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Abstract
Summary: High-throughput techniques for biological and (bio)medical sciences often result in read counts used in downstream analysis. 
Nowadays, complex experimental designs in combination with these high-throughput methods are regularly applied and lead to correlated 
count-data measured from matched samples or taken from the same subject under multiple treatment conditions. Additionally, as is common 
with biological data, the variance is often larger than the mean, leading to over dispersed count data. Hierarchical models have been proposed 
to analyze over dispersed, correlated data from paired, longitudinal, or clustered experiments. We consider a hierarchical negative-binomial 
model with normally distributed random effects to account for the within- and between-sample correlation. We focus on different software 
implementations to allow the use of the model in practice.

1 Introduction
High-throughput sequencing methods, such as RNA-seq, are 
nowadays used in experiments with complex designs that 
lead to over dispersed and correlated count-data. These data 
often arise from matched samples, or repeated, or longitudi-
nal measures of the same subject. Analysis of such data 
should take the overdispersion and correlation into account.

Standard methods developed for RNA-seq data analysis typi-
cally rely on either generalized linear models (edgeR 
[Robinson et al. 2010], DESeq2 [Love et al. 2014]), where the 
response variable is modeled with negative-binomial distribu-
tion, or linear (mixed-effects) models (limma [Ritchie et al. 
2015]) applied to transformed data. While these approaches 
are suitable for simple experiments that involve comparisons of 
groups of independent samples, they are limited when dealing 
with more complex experimental designs in which data may 
exhibit additional variability and within- and between-sample 
correlations (Tsonaka and Spitali 2021). For instance, edgeR 
and DESeq2 can take into account overdispersion, but they 
cannot accommodate random effects that could help to capture 
the additional correlation structure. On the other hand, limma 
allows inclusion of a single random effect, but estimates a single 
genome-wide variance term neglecting the fact that the contri-
bution of the random effect may vary from gene to gene 
(Hoffman and Roussos 2021, Tsonaka and Spitali 2021). 
Other software packages, such as mgcv (Wood 2011), brms 

(B€urkner 2017), gamlss (Rigby and Stasinopoulos 2005), and 
NBZIMM (Zhang and Yi 2020) can also be used to analyze over-
dispersed or sparse count data. These packages are not specifi-
cally designed for RNA-seq data analysis.

To address these challenges, hierarchical mixed-effects 
models based on the negative-binomial (NB) distribution can 
be considered (Molenberghs et al. 2010). The suitability of 
the models for the analysis of clustered and longitudinal 
RNA-seq data was confirmed by extensive simulations and 
analyses of real-life data by Kazakiewicz et al. (2019) and 
Tsonaka and Spitali (2021).

Given the suitability of the models, an important question 
is the availability and reliability of software that would allow 
applying the models in practice. It appears that this type of 
models has been implemented in commercial software such 
as SAS and STATA, as well as in open-source platforms such 
as R. In R, there are multiple packages that could be used for 
fitting these models, including lme4 (Bates et al. 2015), 
GLMMadaptive (Rizopoulos 2022), glmmTMB (Brooks et al. 
2017), glmmADMB (Skaug et al. 2016). However, all these 
implementations differ in terms of the complexity of the 
random-effects structure that can be specified, optimization 
methods, and computational speed.

Thus, to help researchers in choosing from the available 
tools, we compare, in this paper, several of the implementa-
tions and evaluate their suitability for applying the hierarchi-
cal NB model with normally distributed random effects to 
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account for the within- and between-sample correlation 
(Kazakiewicz et al. 2019). Toward this aim, we use real-life 
data from an RNA-seq experiment.

The paper is structured as follows. Section 2 describes the 
hierarchical NB model (Section 2.1), its estimation (Section 
2.2), and software implementations (Section 2.3). Section 2.4 
provides a description of the real-life RNA-seq data that are 
used to illustrate the application of the model and various 
software. Sections 3 present the results of the application. A 
short discussion in Section 4 concludes the paper.

2 Methods
In this section, we provide a description of the hierarchical NB 
model, its estimation, and various software implementations.

2.1 The model
We consider per-gene analysis. Thus, in what follows, we 
drop the index indicating the gene.

Assume that, for a particular gene, a column vector of read 
counts (corresponding to, for instance, multiple exons), 
ys ¼ ðys1; . . .;ysJÞ

0, is available for sample s. Additionally, the 
sample is described by a vector of variables 
xs ¼ ð1;xs1; . . .;xspÞ

0.
To account for overdispersion and possible correlation be-

tween the counts, we consider the following two-level (with 
counts grouped within samples) hierarchical model: 

ysjjγs; bs � PoissonðTsjγse
x0sβþ bsÞ; (1) 

γs � Gammaðϕ; 1=ϕÞ; (2) 

bs � Normalð0; σ2Þ; (3) 

where β¼ ðβ0;β1; . . .;βpÞ
0 is the vector of coefficients that cap-

tures the effect of variables xs, γs is a gamma-distributed ran-
dom effect with an overdispersion parameter ϕ, bs is a 
normally distributed random effect, and Tsj is an “exposure” 
(“normalization”) factor related to, for instance, the library 
size (a total number of read counts for sample s). Note that 
other normalization factors can be considered, such as the 
factors obtained by the Trimmed Mean of M-values normali-
zation implemented in edgeR (Robinson et al. 2010) or by 
the “median of ratios” normalization found in DESeq2 
(Love et al. 2014). The model implies that, conditionally on 
bs, ys is distributed according to a multivariate NB (MVNB) 
distribution (Fabio et al. 2012, Kazakiewicz et al. 2019) with 
the probability mass function given by: 

P ysjbs
� �

¼
Γ ϕþ

PJ
j¼1 ysj

� �

Γ ϕð ÞΓ
PJ

j¼1 ysj!

� �Q − ϕ
s

YJ

j¼1

n
ðϕQsÞ

− 1Tsjex
0
sβþ bs

oysj

;

(4) 

where 

Qs ¼ 1þϕ − 1
XJ

j¼1

Tsjex
0
sβþ bs : (5) 

The marginal mean and variance of the exon count ysj are 
given by, respectively, 

EðysjÞ ¼ Tsjex
0
sβeσ2=2; (6) 

VarðysjÞ ¼ EðysjÞf1þ eσ2
ð1=ϕþ 1 − e − σ2

ÞEðysjÞg: (7) 

As the marginal variance is larger than the mean value, the 
model implies overdispersion, as compared to the Poisson 
distribution.

The marginal correlation between the j-th and k-th count 
observed for the same sample s is given by: 

Corðysj; yskÞ ¼
EðysjÞEðyskÞeσ2

ð1=ϕþ1 − e − σ2
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðysjÞVarðyskÞ

p : (8) 

The marginal likelihood corresponding to models (1–3) is 
given by: 

Lðβ;ϕ; σ2Þ ¼

ð1

−1

YS

s¼1

PðysjbsÞφðbs; σ2Þdbs; (9) 

where φðx; σ2Þ denotes the PDF of a mean-zero normal distri-
bution with variance σ2. In general, the integral in (9) does 
not have an analytical expression, but it can be computed 
numerically.

The model can be extended to accommodate more com-
plex designs. For instance, read counts may be obtained for 
multiple samples derived for the same individual or cluster. 
As a result, there may be a correlation between the counts 
obtained in different samples. In this case, denote by yisj the 
j-th count obtained for the s-th sample (s¼ 1; . . . ;ni) for indi-
vidual/cluster i (i¼ 1; . . . ;N). Let yis ¼ ðyis1; . . .;yisJÞ

0 be the 
column vector collecting all the J counts. Additionally, let 
xis ¼ ð1;xis1; . . .;xispÞ

0 be the column vector of variables de-
scribing sample s for individual/cluster i. We can then con-
sider the following three-level hierarchical model: 

yisjjγis;bi;bis � PoissonðTisjγise
x0isβþ bi þ bisÞ; (10) 

γis � Gammaðϕ;1=ϕÞ; (11) 

bi � Normalð0; σ2
I Þ; (12) 

bis � Normalð0; σ2
SÞ: (13) 

The random effects bi are independent of bis and imply cor-
relation between counts for different samples from the same 
cluster/individual, while effects bs allow for the within- 
sample correlation of the counts. The marginal likelihood for 
models (10–13) is obtained as for models (1–3), i.e., by inte-
grating the conditional MVNB distribution over the joint dis-
tribution of bi and bis.

The marginal mean and variance of the exon count yisj are 
given by, respectively, 

EðyisjÞ ¼ Tisjex
0
isβeðσ

2
I þ σ2

S Þ=2; (14) 

VarðyisjÞ ¼ EðyisjÞf1þ eσ2
I þ σ2

S ð1=ϕþ1 − e − σ2
I − σ2

S ÞEðyisjÞg:

(15) 

The marginal correlation between the j-th and k-th count 
observed for the same sample s of individual i is given by: 
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Corðyisj; yiskÞ ¼
EðyisjÞEðyiskÞeσ2

I þ σ2
S ð1=ϕþ1 − e − σ2

I − σ2
S Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðyisjÞVarðyiskÞ

p :

(16) 

On the other hand, the correlation between the j-th and k- 
th count observed for different samples s and t of individual i 
is given by: 

Corðyisj; yitkÞ ¼
EðyisjÞEðyitkÞðeσ2

I − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðyisjÞVarðyitkÞ

p : (17) 

2.2 Estimation
Coefficients of models (1–3) or (10–13) may be estimated by 
maximizing the marginal likelihood. As mentioned in Section 
2.1, the likelihood is obtained by integrating out the random 
effects and does not have an analytical expression. Thus, the 
likelihood has to be computed numerically. Toward this aim, 
various approaches can be applied. The two most often ap-
plied techniques, on which we will focus, are the Laplace ap-
proximation and the adaptive Gauss-Hermite quadrature 
(AGHQ).

The Laplace approximation uses an approximation of the 
likelihood by a Gaussian (normal) distribution around its 
maximum. This makes the log-likelihood function quadratic 
and allows for the use of a second-order Taylor expansion 
(Vonesh 1996, Bolker et al. 2009).

The AGHQ is a numerical algorithm used to approximate 
integrals. It improves the standard Gauss-Hermite quadrature 
by dynamically adjusting nodes and weights to more accu-
rately approximate integrals (Pinheiro and Chao 2006). The 
AGHQ is more accurate than the Laplace approximation. 
However, as the number of random effects and/or quadrature 
points increases, the AGHQ’s computation time also 
increases. As a result, the AGHQ is not feasible for models 
that involve more than two or three random factors (Bolker 
et al. 2009). It is worth noting that the AGHQ with only a 
single quadrature point corresponds to the Laplace 
approximation.

2.3 Software
As it has been mentioned in Section 1, hierarchical models 
based on the NB distribution have been implemented in sev-
eral commercial and open-source software platforms. In 
what follows, we consider the implementation in commercial 
software SAS (procedure NLMIXED, [Inc. 2023]) and Stata 
(command menbreg, [StataCorp. LLC 2023]). Additionally, 
we include four packages (GLMMadaptive, lme4, 
glmmTMB, and glmmADMB), available in R (Bates et al. 2015, 
Brooks et al. 2017, Rizopoulos 2022). Several of the imple-
mentations (GLMMadaptive, lme4, NLMIXED, menbreg) 
apply the AGHQ that is known to be preferred from a 
numerical-accuracy point of view. GLMMadaptive allows 
only estimation of two-levels model, i.e., models with ran-
dom effects corresponding to only one grouping factor; the 
other implementations can be used to fit models with more 
complex random-effect structures. Table S1, available as sup-
plementary data at Bioinformatics Advances online, provides 
a summary of the considered implementations. In what fol-
lows, we briefly describe each of the implementations.

2.3.1 SAS
Procedure NLMIXED in SAS (SAS Institute Inc. 2023) allows 
specifying a conditional distribution of data given normally 
distributed random effects. The resulting model is estimated 
by maximizing (an approximation of) the marginal likelihood 
obtained by integration of the conditional likelihood over the 
distribution of the random effects. The procedure allows us-
ing the AGHQ to approximate the marginal likelihood. 
Multi-level models with random effects for several (nested) 
grouping factors can be considered. The use of the NLMIXED 
procedure to analyze overdispersed count data was described, 
for instance, by (Molenberghs et al. 2007). In the remainder 
of the paper, we will refer to this procedure as “SAS.”

2.3.2 STATA
Command menbreg in STATA (StataCorp. LLC 2023) 
allows estimation of multilevel mixed-effects NB regression 
models to count data. Models with random effects for several 
(nested or crossed) grouping factors can be considered. The 
estimation is based on maximizing (an approximation of) the 
marginal likelihood. The likelihood may be approximated by 
using the Laplace approximation or the AGHQ. In the re-
mainder of the paper, we will refer to the use of menbreg 
command with the AGHQ as “STATA.”

2.3.3 lme4
The lme4 package (Bates et al. 2015) in R provides functions 
to fit and analyze a generalized linear mixed-effects model 
(GLMM). Specifically, the glmer.nb function can be used to 
fit a GLMM with an NB-distributed response, designed to 
handle count data that exhibit overdispersion. The function 
incorporates both fixed and random effects in a linear predic-
tor. The dispersion parameter is automatically estimated dur-
ing the model fitting process. The lme4 package supports 
complex structures of the fixed and random effects using a 
simple syntax. Additionally, two methods for approximating 
the likelihood are implemented. The nAGQ argument (from 
the glmer.nb function) controls the number of nodes in the 
quadrature formula, and thus the approximation method. 
Setting nAGQ equal to 1 corresponds to the Laplace approxi-
mation, while values greater than 1 indicate the number of 
points used to evaluate the AGHQ approximation to the log- 
likelihood. In the rest of the paper, we will refer to these 
approaches as “LME4L” and “LME4A,” respectively.

2.3.4 glmmTMB
The glmmTMB package (Brooks et al. 2017) in R allows fit-
ting complex GLMMs for a wide range of response distribu-
tions. The models are fitted via Template Model Builder 
(TMB), which maximizes flexibility and speed. glmmTMB 
supports complex random effects structures with multiple 
levels of nested or crossed random effects. The package uses 
the same formula syntax as lme4, and the Laplace approxi-
mation to compute the marginal likelihood. In the rest of the 
paper, we will refer to this method as “TMB.”

2.3.5 glmmADMB
The glmmADMB package (Fournier et al. 2012) in R applies 
automatic differentiation to fit non-linear models with a large 
number of parameters (Skaug et al. 2016). Similarly to 
glmmTMB, glmmADMB supports a wide variety of response 
distributions, link functions, and complex random effects 
structures. The package uses the Laplace approximation to 
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compute the marginal likelihood. For the remainder of this 
paper, we will refer to this method as “ADMB.”

2.3.6 GLMMadaptive
The GLMMadaptive package (Rizopoulos 2022) in R allows 
fitting GLMMs for grouped or clustered responses for which 
the marginal likelihood is approximated by using the AGHQ. 
Although multiple random effects (e.g. random intercepts, 
linear and quadratic random slopes) are allowed, there is no 
possibility to include nested or crossed random effects 
designs. GLMMadaptive has a slightly different formula syn-
tax as compared to lme4. The formulas for the fixed and ran-
dom effects are specified in separate arguments of the 
function. In the rest of the paper, we will refer to this method 
as “GLMMa.”

2.4 Data
We illustrate the use of different implementations of the hier-
archical NB model by using a dataset obtained from an 
RNA-seq experiment (Bouquet et al. 2016).

The dataset includes samples from 29 patients with tick- 
borne Lyme disease and 13 healthy controls. Patients with 
the disease were enrolled at the time of diagnosis and fol-
lowed for up to 6 months (Bouquet et al. 2016). From each 
patient, blood samples were taken at three time points after 
infection: before the antibiotic treatment (visit1), immediately 
after the treatment (visit2), and 6 months after treatment 
completion (visit3). Samples for healthy controls were 
obtained at one time point. Three samples for patients were 
discarded because of insufficient read counts and transcrip-
tome coverage. Data were processed, including quality con-
trol, read trimming, alignment, and quantification. As a 
result, 137 078 exons with a nonzero sum of counts across 
all samples, grouped into 18 765 protein-coding genes, were 
included in the analysis. The raw data are publicly available 
under GEO accession number GSE63085.

We consider per-gene analysis. It is worth noting that, for a 
particular gene, counts obtained for different exons in the 
same sample may be correlated. Additionally, for patients, 
there may be correlation between counts obtained for the 
same patient in different samples. To reflect the correlation 
structure, which results from the hierarchical structure of the 
data, we may assume that, for a particular gene, the exon 
count corresponding to exon j from sample s for individual i 
follows the three-level model (10–13), with the conditional 
Poisson distribution expressed as follows: 

yisjjγis;bi;bis �

PoissonðTisjγiseβ0 þ β1 visit1þ β2visit2þ β3visit3þ bi þ bisÞ;
(18) 

where β1, β2, and β3 are the coefficients capturing the relative 
change of the average gene-level expression intensity for 
patients at visit1, visit2, and visit3, respectively, as compared 
to the healthy controls. The “exposure” Tisj is defined as 
dj× lis, where dj is the exon length and lis it the total library 
size (Kazakiewicz et al. 2019).

Apart from the estimates of the coefficients of the model, we 
are interested in testing the following three null hypotheses:

� H123
0 : β1 ¼ β2 ¼ β3 ¼ 0 

� H1
0 : β1 ¼ 0 

� H3
0 : β3 ¼ 0 

Rejection of H123
0 implies that gene expression for 

patients, as compared to healthy controls, is different at 
least at one of the three time points. Conducting this test 
might be of interest when, for instance, screening for genes 
that may be related to the mechanism of the Lyme disease 
or its treatment. Rejection of H1

0 means that gene expression 
for patients is, on average, different as compared of healthy 
individuals. Testing this hypothesis might be of interest in 
screening for genes that may be related to the mechanism of 
the Lyme disease. Finally, rejection of H3

0 implies that, 
despite treatment, there may be a difference in gene 
expression between the two groups. Testing this hypothesis 
might be of interest when screening for genes that may be 
useful, for instance, for explaining the mechanism 
of treatment.

The null hypotheses can be tested by using the chi-squared 
Wald-test statistics with 3 (H123

0 ) or 1 (H1
0 and H3

0) degrees of 
freedom (Galecki and Burzykowski 2013).

Fitting the three-level model (18) to the data may be com-
putationally difficult because it includes normally distributed 
random effects at two levels (individual and sample). Also, as 
mentioned in Section 2.3, not all software implementations 
allow fitting such a model. Thus, as an alternative, we may 
consider a simpler, two-level model without the individual- 
specific random effects bi: 

yisjjγis;bis �

PoissonðTisjγise
β0 þ β1 visit1þ β2visit2þ β3visit3þbisÞ:

(19) 

One could expect that the related variability would be ad-
ditionally captured by the sample-specific random effects bis.

Because of computational difficulties, we will compare the 
results of fitting the three-level model (18) by using different 
software implementations only for one exemplary gene. 
However, the results for the two-level model (19) will be 
compared for all genes.

3 Results
In Section 3.1, we present the results of fitting the three-level 
model (18) and the simpler two-level model (19) to data for a 
single gene from the RNA-Seq dataset by using the different 
software implementations mentioned in Section 2.3. 
Additionally, in Section 3.2, we compare the results of fitting 
the simpler model for all genes.

3.1 Analysis of data for a single gene
For the selected gene, ENSG00000144802, the data contains 
read counts from 11 exons. The exon length ranges from 76 
(exon ENSE00001517391) to 1705 (exon ENSE00000967213) 
nucleotides (see Table 1). The exons ENSE00000967205, 
ENSE00000967213, and ENSE00001248707 exhibited the 
highest coverage per base pair, with an average coverage ranging 
from 2 to 8, and from 1 to 2 reads per base pair for the patients 
and controls, respectively.

Figure 1 presents the observed counts per exon for controls 
and the three visits for patients. The black dashed line links the 
mean count for the control group with the visit-specific means 
for the patients. For each exon, an increase in the average expres-
sion level at the first (pre-treatment visit) is observed for patients 
as compared to the control group. For patients, a descending av-
erage profile can be seen for six exons (ENSE00000967207, 
ENSE00000967213, ENSE00001248707, ENSE00001822656, 
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ENSE00001939990, ENSE00001946670). In contrast, 
four exons (ENSE00000967205, ENSE00001517391, 
ENSE00001936731, ENSE00001958418) show a decrease 
from visit1 to visit2, followed by a slight increase from visit2 
to visit3. For exon ENSE00001858993, a slight increase is 
observed between visit1 and visit2.

For most exons, Fig. 1 illustrates a considerable variability 
of counts for the control group and for the patients. In part, 

this variability is due to varying library sizes for the samples, 
for which the counts were obtained. However, even after tak-
ing into account the library size, excess variability, as com-
pared to the Poisson distribution, is detected. This is 
illustrated in Table 1. The table presents, for each exon, the 
sample mean and variance of the counts for three control 
samples with the library size about 1:7×106 reads and for 
three control samples with the library size about 3:5×106 

reads. In all but one case, the mean is smaller than the vari-
ance and indicates overdispersion. This justifies the use of the 
NB distribution for the analysis of the counts.

Table 2 and Table S2, available as supplementary data at 
Bioinformatics Advances online, show the estimates of the 
coefficients of the three-level model (18) and the computa-
tional time for various software. Default starting values and 
convergence settings were used; the syntax used to fit the 
model is provided on Zenodo (https://doi.org/10.5281/zen 
odo.14908112). All analyses for the gene were performed on 
a machine with an i7-11850H processor @2.50 GHz, 
2496 MHz, 8 cores, and 32.0 GB of installed physical mem-
ory. Note that LME4A and GLMMa were not included in this 
comparison, as they only allow fitting two-level models. For 
the implementations based on the AGHQ approximation, 75 
quadrature points were used.

The estimates of the coefficients of the model are consistent 
across the different software, except of LME4L. For the latter 
implementation, especially striking is the overestimation of 
the variance-structure coefficients σI (individual-level 

Table 1. Exon-specific sample means and variances for three control 
samples with library size about 1:7×106 and for three control samples 
with library size about 3:5×106.a

Exon Exon  
length

Library size

� 1:7×106 � 3:5×106

Mean Variance Mean Variance

ENSE00000967205 104 71.7 2344 119.7 2497
ENSE00000967207 106 6.3 12.3 20 57
ENSE00000967213 1705 2098 5316012 3833 2524851
ENSE00001248707 773 594.3 410006 1217 242954
ENSE00001517391 76 10 63 33.3 732.3
ENSE00001822656 503 163.7 27414 474.7 17170
ENSE00001858993 1026 3.7 40.3 6 31
ENSE00001936731 81 3 13 8.7 2.3
ENSE00001939990 623 42.7 676.3 98.7 576.3
ENSE00001946670 164 58.7 2736 123.7 2116
ENSE00001958418 260 4.3 20.3 4.3 5.3

a Gene ENSG00000144802.

Figure 1. Exon counts for gene ENSG00000144802. The grey points at the left-hand side of each plot indicate the exon counts for 13 healthy controls. 
The colored lines represent the profiles of 29 patients across three visits, labeled as v1, v2, and v3. The black dashed line links the mean of the control 
counts and the visit-specific means for patients. Note that different plots use different y-scales.
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random-effect standard deviation), σS (sample-level random- 
effect standard deviation), and ϕ (dispersion parameter).

In terms of computational time, there is a clear difference 
between the implementations that used the Laplace approxi-
mation (LME4L, TMB, ADMB) and the AGHQ (SAS, STATA) 
for the numerical computation of the marginal likelihood. 
Among the four implementations that yielded similar results, 
TMB was the fastest, while SAS was the slowest.

Additionally, model (18) was fitted by SAS and STATA 
while using varying numbers (5, 10, 25, 50, and 75) of quad-
rature points in the AGHQ approximation. Table 3 presents 
the obtained estimates and computational time. Clearly, in-
creasing the number of quadrature points results in a longer 
computational time, though the STATA implementation is 
consistently faster than the SAS one. The table suggests that, 
starting from 10 quadrature points, there is little to no differ-
ence in the obtained estimates. Thus, increasing the number 
of quadrature points beyond 10 added computational com-
plexity without substantial improvement in accuracy.

Based on the results presented in Table 2 it is possible to in-
vestigate the correlation between the counts. For instance, 
consider exons ENSE00000967205 and ENSE00000967207 
of length 104 and 106, respectively (see Table 1), and two 
control samples with library sizes of 1:7×106 and 3:5×106. 
By using formula (16) and estimates provided in Table 2 for 
STATA, we can compute that the correlation coefficient for 
the counts for the two exons in the same control sample with 
library size of 1:7×106 is equal to 0.988, while in a control 
sample with size 3:5×106 it is equal to 0.994. On the other 
hand, by using formula (17), the correlation coefficient for a 
count for exon ENSE00000967205 in a control sample with 
library size of 1:7×106 and a count for exon 
ENSE00000967207 in a different sample (but from the same 
control individual) with library size of 3:5×106 is equal to 

0.024. Thus, while the within-sample correlation between the 
exon counts is considerable, the between-sample correlation 
is negligible. This might be taken as an argument in favor of 
using the simpler, two-level model (19), because the model 
does not include individual-specific random effects bi. 
Consequently, it assumes that there is no between-sample 
correlation between exon counts.

The simpler, two-level model (19) was fitted to the data by 
using seven different implementations, including LME4A and 
GLMMa. Default starting values and convergence settings were 
used. For the implementations based on the AGHQ approxi-
mation, 75 quadrature points were used. Table 4 shows the 
parameter estimates. As in the case (see Table 2) of the three- 
level model, estimates of the coefficients of model (19) are 
consistent across the different implementations, except of 
LME4L. The AGHQ-based implementations are slower than 
the Laplace-approximation-based ones, but for all implemen-
tations, computations require less time than for the three- 
level model (18).

Table 5 presents the estimates and the computational time 
for the two-level model (19) obtained while using varying 
numbers (5, 10, 25, 50, and 75) of quadrature points in the 
AGHQ approximation. Across all methods, except of 
LME4A, the estimates are quite consistent when the number 
of quadrature points is at least 10. The computational time 
clearly increases with the increasing number of the points. In 
terms of the time, STATA seems to be comparable to GLMMa, 
while they both are faster than SAS.

It is worth noting that, for all the implementations except 
LME4, the estimated values of coefficients β1, β2, and β3 from 
Table 4 are very close to their counterparts from Table 2. 
Thus, both models provide similar conclusions regarding the 
average difference between the patients’ and control samples.

Table 2. Estimates of the coefficients and computational time for the three-level model (18), see Section 2.4.a

Estimates

Method β0 β1 β2 β3 σS σI ϕ Time (s)

LME4L −15.1390 0.7230 0.5330 0.1478 0.5062 0.2537 26429.5300 7.78
TMB −15.4359 0.7495 0.5151 0.3254 0.2262 0.2297 0.5112 1.97
ADMB −15.4359 0.7495 0.5151 0.3254 0.2262 0.2297 0.5112 71.42
STATA −15.4384 0.7496 0.5154 0.3257 0.2236 0.2321 0.5112 308.46
SAS −15.4360 0.7520 0.5178 0.3281 0.2234 0.2328 0.5112 378.90

a Gene ENSG00000144802. LME4L—lme4 with Laplace approximation; TMB—glmmTMB; ADMB—glmmadmb; SAS—PROC NLMIXED; STATA— 
menbreg. For the AGHQ-based methods, 75 quadrature points were used.

Table 3. Estimates of the coefficients of the three-level model (18) fitted by using different numbers of quadrature points (column AGHQ).a

Estimates

AGHQ Method β0 β1 β2 β3 σS σI ϕ Time (s)

n¼5 SAS −15.4389 0.7525 0.5183 0.3285 0.2233 0.2330 0.5112 30.54
STATA −15.4360 0.7496 0.5154 0.3257 0.2236 0.2321 0.5112 0.29

n¼10 SAS −15.4384 0.7520 0.5178 0.3280 0.2234 0.2328 0.5112 35.97
STATA −15.4360 0.7496 0.5154 0.3257 0.2236 0.2321 0.5112 0.79

n¼25 SAS −15.4384 0.7520 0.5178 0.3281 0.2234 0.2328 0.5112 70.31
STATA −15.4360 0.7496 0.5154 0.3257 0.2236 0.2321 0.5112 4.24

n¼50 SAS −15.4384 0.7520 0.5178 0.3281 0.2234 0.2328 0.5112 195.55
STATA −15.4360 0.7496 0.5154 0.3257 0.2236 0.2321 0.5112 140.85

n¼75 SAS −15.4384 0.7520 0.5178 0.3281 0.2234 0.2328 0.5112 378.90
STATA −15.4360 0.7496 0.5154 0.3257 0.2236 0.2321 0.5112 308.46

a Gene ENSG00000144802. SAS—PROC NLMIXED; STATA—menbreg.
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Additionally, it is worth observing that, for all the imple-
mentations except LME4, the estimated value of the between- 
sample variance σ2 of model (19) is close to the sum of the 
between-individual variance σ2

I and the between-sample vari-
ance σ2

S from the three-level model (18). For instance, for 
STATA (see Table 2), σ2

I þσ2
S ¼ 0:23212þ0:22362 ¼ 0:1039 

for (18), which is close (see Table 4) to σ2 ¼ 0:31542 ¼

0:0995 obtained for model (19). This implies, upon noting 
that Eqs. (6–8) and (14–16) are identical if σ2 ¼ σ2

I þσ2
S , that 

the within-sample correlation estimated for the two-level 
model (19) should correspond to the estimates obtained for 
three-level model (18). This is indeed the case: by applying 
Eq. (8) to the results presented in Table 4 for STATA, we can 
compute that the correlation coefficient for the counts for 
exons ENSE00000967205 and ENSE00000967207 in a con-
trol sample with library size of 1:7×106 is equal to 0.988, 
while in a control sample with size 3:5×106 it is equal to 
0.994. These results are identical to those reported for 
Table 2. Thus, the simpler model (19) provides the same con-
clusion regarding the correlation structure as the more com-
plex model (18): a substantial within-sample correlation 

between exon counts and a negligible between-sample 
correlation.

In the next section, we present results of the estimation of 
the two-level model (19) for all genes and various software 
implementations. Note that glmmADMB was used only for the 
analysis of a single gene. It has been replaced by glmmTMB, 
which is optimized for speed and memory efficiency and is ac-
tively maintained, unlike glmmADMB.

3.2 Analysis of data for all genes
The simpler, two-level model (19) was fitted for 18 765 
genes. Default starting values and convergence settings were 
used. For the implementations based on the AGHQ approxi-
mation, 75 quadrature points were used. Table S3, available 
as supplementary data at Bioinformatics Advances online, 
summarizes the number of genes for which the model was 
successfully fitted. The model was considered to fail due to ei-
ther non-convergence, non-estimable variance-covariance 
matrix of the coefficients, or the matrix not being positive 
definite. The number of genes for which the model could be 
successfully fitted is the largest for TMB, followed by GLMMa, 

Table 5. Estimates of the coefficients of the two-level model (19) obtained by using different number of quadrature points (column AGHQ).a

Estimates

AGHQ Method β0 β1 β2 β3 σ ϕ Time (s)

n5 5 LME4A −15.1390 0.7164 0.5194 0.1479 0.5657 26429.5300 7.13
GLMMa −15.7868 0.9534 0.5941 0.4217 0.4955 0.5317 0.47
SAS −15.4349 0.7468 0.4985 0.3245 0.3154 0.5108 0.81
STATA −15.4349 0.7468 0.4985 0.3245 0.3155 0.5108 0.09

n5 10 LME4A −15.1390 0.7164 0.5194 0.1479 0.5657 26429.5300 8.32
GLMMa −15.4351 0.7468 0.4988 0.3243 0.3165 0.5109 0.68
SAS −15.4349 0.7468 0.4985 0.3245 0.3154 0.5108 1.27
STATA −15.4349 0.7468 0.4985 0.3245 0.3155 0.5108 0.10

n5 25 LME4A −15.1390 0.7164 0.5194 0.1479 0.5657 26429.5300 12.26
GLMMa −15.4350 0.7460 0.4989 0.3214 0.3237 0.5112 0.81
SAS −15.4349 0.7468 0.4985 0.3245 0.3154 0.5108 2.87
STATA −15.4349 0.7468 0.4985 0.3245 0.3155 0.5108 0.15

n5 50 LME4A −15.1390 0.7164 0.5194 0.1479 0.5657 26429.5300 19.18
GLMMa −15.4351 0.7471 0.4987 0.3246 0.3156 0.5107 1.10
SAS −15.4349 0.7468 0.4985 0.3245 0.3154 0.5108 5.04
STATA −15.4349 0.7468 0.4985 0.3245 0.3155 0.5108 1.55

n5 75 LME4A −15.1390 0.7164 0.5194 0.1479 0.5657 26429.5300 32.57
GLMMa −15.4351 0.7471 0.4987 0.3246 0.3156 0.5107 1.76
SAS −15.4349 0.7468 0.4985 0.3245 0.3154 0.5108 7.17
STATA −15.4349 0.7468 0.4985 0.3245 0.3155 0.5108 2.29

a Gene ENSG00000144802. LME4A—lme4 with the AGHQ approximation; GLMMa—GLMMadaptive; SAS—PROC NLMIXED; STATA—menbreg.

Table 4. Estimates of the coefficients and computational time for the two-level model (19), see Section 2.4.a

Estimates

Method β0 β1 β2 β3 σ ϕ Time (s)

LME4L −15.1390 0.7164 0.5194 0.1479 0.5657 26429.5300 6.85
LME4A −15.1390 0.7164 0.5194 0.1479 0.5657 26429.5300 50.93
GLMMa −15.4351 0.7471 0.4987 0.3246 0.3156 0.5107 1.19
TMB −15.4351 0.7469 0.4988 0.3242 0.3169 0.5108 1.64
ADMB −15.4350 0.7469 0.4988 0.3242 0.3169 0.5108 20.02
STATA −15.4349 0.7468 0.4985 0.3245 0.3154 0.5108 2.29
SAS −15.4349 0.7468 0.4985 0.3245 0.3154 0.5108 7.17

a Gene ENSG00000144802. LME4L—lme4 with the Laplace approximation; LME4A—lme4 with the adaptive Gaussian quadrature; GLMMa— 
GLMMadaptive; TMB—glmmTMB; ADMB—glmmadmb; SAS—PROC NLMIXED; STATA—menbreg. For the AGHQ-based methods, 75 quadrature points 
were used.
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SAS, and STATA. For 9112 genes, the model could be fitted 
by all the software implementations.

Figure 2 shows a scatterplot matrix that contains (under the 
diagonal) the Bland–Altman plots (Bland and Altman 1999) 
for the estimates of the mean-structure coefficients (β1 in 
Panel A, β2 in Panel B, and β3 in Panel 3) for the different 
implementations and the 9112 genes, for which the two-level 
model (19) was successfully fitted for all the implementations. 
In particular, the scatterplots present, for each pair of 
the implementations, the difference in the estimates (on the 
y-axis) as a function of the average of the estimates (on the 
x-axis). The red dashed line indicates the mean difference; ide-
ally, the mean should be equal to 0, because this implies no 
difference (on average) between the estimates obtained by two 
implementations. Additionally, the black dashed lines in the 
plots mark the 95% limits of agreement (constructed as 
mean±1:96×SD, where SD is the standard deviation of the 
differences). The limits are also presented numerically above 
the diagonal in each panel. They can be interpreted as the re-
gion that should contain 95% of the differences between esti-
mates for a pair of implementations. Thus, the narrower the 
limits, the better agreement between the estimates obtained by 
two implementations.

The Bland-Altman plots in all three panels of Fig. 2 indi-
cate that the mean difference is close to 0 (see also Table S4, 
available as supplementary data at Bioinformatics Advances 
online). The 95% limits of agreement are the widest for 
LME4A (around 0.7). On the other hand, they are much more 
narrow (with the width ranging from 0.05 to 0.12) for 
GLMMa, TMB, SAS, and STATA, suggesting that these four 
implementations yield very similar estimates.

Figure 3 presents the Bland–Altman plots and the 95% lim-
its of agreement for the estimated standard errors of estimates 
of coefficients β1 (Panel A), β2 (Panel B), and β3 (Panel C) for 
the different software implementations and the 9,112 genes, 
for which the two-level model (19) was successfully fitted for 
all the implementations. The mean difference of the standard 
errors is approximately 0 and there are no evident trends in 

plots for GLMMa, TMB, SAS, and STATA. The width of the 
95% limits of agreement varies between 0.03 and 0.08, indi-
cating a good agreement between the estimated standard 
errors (see also Table S5, available as supplementary data at 
Bioinformatics Advances online). As compared to those 
implementations, LME4L shows a trend toward larger esti-
mates of larger standard errors, while the estimated standard 
errors for LME4A exhibit the most remarkable differences. In 
particular, Table S6, available as supplementary data at 
Bioinformatics Advances online, indicates that LME4A pro-
vides a larger estimate for over 98% of the 9112 genes, while 
for LME4L the percentage is considerably smaller (approxi-
mately 6%– 31%).

Figure 4 presents the Bland-Altman plots and the 95% lim-
its of agreement for the estimates of ϕ (Panel A) and σ (Panel 
B). For ϕ (Panel A), the estimated values for SAS, STATA, 
and GLMMa closely correspond to each other, as indicated by 
the location of the points along the horizontal red dashed line 
corresponding to the mean of 0 and the narrow limits of 
agreement (with the width no larger than 0.08). As compared 
to those implementations, LME4L and, especially, LME4A 
show marked deviations. For σ (Panel B), the estimates 
obtained by STATA, SAS, and TMB correspond, in general, 
closely to each other. As compared to those implementations, 
GLMMa sometimes produces larger estimates for small values 
of σ. The estimates provided by LME4A and LME4L markedly 
differ from the other four implementations.

Table 6 shows the results of testing the three null hypothe-
ses of interest, H123

0 , H1
0, and H3

0 (see Section 2.1) for the 
9112 genes for which the two-level model (19) was success-
fully fitted for all software implementations. In particular, 
the table presents, for each implementation, the number of 
genes for which a particular null hypothesis was rejected. The 
table contains the results obtained by using the uncorrected 
(“raw”) P-values for the chi-squared Wald-test statistics at 
the 5% significance level, as well as the P-values corrected for 
multiple testing by using the Benjamini-Hochberg procedure 
that controls the false discovery rate (FDR) at 5%. The results 

Figure 2. Estimates of the mean-structure coefficients of the two-level model (19) for the different software implementations and the 9112 genes, for 
which the model was successfully fitted for all the implementations. The densities of the estimates are shown along the diagonal. The lower triangle 
contains Bland–Altman plots of the estimates for pairs of different software implementations, with the red dashed line indicating the mean difference 
and the black dashed lines marking the 95% limits of agreement. The upper triangle presents the numerical values of the limits. Panel A: β1; Panel B: β2; 
Panel C: β3. LME4L—lme4 with the Laplace approximation; LME4A—lme4 with the AGHQ approximation; GLMMa—GLMMadaptive; TMB—glmmTMB; 
SAS—PROC NLMIXED; STATA—menbreg.
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are quite consistent across the different software implementa-
tions except of LME4A. In particular, H123

0 was rejected for ap-
proximately 40% of tested genes were rejected, suggesting that 
their expression for patients, as compared to healthy controls, 
was different at some of the three time points. For all imple-
mentations except LME4A, this conclusion was consistently 
reached by using the multiplicity-adjusted P-values for a set of 
2853 genes. A similar pattern can be observed for the other 

two hypotheses, though with fewer rejections, i.e., approxi-
mately 18% and 21% for H1

0 and H3
0, respectively.

As it is clear from Table 6, LME4A led to the smallest num-
ber of genes for which the null hypotheses could be rejected. 
The reason is the consistent overestimation of the standard 
errors, as compared to the other implementations, as noted in 
Fig. 3 and Table S6, available as supplementary data at 
Bioinformatics Advances online.

Figure 4. Estimates of ϕ and σ for the two-level model (19) for the different software implementations and the 9112 genes, for which the model was 
successfully fitted for all the implementations. The densities of the estimates are shown along the diagonal. The lower triangle contains Bland–Altman 
plots of the estimates for pairs of different software implementations, with the red dashed line indicating the mean difference and the black dashed lines 
marking the 95% limits of agreement. The upper triangle presents the numerical values of the 95% limits of agreement. Panel A: ϕ; panel B: σ. LME4L— 
lme4 with the Laplace approximation; LME4A—lme4 with the AGHQ approximation; GLMMa—GLMMadaptive; TMB—glmmTMB; SAS—PROC 
NLMIXED; STATA—menbreg.

Figure 3. Estimated standard errors of the estimates of the mean-structure coefficients of the two-level model (19) for the different software 
implementations and the 9112 genes, for which the two-level model was successfully fitted for all the implementations. The densities of the estimated 
standard errors are shown along the diagonal. The lower triangle contains Bland–Altman plots of the estimates for pairs of different software 
implementations, with the red dashed line indicating the mean difference and the black dashed lines marking the 95% limits of agreement. The upper 
triangle presents the numerical values of the limits. Panel A: β1; panel B: β2; panel C: β3. LME4L—lme4 with the Laplace approximation; LME4A—lme4 
with the AGHQ approximation; GLMMa—GLMMadaptive; TMB—glmmTMB; SAS—PROC NLMIXED; STATA—menbreg.
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4 Conclusion
The hierarchical NB model allows analysis of over dispersed 
correlated count data resulting from experiments applying 
next-generation sequencing technologies, such as RNA-seq 
(Kazakiewicz et al. 2019, Tsonaka and Spitali 2021). Fitting 
the model requires the use of numerical integration and can 
be computationally intensive.

In this paper, we have evaluated several software imple-
mentations that can be used to apply the model. Table S1, 
available as supplementary data at Bioinformatics Advances 
online, provides a summary of packages and functions avail-
able in the open-source platform R, as well as in commercial 
software SAS and STATA. Toward this aim, we have used a 
real-life dataset obtained from an RNA-seq experiment. The 
estimates of the model parameters were quite consistent 
across different implementations.

Differences in estimates, particularly for σ and ϕ, as well as 
in computation times, which we observed in our paper, 
arise from several factors related to how different software 
implementations handle model fitting, parameterization, op-
timization, and numerical precision. To start with, the imple-
mentations use different approximations, such as the Laplace 
one or the AGHQ, to compute the marginal likelihood. Also, 
they use different optimization routines that can converge to 
different solutions. For instance, the Newton-Raphson 
method that was used in SAS is robust and accurate for com-
plex likelihood functions, but tends to converge slower than 
other optimizers. LME4L and LME4A use, by default, 
derivative-free methods (such as Nelder-Mead or Bound 
Optimization by Quadratic Approximation), which can be 
less efficient in terms of speed and precision compared to 
gradient-based methods, especially in models with multiple 
random effects (Nocedal and Wright 2006).

In our evaluation, we often noted discrepancies between 
the results obtained by using the LME4 package and the 
results for the other implementations. In the reference manual 
(Bates et al. 2015), the authors of the function glmer.nb, 
available in LME4 for fitting models based on the NB distri-
bution, indicates that certain components of the function are 
still experimental, with some methods still being either in-
complete or suboptimal. This may explain the observed dis-
crepancies. It is also worth noting that, unlike the other 
implementations, glmer.nb does not offer statistics that 
would allow inference about the dispersion parameter ϕ.

In general, the use of the AGHQ for the estimation of 
mixed-effects models is recommended, as compared to the 
use of the GHQ or the Laplace approximation (Bolker et al. 
2009, Tsonaka and Spitali 2021). However, as compared to 
the Laplace approximation, the use of the AGHQ requires, in 
general, a longer computation time. In our case study, the 
estimates obtained by using the Laplace approximation were 
similar to the estimates obtained by using the AGHQ. Also, 
while it has been reported (Pinheiro and Bates 1995, Lesaffre 
and Spiessens 2001) that the number of quadrature points in 
the AGHQ approximation can substantially impact the esti-
mation of a mixed-effects model, we have not observed any 
substantial differences in our results when increasing the 
number of the points beyond 10. There is no definitive guide-
line for the optimal number of quadrature points to use in 
practice, but using between 5 and 10 has been shown as a 
good balance between precision and computational efficiency 
(Pinheiro and Bates 1995, Lesaffre and Spiessens 2001, 
Pinheiro and Chao 2006). Software implementations also 

vary in their defaults. For example, GLMMadaptive typically 
uses 11 quadrature points when there are one or two random 
effects, and 7 points otherwise. In contrast, LME4 recom-
mends that models with a single random effect can reason-
ably use up to 25 quadrature points. Nevertheless, we 
recommend that the decision regarding the number of the 
points to be used should be made on a case-by-case basis.

The data used for illustration in this paper were obtained 
from a longitudinal study that included 42 subjects (Bouquet 
et al. 2016). In practice, smaller sample sizes can be encoun-
tered. In that case, it is recommended that statistical hypothesis 
testing is conducted by using bootstrap (Tsonaka and Spitali 
2021). A drawback of the use of bootstrap is an increase in the 
computation time necessary to conduct an analysis.

The various software implementations, evaluated in our 
paper, allow for a routine use of the hierarchical NB model in 
analysis of genomic experiments. We believe that the pre-
sented results may help the researchers to choose an appro-
priate implementation. To further assist in that matter, we 
include the code, used to fit models (18) and (19) to the data 
for the ENSG00000144802 gene by applying the different 
implementations, on Zenodo (https://doi.org/10.5281/zen 
odo.14908112). 
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Table 6. The number of genes for which the particular null hypothesis 
was rejected (see Section 2.4) based on the two-level model (19).a

Hypothesis Method # genes (raw) # genes (FDR)

H123
0 LME4L 4023 2961

LME4A 181 22
GLMMa 3962 2883
TMB 4015 2936
SAS 4007 2927
STATA 4007 2927

H1
0 LME4L 1721 566

LME4A 178 10
GLMMa 1692 524
TMB 1722 551
SAS 1719 550
STATA 1719 550

H3
0 LME4L 2027 591

LME4A 76 0
GLMMa 1985 559
TMB 2023 583
SAS 2016 583
STATA 2016 584

a The column marked “raw” contains the number of genes for which the 
null hypothesis was rejected at the 5% significance level without adjusting 
for multiple-testing. The column marked “FDR” contains the number of 
genes for which the null hypothesis was rejected after adjusting the P-values 
by using the Benjamini-Hochberg procedure. LME4L—lme4 with the 
Laplace approximation; LME4A—lme4 with the AGHQ approximation; 
GLMMa—GLMMadaptive; TMB—glmmTMB; SAS—PROC NLMIXED; 
STATA—menbreg.
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