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Abstract
Summary: The Discriminant Analysis of Principal Components method is a pivotal tool in population genetics, combining principal component 
analysis and linear discriminant analysis to assess the genetic structure of populations using genetic markers, focusing on the description of variation 
between genetic clusters. Despite its utility, the original R implementation in the adegenet package faces computational challenges with large ge-
nomic datasets. To address these limitations, we introduce DAPCy, a Python package leveraging the scikit-learn library to enhance the meth-
od’s scalability and efficiency. DAPCy supports large datasets by utilizing compressed sparse matrices and truncated singular value decomposition 
for dimensionality reduction, coupled with training-test cross-validation for robust model evaluation. It also includes modules for de novo genetic 
clustering and extensive visualization and reporting capabilities. Compared to the original R implementation, DAPCy can process genomic datasets 
with thousands of samples and features in less computational time and with reduced memory usage. To show DAPCy’s computational capabilities, 
we benchmarked it with the R implementation using the Plasmodium falciparum dataset from MalariaGEN and the 1000 Genomes Project.
Availability and implementation: DAPCy can be installed as a Python package through pip. Source code is available on https://gitlab.com/ 
uhasselt-bioinfo/dapcy. Documentation and a tutorial can be found on https://uhasselt-bioinfo.gitlab.io/dapcy/.

1 Introduction
Over a decade ago, Jombart et al. (2010) introduced 
Discriminant Analysis of Principal Components (DAPC), a 
pivotal method for analyzing genetically structured popula-
tions (Jombart et al. 2010). DAPC combines principal com-
ponent analysis (PCA) and linear discriminant analysis (DA) 
to reduce dimensionality and identify clusters of genetically 
related individuals. Initially implemented in R with the pack-
age adegenet (https://github.com/thibautjombart/adegenet) 
(Jombart 2008, Jombart and Ahmed 2011), DAPC has gar-
nered thousands of citations, attesting to its enduring utility 
in population genetic research. In DAPC, genotype data is 
transformed using PCA to yield uncorrelated principal com-
ponents (PCs) that are then used in DA to maximize variation 
between pre-defined groups while minimizing within-group 
variation. In addition, as a preliminary step for the DAPC 
method and included in the adegenet package, K-means 
clustering is frequently employed to infer the effective num-
ber of genetic clusters when prior group information is 
unavailable. More recently, derivatives of the DAPC method 

that incorporate Kernel techniques and Local Fisher 
Discriminant Analysis have been proposed to capture more 
complex patterns of population structure (Qin et al. 2021, 
2022). Yet, the classical DAPC method remains popular, sup-
ported by established guidelines for its proper implementa-
tion and the accurate analysis of population structure 
inferred from DAPC (Miller et al. 2020, Cullingham et al. 
2023, Thia 2023).

Despite the success of DAPC, the original R implementa-
tion (as bundled in the adegenet package) requires substan-
tial computational resources when analyzing datasets with 
thousands of genetic variants such as marker alleles or single 
nucleotide polymorphisms (SNPs) across numerous sample 
sizes. With the advent of next-generation sequencing technol-
ogies such as whole-genome sequencing, more available ge-
netic datasets include large to extreme sample and SNP sizes 
for analyses. For most applications, DAPC is still effective for 
small- to medium-sized datasets with fewer than thousands 
of alleles or feature variables. However, for larger genomic 
datasets, the application of DAPC can be slow or computa-
tionally prohibitive due to the inherent limitations of R’s 
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memory management and the lack of optimized, low-level 
implementations for certain operations (Visser et al. 2015). 
Although the R ecosystem offers several packages for storage 
and PCA scalable analysis for large genomic datasets, such as 
included in Bioconductor (https://bioconductor.org/), or 
RSpectra (https://github.com/yixuan/RSpectra), these alter-
natives have not yet been integrated into adegenet’s 
DAPC workflow. Moreover, for estimating the PCs, the R 
implementation relies on eigendecomposition for PCA 
(Paradis 2020), which scales quadratically in terms of time 
complexity for datasets where the number of features is larger 
than the sample size, as is often the case for genetic datasets. 
Hence, this increases runtime for large datasets (Agrawal 
et al. 2020).

To address these computational limitations, we introduce 
DAPCy, a re-implementation of the DAPC method in Python 
using the scikit-learn (https://scikit-learn.org) machine 
learning (ML) library. DAPCy enhances scalability in popula-
tion genetic analyses by empowering sparse matrix algebra, 
enabling deployment in resource-constrained environments. 
Additionally, this package provides greater flexibility in 
model training by allowing a choice of cross-validation 
schemes for hyperparameter tuning and model assessment. 
Finally, DAPCy extends the utility of the DAPC method by 
offering a portable machine learning classifier in addition to 
its exploratory capabilities.

2 Overview of DAPCy
DAPCy is a custom ML workflow that uses scikit- 
learn’s API, designed for fast and robust analysis of large 
genomic datasets. As key features, DAPCy first reads in geno-
mic data (stored in VCF or BED files) and extracts the geno-
type values of the samples as a compressed sparse (csr) 
matrix to reduce memory consumption. Next, DAPCy esti-
mates the PCs using truncated SVD and applies DA to the 

approximated components to speed up computation. For 
model evaluation and robustness, DAPCy relies on a 
training-test cross-validation scheme to assess the perfor-
mance of the DA and grid-search cross-validation for hyper- 
parameter tuning. In addition to classification tasks, DAPCy 
includes functions for reporting, visualization, and K-means 
clustering for de novo designation of populations. An over-
view of the DAPCy workflow is illustrated in Fig. 1.

3 Implementation
3.1 Data preparation and transformation
DAPCy includes a built-in function (“geno2csr.py”) that 
extracts the genotype values from VCF or BED files using the 
sgkit (https://sgkit-dev.github.io/sgkit) library. For VCF 
files, DAPCy processes the input VCF file chunk-wise, con-
verting each chunk into compressed zarr files and extracting 
the values. For BED files, DAPCy extracts the genotype ma-
trix directly from the input. Genotype values are then trans-
formed into a csr matrix using the SciPy (https://scipy.org/) 
library for efficient arithmetic operations and reduced mem-
ory storage.

3.2 The DAPC method
DAPCy provides a class for the DAPC method (“dapc.py”) 
with built-in functions for training, cross-validation, visuali-
zation, and reporting. We implement an automated pipeline 
for classifying the csr matrix into the assigned population 
groups (either known a priori or estimated using de novo K- 
means clustering). Contrary to the R implementation, which 
applies eigendecomposition for estimating the PCs, we intro-
duced a truncated SVD to efficiently handle larger matrices 
(Falini 2022). A truncated SVD performs PCA on a sparse 
matrix by only retaining the most significant eigenvalues and 
eigenvectors (Supplementary data, available as supplemen-
tary data at Bioinformatics Advances online). Using this 

Figure 1. Overview of DAPCy. DAPCy is a Python package that uses scikit-learn to apply the DAPC method to a genotype matrix. It takes a VCF or 
BED file as input and transforms it into a csr matrix. The DAPC method is encoded as an automated ML pipeline that provides all functions for training/ 
estimation, model performance assessment through training-test cross-validation, grid-search cross-validation for hyper-parameter tuning, and 
deployment of the final model. DAPCy includes a module for de novo analysis of genetic clusters using the K-means clustering algorithm, allowing users 
to infer genetic groups from the PCs if population or location data is unavailable. Finally, DAPCy includes functions for visualization and reporting, 
including scatter plots, accuracy test reports, and confusion matrices. Image created with BioRender.com.
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approach, DAPCy allows the analysis of large genotype ma-
trices by making the DAPC method more computationally ef-
ficient, speeding up computations, and reducing memory 
consumption.

3.3 Cross-validation and model evaluation
In DAPCy, we implement training-test partitioning schemes 
based on cross-validation for accuracy testing and model 
evaluation, including kCV-fold cross-validation, stratified 
kCV-fold cross-validation, and leave-one-out cross-validation 
(LOOCV). To avoid confusion with the number of groups or 
effective populations (denoted as k), we denote the number 
of cross-validation folds by kCV. This design overcomes limi-
tations in adegenet, which rely on bootstrapping and may 
incur high variance and heavy computational demands for 
large datasets (Kim 2009). Standard kCV-fold partitions the 
data into kCV folds, trains on kCV − 1 folds, and tests on the 
remaining fold, whereas stratified kCV-fold preserves propor-
tional representation in each fold for imbalanced datasets. In 
contrast, LOOCV tests each sample individually, maximizing 
training data but increasing both computational cost and the 
variance of performance estimates. As such, LOOCV is typi-
cally more suitable for smaller datasets, while standard or 
stratified kCV-fold approaches provide more stable perfor-
mance and reduced computational burden for larger datasets 
(Thia 2023). Finally, DAPCy employs an automated grid- 
search cross-validation to select the optimal number of PCs 
with the highest accuracy metric (percentage correct between 
predicted and actual class labels) without overfitting.

3.4 K-means clustering for de novo inference of 
genetic groups
DAPCy provides a K-means clustering pipeline with built-in 
functions for automated model optimization (“kmean_group. 
py”), enabling users to infer the expected number of population 
groups prior to DAPC (kinfer). By default, DAPCy uses the sum 
of squared errors (SSE) or Silhouette scores to evaluate different 
cluster solutions (Supplementary data, available as supplemen-
tary data at Bioinformatics Advances online), whereas the R 
adegenet package employs Bayesian Information Criterion 
(BIC) values. However, because K-means is a model-driven 
method, the “optimal” number of clusters can depend heavily 
on user-defined parameters, which can lead to misinterpretation 
in population structure predictions (Miller et al. 2020, 
Cullingham et al. 2023, Thia 2023). To guide users through 
these considerations, such as inferring population groups and 
selecting the optimal number of PCs, DAPCy provides a tutorial 
to avoid biased results, following the guidelines provided by 
Thia (2023).

3.5 Visualization, reporting, and deployment
DAPCy provides several functions to plot the results from the 
DAPC method and generates classification reports to assess 
the performance of the model as an ML classifier. For in-
stance, DAPCy generates scatterplots of the results and 
reports accuracy scores for each cluster, as well as the overall 
mean accuracy of the classifier. Additionally, with DAPCy, 
users can create, train, and export the classifier as a pickle file 
(.pkl). This allows models to be deployed across different 
environments and workstations without the need for re- 
training. We provided documentation and tutorials at https:// 
uhasselt-bioinfo.gitlab.io/dapcy/.

3.6 Benchmarking
To evaluate DAPCy for large-scale analyses and assess its 
computational performance, we used two genomic variant 
datasets, Plasmodium falciparum from MalariaGEN (Pf7; 
N¼ 16 203) (MalariaGEN 2023) and the 1000 Genomes 
Project (1KG; N¼ 2805) (The 1000 Genomes Project 
Consortium 2015). VCF files were converted to BED format 
using PLINK (https://www.cog-genomics.org/plink), and 
SNPs with a minor allele frequency below 10% and linkage 
disequilibrium above r2 ¼ 0:3 were filtered out, yielding 
6385 uncorrelated SNPs for Pf7 and 359 130 SNPs for 1KG. 
Additional details on these benchmarking and classification 
procedures are provided in the Supplementary data, available 
as supplementary data at Bioinformatics Advances online. 
We first assessed DAPCy’s runtime and memory usage by 
classifying samples (using country of origin for Pf7 and ge-
netic population labels for 1KG) with up to 120 PCs, thereby 
stress-testing its performance with a high number of PCs as 
input parameters. As shown in Fig. 2 and the Supplementary 
data, available as supplementary data at Bioinformatics 
Advances online, DAPCy efficiently processed both datasets 
without exceeding 10 GB of RAM.

Next, we benchmarked DAPCy’s performance and cross- 
validation strategy (kCV-fold) against the R implementation 
of the DAPC method in adegenet using the “xvalDapc 
()” function with bootstrapping. For the Pf7 dataset, 
DAPCy was 14.26 times faster and more memory efficient 
than adegenet (Fig. 3A and B); for the 1KG dataset, 
“xvalDapc()” could not be run at all, as it required over 
45 GB of RAM. For Pf7, we also evaluated mean accuracy 
across training set sizes ranging from 50% to 90% of the full 
dataset. DAPCy consistently provided higher and more ro-
bust estimates compared to the bootstrapping-based ap-
proach of “xvalDapc(),” which produced lower accuracy 
scores with high variance (Fig. 3C). As noted by Thia (2023), 
the “xvalDapc()” function can struggle to determine the 
optimal number of PCs, a limitation that aligns with our 
observations of lower accuracy and high variance (Kim 
2009). By employing kCV-fold cross-validation, DAPCy deliv-
ers a more reliable performance assessment while avoiding 
the variance and biases often introduced by bootstrapping in 
the R implementation.

Finally, following the guidelines from Thia (2023) for pop-
ulation structure analyses using the DAPC method, we con-
ducted classification analyses on both datasets by first 
describing population structure using the population labels 
included in the Pf7 (country of origin; k¼ 33) and 1KG (ge-
netic population groups; k¼ 5) datasets. In addition, for the 
Pf7 dataset, we performed a de novo inference of population 
groups via K-means clustering, applying the k−1 criterion for 
selecting the optimal number of principal components prior 
to the DAPC step (Patterson et al. 2006). Using the sample 
labels with grid-search kCV-fold cross-validation, DAPCy 
achieved classification accuracies of 71.86% for the Pf7 data-
set (country of origin labels) and 97.50% for the 1KG dataset 
(genetic population labels). Moreover, the de novo K-means 
clustering on Pf7 inferred four effective populations 
(kinfer ¼ 4), which increased the classification accuracy to 
95.76% when using the first three PCs derived from K-means 
clustering, which was the optimal number based on the k−1 
criterion. In both the 1KG dataset and the de novo Pf7 
model, the first two discriminant components displayed clinal 
distributions consistent with previous studies (The 1000 
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Genomes Project Consortium 2012, MalariaGEN 2023), as 
detailed in the Supplementary data, available as supplemen-
tary data at Bioinformatics Advances online and the 
Pf7 tutorial.

4 Conclusions
We present DAPCy, a re-implementation of the DAPC 
method from the R package adegenet, used in population 
genetic research for identifying and describing genetic clus-
ters. DAPCy, written in Python and using the scikit- 
learn framework, supports VCF and BED files and includes 
an automated ML pipeline for model training, evaluation, vi-
sualization, and classification reports. Python’s efficiency and 
scikit-learn’s portable classifiers make DAPCy particu-
larly well-suited for large genomic datasets.

To optimize for the sparse nature of genomic data, DAPCy 
employs the truncated SVD as PCA, significantly reducing 
computational requirements. It also replaces the boot-
strapped cross-validation of the original R implementation 

with kCV-fold schemes, including stratified kCV-fold and 
leave-one-out cross-validation, providing more reliable perfor-
mance metrics and enabling more informed parameter selec-
tion. Together, these improvements allow DAPCy to process 
much larger genomic datasets, turning analyses that were once 
prohibitive into practical, resource-efficient workflows.
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Figure 2. Performance of DAPCy on the Pf7 (NSNPs ¼ 6;385) and 1KG (NSNPs ¼ 359;158) datasets as a function of sample size at different PCs. (A) Memory 
usage (GB) for the Pf7 dataset. (B) Runtime (s) for Pf7 dataset. (C) Memory usage (GB) for the 1KG dataset. (D) Runtime (s) for the 1KG dataset.
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