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Abstract Approximate functional dependencies (ab-

breviated: AFDs) are functional dependencies (FDs)

that “almost” hold in a relation. While various mea-

sures have been proposed to quantify the level to which

an FD holds approximately, they are difficult to com-

pare and it is unclear which measure is preferable when

one needs to discover FDs in real-world data, i.e., data

that only approximately satisfies the FD. In response,

this paper formally and qualitatively compares AFD

measures. We obtain a formal comparison through a

novel presentation of measures in terms of Shannon and

logical entropy. Qualitatively, we perform a sensitivity

analysis w.r.t. structural properties of input relations.
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Quantitatively, we study the effectiveness of AFD mea-

sures for ranking linear AFDs on real world data. Based

on this analysis, we give clear recommendations for the

AFD measures to use in practice.
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1 Introduction

Functional dependencies (FDs) describe a strong rela-

tion between two sets of relational attributes, indicat-

ing that the values of one set determine the values of

the other in a given relation. Knowing FDs for a given

instance of a database schema aids in ensuring data

consistency, and helps in data cleaning and data pro-

filing [1, 12, 40]; facilitates data integration [43]; and

can be exploited for query optimization [25, 27], among

other tasks. In many data science scenarios, however,

the set of design FDs is unknown or incomplete [32].

As such, a variety of techniques have been proposed

to reverse engineer this set of design FDs from a given

relation instance [3, 6, 31, 32, 42].

In practical settings, however, database instances

may get corrupted with respect to the target set of

design FDs. This is due to, for example, errors dur-

ing data entry. Reverse engineering FDs from such in-

stances is particularly challenging, as it clearly does not

suffice to simply enumerate the FDs that are satisfied

in an instance. Instead, one must also consider approxi-

mate functional dependencies (AFDs) that is, FDs that

“almost hold” in the relation instance. In this respect,

a key decision to then make is when an FD “almost”

holds. This decision is reflected in the adoption of an

AFD measure, which formally quantifies the extent to

which an FD holds approximately in a given relation by
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attributing a score in the interval [0, 1]. Higher values

indicate a higher degree of FD satisfaction. As such,

an AFD measure provides a way of ranking the search

space of all possible FDs where higher-scoring FDs are

ranked before lower-scoring ones. Given a AFD mea-

sure one may discover the set of original design FDs by

ranking the search space, and returning all FDs larger

than a given threshold. A good AFD measure, then, is

one that ranks the FDs in the relation’s target set of

design FDs higher than those that are not in the tar-

get set, and does this consistently for relation instances

that occur in practice.

Many AFD measures have been proposed in the lit-

erature over the past decades [4, 19, 22, 24, 28, 29, 36,

37, 43]. Unfortunately, these measures vary widely in

nature and there has been little study so far in com-

paring them. As such, the answers to the following two

questions remain unclear.

(a) How do the different AFD measures compare?

(b) Which AFD measure(s) should one use when aim-

ing to discover AFDs in real-world data?

In this paper, we provide a complete answer to (a)

and a partial answer to (b) for the special setting when

we aim to discover linear AFDs in real-world data.1

Our answer to (b) is based on experimental comparison

on a newly established benchmark with real-world data.

Importantly, we show theoretically and in our synthetic

data analysis that the challenges affecting measure per-

formance on linear AFDs are also manifested for non-

linear AFDs. Thus, our study identifies the most suit-

able measures for linear AFD discovery while suggest-

ing that they are also the most promising candidates

for non-linear AFD discovery.
It is important to state that we only study AFD

measures and do not consider the design of AFD dis-

covery algorithms. AFD discovery algorithms usually

fix an AFD measure but then combine a multitude

of techniques to do the actual discovery. This includes

pruning the ranked search space for efficiency reasons

(e.g., [26, 28, 29, 36]) or complementing the measures’

ranking with heuristics for application-specific purposes

(e.g., [22, 47]). Of course, the improved knowledge of

AFD measures that we provide here may aid in im-

proving discovery algorithms in the future.

We next summarize how we address (a) and (b), as

well as our main results.

1.1 Conceptual comparison

To answer question (a) we adopt the following method-

ology. First and foremost, we survey 12 known AFD

1 An FD is linear if it has a single attribute on the left.

measures and present them in a uniform formal frame-

work. We proceed to qualitatively compare these mea-

sures along the following three axes. Table 9 in Section 9

summarizes all studied measures and our findings.

(Axis 1) First, we consider the measures’ interpre-

tability. In particular, we note that some measures are

equipped with baselines, which are relation instances

on which the measure yields a score of zero (indicat-

ing that the relation completely fails to satisfy an FD),

while others do not. Having baselines is a precondition

for correctly interpreting the measure score, as we dis-

cuss in Section 3. A stronger property is being normal-

ized, which allows to interpret the score as a percentage

between completely failing to satisfy an AFD (score of

0) and completely satisfying it (score of 1). We find in

general that normalized measures perform better than

non-normalized ones.

(Axis 2) Second, we exhibit common design prin-

ciples among measures. We observe that existing mea-

sures can be divided into three broad classes: (i) mea-

sures that quantify the fraction of violations (we re-

fer to measures in this class as Violation); (ii) mea-

sures based on Shannon entropy (Shannon) [14]; and

(iii) measures based on logical entropy (Logical) [15].

By means of a formal comparison, we highlight striking

similarities between measures in each of these classes,

allowing us to relate and link measures across classes.

For example, this allows us to say that pdep, a particular

measure in Logical, is the logical entropy variant of g2,

a particular violation-fraction measure in Violation.

By means of this comparison, we propose two new mea-

sures that do not appear in the literature, but which can

be viewed as Shannon-variants of existing measures,

hence applying a design principle known from one class

to measures in a different class. As such, we obtain 14

measures in total for our study.

(Axis 3) We evaluate the measures’ ability to dis-

tinguish between an FD X → Y in relation instances

that were generated to satisfy the FD, but subsequently

had errors introduced so that the FD no longer holds

exactly (we call such instance dependently-generated),

versus relation instances where X and Y were ran-

domly generated. Because FDs are supposed to indi-

cate correlation between X and Y , a good AFD mea-

sure should at a minimum be able to consistently dis-

tinguish between these two cases, giving high scores to

the former and low scores to the latter with a clear

separation in scores between the two cases. We note,

however, that there are various properties of the input

relation as well as the FD itself that affect the measures’

power to distinguish between these two cases. In par-

ticular, we evaluate the measures’ sensitivity w.r.t. the

following structural properties of the input. (i) The er-



Measuring Approximate Functional Dependencies: a Comparative Study 3

ror rate, i.e., the amount of errors introduced. (ii) LHS

-uniqueness: the normalized number of unique values

occurring in πX(R); (iii) RHS-skew : the skewness of

the distribution of values occurring in πY (R). Finally,

we also evaluate the measure’s sensitivity w.r.t #LHS,

which is the number of attributes in the left-hand-side

X of the FD. In general, we find that measures are

more robust if they are inversely proportional to the

error level and are insensitive to LHS-uniqueness and

RHS-skew. Further, for non-linear FDs insensitivity to

LHS-uniqueness becomes more important as #LHS in-

creases. Through our study on synthetic data, we hence

identify the measures that are robust in this respect,

and those that are not.

1.2 Practical comparison

We adopt the following methodology to answer (b). Our

study of question (a) focuses on the measures’ abil-

ity to distinguish between dependently-generated in-

stances and randomly-generated instances for a fixed

FD X → Y . In practice, however, we need to discover

AFDs from a given relation R, not determine whether

R is dependently or randomly generated. For success-

ful practical AFD discovery, hence, we require that a

measure ranks AFDs that are semantically meaningful

before meaningless ones, while also being practical to

compute.

To gauge the measure’s performance in this respect,

we first construct a new AFD discovery benchmark.

This is necessary because existing benchmarks are for

exact FD discovery, which are designed to gauge al-

gorithmic efficiency. As such, they do not contain a

semantically meaningful “ground truth” set of design

FDs that need to be discovered. Our benchmark, de-

noted rwd, identifies a set of linear and semantically

meaningful FDs to discover. It is obtained by inspect-

ing real-world datasets from existing benchmarks and

manually creating the set of design FDs for them.

On rwd, we first give insight into the measures’

computational efficiency. In particular, while most mea-

sures are quick to rank the entire search space of pos-

sible FDs, the Shannon measures reliable and smooth

fraction of information fail to rank the entire search

space within a reasonable amount of time.

We then compare the quality of the measures’ rank-

ing ability on rwd−, which is a subset of rwd on which

all measures were able to compute a score within a

reasonable time threshold to identify the best-ranking

AFD measure(s). Our analysis in Section 7.2 of measure

performance on rwd− shows that well-ranking mea-

sures exist within each of our newly identified measures

classes (Violation, Shannon and Logical). Further-

more, the best-ranking measure for Violation (mea-

sure g′3) is sensitive to RHS-skew and therefore per-

forms worse compared to the best-ranking measures

for Shannon (measure RFI
′+) and Logical (measure

µ+), which have comparable performances as well as

equal structural sensitivity properties. However, RFI
′+

has the disadvantage of being unreasonably slow to

compute whereas µ+ is very efficient.

We subsequently complement our findings by dis-

regarding slow-to-compute measures and analysing the

remaining measures on the full rwd benchmark in Sec-

tion 7.3. This ensures that our findings from rwd− were

not influenced by the exclusion of measures due to com-

putational constraints.

The number of actual AFDs in rwd (i.e. seman-

tically meaningful FDs that are not satisfied in the

data) remains relatively low. To gauge how consistent

the AFD measures are, we therefore synthetically in-

crease the number of AFDs in rwd by passing relations

through a controlled error channel causing previously

satisfied FDs to no longer hold. This final benchmark,

denoted rwde, allows us to inspect the measures’ abil-

ity to cope with an increasing amount of errors while

having realistic data distributions.

Recommendation. Based on all of theses investigations,

we recommend µ+ for practical linear AFD discovery.

We give more in-depth discussion and recommendations

in Section 9, where Table 9 summarizes our comparison.

In summary, our contributions are as follows. (1) A

survey of AFD measures, using a new and uniform pre-

sentation. (2) Formal classification of measures, and

comparison and linking of the measures across classes.

(3) Sensitivity analysis of measure performance w.r.t.

structural properties of the input relations. (4) Creation

of three real-world benchmarks for linear AFD discov-

ery. (5) Analysis of measure ranking power on these

benchmarks. (6) Clear recommendations for measure

adoption in linear AFD discovery. (7) Discussion of the

importance of insensitivity to LHS-uniqueness for non-

linear AFD discovery.

Parts of this paper have been published in the pro-

ceedings of the 40th IEEE International Conference on

Data Engineering [34]. This paper extends the confer-

ence version by adding (1) the interpretability analysis

(Axis 1 of the conceptual comparison); (2) the formal

comparison and linking between classes (Axis 2); (3)

an extension of the generated relation instances with

respect to #LHS (Axis 3); (4) a deeper practical com-

parison, also discussing computational efficiency, val-

idation of our findings on the novel benchmark rwd
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Table 1: Glossary of notation used in this paper.

X,Y an attribute
dom(X) the domain of an attribute
X,Y a finite set of attributes
x a tuple over set X of attributes

x : X x is a tuple over X
x|Y restriction of x to Y with Y ⊆ X
XY union of two sets of attributes, i.e. X ∪Y
xy idem for tuples: i.e. xy|X = x and

xy|Y = y
R a relation

R(X) R is relation over X
R(x) ∈ N frequency of x in R
x ∈ R x is a tuple in R with R(x) > 0

domR(Y ) {x|Y | x ∈ R}
|R| total number of tuples contained in R, i.e.∑

x : X R(x)
πX(R) bag-based relational projection of R onto

X
σX=x(R) bag-based relational selection of R on

X = x
φ := X → Y a functional dependency

R |= φ R satisfies a functional dependency φ
R ̸|= φ R violates a functional dependency φ
∆(R) the (fixed) schema of R

over rwd−, and analysis for increasing error levels on

the novel benchmark rwde. We believe that together

this significantly contributes to our overall comparison

of AFD measures and their effectiveness under different

conditions.

This paper is organized as follows. We introduce the

necessary background in Section 2. We survey and for-

mally introduce AFD measures in Section 3 where we

also compare them w.r.t. interpretability. We classify
and formally compare AFD measures in Section 4. We

relate measure behavior on linear FDs to behavior on

non-linear FDs in Section 5. We investigate sensitivity

w.r.t. structural properties in Section 6. We compare

measures on real-world data in Section 7. We discuss

related work in Section 8. Finally, we provide recom-

mendations, discuss future work, and conclude in Sec-

tion 9.

2 Preliminaries

We summarize the notation used in this paper in Ta-

ble 1. We assume given a fixed set of attributes, where

each attribute X has a domain dom(X) of possible

data values. We use uppercase letters X,Y, Z to de-

note attributes and boldface type like X,Y ,Z to de-

note sets of attributes. Lowercase x, y, z denote tuples

over these sets. Formally, as usual, a tuple over X is

a mapping x that assigns each attribute X ∈ X to a

value x(X) ∈ dom(X). We write x : X to indicate that

x is a tuple over X, and x|Y for the restriction of x

to Y ⊆ X. We use juxtaposition like XY to denote

the union X ∪Y of two sets of attributes, and also ap-

ply this notation to tuples: if x : X and y : Y with X

and Y disjoint, then xy is the tuple that equals x on

all attributes in X and y on all attributes in Y , i.e.

xy|X = x and xy|Y = y.

We will work with bag-based relations. Formally, a

relation over X (also called X-relation) is a mapping R

that assigns a natural number R(x) ∈ N to each tuple

x : X. We require relations to be finite in the sense that

R(x) can be non-zero for at most a finite number of x.

We write x ∈ R to denote that R(x) > 0 and stress that

R is an X-relation by means of the notation R(X). |R|
denotes the total number of tuples in R, πY (R) denotes

bag-based projection on Y , and σX=x(R) denotes bag-

based selection. If Y ⊆ X then we denote by domR(Y )

the set {x|Y | x ∈ R}.

Functional Dependencies. A functional dependency (an

FD for short) is an expression φ of the form X → Y .

A relation R(W ) with X,Y ⊆ W satisfies φ if for all

tuples w,w′ ∈ R we have that w|Y = w′|Y whenever

w|X = w′|X . In what follows, we always implicitly as-

sume that X and Y are disjoint when considering FDs.

An FD is linear if |X| = 1 and non-linear otherwise.

An FD is unitary if |Y | = 1. It is well-known that non-

unitary FDs with |Y | > 1 can be expressed as a set of

unitary FDs. Whenever convenient, we may therefore

assume w.l.o.g. that |Y | = 1.

Dependency Discovery. A schema is a finite set of uni-

tary FDs. In the exact FD discovery problem we are

given a relation R that satisfies all FDs in some fixed

design schema ∆(R), but have no knowledge of ∆(R)

itself. We are then asked to recover ∆(R) by deriving

the largest set Λ ⊇ ∆(R) of FDs that are satisfied by R.

In the approximate FD discovery problem, we are given

a relation R that does not satisfy ∆(R) and again we

are asked to recover ∆(R). Here, we assume that R is

obtained by means of a noisy channel process as follows.

From a clean relation R′ that satisfies ∆(R), the noisy

relation R is obtained by modifying certain values in

tuples in R′. We consider an error each cell for which

R differs from the clean version R′. Note that by run-

ning exact FD discovery algorithms on R, we will still

be able to recover satisfied FDs in ∆(R). Our interest

in this paper is in approximate FD discovery, i.e., deriv-

ing the FDs in ∆(R) that, because of errors introduced,

are violated in R and therefore cannot be discovered by

exact FD discovery.
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In Section 3 we survey various measures that have

been proposed to quantify the level to which an FD

holds approximately. As we will see, many of these mea-

sures are based on exploiting notions of Shannon or

logical entropy. We introduce these notions next.

Probabilities. Both notions of entropy are defined w.r.t.

a given joint probability distribution. In our setting,

this probability distribution is defined by the relation

under consideration. Let R(W ) be a relation. The joint

probability distribution pR(W ) over W induced by R

is defined by pR(W = w) = R(w)
|R| . As such, pR(W =

w) is the probability of observing w when randomly

drawing a tuple from R. We note that this probability

distribution is only well-defined when R is non-empty.

Because the empty relation vacuously satisfies all FDs,

we will implicitly assume without loss of generality in

the rest of this paper that relations are non-empty.

To simplify notation in what follows, we will write

pR(w), pR(y) and pR(y | x) instead of pR(W = w),

pR(Y = y) and pR(Y = y | X = x), respectively. The

notions of marginal and conditional distributions de-

rived from pR(w) are defined as follows: pR(y) denotes

the marginal probability distribution on Y -tuples in R,

while pR(y | x) is the conditional distribution on Y

given X = x. Thus,

pR(y) =
∑

w:W s.t. w|Y =y

pR(w), pR(y | x) = pR(xy)

pR(x)
.

It is readily verified that pR(Y ) equals the distribution

induced by πY (R), while pR(Y | X = x) equals the

distribution induced by πY σX=x(R).

Shannon Entropy. We write HR(X) for the Shannon

entropy of X in R, defined as usual [14] by2

HR(X) = −
∑
x : X

pR(x) log pR(x).

HR(X) reflects the average level of uncertainty inherent

in the possible tuples over X in πX(R). The conditional

entropy HR(Y | X) is the uncertainty in Y given X,

defined as

HR(Y | X) = −
∑

x : X,y : Y

pR(xy) log
pR(xy)

pR(x)
.

Equivalently, denoting by HR(Y | x) the Shannon en-

tropy of Y in the conditional distribution pR(Y | X =

x), we see that HR(Y | X) is the expected value of

HR(Y | x), taken over all x, i.e.,

HR(Y | X) = Ex [HR(Y | x)] .
2 Here and in the sequel we use the common convention

that 0 log 0 = 0 and 0
0
= 0.

Logical Entropy. The logical entropy of X in R is the

probability that two tuples w and w′, drawn randomly

with replacement from R according to pR, differ in some

attribute in X [15]. That is,

hR(X) := 1−
∑
x : X

pR(x)
2.

Here, pR(x)
2 is the probability that two random tuples

are exactly equal to x on X.

We denote by hR(Y | x) the logical entropy of Y

in the conditional distribution pR(Y | X = x), i.e.,

hR(Y | x) = 1−
∑
y : Y

pR(y | x)2.

The logical conditional entropy of Y given X in R,

denoted hR(Y | X), is the probability that two tuples,

drawn at random with replacement from R according

to pR, are equal in all attributes of X, but differ in

some attribute of Y ,

hR(Y | X) :=
∑
x,y

pR(xy)[pR(x)− pR(xy)].

Here, the factor pR(xy) expresses the probability of

observing xy in the first tuple and the factor pR(x)−
pR(xy) is the probability that the second tuple has the

same value for x but differs in y.

Note that, in contrast to the case of Shannon en-

tropy where HR(Y | X) = Ex[HR(Y | x)], in logical

entropy hR(Y | X) ̸= Ex[hR(Y | x)].

Discussion on logical and Shannon entropy. The no-

tion of logical entropy arises in mathematical philoso-

phy [15], where it is observed to provide a theory of

information based on logic. Importantly, formulas and

equalities concerning logical entropy can be converted

into corresponding formulas and equalities concerning

Shannon entropy by the so-called dit-bit transform (see

[15]). Logical and Shannon entropy are hence highly

similar, but measure different things: logical entropy

measures the probability of two random tuples to be

distinguished, while Shannon entropy measures average

uncertainty.

3 AFD Measures

In this section, we survey the literature on AFD mea-

sures.
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AFD measures. Formally, an AFD measure, short for

approximate FD measure, is a function that maps pairs

(φ,R), with φ an FD and R a relation, to a number

in the interval [0, 1] that indicates the level to which

φ holds in R. Higher values are intended to indicate

that R makes fewer violations to φ, and we require that

f(φ,R) = 1 if R perfectly satisfies φ.

It is important to note that instead of defining AFD

measures, some papers in the literature define error

measures where a high value indicates a high number

of errors against the FD. In what follows, we routinely

re-define such error measures e into an AFD measure

fe by setting fe(φ,R) := 1− e(φ,R).

Every AFD measure f naturally gives rise to an

(inefficient) associated AFD discovery algorithm as fol-

lows. From an abstract viewpoint, an AFD discovery

algorithm simply consists of a fixed AFD measure f

and a threshold ϵ ∈ [0, 1]. Given a relation R(W ) the

algorithm returns all unitary FDs over W whose f -

value lies in the range [ϵ, 1[. In particular, this excludes

the unitary FDs satisfied by R. As already mentioned

in the Introduction, practical discovery algorithms will

apply efficient pruning strategies to make the discovery

efficient, and in particular aim to discover only “min-

imal” unitary AFDs, i.e. AFDs X → Y for which no

other AFD X ′ → Y with X ′ ⊂ X is discovered. Since

our focus in this paper is on understanding measure

ranking power, we disregard this aspect and continue

to work with this conceptual but inefficient notion of

AFD discovery algorithm.

Interpretation and baselines. A key difficulty lies for

AFD discovery algorithms, as with all threshold-based

algorithms, in determining the correct threshold ϵ to

use. At its core, this question boils down to how we

should interpret the significance of the values returned

by f . It is tempting to see the values of f as a percentage

with f(φ,R) = 1 indicating that R perfectly satisfies

φ and f(φ,R) = 0 indicating that R completely fails

to satisfy φ. This interpretation, however, is only valid

if the measure has a notion of R “completely failing to

satisfy” φ. In particular, this is only possible when there

are relations for which f(φ,R) = 0. In what follows,

we call a relation R with f(φ,R) = 0 a baseline of

f for φ. If f has a baseline for every FD φ then we

say that f has baselines, otherwise we call f without

baselines. Having baselines is a necessary condition for

interpreting measure scores as percentages.

Set-based measures. Some measures do not depend on

the multiplicity of tuples in the input relation, in the

sense that for all R(W ) and S(W ), if domR(W ) =

domS(W ) then f(φ,R) = f(φ, S). We refer to such

measures as set-based measures in what follows.

Conventions. Throughout this section, we define mea-

sures in full generality for arbitrary FDs, not only uni-

tary FDs. Throughout, let R be a W -relation, let X,Y

be disjoint subsets of W and let φ = X → Y . We

convene that for all measures f that we describe, we

trivially set f(φ,R) := 1 if R |= φ. So, the definitions

that follow only apply when R ̸|= φ. In that case, ob-

serve that R must be non-empty, that |domR(X)| ̸= |R|
and that |domR(Y )| > 1 since otherwise R trivially

satisfies X → Y . As a consequence, HR(Y ) > 0 and

hR(Y ) > 0. This ensures that the denominator of frac-

tions in the formulas that follow are never zero.

3.1 Co-occurrence ratio

Ilyas et al. [22] consider the derivation of AFDs (called

soft FDs in their paper) as well as general correlations

between attributes. To derive AFDs, they consider the

ratio between the number of distinct X-tuples and the

number of distinct XY -tuples occurring in R. We de-

note this measure by ρ, formally defined as:

ρ(X → Y , R) :=
| domX(R)|
| domXY (R)|

.

This is 1 if R satisfiesX → Y and decreases when more

y-tuples occur with the same x-tuple. Note that ρ is a

set-based measure, as it ignores the multiplicities of the

tuples in R. It is also without baselines, as |domX(R)| >
0 for any non-empty relation R and as, by convention,

ρ(φ,R) = 1 when R is empty.

3.2 g-measures

Kivinen and Mannila [24] introduced three error mea-

sures on set-based relations. Generalized to bag-based

relations, and converted to AFD measures, these are

the following.

The measure g1. The measure g1 is based on logical

entropy. Specifically, Kivinen and Manila defined g1 to

reflect the (normalized) number of violating pairs in R.

Here, a pair (w,w′) of R-tuples is a violating pair if

they are equal on X but differ on Y . Formally, if we

denote the bag of violating pairs in R×R by G1(X →
Y , R) then, converted to an AFD measure instead of

an error measure

g1(X → Y , R) :=
|R|2 − |G1(X → Y , R)|

|R|2

= 1− |G1(X → Y , R)|
|R|2

= 1− hR(Y | X).
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In other words, g1 is maximized when the logical con-

ditional entropy is minimized.

The measure g1 is without baselines. Because pairs

of the form (w,w) are never violating, it is straightfor-

ward to see that the total number of violating pairs is

bounded from above by |R|2 −
∑

w R(w)2. We denote

by g′1 the normalized version of g1,

g′1(X → Y , R) := 1− |G1(X → Y , R)|
|R|2 −

∑
w R(w)2

.

The baselines of g′1 are hence those relations for which

the set G1(X → Y , R) consists of all possible violating

pairs.

Both g1 and g′1 have been used as the basis of AFD

discovery algorithms. In particular, g1 is the basis of

Fdx [47] while g′1 is the basis of Pyro [26]. Adaptations

of g′1 are also used in the context of denial constraints

[35] and roll-up dependencies [8].

The measure g2. Kivinen and Manila defined g2 to re-

flect the probability that a random tuple participates

in a violating pair. We define G2(X → Y , R) to be the

set of all tuples in R that participate in a violating pair,

G2(X→Y , R) :=

{w ∈ R | ∃w′ ∈ R, (w,w′) ∈ G1(X→Y , R)} .

Then, g2, converted to an AFD measure instead of

an error measure as originally proposed, computes the

probability that a tuple, drawn randomly from R ac-

cording to pR, is not part of a violating pair,

g2(X → Y , R) := 1−
∑

w∈G2(X→Y ,R)

pR(w).

The baselines of g2 are those relations R in which every

tuple is part of a violating pair.

The FD-compliance-ratio that is used as one of the

building blocks in UNI-DETECT [44], is based on g2.

The measure g3. The measure g3 computes the relative

size of a maximal subrelation of R for which X → Y

holds. Specifically, define R′(W ) to be a subrelation of

R(W ), denotedR′ ⊆ R, ifR′(w) ≤ R(w) for allw : W .

Let G3(X → Y , R) denote the set of all subrelations of

R that satisfy X → Y ,

G3(X → Y , R) := {R′ | R′ ⊆ R,R′ |= X → Y } .

Then g3 is defined as the maximum relative size of a

subrelation satisfying X → Y :

g3(X → Y , R) := max
R′∈G3(X→Y ,R)

|R′|
|R|

.

Note that 1 − g3(X → Y , R) can naturally be inter-

preted as the minimum fraction of tuples that need to

be removed for X → Y to hold in R.

The measure g3 is without baselines. Indeed, for

any non-empty R we can always obtain a subrelation

R′ ∈ G3(φ,R) of size |domX(R)| by arbitrarily fixing

one y-value for each x-value. As such, g3 is bounded

from below by | domX(R)|
|R| > 0. Gianella and Robert-

son [19] proposed a normalized variant g′3 of g3, defined

as follows:

g′3(X → Y , R) := max
R′∈G3(X→Y ,R)

|R′| − | domR(X)|
|R| − | domR(X)|

.

This variant has as baselines all relations R for which no

subrelation R′ ∈ G3(φ,R) is larger than | domR(X)|.
The unnormalized measure g3 is used in multiple

AFD discovery algorithms [3, 21, 23, 24]. Furthermore,

the ‘per-tuple’ probability of an FD, as defined in [43],

is precisely g3. Berzal et al. [4] use it as the basis for re-

lational decomposition based on AFDs instead of FDs.

Exact and approximate solutions for the computation of

g3 in the context of non-crisp FDs are proposed in [18].

We note that g3 has been generalized to other depen-

dencies as well: e.g., conditional FDs [13, 38], inclusion

dependencies [30], and conditional matching dependen-

cies [45]. By contrast, the normalized version g′3 only

appears in [19].

3.3 Fraction of Information

Cavallo and Pittarelli [10] introduced fraction of in-

formation (FI) as a way to generalize FDs from de-

terministic to probabilistic databases. Usage of FI as

an AFD measure was later studied by Giannelli and

Robertson [19]. FI is based on Shannon entropy and is

formally defined as

FI(X → Y , R) :=
HR(Y )−HR(Y | X)

HR(Y )
.

The numerator HR(Y )−HR(Y | X) is known as mu-

tual information [14], which we denote by IR(X;Y ) in

what follows.

We can understand FI as follows. HR(Y ) measures

the uncertainty of observing Y , while HR(Y | X) mea-

sures the uncertainty of observing Y after observingX.

FI hence represents the proportional reduction of uncer-

tainty about Y that is achieved by knowing X. When

R satisfies X → Y , there is no uncertainty about Y

after observing X and hence HR(Y | X) = 0 and so

FI is 1. Conversely, when X and Y are independent

random variables in pR, there is no reduction in uncer-

tainty, and hence HR(Y | X) = HR(Y ) and so FI is 0.

Thus, the baselines of FI for X → Y are those relations

R for which X and Y are independent in pR.
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Bias. Mandros et al. [28, 29] and Pennerath et al. [36]

proposed two refinements to FI specifically for AFD dis-

covery, called reliable FI (RFI) and smoothed FI (SFI),

respectively. They are motivated in proposing these re-

finements by the following observation. Consider a re-

lation S(W ) and assume that we are given relation

R(W ) of size n that is obtained by sampling n tuples

from S according to distribution pS . Further assume

that we do not have access to S and wish to determine

FI(X → Y , S) based on R. Then a result by Roul-

ston [41] states that the expected value of IR(X;Y ),

taken over all R obtained in this manner, equals

IS(X;Y ) +
BXY −BX −BY + 1

2n

where BX := | domS(X)|. In other words, we may

expect IR(X;Y ) to overestimate IS(X;Y ) and the

magnitude of overestimation depends on the size of

the active domains of XY , X, and Y in S, as well

as on n. Additionally, because HR(Y ) underestimates

HS(Y ) [41], we may conclude that FI(X → Y , R)

is expected to overestimate FI(X → Y , S) and the

magnitude of overestimation depends on the active do-

main sizes and the size of S. This overestimation is

problematic since FI(X → Y , R) will be quite large,

even if X and Y are independent in pS , resulting in

FI(X → Y , S) being 0.

Reliable FI. Reliable FI corrects for this bias by sub-

tracting the mutual information value that is expected

under random (X;Y )-permutations.

Definition 1 Relation R′ is an (X;Y )-permutation of

R, denoted R ∼X;Y R′ if
(i) |R| = |R′|;
(ii) πX(R) = πX(R′);

(iii) πY (R) = πY (R′); and

(iv) πZ(R) = πZ(R
′) where Z = W \XY .

In particular, R′ and R have the same marginal dis-

tributions both on X and Y , pR′(X) = pR(X) and

pR′(Y ) = pR(Y ). In what follows, for a measure f , we

denote by ER[f(X → Y , R))] the expected value of

f(X → Y , R) where the expectation is taken over all

(X;Y )-permutations of R.

Reliable fraction of information is then defined as

RFI(X → Y , R) :=

FI(X → Y , R)− ER[FI(X → Y , R)].

Because the number of permutations of R is finite, we

may compute ER[FI(X → Y , R)], and therefore also

RFI(X → Y , R), by simply computing FI(X → Y , R′)

for every permutation R′ of R and taking the aver-

age. More efficient algorithms are proposed in [28, 29].

Even with these improved algorithms, computing RFI

remains inefficient, as we show in Section 7.

Strictly speaking, RFI is not an AFD measure since

it can become negative when FI(φ,R) < ER[FI(φ,R)].

Because such negative RFI values indicate that there is

weak evidence to conclude that φ is an AFD, we turn

RFI into an actual AFD measure RFI+ by setting

RFI+(X → Y , R) := max(RFI(X → Y , R), 0).

The baselines of RFI+ for X → Y are hence all rela-

tions whose FI value is smaller or equal than the ex-

pected value under random permutations.

Smoothed FI. Smoothed FI uses laplace smoothing to

reduce bias. Laplace smoothing is a well-known statis-

tical technique to reduce estimator variance. It is pa-

rameterized by a value α > 0. Specifically, for a re-

lation S(XY ), let S(α) denote the α-smoothed ver-

sion of S, defined by S(α)(xy) := S(xy) + α for every

x ∈ domS(X) and y ∈ domS(Y ). Note in particu-

lar that it is possible that S(xy) = 0, in which case

S(α)(xy) = α. Then the smoothed FI of R is simply

the normal FI of the α-smoothed version of πXY (R):

SFIα(X → Y , R) := FI(X → Y , π
(α)
XY (R)).

We note that, because π
(α)
XY (R) contains a tuple xy

for every possible combination of x ∈ domX(R) and

y ∈ domY (R), it can be many times larger than R. SFI

is therefore also relatively inefficient to compute, as we

show in Section 7.

AFD discovery algorithms based on RFI and SFI

are presented in [28, 29] and [36], respectively.

3.4 Probabilistic dependency, τ and µ

Piatetsky-Shapiro and Matheus [37] proposed proba-

bilistic dependency as another probabilistic generaliza-

tion of a functional dependency. They also introduced a

normalized version of probabilistic dependency, which

is equivalent to the Goodman and Kruskal τ measure

of association [20]. Finally, they also propose a rescaled

version of τ . All three notions are defined as follows. It

is worth noting that, apart from [37], we are not aware

of any work that considers these measures for AFD dis-

covery in the database context, let alone designs AFD

discovery algorithms for them.

Probabilistic dependency. The probabilistic dependency

of Y on X in R, denoted by pdep(X → Y , R), repre-

sents the conditional probability that two tuples drawn
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randomly with replacement from R are equal on Y ,

given that they are equal on X. Formally,

pdep(X → Y , R) :=
∑
x

pR(x) pdep(Y | x, R),

where pdep(Y | x, R) is the probability that two ran-

dom Y -tuples drawn with replacement from the condi-

tional distribution pR(Y | x) are equal:

pdep(Y | x, R) :=
∑
y

pR(y | x)2 = 1− hR(Y | x).

Probabilistic dependency is hence a measure based on

logical entropy. It can be understood as follows. Sup-

pose that we are given two tuples that equal x on X.

Then pdep(Y | x, R) is the probability that these tu-

ples are also equal on Y , and pdep(X → Y , R) is the

expected value of pdep(Y | x, R) over all x.

We note that probabilistic dependency can also be

seen as a generalization of the measure g2. Whereas

g2 computes the probability that a random tuple can-

not be extended to a violating pair, probabilistic de-

pendency computes the average conditional probability

that a given X-tuple x cannot be extended to a violat-

ing pair, where we average over all values of X.

The measure τ . For pdep it is straightforward to see

that pdep(X → Y , R) > 0, always. As such, pdep is a

measure without baselines. In fact, Piatetsky-Shapiro

and Matheus [37] show that we always have

pdep(X → Y , R) ≥ pdep(Y , R)

where pdep(Y , R), called probabilistic self-dependency,

is defined as the probability that two random tuples in
R have equal Y attributes,

pdep(Y , R) :=
∑
y

pR(y)
2 = 1− hR(Y ).

To account for the relationship between pdep(Y , R) and

pdep(X → Y , R), Piatetsky-Shapiro and Matheus pro-

pose to normalize pdep(X → Y , R) with respect to

pdep(Y , R). The resulting measure is equivalent to the

τ (tau) measure of association [20], which is defined by

Goodman and Kruskal as

τ(X → Y , R) :=
pdep(X → Y , R)− pdep(Y , R)

1− pdep(Y , R)
.

Piatetsky-Shapiro and Matheus explain τ in the follow-

ing way [37]. Suppose we are given a tuple drawn ran-

domly from R according to pR, and we need to guess

its Y value. One strategy is to make guesses randomly

according to the marginal distribution of Y , i.e. guess

value Y = y with probability pR(y). Then the proba-

bility for a correct guess is pdep(Y , R). If we also know

that item has X = x, we can improve our guess using

conditional probabilities of Y , given that X = x. Then

our probability for success, averaged over all values of

X, is pdep(X → Y , R), and τ(X → Y , R) is the rela-

tive increase in our probability of successfully guessing

Y , given X. The baselines of τ for X → Y are hence

those relations where this relative increase is zero.

The measure µ. Piatetsky-Shapiro and Matheus [37]

note that pdep and τ have the following undesirable

property.

Theorem 1 (Piatetsky-Rotem-Shapiro [37])

Given a random relation R of size N ≥ 2 containing

attributes X and Y , where X has K = | domR(X)|
distinct values in its active domain, the expected values

of pdep and τ under random permutations of R are

ER[pdep(X → Y , R)] =

pdep(Y , R) +
K − 1

N − 1
(1− pdep(Y , R)),

and

ER[τ(X → Y , R)] =
| domR(X)| − 1

|R| − 1
.

Therefore, assuming a fixed distribution of Y values,

ER[pdep(X → Y , R)] depends only on the number of

distinct X values and not on their relative frequency.

Moreover, the formula for ER[τ(X → Y , R)] tells us

that if we have two candidate AFDs with the same right

hand side, X → Y and Z → Y , then if | domR(Z)| >
| domR(X)|, we may expect τ to score Z → Y better

thanX → Y , regardless of any intrinsic better relation-
ship between Z and Y over X and Y in R. In response,

Piatetsky-Shapiro and Matheus compensate for this ef-

fect by introducing the measure µ which normalizes

pdep(X → Y , R) with respect to ER[pdep(X → Y , R)]

instead of pdep(Y , R):

µ(X →Y , R)

:=
pdep(X → Y , R)− ER[pdep(X → Y , R)]

1− ER[pdep(X → Y , R)]

= 1− 1− pdep(X → Y , R)

1− pdep(Y , R)

|R| − 1

|R| − | domR(X)|

Note that this fraction is ill-defined if the denominator

1−ER[pdep(φ,R)] = 0. In the following lemma we show

that this only happens, however, when R |= φ, which

we have assumed not to be the case throughout this

section, since we have already convened to set µ(φ,R) =

1 whenever R |= φ.

Lemma 1 If ER[pdep(φ,R)] = 1 then R |= φ.
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Proof Assume that ER[pdep(φ,R)] = 1. LetR1, . . . , RN

be an enumeration of all permuations of R. Then

ER[pdep(φ,R)] =

∑N
i=1 pdep(φ,Ri)

N

Hence, ER[pdep(φ,R)] = 1 iff
∑N

i=1 pdep(φ,Ri) = N .

Because the range of pdep is the interval [0, 1] this sum

can equal N if, and only if, pdep(φ,Ri) = 1 for every

Ri, including R itself. Suppose, for the purpose of con-

tradiction, that R ̸|= φ. Then, the value of pdep is given

by the formula in Section 3.4, i.e.

pdep(X → Y , R) =
∑
x

pR(x) pdep(Y | x, R)

=
∑
x

pR(x)[1− logentropR(Y | x)]

= 1− Ex[hR(Y | x)].

Since pdep(X → Y , R) = 1, this means in particular

that Ex[hR(Y | x)] = 0, which by reasoning similar as

above can only happen if hR(Y | x) = 0 for every x ∈
πX(R). This means that for every x ∈ πX(R), the prob-

ability to draw two distinct Y -tuples in πY (σX=x(R))

is zero. But that can only happen if there is only one

Y -value πY (σX=x(R)), in which case R |= φ and we

obtain our desired contradiction. ⊓⊔

Strictly speaking, µ is not a measure since it returns

negative values when pdep(X → Y , R) is larger than

ER[pdep(X → Y , R)]. Because such negative µ values

indicate that there is weak evidence to conclude that φ

is an AFD, we turn µ into an actual AFD measure µ+

by setting

µ+(X → Y , R) := max(µ(X → Y , R), 0).

The baselines of µ+ for X → Y are hence all relations

where the pdep(X → Y ) value is smaller or equal to

the expected value under random permuations.

4 Classes of AFD measures

Looking at the previous definitions, we observe three

different notions that are used to formally define a mea-

sure. Hence, we discern the following three classes (see

also the second row in Table 9):

(1) The class of measures that have a notion of “vio-

lation” and quantify the number of violations, con-

sisting of ρ, g2, g3, and g′3. We denote this class by

Violation (V).

(2) The class of measures based on Shannon entropy,

consisting of FI,RFI+, and SFI. We denote this

class by Shannon (S).

(3) The class of measures based on logical entropy, con-

sisting of g1, g
′
1, pdep, τ , and µ+ and denoted by

Logical (L).

We discuss the similarities in the design of Logi-

cal measures and those in the Violation and Shan-

non class by means of Table 2, which clusters measures

into groups that we find similar and where we rewrite

measures into equivalent form when this is necessary to

stress the similarities.

Theorem 2 The alternate formulas given in Table 2

are equivalent to their definition given in Sections 3.1–

3.4.

The interested reader may find the proof in Ap-

pendix A. Next, we discuss the similarities found in

Table 2.

1 We have already observed that g1 is a measure

based on logical entropy, g1(X → Y , R) = 1− hR(Y |
X). We find it interesting to observe that Giannella

and Robertson [19] considered an axiomatisation of FD

error measures, and showed that the Shannon entropy

HR(Y | X) is, up to a multiplicative constant, the

unique unnormalized error measure that satisfies their

axioms. As such, we may view 1 − HR(Y | X) as

the Shannon equivalent of g1, where logical entropy is

replaced by Shannon entropy. Giannella and Robert-

son [19] observed that 1 − HR(Y | X) has the range

[−∞, 1] instead of [0, 1] and therefore disregard it as an

AFD measure. In [19], they therefore turn 1−HR(Y |
X) into an AFD measure by moving to FI, which nor-

malizes HR(Y | X) w.r.t. HR(Y ). This is no longer

the conceptual Shannon counterpart of g1. However, as

further discussed below, it is nevertheless natural to ask

what the conceptual Shannon counterpart of g1 is and

how it behaves. We thus propose the following Shannon

variant gS1 of g1, obtained by limiting 1 −HR(Y | X)

to be positive:

gS1 (X → Y , R) := max(1−HR(Y | X), 0).

2 We have already observed in Section 3.4 that

we may view pdep as a generalisation of g2. We may

also view it as an alternate to g3. Indeed, pdep equals

the expected value of 1 − hR(Y | x) by expressing the

probability of x not participating in a violating pair.

Likewise, g3 equals the expected value of maxy pR(y |
x) by expressing the largest subgroup of non-violating

tuples in πY σX=x(R). In both cases, the expectation

is taken over all x.

3 As shown by the rewritten formulas in line 3 of

Table 2, FI is simply the Shannon entropy-based version

of τ .

4 The similarity between τ and FI extends to a

conceptual similarity between µ and RFI: µ corrects
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Table 2: Overview of similarities between Logical measures and measures in Violation/ Shannon.

Logical measure Violation/Shannon

1 g1 = 1− hR(Y | X) 1−HR(Y | X)

2 pdep=
∑

x pR(x) (1− hR(Y | x)) g3 =
∑

x pR(x)maxy pR(y | x)
= 1−

∑
x pR(x)hR(Y | x) g2 = 1−

∑
w∈G2(X→Y ,R) pR(w)

3 τ = 1− Ex[hR(Y |x)]

hR(Y )
FI= 1− HR(Y |X)

HR(Y )

= 1− Ex[HR(Y |x)]

HR(Y )

4 µ= pdep(φ,R)−ER[pdep(φ,R)]

1−ER[pdep(φ,R)]
RFI= FI(φ,R)− ER[FI(φ,R)]

for the bias of τ under random permutations while RFI

corrects for the bias of FI under random permutations.

Despite this conceptual similarity, note that the cor-

rections are done differently: µ corrects by taking the

normalized difference between pdep and ER[pdep] while

RFI corrects by taking the absolute difference between

FI and ER[FI]. As such RFI is not a normalized mea-

sure. Since it is natural to ask what the normalized

variant of RFI is and how it behaves, we define

RFI
′+(φ,R) := max

(
FI(φ,R)− ER[FI(φ,R)]

1− ER[FI(φ,R)]
, 0

)
.

Conclusion. By means of the harmonized comparison

above, we have identified two new measures that are

Shannon versions of existing measures. For complete-

ness, we include both of these measures in our study,

and compare their behavior to that of the other mea-

sures in the following.

5 On linear vs non-linear FDs

In the following sections we will proceed with our sen-

sitivity analysis and experimental comparison. There,

we will focus primarily on comparing measure behavior

on linear FDs. Our primary focus on linear FDs is mo-

tivated by the following observation: each introduced

measure f computes its score f(X → Y , R) without

ever reasoning about the number of attributes in X,

or Y . Indeed measures look at the data distributions

of πX(R), πY (R), πXY (R), the number of violations,

and so on . . . , but never at |X| nor |Y |.
In fact, each measure treats X and Y as if they

were a single attribute. This can be formalized as fol-

lows. Consider a relation R(W ) and an FD X → Y .

Let A and B be two new attributes not occurring in

W , let W ′ = W \XY ∪ {A,B}. Intuitively, the set of

attributes X in W is replaced by the single attribute

A, and Y by B. Define the linear FD φ′ = A → B

and let R′(W ′) be the relation obtained as follows. For

every tuple t ∈ R create a tuple t′ ∈ R′ by first set-

ting t′ = t|W \XY and subsequently setting t′(A) (resp.

t′(B)) equal to t|X (resp. t|Y ). This can e.g. be done by

converting all X-values in t into strings and concate-

nating them to become the single value t′(A). Under

this transformation of R into R′ it is straightforward

to verify that f(X → Y , R) = f(A → B,R′) for all

considered measures f . Conversely, it is also possible to

start from a concrete linear FD φ′ and relation R′ and

construct non-linear FD φ and relation R such that

again f(X → Y , R) = f(A → B,R′): split A into

multi-attribute entries X and similarly B into Y . In

this respect, f hence does not distinguish between X

and Y having multiple attributes, or being a single at-

tribute. In what follows, we refer to this property of the

measures as the linear-indistinguishability property.

Because of the linear-indistinguishability property,

if we want to understand how different measures com-

pare in how they rank a set {φ1, . . . , φℓ} of candidate

FDs in a relation R, it suffices to understand how they

compare in ranking the corresponding set of linear FDs

{φ′
1, . . . , φ

′
ℓ} on R′, with R′ constructed as discussed

above. Conversely, if we see that a measure exhibits cer-

tain behavior on linear FDs, we can be sure that there

are data instances where the measure exhibits the same

behavior on non-linear FDs.

For this reason, we will focus primarily on linear

FDs in our following discussions.

6 Sensitivity Analysis

In this section, we investigate the sensitivity of mea-

sures w.r.t. structural properties of the input relation

as well as properties of the FD itself. Specifically, we

want to get insight into the measures’ ability to dis-

tinguish between a unitary FD φ = X → Y in rela-

tion instances that were generated to satisfy the FD,

but subsequently had errors introduced so that the FD

no longer holds exactly, versus relation instances where
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X and Y were randomly generated. A good FD mea-

sure should be able to consistently distinguish between

these two cases, giving high scores to the former and

low scores to the latter with a clear separation in scores

between the two cases.

6.1 Methodology

There are various properties of the input relation R as

well as properties of the FD X → Y that may affect

the measures’ power to distinguish between these two

aforementioned cases. In what follows we say that a

relation R is dependently generated if it was generated

to satisfy X → Y but later had errors introduced. It

is randomly generated if it was constructed by picking

values for X and Y at random. A detailed description

of the generation process is given below. We study the

effect on the measure’s power do distinguish between

dependently and randomly generated instances w.r.t.

the following.

(1) The error rate, i.e., the amount of errors intro-

duced in R. A reasonable requirement for a good AFD

measure is that it should be inversely proportional to

the error rate: an increase in the number of introduced

errors should result in a decrease of the measure value.

As discussed below, this is not the case for all consid-

ered measures.

(2) The uniqueness of the left-hand-side (LHS) X of

the FD in R, defined as the ratio |domR(X)|/|R|. The
more this ratio approaches 1, the more X acts as a key.

However, because this statistic looks only at X without

taking Y into account, it not necessarily provides a good

signal for concluding that R is dependently generated.

Indeed, if the possible domain dom(X) of X-values is

large and |R| is relatively small, then even randomly

generated relations may have large LHS-uniqueness. As

a practical example, consider the setting where R is

supposed to describe publications, with attribute title

containing a publications’ title. The domain of possible

titles is large, making it unlikely that two publications

in R share a title. The attribute will hence have a high

LHS-uniqueness, but on this alone it is difficult to de-

termine whether R is dependently generated. Neverthe-

less, as we will see, certain measures are heavily biased

towards LHS-uniqueness, while others are not.

(3) The right-hand-side (RHS) skew of R, defined

as the skewness of the distribution pR(Y ). The larger

the RHS-skew, the fewer distinct values occur in πY (R),

and hence the smaller the chance of violating the FD.

However, similar to (2), because this statistic looks only

at Y without taking X into account, it again not nec-

essarily provides a good signal for concluding that R

is dependently generated. For example, consider a rela-

tion describing World-War I casualties, where attribute

sex records the deceased’s sex. Because soldiers then

were primarily male, this attribute is highly skewed to-

wards men (although there were also woman casual-

ties). The attribute hence has high RHS skew. Based

on RHS-skew alone, it is difficult to determine whether

R is dependently generated. Nevertheless, as we will

see, certain measures are also heavily biased towards

RHS-skew, while others are not.

(4) The number of attributes in X. Ideally, distin-

guishing between dependently and randomly generated

instances should not depend on |X|. In what follows we

refer to the number of attributes in the LHS as #LHS.

We have hence created four synthetic benchmarks,

denoted Err, Uniq, Skew and NonLin to study the

measures’ sensitivity to errors, LHS-uniqueness, RHS-

skew, and LHS cadinality respectively. Each synthetic

benchmark B consists of relations R(XY ) partitioned

into two subsets: (1) B− containing relations R where

X → Y ̸∈ ∆(R); and (2) B+ containing relations where

X → Y ∈ ∆(R). (Recall that ∆(R) denotes the design

schema of R.) Each subset employs a distinct random

process to generate relations. For relations in B−, values

for X and Y are generated independently at random,

while relations in B+ are generated by first constructing

a relation R such that R |= X → Y , and then passing

R through a controlled noisy error channel.

Generation process. The generation process of a rela-

tion R depends on a number of parameters that are

drawn uniformly at random from the following ranges:

– |R| ∈ [100; 10000];

– |X| ∈ [1; 5];

– |domR(X)| ∈ [ 15 |R|, 3
4 |R|];

– |domR(Y )| ∈ [5, 1
2 |domR(X)|]; and

– error rate η ∈ [0.5%, 2%].

Values for X and Y are drawn according to the Beta

distribution, B(α, β), which is a family of continuous

probability distributions defined on the interval [0, 1] in

terms of two positive parameters α and β that control

the shape of the distribution. We consider the ranges

α ∈ (0, 1] and β ∈ [1, 10]. For α = β = 1 the distri-

bution is uniform and for any other values it is reverse

J-shaped with a right tail. The skewness is defined as
2(β−α)

√
α+β+1

(α+β+2)
√
αβ

and is known to measure the asymme-

try of the probability distribution about its mean. In

particular, the skew is zero for the uniform distribution

and increasing values indicate longer tails with lower

mass, that is, a higher mass near the left end of the

interval [0, 1]. We sample values for α and β such that

the skewness is at most one (except for Skew below

where we consider skew values up to 10).
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So, for every relation R we generate the param-

eters |R|, |domR(X)|, |domR(Y )|, αX , βX , αY , βY ,

η are chosen uniformly at random under the condi-

tions described above. To generate a table R in B−,

we repeat the following procedure |R| times: sample

x ∈ domR(X) (respectively y ∈ domR(Y )) according

to B(αX , βX) (resp., B(αY , βY )) and add (x, y) to R.

To generate a table R in B+, we first construct a dic-

tionary D by, for each value x ∈ domR(X), assigning a

value D(x) ∈ domR(Y ) drawn at random according to

B(αY , βY ). Then, we populate R by adding |R| tuples
(x, D(x)) where x ∈ domR(X) is drawn at random

according to B(αX , βX). By construction, R satisfies

the FD X → Y . We then pass R through a controlled

error channel such that, denoting by R′ the obtained

relation, R′ does not satisfy X → Y anymore. Con-

cretely, we modify k = ⌊η|R|⌋ tuples w = (x, D(x)),

where η indicates the error rate, by randomly picking

any w̃ ∈ R with w̃|Y ̸= w|Y and make w̃|Y the new

value for w|Y . We point out that this does not intro-

duce any new Y -values and keeps domR(Y ) stable. We

also experimented with other error channels that intro-

duce new Y values, but the results were similar and are

therefore omitted. Note that X is not modified, and

therefore pR′(X) = pR(X). We note that the genera-

tion process is related to the one from Zhang et al. [47]

but with the addition of value distributions for both X

and Y based on the Beta distribution.

The first three synthetic benchmarks are created by

setting |X| = 1 and controlling one of the other param-

eters in the parameter set as follows. The last bench-

mark controls only |X|.

Benchmark Err. Fixing |X| = 1 we iteratively in-

crease the error rate η from 0% to 10% in 50 steps

and generate 50 relations in Err+ per step, varying

all other parameters as described above. Err is then

extended with 2500 tables generated in Err−.

Benchmark Uniq. Fixing |X| = 1 we iteratively in-

crease LHS-uniqueness from 1
5 |R| to 10|R| in 50 steps

and generate 50 relations in both Uniq+ and Uniq−.

Benchmark Skew. Fixing |X| = 1 we iteratively in-

crease RHS-skew from 0 to 10 in 50 steps to construct

Skew and generate 50 relations in both Skew+ and

Skew− per step.

Benchmark NonLin. We iteratively increase |X| from
2 to 5 while keeping domR(X) <= 1

100 |R| for every

LHS attribute X ∈ X. We generate 250 relations per

step in both NonLin+ and NonLin−, resulting in 2000

relations in total.

Note that the first three benchmarks consists of

2500 B− tables and 2500 B+ tables while the last has

2000 table in each.

6.2 Results

We describe the results on the basis of Figure 1. Fig-

ure 1 plots on rows 1, 2 and 4 for each benchmark B
and measure f the difference δ(f,B) between average

measure values on B+ and average measure values on

B−,

δ(f,B) :=
avgR∈B+f(X→Y,R) − avgR∈B−f(X→Y,R).

We also call δ(f,B) the separation of f on B. When

it is small, f cannot distinguish between cases where

X and Y are sampled independently at random and

where data is generated according to our generation

process for B+. On rows 3 and 5, Figure 1 shows a

more detailed view of the results on Uniq and Skew,

namely separate plots of the average measure values on

B+ (in solid lines) and B− (in dashed lines). In both

figures, values for g1 and g′1 are grouped together as

their measure values are indistinguishable from each

other. Our conclusions are summarized in Table 9.

Error rate. The top row of Figure 1 plots the separa-

tion on Err as a function of error rate η. For g1 and g′1,

the separation is zero, while for SFI it is nearly zero.

This means that these measures have limited distin-

guishing power and are not well-suited as a yardstick

for assessing the amount of errors w.r.t. an FD. For all
other measures, there is a clear separation, albeit less

pronounced for FI and RFI+. As expected, when the er-

ror level increases the separation decreases, save for g1,

g′1, and SFI where it remains constant. The measures

hence become less certain of having found an AFD as

the error rate increases. While FI and RFI+ also de-

crease as η increases, this decrease is less steep than for

the other measures.

LHS-uniqueness. The second row of Figure 1 shows the

separation on Uniq as a function of LHS-uniqueness.

For g1, g
′
1 and SFI, we see the same behavior as on

Err: their separation is (nearly) zero; they hence lack

distinguishing power. Because it would be misleading

to label g1, g
′
1 and SFI as being insensitive to LHS-

uniqueness, we indicate in Table 9 that LHS-uniqueness

is inapplicable with the symbol . The distinguishing

power of g′3, RFI
′+, and µ+ is not affected by LHS-

uniqueness as the separation remains large for all values

of LHS-uniqueness. We do observe that the separation
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Fig. 1: Increasing error rates, LHS-uniqueness levels or RHS-skew levels impacts most measures’ ability to seperate

between B+ and B−. The plots show the separation on Err (row 1), Uniq (row 2) and Skew (row 4). Row 3

shows the average measure values of Uniq+ (solid) and Uniq− (dashed), idem for Skew+ and Skew− in Row 5.

Row 6 shows the separation regarding #LHS.
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decreases slightly for very large LHS-uniqueness levels,

indicating that these measures become less confident to

have found an FD X → Y in a relation R when πX(R)

contains fewer duplicates. For other measures the sep-

aration drops as LHS-uniqueness increases, tending to

zero at maximum LHS-uniqueness levels.

The third row of Figure 1 shows that for ρ, g2,

gS1 , g3, FI, pdep, and τ the average measure values on

Uniq− increase, eventually approaching the measure

values on Uniq+. For RFI+ and SFI, by contrast, the

average measure values over Uniq+ decrease towards

zero for increasing LHS-uniqueness, eventually reaching

the value on Uniq−. Note that this decrease is already

observable for small LHS-uniqueness values.

We conclude that ρ, g2, gS1 , g3, FI, pdep, and τ

are biased w.r.t. LHS-uniqueness. As discussed later, it

will therefore prove problematic to discover non-linear

AFDs by means of these measures.

RHS-skew. The fourth row of Figure 1 shows the sep-

aration on Skew as a function of RHS-skew. The mea-

sures g1, g
′
1, and SFI exhibit the same behavior as be-

fore, with (nearly) zero separation. We indicate the cor-

responding cells in Table 9 with the symbol . The dis-

tinguishing power of all Violation measures, as well

as gS1 , and pdep, drops when RHS-skew increases.

The fifth row of Figure 1 confirms these observa-

tions, all Violation measures, as well as gS1 , and pdep

exhibit a drop in distinguishing power as RHS-skew in-

creases. Over Skew+ the average measure values re-

mains relatively constant as RHS-skew increases, while

the average measure values increases and approaches

the values over Skew+.

Thus, these measures are biased w.r.t. RHS-skew:

their score for X → Y increases solely on the basis of

Y and independent of X even if relations are generated

by a process that sampled X and Y independently at

random. By contrast, FI, RFI+, RFI
′+, τ , and µ+ cor-

rect for this behavior and are insensitive to RHS-skew.

#LHS. We first observe that increasing |X| naturally
implies that the possible domain of X-tuples increases,

exponentially in |X|: if X = {X1, . . . , Xn} and each

Xi has a domain with N possible values, X has a do-

main with Nn possible values. Consequently, increas-

ing |X| results in higher LHS-uniqueness in our experi-

ments: on average it grew from 0.006 (|X| = 1) to 0.91

(|X| = 5) while the LHS-uniqueness of each individual

LHS column remained constant. Consequently, as seen

in the sixth row of Figure 1, separation follows similar

trends as seen in our LHS-uniqueness experiments. We

attribute the stronger decline in separation of all mea-

sures to higher LHS-uniqueness observed with higher

|X|. Insensitivity towards high LHS-uniqueness is thus

an important property for AFD-measures, in particular

when handling non-linear AFDs.

6.3 Conclusion

The measures g1, g
′
1 and SFI are the least suitable AFD

measures since, by contrast to the other measures, they

do not clearly separate relations in B+ from relations

in B− for any of the three considered sensitivity param-

eters. The measures g′3, RFI
′+, and µ+ have a built-in

mechanism that corrects for LHS-uniqueness, which is

a most desirable property when discovering non-linear

FDs. The Shannonmeasures (save gS1 and SFI), τ , and

µ+ correct for RHS-skew. The most desirable measures

are therefore RFI
′+ and µ+ as they both are insensitive

to LHS-uniqueness and RHS-skew, and are inversely

proportional to the error level.

7 Evaluation on Real-World Data

In this section, we compare the effectiveness of the de-

scribed AFD measures for discovering linear AFDs in

real-world tables which exhibit data distributions as

well as data errors that occur in practice.

7.1 Overview

FDs in relations with NULLs. The relations that we

consider in this section come from practical domains

and often also contain NULL values. Because it is un-

clear whether two distinct occurrences of a NULL should

be considered the same value, or distinct values, there

is no clear semantics of FDs in the presence of NULL
values. We therefore ignore NULL values when checking

FD satisfaction and calculating measure scores. That is,

if R(W ) is a relation with NULLs and φ = X → Y a lin-

ear and unitary FD, then we consider φ to be satisfied if

it is satisfied in the subrelation R′ of R consisting of all

tuples w ∈ R for which w(A) ̸= NULL for all A ∈ XY .

Similarly, the score of measure f on (φ,R) is computed

by computing f(φ,R′) instead.

Real world data benchmark (rwd). In the following,

we elaborate how we created the rwd benchmark. We

started by considering all relations mentioned in [5],

which collects the real-world relations most commonly

used in the dependency discovery literature. This base

set was extended with the relation Adult used, e.g., in

[11, 26, 46]. Since design schemas for these relations are

unavailable, we manually created them as follows. First,
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in order to ensure semantically sound design schemas,

we restricted our attention to the subset of relations

that have a generally interpretable domain. Further,

to keep the manual annotation endeavor manageable,

we restricted ourselves to relations that have no more

than 50 columns and to linear FDs. This results in 10

relations, listed in Table 3. For each relation R, we enu-

merate all candidate linear and unitary FDs (i.e., pairs

(X,Y ) : ∃w ∈ R,w(X) ̸= NULL ∧w(Y ) ̸= NULL). We

constraint ourselves to linear FDs to keep the manual

validation of all FD candidates feasible. We manually

validate whether a candidate FD is semantically mean-

ingful, and is hence part of the design schema or not,

if its g3-score is ≥ 0.5. While we risk missing seman-

tically meaningful FDs this way, note that a g3-score

< 0.5 means that we need to remove more than 50% of

the tuples to obtain a subrelation that satisfies the can-

didate FD, making it an improbable candidate for the

design schema. We observe that each validated semanti-

cally meaningful candidate FD has a g3-score ≥ 0.99. In

other words, increasing the g3-threshold to 0.99 would

result in the same results as we present in this paper,

strengthening our impression that it is unlikely that we

have missed semantically meaningful FDs. We identi-

fied 1170 candidate FDs to inspect. Two individuals

manually inspected each candidate. Non-matching de-

cisions (i.e. one saw a candidate as valid whereas the

other did not) were discussed until a consensus was

reached.

In this manner, we derive for each benchmark re-

lation R its design schema ∆(R). This set of FDs is

partitioned into two sets:

PFD(R) := {φ ∈ ∆(R) | R |= φ}, and

AFD(R) := {φ ∈ ∆(R) | R ̸|= φ}.

We will refer to these sets as the perfect (design) FDs

and approximate (design) FDs, respectively. In particu-

lar, AFD(R) forms the ground truth of FDs to discover

during AFD discovery on R.

Table 3 shows statistics of the obtained benchmark.

In total, we obtain 143 design FDs across all relations

in rwd, of which 126 are perfect design FDs and 17 are

approximate design FDs. To appreciate the difficulty of

the AFD discovery task, it is worth pointing out that

the search space during AFD discovery consists of 1634

candidate FDs across all relations in rwd. Out of these,

only a small number (17) are AFDs, which emphasizes

the intrinsic difficulty of AFD discovery and illustrates

the need for good measures to distinguish AFDs from

the rest of the search space.

Example 1 (Running Example) The following are three

attribute pairs, the first two found in R3 and the last

one found in R6. R3 contains bibliographical informa-

tion about computer science journals and proceedings

while R6 describes data about persons that have col-

lected biosamples.

φE1 := p2booktitlefull → p2booktitle,

φE2 := p2title → p2type,

φE3 := PersonFullName → datasetguid

In φE1, p2booktitlefull refers to the full title of the book

a publication is part of (e.g. the conference proceed-

ings book title, or the journal title) while p2booktitle

is its abbreviation. For example, “International Confer-

ence on Database Theory” is abbreviated as “ICDT”.

Hence, we expect every full book title to have only one

abbreviation and define φE1 ∈ AFD(R3).

Further, in φE2, p2title is the title of a publication,

and p2type is the publication type, such as book, jour-

nal article, or proceedings. Two publications of different

types may share the same title, e.g. when an article is

first published in a conference and later as an extended

version in a journal. Hence, we define φE2 ̸∈ AFD(R3).

Finally, in φE3, PersonFullName is a person’s full

name, and datasetguid is a globally unique identifier

for the dataset in which the person’s collected biosam-

ple(s) appear. Since in principle these samples can ap-

pear in multiple datasets, φE3 ̸∈ AFD(R6).

Methodology. We are interested in comparing the suit-

ability of AFDs measures for the purpose of AFD dis-

covery.

Therefore, we compare AFD measures as follows.
Remember from Section 3 that every AFD measure f

and every threshold ϵ ∈ [0, 1] naturally induces a dis-

covery algorithm Aϵ
f which, on input relation R(W ),

returns all FDs φ over W with R ̸|= φ and f(φ,R) ∈
[ϵ, 1[. In this respect, every measure hence defines a class

DISCf of discovery algorithms, namely DISCf = {Aϵ
f |

0 ≤ ϵ < 1}. Given a subset B of benchmark relations,

we compare the effectiveness of measures on B by com-

puting the area under the precision-recall3 curve (AUC-

PR) of DISCf for each measure f , where the PR-curve

is the set {(rcl(A,B), prec(A,B)) | A ∈ DISCf}. Here,
rcl(A,B) and prec(A,B) denote recall and precision of

A on B, respectively. It is known that PR curves are

well-suited to visualize the tradeoff between precision

and recall at various values of ϵ when the prediction

classes are very imbalanced, which is the case here. So,

the measure with the highest AUC-PR score is the mea-

sure providing the best such tradeoff.

3 https://en.wikipedia.org/wiki/Precision_and_recall
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Table 3: Overview of relations in rwd benchmark. The #insp column indicates the number of manually inspected

candidates when determining the design schema.

Relation R #rows #attrs #insp #PFD(R) #AFD(R)

R1 adult 32561 15 111 2 0
R2 claims 97231 13 42 2 2
R3 dblp10k 10000 34 368 75 2
R4 hospital 114919 15 74 22 7
R5 tax 1000000 15 95 3 0
R6 gath. agent 72737 18 55 5 2
R7 gath. area 137710 11 43 3 2
R8 gathering 90991 35 64 0 1
R9 ident. taxon 562958 3 2 0 1
R10 ident. 91799 38 85 14 0

Furthermore, to obtain a more fine-grained view of

measure performance on the level of each relation R

individually we also report the rank at max recall :

r@mr(f,R) := |Aϵ
f |, with ϵ = min(f(AFD(R)).

Intuitively, r@mr(f,R) indicates how many candidate

FDs need to be examined when processing them in de-

creasing order of f -score to find all of AFD(R).

Since SFI is parameterized by a parameter α it is

not one measure but a collection of measures. We per-

formed experiments with the same values of α as in the

original SFI paper [36], namely α ∈ {0.5, 1, 2}. Because
the performance of α = 0.5 consistently dominates the

performance of α ∈ {1, 2}, we only report the perfor-

mance of SFI for α = 0.5 in what follows.

We implemented all measures in a Python library.

This library, together with the benchmark datasets is

publicly available [33]. Given a candidate FD, comput-

ing the measure value is straightforward for most mea-

sures, requiring only the evaluation of the given for-

mula. For RFI, RFI
′+ and SFI, which are the most

complex to compute, we use the currently best known

algorithms, for RFI and RFI
′+ the one of [28], for SFI

the one of [36].

Measure Runtimes. We observe significant differences

in the time required to compute a score for each FD

candidate. Table 4 shows the runtimes of each mea-

sure. We observe that ρ is the fastest measure with 110

seconds to calculate a value for all 1634 candidate FDs.

In general, the measures of the Violation class are

faster compared to the others. Measures of the Log-

ical class take on average roughly 21 seconds longer

to compute values for all candidate FDs. In the Shan-

non class, the differences are much larger. While gS1
and FI achieve runtimes comparable to the measures

from the Logical class, RFI+, RFI
′+ and SFI were

not able to calculate values for all candidates within 24

hours. Specifically, SFI is able to calculate a value for

Table 4: RFI+, RFI
′+ and SFI are significantly slower

than the other measures. The table shows the runtimes,

capped at 24 hours, and the number of measures AFD

candidates within the runtime.

runtime candidates s/candidate

ρ 110s 1634 0.067
g2 130s 1634 0.080
g3 118s 1634 0.072
g′3 128s 1634 0.078
gS1 137s 1634 0.084
FI 154s 1634 0.094
RFI+ 24h 250 345.600

RFI
′+ 24h 250 345.600

SFI 24h 1430 60.420
g1 134s 1634 0.082
g′1 135s 1634 0.083
pdep 135s 1634 0.083
τ 151s 1634 0.092
µ+ 157s 1634 0.096

1430 (roughly 90%) candidates within 24 hours, while

RFI+ and RFI
′+ finish only 250 (roughly 15%) can-

didates. Inspecting the rightmost column of Table 4

we observe that all measures except SFI, RFI+ and

RFI
′+ run within a tenth of second on average per can-

didate. SFI averages at a minute per candidate, RFI+

and RFI
′+ take more than five minutes. Such runtimes

are prohibitory in many real-world scenarios.

Defining rwd−. In fact, the computational complexity

of RFI+ and RFI
′+ did not allow us to compute val-

ues for RFI+ and RFI
′+ on all candidate FDs in rwd

in a reasonable amount of time. In approximately 168

hours we obtained values of RFI+ and RFI
′+ for 1229

candidate FDs, including all design FDs, out of a to-

tal of 1634. We denote this set of 1229 candidates FDs

by rwd− in what follows. To ensure fair comparison

among all measures, we report our comparison metrics

(AUC, r@mr, . . . ) relative to rwd−, first. Afterwards,
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we compare all AFD measures except RFI+ and RFI
′+

on rwd to gain intuition on how the two excluded mea-

sures could perform on all of rwd.

7.2 Results of rwd−

AUC. Figure 2 lists the AUC scores for rwd− at the

benchmark and relation level, where the AUC value is

expressed as a percentage. The last column shows the

fraction of relations on which a measure reached max-

imal AUC score, allowing us to judge how consistent a

measure is.

At the benchmark level, we observe that there are ef-

fective measures in each measure class. Overall, RFI
′+

(Shannon, AUC = 0.971) is the most effective mea-

sure, closely followed by µ+ (Logical, AUC = 0.946)

and somewhat further followed by g′3 (Violation, AUC

= 0.901). All other measures have significantly lower

AUC values. When the correct number of AFDs is not

known beforehand and a specific threshold needs to

be set uniformly for all relations, RFI
′+, µ+ and g′3

hence provide the best tradeoff between precision and

recall. We find it striking to note that the unnormal-

ized variants of these measures (i.e., FI, pdep, and g3,

respectively) perform significantly worse, which high-

lights the importance of normalisation when designing

measures. For RFI
′+ and µ+ in particular, we note that

the normalisation w.r.t the expected value of FI resp.

pdep under random permutations performs significantly

better than computing the absolute difference w.r.t this

absolute value (RFI+), respectively normalising w.r.t.

pdep(Y ) (for τ).

The AUC scores at the relation level give a more

detailed picture. In particular, the last column in Fig-

ure 2 shows that RFI+ yields the highest AUC score

on each relation, while µ+ does so for 90% of the rela-

tions, and g′3 for “only” 80% of the relations. µ+ per-

forms worse than RFI
′+ only on relation R7, where its

AUC score still outperforms the other measures. g′3 also

performs worse than RFI
′+ on R7 and additionally per-

forms worse than both RFI
′+ and µ+ on R6.

Surprisingly, FI, which has a low AUC score = 0.415

at the benchmark level, has the highest AUC score on

90% of the relations, like µ+. It does particularly poor

on relation R3 (dblp, AUC=5.4%), which explains its

AUC score on the benchmark level. Similarly to g′3, τ

has a highest AUC on 80% of the relations, but it also

performs very poor on R3, explaning its lower AUC

score at the benchmark level. We note that our obser-

vation from Section 6 on synthetic data, namely that

g1, g
′
1 and SFI have poor distinguishing power, holds

on rwd−: these measures perform the poorest, attain-

Table 5: AFD-measure values of φE1 and φE2.

measure f f(φE1) f(φE2) f(φE1)− f(φE2)

ρ 0.9951 0.9994 -0.0044
g2 0.9830 0.9986 -0.0156
g3 0.9983 0.9994 -0.0011
g′3 0.9979 0.9954 0.0024
gS1 0.9979 0.9987 -0.0008
FI 0.9992 0.9987 0.0005
RFI+ 0.3446 0.1245 0.2201

RFI
′+ 0.9975 0.9893 0.0082

SFI 0.0050 0.0793 -0.0743
g1 1.0000 1.0000 -0.0000
g′1 1.0000 1.0000 -0.0000
pdep 0.9971 0.9993 -0.0022
τ 0.9971 0.9986 -0.0015
µ+ 0.9964 0.9893 0.0071

ing maximal AUC score in only 60% resp. 50% of the

relations. Measures gS1 and RFI+ perform equally poor.

Example 2 (Running Example) Table 5 shows measure

values for φE1 and φE2 introduced in Example 1. The

last column in shows the difference in measure values.

We observe that most AFD measures obtain values

> 0.98, except for RFI+ and SFI which report much

lower values. We desire f(φE1) − f(φE2) > 0 as this

means that an AFD measure ranks the semantically

meaningful φE1 before the non-meaningful φE2. g
′
3, FI,

RFI+, RFI
′+ and µ+ perform well in this example.

Rank at max recall. In Figure 3a we show the r@mr.

The first row indicates the total number of design AFDs

to discover (the smallest attainable r@mr value), the
last column sums all candidates that need to be in-

spected to retrieve all of AFD(R). We observe that the

best measures, g′3, RFI
′+ and µ+ have optimal r@mr,

save on relation R7 where they differ by 1 from the opti-

mum and still have minimal r@mr among all measures.

In addition, g′3 has non-optimal r@mr on R6, where it

is off by 1. At maximum recall, these measures retain

a precision of 100%, save on relation R7 (66%), and g′3
also on relation R6 (66%). As summarized in the col-

umn rwd−, these measures hence require us to inspect

only a small number of highly ranked AFDs to recover

the true design FDs that were obscured by errors. By

contrast, all the other measures have relations where

the r@mr is an order of magnitude larger than the op-

timum, yielding low precision at maximum recall.

LHS-uniqueness and RHS-skew. From Figures 2 and 3a

we observe that there are four kinds of relations in rwd:

“trivial” relations for which every measure attains opti-

mal AUC and r@mr (relations R1, R5,R9,R10), “easy”
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rwd− R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 best
ρ 41.7 100 03.3 04.1 100 100 100 66.7 100 100 100 70
g2 50.4 100 51.1 04.1 100 100 100 66.7 100 100 100 70
g3 67.4 100 100 14.8 100 100 79.2 66.7 100 100 100 70
g′3 90.1 100 100 100 100 100 79.2 66.7 100 100 100 80
gS1 10.9 100 100 02.7 100 100 63.3 66.7 10.0 100 100 60
FI 41.5 100 100 05.4 100 100 100 91.7 100 100 100 90
RFI+ 49.4 100 100 18.2 50.8 100 13.3 66.7 25.0 100 100 50

RFI
′+ 97.1 100 100 100 100 100 100 91.7 100 100 100 100

SFI 32.0 100 100 00.4 31.8 100 05.3 58.3 06.2 100 100 50
g1 42.5 100 58.7 01.5 100 100 61.3 66.7 100 100 100 60
g′1 42.5 100 54.8 01.5 100 100 61.3 66.7 100 100 100 60
pdep 64.7 100 100 07.8 100 100 79.2 66.7 100 100 100 70
τ 63.0 100 100 08.4 100 100 100 66.7 100 100 100 80
µ+ 94.6 100 100 100 100 100 100 66.7 100 100 100 90

Fig. 2: Heatmap of PR-AUC scores expressed as a precentage (red indicates low value). The last column expresses

the fraction of relations on which a measure yields a highest AUC score.

R2 R3 R4 R6 R7 R8 R9 rwd−

AFD(R) 2 2 7 2 2 1 1 17
ρ 45 25 7 2 3 1 1 84
g2 70 25 7 2 3 1 1 109
g3 2 8 7 3 3 1 1 25
g′3 2 2 7 3 3 1 1 19
gS1 2 39 7 6 3 5 1 63
FI 2 21 7 2 3 1 1 37
RFI+ 2 8 32 11 3 2 1 59

RFI
′+ 2 2 7 2 3 1 1 18

SFI 2 283 66 21 4 8 1 385
g1 9 70 7 7 3 1 1 98
g′1 16 70 7 7 3 1 1 105
pdep 2 18 7 3 3 1 1 35
τ 2 18 7 2 3 1 1 34
µ+ 2 2 7 2 3 1 1 18

(a)

LHS-uniq. RHS-skew
R3 R6 R3 R6

ρ 0.88 0.83
g2 0.88 0.83
g3 0.88 0.04 1.24 4.42
g′3 0.04 4.42
gS1 0.59 0.12 0.94 4.79
FI 0.87 0.64
RFI+ 0.45 0.03 1.11 4.74
SFI 0.4 0.12 1.04 3.8
g1 0.85 0.78 1.09 3.8
g′1 0.85 0.78 1.09 3.8
pdep 0.88 0.04 0.81 4.42
τ 0.88 0.81

AFD(R) 0.07 1.43
rest 0.24 1.59

(b)

Fig. 3: Measure performance on rwd−. (a) Rank at max recall (heatmap per column where red indicates high

rank), indicating how many FD candidates need to be examined to retrieve AFD(R). (b) LHS-uniqueness and

RHS-skew of mislabeled FD candidates, RFI
′+ and µ+did not mislabel any candidate on R3 and R6 and are hence

hidden. The last two lines show LHS-uniqueness and RHS-skew averages of all AFD(R) and non-AFD(R).

relations for which nearly all measures do so (R2 and

R8), “challenging” relations where only a minority of

measures reach optimal scores (R3 and R6), and “out-

of-reach” relations where no measure attains the opti-

mum (R7).

Next, we investigate what properties of the input

data makes a relation challenging by analyzing ‘mis-

labeled’ candidate FDs in R3 and R6. We refer to a

candidate as mislabeled analogous to our definition of

r@mr: from the candidates counted for r@mr(f,R) we

exclude all AFD(R) to obtain our mislabeled candidate

FDs. In other words, the mislabeled candidate FDs are

the highest ranked mistakes made by a measure. Fig-

ure 3b shows the average LHS-uniqueness and RHS-

skew values of all mislabeled candidate FDs per mea-

sure. For comparison, the bottom two rows show the

average LHS-uniqueness and RHS-skew over the set of

all design AFDs and the set of all candidate FDs not

in the design set.

We start with analyzing R3. From Figures 2 and 3a

we recall that measures g′3, RFI
′+, and µ+ attain opti-

mal AUC and r@mr, while the AUC scores of all other

measures are extremely low and their r@mr is very high.

In Figure 3b, we observe that these other measures have

much higher LHS-uniqueness values for mislabeled can-

didate FDs than the average for design AFDs (0.07) or

non-FDs (0.2). We postulate that this makes R3 chal-

lenging for these measures. ρ, g2, g3, FI, g1, g
′
1, pdep

and τ all have mislabeled LHS-uniqueness > 0.8 and we

recall from Section 6 that the distinguishing power of

these measures is small at high LHS-uniqueness values.

In addition, from Figure 1 (middle row) we observe that



20 Marcel Parciak et al.

RFI+ (0.45) and SFI (0.4) have small separation (and

hence limited distinguishing power) already at modest

values of LHS-uniqueness. For gS1 , the situation is less

clear. We note, however that its LHS-uniqueness value

(0.59) is much larger than the average for design AFDs

in R3(0.074).

On R6, ρ, g2, FI, RFI
′+, τ and µ+ attain optimal

AUC and r@mr. In Figure 3b we observe high RHS-

skew values (>3.7) for all other measures, compared

to the values of design FDs and non-FDs (resp. 1.4

and 1.6). We postulate this is what makes R6 chal-

lenging for g3, g
′
3, g

S
1 , and pdep: recall from Section 6

that these measures are sensitive to RHS-skew. In con-

trast, we know from Section 6 that SFI, g1 and g′1 con-

sistently have (almost) zero separation, independent of

RHS-skew. Similarly, RFI+ is insensitive to RHS-skew,

but its separation is limited, as shown in the fourth row

of Figure 1.

Example 3 (Running Example) Consider the non-AFDs

introduced in Example 1 in comparison to the aver-

ages of LHS-uniqueness and RHS-skew shown in Ta-

ble 3b. We observe a relatively high LHS-uniqueness

of 0.869 and slightly above average RHS-skew of 2.076

for φE2. φE3 shows an about average LHS-uniqueness

of 0.041 and a relatively high RHS-skew of 4.419. φE2

and φE3 represent common false positive AFDs. Most

measures ranked φE2 and φE3 higher than the elements

of AFD(R3) resp. AFD(R6) in rwd− (see Figure 2).

This illustrates that insensitivity to LHS-uniqueness

and RHS-skew is desireable for distinguishing semanti-

cally meaningful FDs from independent attribute pairs.

Conclusion. RFI
′+, µ+ and g′3 provide the best trade-

off between precision and recall with RFI
′+ perform-

ing better than µ+ (marginally, on one relation), and

µ+ performing better than g′3 (again marginally, on

one relation). All three obtain a low r@mr values, mis-

ranking only a few column combinations higher than

true AFDs. Further, we observe that high values for

LHS-uniqueness and RHS-skew do occur in practice and

sensitivity to these structural properties may explain

the lower performance of some measures. Insensitivity

to LHS-uniqueness and RHS-skew are therefore desir-

able properties to aim for when designing measures.

7.3 Results of rwd

To allow a fair comparison among all measures, we

have excluded from our search space for the benchmark

rwd− all candidate AFDs for which we could not cal-

culate the RFI+ and RFI
′+ values within 168 hours. By

excluding these measures, our discussion of the results

Table 6: Descriptive statistics of the measure values

of g′3, FI and µ+ as well as the tuple count, LHS-

uniqueness and RHS-skew of rwd \ rwd−.

min mean max

g′3 0.000 0.142 0.982
FI 0.000 0.343 1.000
µ+ 0.000 0.089 0.981

tuples 10000 377989 1000000
LHS-uniqueness 0.000 0.095 0.981
RHS-skew 0.000 0.967 8.639

for the other in the previous section could potentially be

biased. In this subsection we therefore investigate this

potential bias by analyzing the measure performance

on the whole search space comprised by rwd, but dis-

regarding RFI+ and RFI
′+.

Figure 4 shows the AUC scores of all measures ex-

cept RFI+ and RFI
′+ on rwd. When we compare these

scores to the scores for rwd− (Figure 2) we observe only

minor differences.

SFI exhibits the largest differences (−0.036), fol-

lowed by g1 and g′1 (−0.026 and −0.027 respectively)

and FI (−0.019). All other measures show differences

below −0.01. We also note that all differences are neg-

ative, which means that each measure achieved better

results on the larger benchmark.

rwd without rwd−. To get more insight into the can-

didate FDs that could not be calculated by RFI+ and

RFI
′+, we investigate this exact subset: rwd \ rwd−.

This subset contains 405 candidates that are exclu-
sively non-AFDs. For this reason, we cannot meaning-

fully assess precision, recall and associated metrics on

rwd\rwd−. Instead, in Table 6 we compare descriptive

statistics of AFD measure values of g′3, FI and µ+. FI

represents the closest comparison to RFI+ and RFI
′+

from Shannon while g′3 and µ+ represent the clos-

est AFD measures in terms of PR-AUC. Further, we

present descriptive statistics of the tuple counts, LHS

-uniqueness and RHS-skew.

In the upper part of Table 6 we observe that the

average of most measure values are low. Still, judging

by very high max values of FI there seems to be a small

subset of candidate FDs that could lead to changes the

AUCs of RFI+ and RFI
′+. The only way to confirm that

suspicion would be to use RFI+ and RFI
′+ to calculate

values for all candidates of rwd\rwd−. The lower part

of Table 6 shows that LHS-uniqueness and RHS-skew

are within expected ranges. The tuple count, however,

indicates that, as expected, the runtimes of RFI+ and

RFI
′+ is positively correlated to the relation size.
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rwd R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 best
ρ 41.1 100 02.9 03.8 100 100 100 66.7 100 100 100 70
g2 49.7 100 50.7 03.8 100 100 100 66.7 100 100 100 70
g3 66.9 100 100 14.8 100 100 79.2 66.7 100 100 100 70
g′3 90.1 100 100 100 100 100 79.2 66.7 100 100 100 80
gS1 10.8 100 100 02.7 100 100 63.3 66.7 10.0 100 100 60
FI 39.6 100 100 04.9 100 100 100 91.7 100 100 100 90
SFI 28.4 100 100 00.3 29.6 100 05.0 58.3 05.6 100 100 50
g1 39.9 100 58.7 01.4 100 100 59.8 66.7 100 100 100 60
g′1 39.8 100 54.8 01.4 100 100 59.8 66.7 100 100 100 60
pdep 64.2 100 100 07.6 100 100 79.2 66.7 100 100 100 70
τ 62.3 100 100 08.2 100 100 100 66.7 100 100 100 80
µ+ 94.6 100 100 100 100 100 100 66.7 100 100 100 90

Fig. 4: The differences between rwd− and rwd without RFI+ and RFI
′+ are minimal. The table shows the same

overview as Figure 2 but now for rwd.

Conclusion. The comparison of rwd and rwd− show

very little differences in AUC values, indicating that our

findings on rwd− carry over to rwd. We strengthen

this conclusion by observing that the structural prop-

erties of rwd \ rwd− are within expected ranges. The

relatively high number of tuples indicates that the run-

time of RFI+ and RFI
′+ increases with the number of

tuples.

7.4 Results of rwde

In this section, we introduce controlled errors into FDs

present in rwd via an error channel to simulate practi-

cal scenarios characterized by data inconsistencies and

noise. This approach enables us to assess how AFD

measures perform under real-world conditions, provid-

ing deeper insights into their reliability and practical

utility when applied to imperfect datasets. We obtain

rwde by passing each relation R ∈ rwd through a con-

trolled error channel such that, denoting by R′ the ob-

tained relation, some FDs in PFD(R) do not hold any-

more inR′ and hence become part of AFD(R′). Existing

AFDs are always maintained, i.e., AFD(R) ⊆ AFD(R′).

Inspired by Arocena et al. [2], we study the mea-

sures’ sensitivity to different error channels. We param-

eterize each error channel by an error level η ∈ [0, 1] and

an error type. When passing R through the channel we

consider all X → Y ∈ PFD(R) and modify k = ⌊η|R|⌋
Y -values. To avoid interference, we select at most one

FD X → Y for every unique Y per relation, ensur-

ing that Y does not appear in AFD(R), and that no

FD Y → Z has previously been selected. We note that

picking a single FD for passing through an error chan-

nel may produce multiple AFDs, namely every FD that

share the same Y . Over all datasets, we observed 30 Y

attributes that were part of multiple AFDs. Hence, we

do not expect to introduce any bias towards more fre-

quent FDs with our approach.

The procedure to modify the Y values is determined

by the chosen type of data error for which we consider

three categories: copy error, typo and bogus value. For
a chosen tuple w ∈ R, only w|Y is changed, where the

change depends on the data error type proposed by [2]:

(i) copy: Randomly pick any w̃ ∈ R with w̃|Y ̸= w|Y
and make w̃|Y the new value for w|Y .

(ii) typo: To every y ∈ domR(Y ), we associate three

new values representing three common typos. We

choose one from these three each time at random

as the new value for w|Y .
(iii) bogus: w|y is assigned a unique newly generated

value.

We point out that copy does not introduce any new

values and keeps domR(Y ) stable, while typo (resp., bo-
gus) introduces a number of new values independent of

(resp., dependent on) the error level. X is not modified,

and therefore pR′(X) = pR(X). To ensure that increas-

ing error levels do not accidentally reduce errors, we en-

sure that, for each x : X we pick at most ⌊Nx/2⌋ tuples
w with w|X = x to modify, where NX is the number

of times that x occurs in πX(R). PFDs for which this

cannot be guaranteed are omitted. The number of new

AFDs that can be constructed therefore depends on the

error level.

We consider four error levels: 1%, 2%, 5% and 10%.

For each type of data error t and each error level η,

we obtain a new benchmark rwde[t, η]. Consequently,

we generate 12 rwde tables per rwd table R for which

|PFD(R)| > 0 (so, tables R8 and R9 are excluded).

Overall the number of AFDs increases from 17 in rwd

to 73 in rwde[copy, 1%]. That number is the same for

the other error types but can drop a little for higher

noise levels as explained above. Similar to rwd−, we

retain only AFD candidates where each measure calcu-

lates a value in a reasonable amount of time. We denote

by n the total number of AFD candidates retained in

rwde[t, η]. The header row in Table 7 summarizes n as
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well as the total number of AFDs for each rwde[t, η].

We observe that, with a single exception for copy at

5%, increasing the error level decreases the number of

additional AFDs. We further observe that the ranking

copy > typo > bogus holds with respect to the number

of additional AFDs.

AUC. Table 7 lists AUC scores over rwde per error

type and for different error levels. We observe that µ′

has the highest AUC score in 6 out of 12 cases, followed

by RFI
′+ that scores highest in 4 our of 12 cases. Both

µ+ and RFI
′+ show very small differences, making it

difficult to draw general conclusions. Regarding the er-

ror types, we observe that in general the AUCs of copy
are higher on the same error levels with exceptions for

g3, g
S
1 and FI on rwde[bogus, 10%]. We observe a sim-

ilar, yet less pronounced, trend for typo compared to

bogus, which does not hold for η = 10%.

We remark that for some measures the AUC score

on rwde is larger at the 1% error level than for rwd−.

This is not completely unexpected as the ground truth

for both is different. A suprising result is presented for

gS1 , where the AUC of each rwde dataset is higher than

for rwd−. We do not analyse this anomaly further, as

gS1 remains one of the worst-scoring AFD-measures.

In general, we do see that, as expected, the AUC

score for each of the measures deteriorates at increas-

ing error levels to an absolute low at error level 10%.

It is evident from Table 4 that AFD-measures are not

very effective when error levels are greater than 5% for

copy, for bogus and typo even from 2%. This is surpris-

ing as in the first row of Figure 1, we see that sepa-

ration on Err looks acceptable at least for g′3, RFI
′+

and µ+. We hypothesize that increasing the error rate

in combination with the other structural properties in-

vestigated in Section 6 degrade the effectiveness of all

AFD-measures. Further investigation into this hypoth-

esis is left for future research.

Rank at max recall. We show in Table 8 a qualitative

comparison between measures by listing, for each mea-

sure f and error type t, its winning number, which is

defined as follows. Consider a particular (relation, t, η)

combination in rwde. A measure f wins this triple if

its r@mr is minimal among all measures on this triple.

The winning number of f for error type t is then the

number of times f wins, taken over all triples of type t.

Here, we see again that both RFI
′+ and µ+ score

very well. Across all error types, µ+ is the only measure

that is in included in the top two values. It scores best

on copy, where its rank at max recall is minimal for

75% of all relations. τ is the runner-up with 53.1% of

the relations. In bogus, RFI
′+ achives a minimal rank

at max recall for 50.0% of the relations. g3, g
′
3 and µ+

follow with 42.3%. For typo, RFI
′+ ranks candidates

best on 58.1% relations. µ+ is behind that with 54.8%.

Conclusion. We strengthen our findings that both µ+

and RFI
′+ perform well by applying error-inducing ap-

proaches to rwd to create rwde. We observed that the

error types influence measure effectiveness and error

rates ≥ 5% are too high for all AFD-measures.

8 Related Work

Relaxing FDs. In the literature there are two distinct

ways to relax the notion of an FD [9]: relax the con-

straint that an FD X → Y needs to be fully satis-

fied; or replace the way in which tuples are compared

on their X-values by a similarity function rather than

strict equality. We focus on the former and point the

interested reader to [9] for the latter.

Correlation. When an FD holds in a relation, there is

also a statistical correlation among the FD’s attributes.

Conversely, correlated attributes may (but need not)

indicate the presence of an FD. The techniques that are

typically used to test statistical correlation, such as the

χ2 test or mean-square contingency [22], however, only

measure the strength of correlation (e.g., X and Y are

correlated) but do not indicate the direction in which

functional dependence (X → Y or Y → X) is likely to

hold. As such, these techniques do not form appropriate

AFD measures [37] and are not further considered here.

Exact FD discovery. In the context of exact FD discov-

ery, some works consider the problem of ranking exact

FDs according to relevance, where the challenge lies in

quantifying relevance [46]. We are not concerned with

exact FD discovery, but with measures for quantifying

the extent to which FDs hold approximately. Discovery

of AFDs should also not be confused with the approxi-

mate discovery of exact FDs as e.g., done in [6]. There,

only a subset of all FDs that are satisfied are computed

in return for performance improvements.

Existing comparisons of AFD measures. Giannella and

Robertson [19] compare a limited number of measures

on theoretical examples as well as on four real world

datasets. In their experiments, they report on average

differences between pairs of measures and do not com-

pare with a ground truth set of FDs. They therefore do

not empirically compare the effectiveness of the mea-

sures as done here. In their survey concerning FD re-

laxations, Caruccio et al. [9] also survey some of the

AFD measures that are considered here, but do not

provide a qualitative comparison.
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Table 7: µ+ and RFI
′+ score best on rwde with one exception. The table shows the AUCs for each noise type and

level of rwde, the dataset derived from rwd by introducing errors. In the table header, the sizes n of each of the

rwde datasets is shown. For comparison, the first column repeats the AUCs for rwd−. Per column, we typeset

the best AUC bold and underlined and the second best AUC bold.

rwd− copy, 1 copy, 2 copy, 5 copy, 10 bogus, 1 bogus, 2 bogus, 5 bogus, 10 typo, 1 typo, 2 typo, 5 typo, 10
n 1229 1204 1206 1218 1143 1130 1127 1111 992 1188 1194 1189 915
AFD(R) 17 73 72 76 59 58 58 58 28 68 68 67 43

ρ 0.417 0.345 0.229 0.161 0.100 0.241 0.172 0.101 0.069 0.288 0.204 0.132 0.073
g2 0.504 0.341 0.258 0.205 0.169 0.235 0.238 0.180 0.215 0.265 0.235 0.169 0.102
g3 0.674 0.595 0.435 0.323 0.251 0.513 0.342 0.250 0.265 0.540 0.362 0.256 0.163
g′3 0.901 0.586 0.474 0.361 0.302 0.550 0.404 0.261 0.271 0.561 0.461 0.283 0.184
gS1 0.109 0.468 0.345 0.263 0.223 0.364 0.288 0.220 0.251 0.403 0.302 0.224 0.148
FI 0.415 0.467 0.367 0.288 0.259 0.367 0.338 0.243 0.303 0.399 0.336 0.238 0.169
RFI+ 0.494 0.403 0.401 0.378 0.410 0.327 0.289 0.244 0.224 0.392 0.377 0.333 0.387

RFI
′+ 0.971 0.775 0.626 0.513 0.468 0.622 0.497 0.363 0.372 0.689 0.523 0.383 0.304

SFI 0.320 0.238 0.240 0.230 0.256 0.082 0.080 0.074 0.102 0.169 0.170 0.169 0.238
g1 0.425 0.369 0.312 0.252 0.213 0.277 0.271 0.215 0.177 0.316 0.296 0.215 0.119
g′1 0.425 0.368 0.311 0.251 0.212 0.276 0.271 0.215 0.176 0.315 0.296 0.215 0.119
pdep 0.647 0.517 0.391 0.283 0.239 0.412 0.325 0.235 0.253 0.443 0.344 0.237 0.150
τ 0.630 0.630 0.473 0.333 0.275 0.459 0.365 0.260 0.299 0.491 0.379 0.261 0.182
µ+ 0.946 0.773 0.637 0.550 0.476 0.618 0.508 0.374 0.352 0.668 0.552 0.400 0.294

Table 8: On average, µ+ and RFI
′+ score most reliably

over rwde. The table shows the percentages per error

type where a measure has the lowest rank to reach a

recall of 1.0.

copy bogus typo

ρ 3.1 0.0 0.0
g2 9.4 0.0 9.7
g3 21.9 42.3 48.4
g′3 25.0 42.3 41.9
gS1 25.0 19.2 32.3
FI 40.6 38.5 35.5
RFI+ 25.0 26.9 25.8

RFI
′+ 43.8 50.0 58.1

SFI 12.5 15.4 16.1
g1 12.5 7.7 9.7
g′1 12.5 7.7 9.7
pdep 21.9 26.9 29.0
τ 53.1 30.8 41.9
µ+ 75.0 42.3 54.8

Discovery of Conditional FDs. Conditional FDs (CFDs

for short) generalize FDs: they are FDs that only hold

on a subset of the data [7]. CFDs are widely used in data

cleaning [16, 17]. The discovery of (approximate) CFDs

amounts to (i) selecting suitable subsets of the data and

(ii) discovering (A)FDs in these subsets [39]. In par-

ticular, Geerts and Rammelaere [39] propose a generic

(A)CFD discovery algorithm in which any (A)FD dis-

covery algorithm can be plugged. Insights into AFD

measures, as is our focus here, can improve AFD dis-

covery which in turn can be useful for the discovery of

(A)CFDs.

Applications of AFDs. Data management tasks may

use AFDs to different extents. For example, only se-

mantically meaningful AFDs (i.e., FDs that a human

database administrator would include in a database

schema design) are useful for data cleaning tasks [26]

while for query optimisation one could try to exploit all

AFDs present in a relation, even if they are not seman-

tically meaningful. Our real-world benchmark focuses

on the former kind of AFDs. Thus, we present a study

of AFD measures applicable to discover semantically

meaningful AFDs.

9 Conclusions

An overview of our results is given in Table 9. We find

that well-ranking measures exist within each class: g′3
in Violation, RFI

′+ in Shannon, and µ+ in Logi-

cal. We further observe that measures are only effec-

tive when correctly normalized—which is not always

done in the literature.

Indeed, g3 is widely known and cited [3, 4, 18, 19,

21, 23, 24] but to the best of our knowledge only [19]

considers the correctly normalized version g′3. The sensi-

tivity of g′3 to RHS-skew (Figure 1) remains a structural

weakness, hampering its effectiveness as illustrated by

its lower AUC in practice on R6 (Figure 2).

FI is the defining measure of Shannon and suffers

from sensitivity to LHS-uniqueness as illustrated by its

behavior on R3 Figure 3). Its corrections SFI [36] and

RFI+ [28, 29] were aimed at removing bias from FI, but

our experiments on SYN reveal that their distinguish-
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Table 9: Properties of considered AFD measures. The symbol ✓ stands for applies, the symbol ✗ denotes does not

apply. The symbol stands for not applicable (cf. Section 6). Further, f ′ refers to the normalization of the measure

f as discussed in Section 3 and f+ to the adaptation of f that maps all negative values to zero.

ρ g2 g3 g′3 gS1 FI RFI+ RFI
′+ SFI g1 g′1 pdep τ µ+

Considered in [22] [24, 44] [3, 4, 21] [19] new [10, 19] [28, 29] new [36] [24, 47] [26] [37] [20, 37] [37]
[23, 24, 43] [28, 29, 36]

Class (V/S/L) V V V V S S S S S L L L L L
Has baselines ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓
Is normalized ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✓
Efficiently computable ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓
Inversely proportional to
error level

✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓

Insensitive to LHS-unique ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓
Insensitive to RHS-skew ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓
AUC on rwd− 0.417 0.504 0.674 0.901 0.109 0.415 0.494 0.971 0.320 0.425 0.425 0.647 0.630 0.946

ing power is insufficient; they especially overcompen-

sate their correction of FI w.r.t. LHS-uniqueness. This

is reflected by their behavior on rwd, where they are

among the worst performing measures. Our novel cor-

rection RFI
′+ of RFI+ is the best performing measure

on rwd and is insensitive to both LHS-uniqueness and

RHS-skew. Its main drawback is the slow computation

by current algorithms rendering it essentially useless in

practice (Table 4).

Our recommendation for linear AFD discovery is

therefore the little-known measure µ+. It has compara-

ble AUC-performance to RFI
′+ as well as equal struc-

tural sensitivity properties, but can be efficiently com-

puted. Because of the linear-indistinguishability prop-

erty (Section 5) we expect µ+ to be the most promising

measures for discovering non-linear AFDs in real-world

data as well. An experimental validation of this hypoth-

esis is left for future research. In particular, we acknowl-

edge that there may be additional properties exhibited

for non-linear AFDs in real-world data, not considered

here, that necessitate the design of new measures for

effective AFD discovery. This is an exciting topic for

future research.

On rwde, where we introduced errors into FDs to

create AFDs, we observed that our findings generally

hold for error rates below 5%. However, with error rates

of 5% or higher, the performance of all AFD-measures

declines notably, rendering them ineffective (Table 7).

We leave a more extensive investigation including other,

more realistic error types, for future research.

Another finding worth noting is that we illustrated

on rwd, perhaps contrary to popular belief, that by

only inspecting a small number of top-ranked candi-

date FDs (according to g′3, RFI
′+, µ), one already suc-

ceeds in finding a large number of the linear true design

FDs that were obscured by errors. This means in par-

ticular that a domain expert does not need to wade

through hundreds of high-ranked candidate FDs but

can restrict attention to a handful. Whether this holds

for non-linear FDs is left for future research.
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A Proof of Theorem 2

In this section, we present the proof of Theorem 2 as a se-
quence of lemmas. We assume that R ̸|= X → Y for lemmas
2–6.

Lemma 2 g3(X → Y , R) =
∑

x pR(x)maxy pR(y | x).

Proof We reason as follows.

g3(X → Y , R) = max
R′∈G3(X→Y ,R)

|R′|
|R|

= max
R′∈G3(X→Y ,R)

∑
w∈R′

pR(w)

=
∑
x

max
y

pR(xy)

=
∑
x

pR(x)max
y

pR(y | x).

Here, the first equality is the definition of g3. The second
equality follows by definition of pR. The third equality follows
from the following observation: a relation R′ ⊆ R can only be
maximal if R′(w) = R(w) whenever R′(w) > 0 for all w ∈ R.
That is, either we keep all occurrences of w or we remove all
of them. So, maximizing

∑
w∈R′ pR(w) corresponds to, for

every x, keeping that y that maximizes pR(xy). Thereby,
effectively removing all other tuples xy′ with y ̸= y′. The
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last equality then follows from the definition of conditional
probability. ⊓⊔
Lemma 3 pdep(Y | x, R) = 1− hR(Y | x) and therefore

pdep(X → Y , R) =
∑
x

pR(x)(1− hR(Y | x))

= 1−
∑
x

pR(x)hR(Y | x)

= 1− Ex[hR(Y | x)]
Proof We first observe

pdep(Y | x, R) =
∑
y

pR(y | x)2

= 1− (1−
∑
y

pR(y | x)2)

= 1− hR(Y | x).

Hence,

pdep(X → Y , R) =
∑
x

pR(x) pdep(Y | x, R)

=
∑
x

pR(x)(1− hR(Y | x))

=
∑
x

pR(x)−
∑
x

pR(x)hR(Y | x)

= 1−
∑
x

pR(x)hR(Y | x)

⊓⊔
Lemma 4

τ(X → Y,R) = 1−
Ex[hR(Y | x)]

hR(Y )

Proof We reason as follows.

τ(X → Y,R) =
pdep(X → Y , R)− pdep(Y , R)

1− pdep(Y , R)

=
(1− Ex[hR(Y | x)])− (1− hR(Y ))

1− (1− hR(Y ))

=
hR(Y )− Ex[hR(Y | x)]

hR(Y )

= 1−
Ex[hR(Y | x)]

hR(Y )

Here, the second equality is by Lemma 3 and the fact that
pdep(Y , R) = 1− hR(Y ) by definition. ⊓⊔
Lemma 5 Relating this to logical entropy we observe the
following equality.

µ(X → Y , R) = 1−
Ex[hR(Y | x)]

hR(Y )

|R| − 1

|R| − | dom(X, R)|
Proof We reason as follows.

µ(X → Y , R)

:=
pdep(X → Y , R)− ER[pdep(X → Y , R)]

1− ER[pdep(X → Y , R)]

= 1−
1− pdep(X → Y , R)

1− pdep(Y , R)

|R| − 1

|R| − | dom(X, R)|

= 1−
1− (1− Ex[hR(Y | x)])

1− (1− hR(Y ))

|R| − 1

|R| − | dom(X, R)|

= 1−
Ex[hR(Y | x)]

hR(Y )

|R| − 1

|R| − | dom(X, R)|
⊓⊔

Lemma 6

FI(X → Y , R) = 1−
HR(Y | X)

HR(Y )
.

Proof To show the claimed equality, we reason as follows.
Recall that we implicitly assume throughout the paper that
R is non-empty. By definition

FI(X → Y , R) :=

{
1 if | domR(Y )| = 1,
HR(Y )−HR(Y |X)

HR(Y )
otherwise.

We now make a case analysis.

– If | domR(Y )| = 1, then HR(Y ) = 0. Moreover, if
HR(Y ) = 0, also HR(Y | X) = 0. As such,

1−
HR(Y | X)

HR(X)
= 1−

0

0
= 1− 0 = 1 = FI(X → Y , R),

as desired.
– If | domR(Y )| > 1 then

FI(X → Y , R) =
HR(Y )−HR(Y | X)

HR(Y )

= 1−
HR(Y | X)

H(Y )
⊓⊔
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Zdonik, D. Kossmann, N. Tatbul (eds.) Proceedings of
the ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD 2009, Providence, Rhode Is-
land, USA, June 29 - July 2, 2009, pp. 469–482. ACM
(2009). DOI 10.1145/1559845.1559895. URL https:

//doi.org/10.1145/1559845.1559895

14. Edwards, S.: Thomas m. cover and joy a. thomas, el-
ements of information theory (2nd ed.), john wiley &
sons, inc. (2006). Inf. Process. Manag. 44(1), 400–401
(2008). DOI 10.1016/j.ipm.2007.02.009. URL https:

//doi.org/10.1016/j.ipm.2007.02.009

15. Ellerman, D.: New Foundations for Information The-
ory - Logical Entropy and Shannon Entropy. Springer-
Briefs in Philosophy. Springer (2021). DOI 10.1007/
978-3-030-86552-8

16. Fan, W., Geerts, F., Jia, X.: A revival of integrity con-
straints for data cleaning. Proc. VLDB Endow. 1(2),
1522–1523 (2008). DOI 10.14778/1454159.1454220. URL
http://www.vldb.org/pvldb/vol1/1454220.pdf

17. Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Con-
ditional functional dependencies for capturing data in-
consistencies. ACM Trans. Database Syst. 33(2), 6:1–
6:48 (2008). DOI 10.1145/1366102.1366103. URL https:

//doi.org/10.1145/1366102.1366103

18. Faure-Giovagnoli, P., Petit, J., Scuturici, V.: Assessing
the existence of a function in a dataset with the g3
indicator. In: 38th IEEE International Conference on
Data Engineering, ICDE 2022, Kuala Lumpur, Malaysia,

May 9-12, 2022, pp. 607–620. IEEE (2022). DOI 10.
1109/ICDE53745.2022.00050. URL https://doi.org/

10.1109/ICDE53745.2022.00050

19. Giannella, C., Robertson, E.L.: On approximation mea-
sures for functional dependencies. Inf. Syst. 29(6), 483–
507 (2004). DOI 10.1016/j.is.2003.10.006. URL https:

//doi.org/10.1016/j.is.2003.10.006

20. Goodman, L.A., Kruskal, W.H.: Measures of associa-
tion for cross classifications. Journal of the American
Statistical Association 49(268), 732–764 (1954). URL
http://www.jstor.org/stable/2281536
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