compared to dual therapy. In the ceftriaxone monotherapy 
scenario, the prevalence of AR-NG was approximately half of that in the dual-therapy scenario (23%).

Conclusions. Switching from dual to monotherapy was associated with a halving of the prevalence of AR-NG. These results 
provide further evidence to favor mono- over dual therapy for the treatment of gonorrhea.
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Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) 
are 2 bacterial sexually transmitted infections (STIs) with an 
increasing incidence in many European countries [1, 2] and 
elsewhere [3, 4]. A further concern is that NG has developed 
resistance to all classes of antibiotics it has been exposed to, 
including the currently recommended therapies [5–7]. 
Almost half of the reported gonorrhea cases in European 

countries [1] (48%) and the United States [3] (47%) are attrib-
uted to men who have sex with men (MSM). Screening has 
been one of the interventions employed by many countries 
to tackle this issue [8], with a mindset of “search and destroy”: 
the idea that detecting and treating more infections would re-
sult in lower incidence, lower antibiotic use, and ultimately, 
less antimicrobial resistance. Several national and interna-
tional guidelines recommend at least annual screening for 
gonorrhea and chlamydia for sexually active MSM, and every 
3 to 6 months in those at highest risk [8–14]. Currently, the 
European International Union Against STIs recommends 
dual treatment with a combination of ceftriaxone (a third- 
generation cephalosporin) and azithromycin (a macrolide an-
tibiotic) as the recommended treatment for gonorrhea, with 
ceftriaxone monotherapy as an alternative [15]. The rationale 
for dual therapy was that it could prevent the emergence of 
ceftriaxone resistance in NG. There is, however, little evidence 
to back this up, and a number of countries have recently 
changed their treatment guidelines to ceftriaxone monother-
apy [16–19]. One of the reasons for doing this was the concern 
that the azithromycin component of dual therapy was 

D
ow

nloaded from
 https://academ

ic.oup.com
/ofid/article/12/6/ofaf320/8155338 by H

asselt U
niversity user on 25 July 2025



contributing to a syndemic of macrolide resistance in NG and 
other species [19]. For example, a study in Belgium found that 
the combination of screening for NG/CT and dual therapy re-
sulted in a macrolide exposure up to 7-fold higher than resis-
tance inducing thresholds in MSM taking preexposure 
prophylaxis (PrEP) [20]. The prevalence of gonococcal azi-
thromycin resistance in MSM in Belgium has increased 
from 1% to 47.9% over the past 9 years during the time that 
dual therapy was used [21].

Furthermore, a recent study found that NG isolates from the 
only country in Europe that never switched from ceftriaxone 
monotherapy to dual therapy (the Netherlands) did not have 
greater increases in ceftriaxone minimum inhibitory concen-
trations (MICs) compared to countries that switched to dual 
therapy [22]. Rather, monotherapy in the Netherlands was as-
sociated with lower gonococcal azithromycin MICs compared 
to countries using dual therapy [22].

Similarly, a small randomized controlled trial found that 
dual therapy was associated with an increase in macrolide 
MICs in commensal Neisseria (CN) and streptococcal species 
[23]. It is unlikely that an adequately powered randomized con-
trolled trial can be conducted that is able to compare the risks 
and benefits of mono- and dual therapy on antimicrobial resis-
tance (AMR) in other bacterial species such as NG. In the ab-
sence of such a study, it would be useful to be able to use 
mathematical models to compare the effects of mono- and 
dual therapy on the emergence of macrolide resistance in NG.

Many modeling studies have attempted to describe the 
transmission of CT and NG among MSM [24–57]. The ma-
jority of the published models from Europe are compart-
mental models, with only a handful of models using 
individual-based or network models [24, 37, 45, 51, 56, 
58]. Network models allow for a more complex and realistic 
structure of the contact network and behavioral characteris-
tics (such as risk-taking, condom use, etc.), and are able to 
account for all 3 anatomical sites (oropharynx, urethra, 
and rectum) for transmission of CT and NG. A further lim-
itation of previous modelling studies is that none of them 
have considered the commensal Neisseria species in the 
emergence of AMR. Because these species are universally 
present in the oropharynx, they are particularly susceptible 
to bystander selection of AMR (AMR induced by the use of an-
timicrobials for other indications) [59]. They can then pass on 
the resistance conferring DNA to NG via transformation when 
NG coinfects the oropharynx [60]. This mechanism has been 
shown to play a crucial role in the emergence of macrolide 
and cephalosporin resistance in NG [60, 61]. In this paper, we 
include the emergence of macrolide resistance in commensal 
Neisseria spp. and subsequent transformation into N gonor-
rhoeae with the aim of replicating the gonococcal azithromycin- 
resistance epidemic in the past decade among MSM in Belgium. 

We compare this with the counterfactual scenario of ceftriaxone 
monotherapy for NG.

METHODS

Overview

We developed a network model to describe the dynamics of CT 
and NG transmission and the emergence of azithromycin- 
resistance among MSM in Belgium. Separable Temporal 
Exponential-family Random Graph Models [62–64] were 
used to fit and simulate the structure of the sexual partnership 
network. The model was developed as an extension of our pre-
vious modeling work [56].

The parameters used to construct the network and inform 
the processes in the model come from a previous modeling pa-
per [65], which used data from the Belgian-based participants 
of the European MSM Internet Survey 2017 [66]. 
Additionally, primary data from the PreGo study, a single- 
center, randomized crossover trial in Belgium [67], was used 
for parameters on CT and NG prevalence. Primary data from 
the Gonoscreen study [68], a randomized clinical trial to com-
pare the effect of screening versus nonscreening on the inci-
dence of CT and NG in MSM taking PrEP, was used for 
information on antibiotic use. Data on screening rates were es-
timated using the Sciensano 2021 report on the epidemiology 
of STIs in Belgium [69].

The individuals in the population were categorized into high 
and low activity, depending on their sexual activity and risk- 
taking behaviors. We estimated that 27.90% (26.23–29.64; 
95% confidence interval [CI]) of the Belgian MSM population 
classified as high-activity MSM (HA-MSM) [65], which is sim-
ilar to previously published studies from Belgium and Europe 
[70–72]. The remaining population in the network was classi-
fied as low-activity MSM (LA-MSM).

The model consisted of 3 parallel interacting networks rep-
resenting steady, persistent casual, and 1-off (1-night stand) 
partnerships. Each individual in the network had 3 anatomical 
sites where CT and NG transmission could occur: pharynx, 
urethra, and rectum. All definitions, processes, and parameters 
are described in detail in the Online Supplement.

N Gonorrhoeae and C Trachomatis Transmission

At each time step, the number of sexual acts between 2 partners 
was calculated. Each sex act could be a combination of 6 sex 
types: oral, oro-anal, and anal sex, each of which could be inser-
tive or receptive. Condom use was implemented during anal 
sex only, as the use of condoms during oral or oro-anal sex is 
uncommon [73–75].

Directional transmission of NG and CT occurred stochasti-
cally given the active partnerships, the number of sex acts with-
in a pair, the sex type combinations, the sites involved within 
each act, and their respective NG/CT infection status, at each 
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time point. The per-act transmission probabilities (same for 
both groups) depended only on the sites involved, the sex 
role (insertive/receptive) of each partner, recent consumption 
of antibiotics, and condom use, which are different for CT 
and NG.

Appearance of symptoms was assumed to happen on the 
same time step; infected nodes were considered infectious on 
the next time step. Transmission and symptom probabilities 
were unavailable in the source data and were calibrated based 
on information from a literature review (Online Supplement).

Screening, Treatment, and Recovery

At each time step, individuals could be randomly selected 
among all eligible individuals to be screened for STIs. 
Eligibility for screening was determined by 2 criteria. Based 
on estimates from the European MSM Internet Survey 2017 
data, 31.03% and 9.05% of the LR- and HR-MSM were assigned 
as persons who never screen for STIs and were subsequently re-
moved from the pool of eligible individuals to be selected for 
screening. All remaining individuals would be deemed eligible 
for screening if they had not been selected for screening within 
the specified screening interval (3 months for HA- and 12 
months for LA-MSM). The selection depended on the propor-
tion of the group we assumed would attend a screening visit 
and the specified interval between 2 screening visits, which 
was different for each group (360 and 90 days for LA- and 
HA-MSM, respectively). We estimated that 36.3% of 
LA-MSM and 44.4% of HA-MSM screen at least annually for 
STIs [70, 76]. The proportions of anatomical sites tested during 
screening visits were estimated [65]. A diagnosis of CT/NG 
would be confirmed on a positive STI test result, due to pres-
ence of symptoms, or due to an STI screening visit. On diagno-
sis, all confirmed CT/NG cases would receive treatment, dual 
therapy with ceftriaxone and azithromycin (for gonorrhea), 
and azithromycin or doxycycline (for chlamydia), according 
to the previous Belgian treatment guidelines [77].

Infected, but untreated individuals would return to a suscep-
tible state through natural clearance, which was modeled as a 
stochastic function with different recovery rates for each ana-
tomical site and infection. Expected times for natural clearance 
were not available in the source data and were calibrated. The 
expected time to recovery of treated individuals was estimated 
to be 1 day [76, 78] for either infection, and were equal across all 
3 anatomical sites.

Azithromycin Resistance Emergence and Commensal Neisseria Species

The role of commensal Neisseria spp. as a reservoir of antimi-
crobial resistance genes for pathogenic species, such as NG, is 
well documented [79–86]. In the model, we included the pres-
ence of CN in the oropharynx of the individuals in our network. 
We considered CN a single category, without differentiation 
among the different species. The ability to develop 

azithromycin resistance in CN and NG was represented by 
the MIC level, which was modeled as a categorical variable 
(0, 1: susceptible, 2, 3, 4: resistant). The MIC of the CN would 
increase by 1 level (with a fixed 100% probability) whenever in-
dividuals were exposed to azithromycin and would decrease by 
1 level using a time-dependent decay probability based on time 
since last exposure to azithromycin.

Azithromycin resistance (AR) in NG could occur through 2 
distinct and independent ways. Spontaneous emergence of 
AR-NG could occur to NG-infected individuals who were ex-
posed to azithromycin, stochastically through a single 
Bernoulli draw with a fixed probability, at the time of treatment 
administration. This probability of spontaneous emergence of 
AR was invariant across NG infections at the three anatomical 
sites. Once spontaneous AR occurred, the MIC of the AR-NG 
was randomly allocated to 1 of the 3 resistance MIC levels.

The second option for AR emergence would be through hor-
izontal gene transfer (HGT). In individuals who were infected 
with azithromycin-susceptible NG in the pharynx, HGT of 
macrolide resistance from the CN to the NG could occur 
through a single Bernoulli draw with a fixed probability at 
the time of the acquisition of the pharyngeal NG. NG would 
then take the resistance MIC level of the donor CN. Both prob-
abilities for spontaneous resistance emergence and for HGT 
were not available in the literature and were calibrated.

Azithromycin resistant cases were assumed to be susceptible 
to dual therapy with a probability of 99% [87]. The remaining 
AR-NG–infected anatomical sites would switch to the unin-
fected state through natural clearance. In case of exposure 
only to azithromycin (eg, due to treatment given for a CT infec-
tion), the MIC score of the AR-NG would decrease the efficacy 
probability by 25%, 50%, and 100% for a MIC of 2, 3, and 4 re-
spectively (assumed values).

Individuals who were exposed to antibiotic treatment would 
be partly “protected” from reinfection with CT until the elim-
ination time of azithromycin (15 days [88, 89]) or doxycycline 
(4 days [90]), and with azithromycin-susceptible NG until the 
elimination time of azithromycin (15 days [88, 89]) or ceftriax-
one (2 days [91]) from the human body. In those cases, the 
transmission probabilities would be decreased by 50% (as-
sumed). Reinfection with an AR-NG could occur not earlier 
than 2 days after dual treatment, due to the presence of ceftri-
axone in the body.

Simulation and Calibration

The model simulated a population of 10 000 MSM in Belgium 
over a period of 10 years in daily time steps. Parameters for 
transmission probabilities, symptomatic infection, duration 
until natural clearance, probability of abstinence in case of in-
fection, and probabilities for spontaneous azithromycin resis-
tance emergence and horizontal gene transfer were not 
available in the data sources. Approximate Bayesian 
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computation with sequential Monte Carlo sampling [92–95] 
was used to estimate the parameters that were not available. 
The expected mean CT and NG prevalence in the general 
MSM population (both groups pooled) at the end of 10 years 
was used as a target statistic (7% and 0.6% for pharyngeal, 
1.5% and 2.9% for urethral, and 9.3% and 8.5% for rectal NG 
and CT, respectively) [67]. The annual prevalence of azithro-
mycin resistance in NG in the Belgian antimicrobial resistance 
surveillance reports [21] was also used as a target statistic.

We examined four scenarios (of 100 simulations each) with 
different treatment options: (1) azithromycin and ceftriaxone 
(dual therapy) for NG and azithromycin or doxycycline for 
CT, (2) ceftriaxone monotherapy for NG and azithromycin 
or doxycycline for CT, (3) dual-therapy for NG and doxycy-
cline for CT, and (4) ceftriaxone monotherapy for NG, doxycy-
cline for CT.

Scenarios 1 and 2 compare mono- and dual therapy in the 
setting when both azithromycin and doxycycline were used 
for the treatment of CT, as was the case in Belgium and 
much of Europe until recently. Scenarios 3 and 4 were chosen 
to compare mono- and dual therapy in the setting where CT is 
treated with doxycycline, as recommended in the new 
European International Union Against STIs guidelines for 
CT [96]. Results are expressed as means and 95% CIs. 
Proportions among scenarios were compared using the 
chi-squared test.

RESULTS

Scenario 1: In the scenario with dual therapy, we were able to 
reproduce the observed prevalence of NG and CT in Belgium as 
well as azithromycin resistance in NG in Belgium during 2014– 
2023 (Figure 1). The 95% CI captures the vast majority of the 
observed points and follows the general trend of the observed 
prevalence. Horizontal gene transfer (shown as the red line in 
Figure 1), was responsible for the majority of AR-NG cases 
(74.8%).

Scenario 2: In the scenario where ceftriaxone monotherapy 
is used against NG, and the treatment of CT is unchanged 
(Figures 2 and 3, Table 1), we observed significant decreases 
both in NG prevalence as well as in AR-NG prevalence (P val-
ues .01 and < .001, respectively), while the CT prevalence in-
creased (P < .001). More specifically, the peak prevalence of 
AR-NG (.23; 95% CI, 0.15–0.31) was approximately half of 
that in the dual-therapy scenario (0.44; 95% CI, 0.34–0.53).

Scenarios 3 and 4: The prevalence of NG in all 3 sites was 
slightly higher in scenarios 3 and 4 (Figure 2), where only 
doxycycline is used for CT treatment, compared to scenario 1 
(P = .269). For scenario 3, the mean prevalence of CT was sim-
ilar to scenario 1 (P = .13) (Figure 3).

Commensal Neisseria and antibiotic consumption: There 
was little change in the prevalence of azithromycin-resistant 

traits in CN species between baseline and scenario 3, but this 
decreased from 44% to 27% when using ceftriaxone monother-
apy for NG (scenarios 1 and 2, respectively; P < .001) (Table 1). 
The cumulative consumption of antibiotics in daily defined 
doses (DDD) decreased for azithromycin between baseline 
and scenario 2 (P < .001) but was unchanged for ceftriaxone 
(P = .34) and increased for doxycycline (P < .001). Between 
baseline and scenario 3, azithromycin and doxycycline con-
sumption increased (P values .025 and < .001, respectively), 
but ceftriaxone remained at similar levels (P = .47). In scenario 
4, the consumption of doxycycline increased by 5.4-fold com-
pared to baselines (P < .001).

DISCUSSION

Our model was able to replicate the increase in gonococcal re-
sistance to azithromycin among MSM in Belgium over a 
10-year span. Moreover, our model examined the effect of dif-
ferent treatment strategies for CT and NG on the prevalence of 
these infections, the emergence of AR-NG and cumulative an-
tibiotic consumption. Transitioning to ceftriaxone monother-
apy resulted in decreasing the prevalence of AR-NG by 
almost half, while also decreasing the overall NG prevalence. 
This is an intriguing finding that could be explained by the 
higher prevalence of NG with azithromycin resistance in the 
dual-therapy scenario (scenario 1). This increase in azithromy-
cin resistance was, in turn, likely caused by the 3 times higher 
azithromycin consumption in scenario 1 compared to scenario 
2 (464 DDD and 137 DDD, respectively). Azithromycin resis-
tance in NG would provide at least 2 fitness advantages. First, 
it would be able to survive azithromycin given for an isolated 
CT (or other infection). Second, it would be able to infect indi-
viduals who were exposed to azithromycin in the past 15 days. 
The higher prevalence of AR-NG in the dual- than the mono-
therapy scenario would have abrogated these fitness advantages 
in the dual-therapy arm, thus contributing to an increased gon-
ococcal prevalence over 10 years. An unexpected finding in sce-
nario 3, where azithromycin is used for dual therapy for NG but 
not for CT treatment, is the higher prevalence of AR-NG than 
scenario 1. This is likely due to the increased consumption of 
azithromycin in this scenario, which is in turn due to the fact 
that the azithromycin used for CT treatment protects against 
NG infections. Thus, switching to doxycycline treatment for 
CT means less protection from CT-associated azithromycin 
use, which in turn results in a higher NG prevalence and the 
highest azithromycin consumption in scenario 3.

Our results are compatible with the theory that CN species 
contribute to the emergence of gonococcal antimicrobial resis-
tance. In our model, we found that 74.8% of the AR-NG cases 
emerged through horizontal gene transfer from CN species. 
This is considerably higher than the approximately 10%–20% 
of isolates in Germany and Euro-GASP in 2018 that have 
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macrolide resistance via acquisition of a mosaic mtrCDE gene 
[84, 97]. The genetic mechanisms responsible for gonococcal 
resistance to macrolides are complex and our model is best un-
derstood as a first attempt to include the role of horizontal gene 
transfer from commensals. This aspect of our model is likely to 
be of greatest utility when modeling extended spectrum ceph-
alosporin resistance, where horizontal gene transfer is respon-
sible for most cases of resistance [98].

Our results are particularly relevant in settings where dual 
therapy for NG is still favored. A number of countries such 
as the United States, France, the United Kingdom, and 
Belgium (in 2023) have changed their national gonococcal 
treatment guidelines to recommend ceftriaxone monotherapy 
as the preferred treatment of NG [99, 100]. The European 
International Union Against STIs has recently changed its 
guidelines to include ceftriaxone monotherapy as an alternative 
first-line therapy if 4 preconditions are met [15]. These 

Figure 2. Mean prevalence and 95% CI of Neisseria gonorrhoeae by anatomical site at the end of the simulation time. Abbreviations: AZM, azithromycin; CI, confidence 
interval; CRO, ceftriaxone; DOX, doxycycline.

Figure 1. Mean prevalence and 95% CI of azithromycin-resistant NG (AR-NG), over a 10-year period starting in 2014 in 4 scenarios (1) NG: CRO/AZM, CT:AZM, or DOX; 
(2) NG:CRO, CT:AZM, or DOX, (3) NG:CRO/AZM, CT:DOX; and (4) NG:CRO, CT:DOX. Observed AR-NG from Belgium in the period 2014–2023 are presented as dots. The 
estimated proportion of AR-NG attributed to horizontal-gene transfer from commensal Neisseria is shown as a red line. Abbreviations: AZM, azithromycin; CI, confidence 
interval; CRO, ceftriaxone; DOX, doxycycline.
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Figure 3. Mean prevalence and 95% CI of Chlamydia trachomatis by anatomical site at the end of the simulation time. Abbreviations: AZM, azithromycin; CI, confidence 
interval; CRO, ceftriaxone; DOX, doxycycline.

Table 1. Mean Estimates With 95% CI at the End of the 10-year Simulation for the 4 Scenarios

Scenario 1: (NG: CRO/ 
AZM, 

CT:AZM, or DOX)
Scenario 2: (NG: CRO, CT:AZM, 

or DOX)
Scenario 3: (NG: CRO/AZM, 

CT: DOX)
Scenario 4: 

(NG:CRO, CT:DOX)

Neisseria gonorrhoeae prevalence 0.14 (0.13–0.14) 0.1 (0.1–0.1) 0.16 (0.16–0.17) 0.16 (0.16–0.16)

Chlamydia trachomatis prevalence 0.09 (0.08–0.09) 0.2 (0.2–0.2) 0.07 (0.06–0.07) 0.21 (0.21–0.21)

Cumulative azithromycin consumption 
(DDD)

464.23 (447.87–480.6) 136.9 (131.88–141.92) 502.4 (487.25- 517.55) 0 (0–0)

Cumulative ceftriaxone consumption 
(DDD)

31.03 (29.62–32.44) 22.82 (21.75–23.88) 37.68 (36.54–38.82) 35.42 (34.56–36.29)

Cumulative doxycycline consumption 
(DDD)

170.76 (158.7–182.82) 379.04 (369.41–388.67) 307.74 (294.46–321.02) 925.26 (908.67–941.85)

Azithromycin-resistance commensal 
Neisseria species

0.44 (0.43–0.45) 0.27 (0.26–0.28) 0.43 (0.42–0.44) 0 (0–0)

By anatomical site … … … …

Pharyngeal Neisseria gonorrhoeae 
prevalence

0.06 (0.06–0.07) 0.05 (0.04–0.05) 0.08 (0.08–0.08) 0.08 (0.08–0.08)

Anorectal Neisseria gonorrhoeae 
prevalence

0.09 (0.09–0.09) 0.07 (0.06–0.07) 0.11 (0.11–0.11) 0.11 (0.1–0.11)

Urethral Neisseria gonorrhoeae 
prevalence

0.03 (0.03–0.03) 0.02 (0.02–0.02) 0.04 (0.04–0.04) 0.04 (0.03–0.04)

Pharyngeal Chlamydia trachomatis 
prevalence

0.01 (0.01–0.01) 0.03 (0.03–0.03) 0.01 (0.01–0.01) 0.04 (0.04–0.04)

Anorectal Chlamydia trachomatis 
prevalence

0.06 (0.05–0.06) 0.14 (0.14–0.14) 0.04 (0.04–0.04) 0.14 (0.14–0.15)

Urethral Chlamydia trachomatis 
prevalence

0.04 (0.03–0.04) 0.09 (0.09–0.09) 0.03 (0.03–0.03) 0.1 (0.1–0.1)

By risk group … … … …

Neisseria gonorrhoeae prevalence 
(HA-MSM)

0.26 (0.25–0.27) 0.2 (0.19–0.2) 0.31 (0.31–0.32) 0.3 (0.3–0.31)

Neisseria gonorrhoeae prevalence 
(LA-MSM)

0.09 (0.08–0.09) 0.06 (0.06–0.07) 0.11 (0.1–0.11) 0.1 (0.1–0.11)

Chlamydia trachomatis prevalence 
(HA-MSM)

0.18 (0.17–0.19) 0.38 (0.37–0.38) 0.14 (0.13–0.15) 0.4 (0.4–0.4)

Chlamydia trachomatis prevalence 
(LA-MSM)

0.05 (0.05–0.06) 0.13 (0.13–0.13) 0.04 (0.04–0.04) 0.14 (0.13–0.14)

Abbreviations: AZM, azithromycin; CI, confidence interval; CRO, ceftriaxone; CT, Chlamydia trachomatis; DDD, daily defined doses; DOX, doxycycline; HA-MSM, high-activity men having sex 
with men; LA-MSM, low-activity men having sex with men; NG, Neisseria gonorrhoeae.
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guidelines thus continue to favor dual therapy. Our results pro-
vide additional evidence in favor of switching to monotherapy.

Our model has a number of limitations. First, treatment was 
assumed to be uniform across all 3 anatomical sites of infection, 
disregarding poorer azithromycin penetration into the oro-
pharynx, which could lower the treatment efficacy against 
NG [101]. Second, we assumed that all treatment options for 
CT/NG infections would be equally chosen regardless of the in-
fected site or a CT/NG co-infection. This assumption deviates 
from the Belgian treatment guidelines that recommend doxy-
cycline for rectal CT infections [77, 100]. Third, we lacked ac-
curate estimates of a number of the model parameters such as 
transmission probabilities, duration of infection, and screening 
rates. We did not explicitly include an incubation period of NG 
in the model; however, a delay of 5 days between infection and 
the diagnosis of NG was specified to account for the incubation 
period and diagnostic delays. The model did not take into ac-
count any possible interaction between the 2 STIs of interest 
or other STIs that could affect the transmission probabilities 
[102, 103]. We did not include the effect of doxycycline postex-
posure prophylaxis in the model, which could affect both the 
calibration process and the final prevalence estimates. Even 
though doxycycline postexposure prophylaxis is only recom-
mended in research settings in Belgium [104], approximately 
10% of MSM have reported using it to prevent STIs [105]. 
Our model does not include the age of individuals or any tem-
poral changes, either in the consistency of the population (en-
tries or exits from the network) or in the behavioral 
characteristics of individuals (people cannot change risk-group 
over time). Last, the effect of important factors, such as trans-
mission of either infection or of commensal species through 
kissing (pharynx to pharynx) and the antibiotic consumption 
for non-STI reasons were not included in the model. 
Transmission of both chlamydia and gonorrhea through kiss-
ing has been documented in several clinical and modeling stud-
ies [106–112]. Additionally, there is increasing evidence that 
bystander selection (the selection pressure for resistance 
through the use of antibiotics for other indications) plays an 
important role in the genesis of AMR [113–115]. In fact, in 
2023, it was reported that 541 DDD of cephalosporines, 
1588 DDD of macrolides, and 656 DDD tetracyclines were 
used in Belgium for any reason [116]. Omission of these fac-
tors could affect the calibration of the transmission probabil-
ities and/or the effect of different treatment options compared 
to scenario 1.

Despite the many limitations, our study also has significant 
strengths, as it attempts to explain the complex mechanisms 
of NG transmission and AMR emergence in a highly detailed 
network model that incorporates commensal bacteria. 
Previously published models either used a compartmental ap-
proach did not include NG from all 3 anatomical sites, did 
not include commensal Neisseria spp., or did not include 

antibiotic use for CT [24, 25, 36, 53–55]. Future NG AMR mod-
els would benefit from including antibiotics used for other in-
dications as well as more accurate behavioral and transmission 
parameters.
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