
Expressiveness within Sequence Datalog

HEBA AAMER, SOFT Lab, Vrije Universiteit Brussel, Brussel, Belgium

JAN HIDDERS, Birkbeck University of London, London, United Kingdom

JAN PAREDAENS, University of Antwerp, Antwerpen, Belgium

JAN VAN DEN BUSSCHE, Data Science Institute, Hasselt University, Hasselt, Belgium

Motivated by old and new applications, we investigate Datalog as a language for sequence databases. We

reconsider classical features of Datalog programs, such as negation, recursion, intermediate predicates, and

relations of higher arities. We also consider new features that are useful for sequences, notably, equations

between path expressions, and “packing”. Our goal is to clarify the relative expressiveness of all these different

features, in the context of sequences. Towards our goal, we establish a number of redundancy and primitivity

results, showing that certain features can, or cannot, be expressed in terms of other features. These results

paint a complete picture of the expressiveness relationships among all possible Sequence Datalog fragments

that can be formed using the six features that we consider.

CCS Concepts: • Theory of computation → Database query languages (principles);

Additional Key Words and Phrases: path variables, solving word equations, stratified negation

ACM Reference Format:
Heba Aamer, Jan Hidders, Jan Paredaens, and Jan Van den Bussche. 2025. Expressiveness within Sequence

Datalog. ACM Trans. Datab. Syst. 50, 3, Article 12 (June 2025), 38 pages. https://doi.org/10.1145/3732283

1 Introduction

Interest in sequence databases dates back for at least three decades [14]. For clarity, here, by se-
quence databases, we do not mean relations where the tuples are ordered by some sequence num-
ber or timestamp, possibly arriving in a streaming fashion (e.g., [13, 29, 40, 44]). Rather, we mean
databases that allow the management of large collections of sequences.

Example 1.1. To illustrate the idea of a sequence database, consider the following figure depict-
ing a fragment of the metro network of Brussels.

Most of the work was done while Heba Aamer was supported by the Special Research Fund (BOF) (BOF19OWB16).

Rest of the work was done while Heba Aamer was supported by either Fonds Wetenschappelijk Onderzoek Vlaanderen

(FWO)-grants (1210525N) or (G062721N). Jan Van den Bussche is also partially supported by the Flanders AI Research

Programme.
Authors’ Contact Information: Heba Aamer, SOFT Lab, Vrije Universiteit Brussel, Brussel, Belgium; e-mail: heba.

mohamed@vub.be; Jan Hidders (Corresponding author), Birkbeck University of London, London, London, United King-

dom; e-mail: j.hidders@bbk.ac.uk; Jan Paredaens, University of Antwerp, Antwerpen, Belgium; e-mail: jan.paredaens@

uantwerpen.be; Jan Van den Bussche, Data Science Institute, Hasselt University, Hasselt, Limburg, Belgium; e-mail:

jan.vandenbussche@uhasselt.be.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 0362-5915/2025/06-ART12

https://doi.org/10.1145/3732283

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

12:2 H. Aamer et al.

In the figure, the stations are named a, . . . , j instead of their actual names for brevity, and the
numbers refer to the line numbers of the different metro lines.
This network can be naturally expressed as a binary relation M where the first component

represents the line number while the second component represents the full sequence of stations of
that line. The relation M that corresponds to the above depicted network will have the following
set of tuples (where the dot represents concatenation).

In the early years, sequence databases were motivated by applications in object-oriented soft-
ware engineering [6] and in genomics [10, 27]. While these applications remain relevant, more
recent applications of sequence databases include the following:

— Process mining [26] operates on event logs, which are sets of sequences. Thus, sequence
databases, and sequence database query languages, can serve as enabling technology for
process mining and compliance monitoring [2]. For example, a typical query one may want
to be able to support is to look for all logs in which every occurrence of ‘complete order’ is
followed by ‘receive payment’.

— Graph databases have as their main advantage over relational databases that they offer con-
venient query primitives for retrieving paths. Paths are, of course, sequences. For example,
the G-CORE graph query language proposal [30] supports the querying of sequences stored
in the database, separately from the graph; these sequences do not even have to correspond
to actual paths in the graph. An example query in such a context could be to return the
nodes that belong to all paths in a given set of paths. We thus see that a full implementation
of G-CORE must be a sequence database!

— JSON Schema [37] is based on the notion of JSON pointers, which are sequences of keys nav-
igating into nested JSON objects. The work on J-Logic [23] has shown that modeling JSON
databases as sequence databases is very convenient for defining JSON-to-JSON transforma-
tions in a logical, declarative manner.
For a simple example, consider a JSON object Sales that is a set of key–value pairs, where

keys are items; the value for an item is a nested object holding the sales volumes for the
item by year. Specifically, the nested object is again a set of key–value pairs, where keys are
years and values are numbers. We can naturally view Sales as a set of length-3 sequences
of the form item–year–value. Restructuring the object to group sales by year, rather than
by item, then simply amounts to swapping the first two elements of every sequence. For

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

Expressiveness within Sequence Datalog 12:3

another example, checking if two (nested) JSON objects are deep-equal amounts to check-
ing equality of the corresponding sets of sequences. So, again, expressive querying of JSON
objects requires a sequence database.

— Logical approaches to information extraction [18, 45] model the result of an information
extraction as a sequence database.

Given the importance of sequences in various advanced database applications, our research goal
in this article is to obtain a thorough understanding of the role that different language features
play in querying sequence databases. For such an investigation, we need an encompassing query
language in which these features are already present, or can be added. For this purpose, we adopt
Datalog, a logical framework that is well established in database theory research, and that has
continued practical relevance [5, 8, 15].
Indeed, Datalog for sequence databases, or Sequence Datalog, was already introduced and stud-

ied by Bonner and Mecca in the late 1990s [10, 33]. They showed that, to make Datalog work with
sequence databases, all we have to do is to add terms built from sequence variables using the con-
catenation operator. In our work, we refer to such terms as path expressions and refer to sequence
variables as path variables.1 Bonner and Mecca studied computational completeness, complexity,
and termination guarantees for Sequence Datalog, and showed how to combine Sequence Datalog
with subcomputations expressed using transducers.

Sequence Datalog was recently also considered for information extraction (“document span-
ners”), with regular expression matching built-in as a primitive [34, 36]. Such regular expressions
may be viewed as very useful syntactic sugar, as they are also expressible using recursion. Adding
regular matching directly may be compared to Bonner and Mecca’s transducer extensions; the
PTIME capturing result reported by Peterfreund et al. [36] may be compared to Corollary 3 of
Bonner and Mecca [10].
In the present work, we study the relative expressiveness of query language features in the

context of Sequence Datalog. Some of the features we consider are standard Datalog, namely, re-
cursion, stratified negation, and intermediate predicates.2 The latter feature actually comprises two
features, since we distinguish between monadic intermediate predicates and intermediate predi-
cates of higher arities. While we omit regular expression matching as a feature, we consider two
further features that are specific to sequences:

— Equalities between path expressions, which we call equations, allow for the elegant expres-
sion of pattern matching on sequences.

— Packing, a feature introduced in J-Logic, is a versatile tool that allows for subsequences to be
“bracketed” and temporarily treated as atomic values; they can be unpacked later. Intuitively,
sequences with packed values can be seen as nested sequences, in the spirit of nested lists
having sub-lists as elements.

The standard Datalog features, whose expressiveness is well understood on classical relational
structures [4, 17], need to be re-examined in the presence of sequences; moreover, their interaction
with the new features needs to be understood as well. For example, consider recursion versus
equations, and the query that checks whether an input sequence $x consists exclusively of a’s.
(Path variables are prefixed by a dollar sign.) With an equation we can simply write $x · a =

1We actually work with a minor variant of Bonner and Mecca’s language; while they additionally introduce index terms, but

only allow path expressions in the heads of rules, we allow path expressions also in rule bodies, and additionally introduce

atomic variables. The two variants are equivalent in that one can be simulated by the other requiring no additional features

such as negation or recursion.
2We remark that intermediate predicates are the IDB relations names that are not the output IDB relation name. Thus, they

are used by the program internally but do not form the actual output.

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

12:4 H. Aamer et al.

a · $x (using the dot for concatenation). Without equations (or other means to simulate equations),
however, this query can only be expressed using recursion. For another example, consider monadic
versus higher-arity intermediate predicates. Classically, there are well-known arity hierarchies for
Datalog [22]. In our setting, however, a unary relation can already hold arbitrary-length sequences,
and indeed, using a simple coding trick, we will see that the arity feature is actually redundant.

In our work, we have chosen to define expressiveness in terms of the baseline class of “flat unary
queries”, namely, functions from unary relations to unary relations, where both the input and the
output are just sets of plain, unpacked sequences. In this way, we avoid trivial tautologies such
as “arity is a primitive feature, because without it, we cannot express queries of higher arities”.
Similarly, we want to avoid a result of the form “packing is a primitive feature, because without it,
we cannot create packed sequences”. As a matter of fact, we will show that both arity and packing,
although they certainly are convenient features, are actually redundant for expressing these flat
unary queries. A result in this direction was already stated for packing in the context of J-Logic
[23], but the technique used there to simulate packing requires recursion. In the present article, we
show that packing is redundant also in the absence of recursion. Our proof technique leverages
associative unification [3], and more specifically, the termination of associative unification for
particular cases of word equations [16].
Our further results can be summarized as follows:

(1) At first sight, equations seem to be a redundant feature, at least in the presence of interme-
diate predicates. Indeed, instead of using an equation e1 = e2 as a subgoal, we can introduce
an auxiliary recursive relation T (e1, e2) that axiomatizes the equality relation, and replace
the equation by the subgoal T (e1, e2). (Our notation here is not precise but hopefully enough
to convey the idea.) With negated equations and recursion, however, this simple trick does
not work as it violates stratification. We still show, however, that equations are redundant
in the presence of both intermediate predicates and negation.

(2) In the absence of intermediate predicates, however, equations are a primitive feature. Indeed,
the “only a’s” query mentioned above, easily expressed with an equation, is not expressible
in the absence of intermediate predicates.

(3) One can also, conversely, simulate intermediate predicates using equations: a simple folding
transformation works in the absence of negation and recursion. In the presence of negation
or recursion, however, intermediate predicates do add power. This is fairly easy to show for

2
recursion: the squaring query “for every path p in the input, output a n , where n is the length
of p” requires an intermediate predicate in which the output can be constructed recursively.
In the presence of negation, the primitivity of intermediate predicates can be seen to follow
from the corresponding result for classical Datalog (by quantifier alternation). Some work
has still to be done, however, since the classical proof has to be extended to account for path
expressions and equations.

(4) It will not surprise the reader that recursion is primitive in Sequence Datalog. This can be
seen in many ways; probably the easiest is to use the above squaring query, and to observe
that without recursion, the length of output sequences is at most linear in the length of input
sequences. Another proof, that also works for Boolean queries, is by reduction to the classical
inexpressibility of graph connectivity in first-order logic. As in the previous paragraph, the
reduction must account for the use of path expressions and equations.

(5) A classical fact is that nonrecursive Datalog with stratified negation is equivalent to the
relational algebra. We extend the standard relational algebra by allowing path expressions
in selection and projection, and adding operators for unpacking and for subsequences. We
obtain a language equivalent to nonrecursive Sequence Datalog.

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

Expressiveness within Sequence Datalog 12:5

Fig. 1. Relative expressiveness of the different sets of Sequence Datalog features (Negation (N), Equations (E),

Intermediate predicates (I), and Recursion (R); features Arity (A) and Packing (P) will turn out to be entirely

redundant). An ascending path denotes subsumption; absence of such a path denotes non-subsumption.

Our results allow us to completely classify the sixteen possible Sequence Datalog fragments in
a Hasse diagram with respect to their expressive power, as shown in Figure 1. Some fragments are
equivalent, as shown; also, the features for packing and higher-arity intermediate predicates are
omitted, since they are redundant independently of the presence or absence of other features.
A conference version of this article appeared previously [1]. In this version, we remark on the

relation between the original definition of Sequence Datalog and our own definition in Section 2.4.
Also, we include the following full proofs that were either sketched or entirely omitted previously:
Lemmas 4.1, 5.1, 5.4, 5.8, and 7.3; and Theorems 3.2, 4.17, 5.6, and 7.1. Furthermore, Figure 3 and
Examples 1.1, 2.1, 2.4, 3.1, 4.8, 4.9, 4.18, and 4.19 are completely new.

This article is organized as follows. In Section 2, we define the sequence database model and
the syntax and semantics of Sequence Datalog. In Section 3, we introduce the language features
and rigorously define what we mean by one fragment (set of features) being subsumed in expres-
sive power by another fragment. Section 4 presents our redundancy (expressibility) results, and
Section 5 presents our primitivity (inexpressibility) results. The Hasse diagram of Figure 1 is as-
sembled in Section 6. Section 7 presents the relational algebra for sequence databases. We conclude
in Section 8, where we also discuss additional related work.

2 Sequence Databases and Sequence Datalog

In this section, we formally define the sequence database model and the syntax and semantics of
Sequence Datalog. We do assume some familiarity with the basic notions of classical Datalog [4].

2.1 Data Model for Sequence Databases

A schema Γ is a finite set of relation names, each name with an associated arity (a natural number).
We fix a countably infinite universe dom of atomic data elements, called atomic values. The sets of
packed values, values, and paths are defined as the smallest sets satisfying the following:

(1) Every atomic value is a value.
(2) Every finite sequence of values is a path. The empty path is denoted by ϵ .

When writing down paths, we will separate the elements by dots, where the · symbol also
serves as the usual symbol for concatenation. Recall that concatenation is associative.

(3) If p is a path, then ⟨p ⟩ is a packed value.
(4) Every packed value is a value.

The set of all paths is denoted by Π.
For example, if a, b and c are atomic values, then a · b · a is a path; ⟨a · b · a⟩ is a packed value;

and c · ⟨a · b · a ⟩ is again a path.

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

⟩

⟩

⟩

S($x) ← R($x) Δ a · $x = $z Δ $z · $y = ⟨$u⟩

12:6 H. Aamer et al.

An instance I of a schema Γ is a function that assigns to each relation name R ∈ Γ a finite n-ary
relation on Π, with n the arity of R.

It is natural to identify a value v with the one-length sequence v . In this way, values, in particular
atomic values, are also paths. Hence, classical relational database instances are a special case of
instances as defined here. We refer to such instances as classical. So, in a classical instance, each
relation name R is assigned a finite relation on dom.

2.2 Syntax of Sequence Datalog

We assume disjoint supplies of atomic variables (ranging over atomic values) and path variables
(ranging over paths). The set of all variables is also disjoint from dom. We indicate atomic variables
as @x and path variables as $x . Path expressions are defined just like paths, but with variables added
in. Formally, we define the set of path expressions to be the smallest set such that:

(1) Every atomic value is a path expression;
(2) Every variable is a path expression;
(3) If e is a path expression, then ⟨e⟩ ⟩ is a path expression;
(4) Every finite sequence of path expressions is a path expression.

A predicate is an expression of the form R(e1, . . . , en), with R a relation name of arity n, and each
ei a path expression. We call ei the ith component of the predicate. An equation is an expression
of the form e1 = e2, with e1 and e2 path expressions.
Many of the following definitions adapt well-known Datalog notions to our data model.
An atom is a predicate or an equation. A negated atom is an expression of the form ¬A with A

an atom. We write a negated equation ¬e1 = e2 also as a nonequality e1 �≠ e2. A literal is an atom
(also called a positive literal) or a negated atom (a negative literal). A body is a finite set of literals
(possibly empty). A rule is an expression of the form H ← B, where H is a predicate, called the
head of the rule, and B is a body.

We define the limited variables of a rule as the smallest set such that:

(1) every variable occurring in a positive predicate in the body is limited; and
(2) if all variables occurring in one of the sides of a positive equation in the body are limited,

then all variables occurring in the other side are also limited.

A rule is called safe if all variables occurring in the rule are limited.

Example 2.1. The rule S($x) ← R($x) Δ ¬P($y) Δ ⟨$x ⟩ = $y Δ a · $x = $z Δ $z · $y = ⟨$u⟩ ⟩ is safe
while neither of the following two rules is.

S($x) ← R($x) Δ ¬P($y) Δ a · $x = $z

A (Sequence Datalog) program P over a schema Γ is a finite set of safe rules such that all the
relation names occurring in any of the rules belong to Γ. The relation names occurring in a program
are traditionally divided into EDB and IDB relation names. The IDB relation names are the relation
names used in the head of some rules; the other relation names are the EDB relation names. Given
a program P over Γ, we use edb(P) and idb(P) to refer to the set of EDB relation names and the set
of IDB relation names of P, respectively.
A program P over Γ is called semipositive if negated relational atoms are from edb(P). Finally,

in a stratified program P over a schema Γ, the rules can be partitioned into a finite sequence of
strata, P1, . . . , Pm, such that each stratum Pi is a semipositive program over Γ with edb(Pi) ⊆
edb(P)∪

⋃
j <i idb(Pj) and with idb(Pi) disjoint from idb(Pj) for every i �≠ j. Henceforth, we always

use the term program to mean a stratified program unless otherwise specified.

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

⟩

⟩

Expressiveness within Sequence Datalog 12:7

Recall that, in classical Datalog, stratified negation intuitively means that when a negated pred-
icate ¬R(e1, . . . , en) occurs in some stratum, then no rule in that stratum or later strata can use R
in the head predicate. It is easy to see then that classical Datalog programs with stratified negation
are a special case of our notion of programs, where the only path expressions used are atomic
values or atomic variables.

Example 2.2. An NFA can be represented by a unary relation N (initial states), a ternary rela-
tion T (transitions), and a unary relation F (final states). These would be classical relations. Now
consider a unary relation R containing paths without packing, i.e., strings of atomic values. Then
the following program, consisting of a single stratum, computes in relation A the strings from R
that are accepted by the NFA. The program makes use of a ternary relation S that contains the
different configurations that the NFA goes through while computing on some string. Thus, if z ·y
is a sequence of symbols in R, then S(q,y, z) means that after reading the sequence of symbols in
z, the NFA is at state q and it remains to read the sequence of symbols in y. Recall that atomic
variables are prefixed with @, and path variables with $.

S(@q, $x, ϵ) ← R($x), N(@q).
S(@q2, $y, $z·@a) ← S(@q1, @a·$y, $z), T(@q1, @a, @q2).
A($x) ← S(@q, ϵ,$x), F(@q).

Example 2.3. Consider unary relations R and S . The following program, again in a single stratum,
uses packing and nonequalities to check whether there are at least three different occurrences of
a string from S as a substring in strings from R. The Boolean result is computed in the nullary
relation A.

T($u·<$s>·$v) ← R($u·$s·$v), S($s).
A ← T($x),T($y),T($z), $x�≠$y, $x�≠$z, $y�≠$z.

Example 2.4. Consider the binary relation M as described in Example 1.1. The following pro-
gram, in two strata, checks whether the metro network expressed by relation M is not connected.
That is, there are two different stations that are not reachable from each other. The Boolean result
is computed in the nullary relation A.

S(@s) ← M(@n, $x·@s·$y).
C(@u, @v) ← S(@u), S(@v), M(@n, $x·@u·$y·@v·$z).
C(@u, @v) ← C(@v, @u).
T(@x, @y) ← C(@x, @y).
T(@x, @y) ← T(@x, @z), S(@z, @x).
A ← S(@u), S(@v), ¬T(@u, @v), @u @v. �≠

Intuitively, in the above program, we compute in relation S that stations that appear in the network.
In relation C , we compute pairs of stations that are on the same line. Furthermore, in relation T ,
we compute the classical reachability relation between the stations of the network. Finally, in A,
we check that their network is not connected.

2.3 Semantics

We have defined the notion of instance as an assignment of relations over Π to relation names.
A convenient equivalent view of instances is as sets of facts. A fact is an expression of the form
R(p1, . . . ,pn) with R a relation name of arity n, and each pi a path. An instance I of a schema Γ is
viewed as the set of facts {R(p1, . . . ,pn) | R ∈ Γ and (p1, . . . ,pn) ∈ I (R)}.

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

12:8 H. Aamer et al.

A valuation ν is a function that maps atomic variables to atomic values and path variables to
paths. We say that ν is appropriate for a syntactical construct (such as a path expression, a literal,
or a rule) if ν is defined on all variables in that syntactical construct. We can apply an appropriate
valuation ν to a path expression e by substituting each variable in e by its image under ν and
obtain the path ν (e). Likewise, we can apply an appropriate valuation to a predicate and obtain
a fact.
Let L be a literal, ν a valuation appropriate for L, and I an instance. The definition of when I ,ν

satisfies L is as expected: if L is a predicate, then the fact ν (L) must be in I ; if L is an equation
e1 = e2, then ν (e1) and ν (e2) must be the same value; and if L is a negated atom ¬A, then I ,ν must
not satisfy A. A body B is satisfied by I ,ν if all its literals are. Now a rule r = H ← B is satisfied in
I if for every valuation ν appropriate for r such that I ,ν satisfies B, also I ,ν satisfies H .

Let P be a semipositive program over Γ, and let I be an instance over edb(P). Then, the output of
the program P on the instance I , denoted P(I), is the smallest instance over Γ (specifically, edb(P)∪
idb(P)) that satisfies all the rules of P, and that agrees with I on edb(P). Consequently, for a stratified
program P := P1, . . . , Pm over Γ, we define P(I) = Pm(· · · P2(P1(I))).

Due to recursion, for some programs or instances, P(I) may be undefined, since instances are
required to be finite. We also say in this case that P does not terminate on I . If, in the course of
evaluating a program P with several strata on an instance I , one of the strata does not terminate,
we agree that the entire program P is undefined on I . As mentioned in the Introduction, Bonner
and Mecca have done substantial work on the question of guaranteeing termination for Sequence
Datalog programs. In this article, we only consider programs that always terminate.

Example 2.5. The program from Example 2.2, while recursive, is guaranteed to terminate on
every instance. Indeed, this can be easily verified since the sequences of the second component
of the S relation are guaranteed to decrease in length upon applying the recursive rule. Thus, the
number of applications of the recursive rule is bounded by the length of the sequences in the input
relation R. In contrast, the following two-rule program will not terminate on any instance:

T(a).
T(a·$x) ← T($x).

It is worth noting that in the rest of the article, we no longer remark that our programs satisfy
the above condition of termination since in most of the cases, the form of the recursive rules is
restricted in a way similar to the recursive rule of the program from Example 2.2

. That is, one of
the components of the recursive predicate is strictly decreasing in the recursive rule. In the other
cases, the sequences appearing in the result of the recursive rule are appearing in EDB predicates
and hence these sequences are bounded by the input relations.

2.4 Relation to Original Sequence Datalog Features

Before we investigate our main research question in this article, we briefly show that the Sequence
Datalog language definition presented in this article is not a restriction of what was originally de-
fined in the works by Bonner and Mecca [10, 33]. They use two constructs in the original definition
of Sequence Datalog that we did not mention in our variant of the language. These are the indexed
sequence terms and interpreted transducer terms.
It is well established that every sequence datalog program that uses interpreted transducer terms

is equivalent to another that does not use these terms [10]. Thus, we only focus on indexed se-
quence terms. Given that s is a sequence (or a path variable), an indexed sequence term has the
form s[i : j] or s[i], where i and j can be any of the following:

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

Expressiveness within Sequence Datalog 12:9

Table 1. Examples of Some Indexed Sequence Terms and Their Equivalents Using Path Expressions

indexed sequence term equivalent path expression extra conditions

s[1]
s[1 : 3]
s[N]
s[5 : end]
s[N : end − 2]
s[N + 1 : M]

@u
@u1 · @u2 · @u3

@u
$x
$y
$y

s = @u · $x
s = @u1 · @u2 · @u3 · $x

s = $x · @u · $y
s = @u1 · @u2 · @u3 · @u4 · $x

s = $x · $y · @u1 · @u2
s = $x · $y · $z

— a numeric constant value such as 1 or 4;
— a position variable such as N or M ;
— the keyword end which represents that last position of the sequence; or
— a numeric expression built using other (basic) expressions with the operators + and − such
as end − 2 + N .

Intuitively, s[i : j] denotes the contiguous subsequence of s starting from position i to (and
including) position j. Formally, s[i : j] can only be evaluated under valuations ν that assign a path
to the path variable s as before, but now also assign natural numbers to position variables in such
a way that ν (i) and ν (j) are positions in ν (s)with ν (i) ≤ ν (j) + 1 and with neither ν (i) nor ν (j)may
exceed the length of the path ν (s) (otherwise, the indexed sequence term is undefined).3 Moreover,
s[i] denotes a subsequence of length one which is the element at position i , so s[i] is a shorthand
for s[i : i].

Example 2.6. Let s be the sequence abcde f д. Then:
— s[1] evaluates to a.
— s[1 : 3] evaluates to abc .
— s[N] can evaluate to each of the sequences of {a,b, c,d, e, f ,д}, for the possible values N =
1, 2, . . . , 7.

— s[5 : end] evaluates to e f д.
— s[N : end − 2] can evaluate to each of the sequences of {abcde,bcde, cde,de, e, ε}, for the
possible values N = 1, 2, . . . , 6.

— s[N + 1 : M] can evaluate to each of the possible subsequences of bcde f д.
Accordingly, we could get each of the results of the evaluated indexed sequences using variables,

concatenation, and equations as shown in Table 1.

The simple simulation of position variables using extra path variables, suggested in Table 1, is
only sufficient when no position variable is used in different indexed terms.

Example 2.7. Consider the following rule that splits the sequences in the relation R into three
partitions:

S($x[1:N1], $x[N1+1:N2], $x[N2+1:end]) ← R($x).
For this rule, a simple simulation rule works, as we could equivalently rewrite the rule into the
following:

S($x1, $x2, $x3) ← R($x), $x=$x1·$x2·$x3.

or, simply as

3Strictly speaking, we should write νs (i) and νs (j), since the value of ‘end’ always equals the length of ν (s).

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

12:10 H. Aamer et al.

Fig. 2. In this figure, we illustrate what each of equations (mentioned on the left) maps to on the sequences

$x and $y. The colored parts are the parts that should have the same length. The bold rectangles surround

the parts that should be extracted from the sequences regardless of the length constraints.

S($x1, $x2, $x3) ← R($x1·$x2·$x3).

The complication happens when we use the same numeric variable in different indexed sequence
terms. For example, consider the following rule:

S($y[N1:N2]) ←P($x, $y), R($x[1:N1]), R($x[N2:end]), Q($y[1:N1], $y[1:N1+N2]).
The two indexed sequence terms $x[1:N1] and $y[1:N1] in this rule imply an implicit relationship
between the lengths of the evaluated sequences. Indeed, we want to ensure that the length of the
sequence returned by $x[1:N1] is the same as the length of the sequence returned by $y[1:N1].

Using the same path variable to get the prefixes of the sequences $x and $y with equations,
implies that the two prefixes are identical, not only implying the same length constraint. This
complication is resolved by introducing a new predicate that determines whether two sequences
have the same length. Because our rules are safe, we know that sequences $x and $y must appear
entirely in some predicate (in the previous rule, this was the predicate P). Using this information,
we can define the required predicate as follows:

SameLength(ϵ,ϵ).
SameLength($x1·@u, $y1·@v) ← P($p1·$x1·@u·$x2, $p2·$y1·@v·$y2),

SameLength($x1, $y1).

Before, using the SameLength predicate in the translation, we remark that it is always possible
to rewrite any rule using indexed sequence terms into another equivalent, where the numeric
variables used in the rule are unique except in equations. For example, the rule from our running
example is equivalent to the following:

S($y[N5:N6]) ← P($x, $y), R($x[1:N1]), R($x[N2:end]), Q($y[1:N3], $y[1:N4]),
N1=N3, N4=N1+N2, N5=N1, N6=N2.

These equations are constraints on the lengths of the different subsequences ensured by the
SameLength predicate, which is depicted in Figure 2.

Now, we can fully translate the previous rule into the following:

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

Expressiveness within Sequence Datalog 12:11

S(@u2·$t8) ← P($x, $y), $x=$x1·$t1, $y=$y3·$t2, $y=$y4·$t3, $x=$x2·$t4,
$y4=$t5·$t6, $y=$y6·$t7, $y6=$y5·$t8, SameLength($x1, $y3),
SameLength($x1, $t4), SameLength($x2, $t6),
SameLength($x1, $y5), SameLength($x2, $y6),
R($x1), $x2=$t9·@u1, R(@u1·$t4), Q($y3, $y4), $y5=$t10·@u2.

The correctness of this translation is justified by Figure 2.
The discussion of this section has given a proof of our claim that indexed sequence terms are

expressible in the Sequence Datalog variant we use in this work. Of course, one could add the
SameLength predicate as syntactic sugar.
Note that our simulations rely heavily on the SameLength predicate, which we conjecture that

we cannot express in our Sequence Datalog variant without recursion. However, such a predicate
is easily expressible in the original Sequence Datalog language in at least two ways:

SameLength(x1, y1) ← P(x, y), x1=x[N1:M1], y1=y[N2:M2], M1-N1=M2-N2.
or

SameLength(x1, y1) ← P(x, y), x1=x[N1:M1], y1=y[N2:M2],
x1[1:L] = x1, y1[1:L] = y1.

3 Features, Fragments, and Queries

In this article, we consider six possible features that a program may use. These features are exactly
what Sequence Datalog adds to unary unions of conjunctive queries, which are indeed what can
be formed in the base language that does not use any of the features. Each feature is identified by
a letter, spelled out as follows:

Arity A program uses arity (has the A-feature) if it contains at least one predicate of arity greater
than one.

Recursion A program uses recursion (has the R-feature) if there is a cycle in its dependency
graph.4

Equations A program uses equations (has the E-feature) if it contains at least one equation in
some rule.

Negation A program uses negation (has the N-feature) if it contains at least one negated atom in
some rule.

Packing A program uses packing (has the P-feature) if a path expression of the form ⟨e ⟩ occurs
in some rule.

Intermediate predicates A program uses intermediate predicates (has the I-feature) if it involves
at least two different IDB relation names.

Let Φ = {A, I, R, P, E, N} be the set of all features. A subset of Φ is called a fragment. A program
P is said to belong to a fragment F if it uses only features from F .

Example 3.1. The following program belongs to fragment {E}. It computes, in relation S , all
paths from R that consist exclusively of a’s.

S($x) ← R($x), a·$x=$x·a.

The following six programs compute the same query, but each belongs to a different fragment. The
first one belongs to fragment {A, I, R}:

4The nodes of this graph are the IDB relation names, and there is an edge from R1 to R2 if R2 occurs in the body of a rule

with R1 in its head predicate.

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

⟩

12:12 H. Aamer et al.

T($x, $x) ← R($x).
T($x, $y) ← T($x, $y·a).
S($x) ← T($x, ϵ).

The second alternative program belongs to fragment {I, E, N}:

T($x·@w·$y) ← R($x·@w·$y), @w�≠a.
S($x) ← R($x), ¬T($x).

The third alternative program belongs to fragment {I, R, P}:

T(<$x>·<$x>) ← R($x).
T(<$x>·<$y>) ← T(<$x>·<$y·a>).
S($x) ← T(<$x>·<ϵ>).

The fourth alternative program belongs to fragment {A, I}:

T(a·$x, $x) ← R($x).
S($x) ← T($x·a, $x).

The fifth alternative program belongs to fragment {I, P}:

T(<a·$x>·<$x>) ← R($x).
S($x) ← T(<$x·a>·<$x>).

Last but not least, the sixth alternative program belongs to fragment {I}:

T(a·$x·$x) ← R($x).
S($x) ← R($x), T($x·a·$x).

We can even see from the seven different ways that we have always used either feature E or feature
I. So an interesting question, is there a program that computes such a query without using neither?
We can later see that this is not possible, in general.

3.1 Queries and Subsumption Among Fragments and Main Theorem

Our goal is to compare the different fragments with respect to their power in expressing queries.
Our methodology is to do this relative to a baseline class of queries that do not presuppose any
feature to begin with. That is, if a query is expected to compute a binary relation over Π, then it is
not possible to investigate whether arity is redundant or not since the output must use that feature.

Thus, we next formally define the queries we consider in our investigation.
We call a schema monadic if each of its relation names has arity zero or one. Also, we call an

instance flat if it contains no occurrences of packed values.

Given a monadic schema Γ and relation name S ∉ Γ of arity at most one, a query from Γ to S is a
total mapping from flat instances over Γ to flat instances over {S}. A program P is said to compute

such a query Q if
(1) P is over a schema Γ ∪ Γ ' , with Γ ' being disjoint schema from Γ and with edb(P) ⊆ Γ and

idb(P) ⊆ Γ ' ;
(2) P terminates on every flat instance of Γ;
(3) S is an IDB relation of P; and
(4) P(I)(S) equals Q(I) for every flat instance I of Γ.

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

' '

'

Expressiveness within Sequence Datalog 12:13

We now say that fragment F1 is subsumed by fragment F2, denoted by F1 ≤ F2, if every query
computable by a program in F1 is also computable by a program in F2. Note that it is possible, for
different F1 and F2, that F1 ≤ F2 and F2 ≤ F1. Such two fragments are equivalent in expressive
power. There will turn out to be 11 equivalence classes; in Section 6, we will prove the following
main theorem that characterizes the subsumption relation as shown in Figure 1.

THEOREM 3.2 (MAIN THEOREM). For any fragments F1 and F2, we have F1 ≤ F2 if and only if the
following five conditions are satisfied:

(1) N ∈ F1 ⇒ N ∈ F2;
(2) R ∈ F1 ⇒ R ∈ F2;
(3) E ∈ F1 ⇒ (E ∈ F2 ∨ I ∈ F2);
(4) (I ∈ F1 Δ R ∉ F1 Δ N ∉ F1) ⇒ (I ∈ F2 ∨ E ∈ F2);
(5) (I ∈ F1 Δ (R ∈ F1 ∨ N ∈ F1)) ⇒ I ∈ F2.

3.2 Redundancy and Primitivity

We will explore the subsumption relation by investigating the redundancy or primitivity of the
different features with respect to other features. A feature might be redundant in an absolute
sense, in that it can be dropped from any fragment without decrease in expressive power. This
is a very strong notion of redundancy, and we cannot expect it to hold for most features. Yet a
more relative notion of redundancy may hold, meaning that some feature does not contribute to
expressive power, on condition that some other features are already present, or are absent. This
leads to the following notions.

Definition 3.3 (Redundancy). Let X be a feature and let Y and Z be sets of features.
— X is redundant if F ≤ F − {X } for every fragment F .
— X is redundant in the presence of Y if F ≤ F − {X } for every fragment F such that Y ⊆ F .
— X is redundant in the absence of Z if F ≤ F −{X } for every fragment F such that Z is disjoint
from F .

— X is redundant in the presence of Y and absence of Z if F ≤ F − {X } for every fragment F
such that Y ⊆ F and Z is disjoint from F .

Similarly, but conversely, a feature might be primitive in an absolute sense, in that dropping
it from a fragment always strictly decreases the expressive power. Then again, for other features
only more relative notions of primitivity may hold.

Definition 3.4 (Primitivity). Let X be a feature and let Y and Z be sets of features. Recall that Φ
is the set of all features.

— X is primitive if {X } ⋠ Φ − {X }.
— X is primitive in the presence of Y if {X } ∪ Y ⋠ Φ − {X }.
— X is primitive in the absence of Z if {X } ⋠ Φ − ({X } ∪ Z).

4 Expressibility Results

In this section, we show various expressibility results that lead to absolute or relative redundancy
results for various features.

4.1 Arity

Using a simple encoding trick we can see that arity is redundant. Indeed, let a and b be two different
atomic values. For any paths s ' '

1, s2, s and 1 s , we have the following: 2

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

Lemma 4.1. (s1, s2) = (s
' ,1 s

') if and only if2 s1 · a · s2 · a · s1 · b · s2 = s
' ·1 a · s ' ·2 a · s ' ·1 b · s

' .2

' '

's1 · a · s2 · a · s1 · b · s2 = s1 · a · s2 · a · s1 · b · s2

' '

12:14 H. Aamer et al.

PROOF. The only-if direction is trivial. For the if-direction, we consider

and we observe that a appears in the middle of both sequences. Hence,

(a) 's '
1 · a · s2 = s1 · a · s2 and

(b) s1 · b · s2 = s ·1 b · s .2

For the sake of contradiction, let us assume |s1 | < |s ' |. Then s ' = s1 · x for a nonempty sequence 1 1

x . Thus, equation (a) can be rewritten as s1 · a · s '
2 = s1 · x · a · s , which simplifies to a · s2 =2 x · a · s ' .2

Hence, the sequence x must start with a. In the same way, however, we can deduce from (b) that
x must start with b. Hence, the assumption we made is false.

Analogously, |s1 | > |s ' | can be seen to be false as well, so we know that |s |s ' 1 | = |. Then clearly 1 1

|s2 | = |s ' | as well. Hence, from (a) and (b) we get that s ' '
1 = s and s2 = s . 2 1 2 □

Using this encoding, arities higher than one can be reduced by one. Since we can do this repeat-
edly, we obtain:

THEOREM 4.2. Arity is redundant.

Example 4.3. Consider the following program which computes in S the reversals of the paths
in R:

T($x, ϵ) ← R($x).
T($x, $y·@u) ← T($x·@u, $y).
S($x) ← T(ϵ, $x).

The same query can be expressed without arity as follows:

T($x·a·a·$x·b) ← R($x).
T($x·a·$y·@u·a·$x·b·$y·@u) ← T($x·@u·a·$y·a·$x·@u·b·$y).
S($x) ← T(a·$x·a·b·$x).

4.2 Equations

In the presence of I and A, positive equations are readily seen to be redundant, by introducing an
auxiliary intermediate predicate in the program. We only give an example:

Example 4.4. Recall the program from Example 3.1:

S($x) ← R($x), a·$x=$x·a.

The same query can be computed without equations as follows:

T(a·$x, $x) ← R($x).
S($x) ← T($x·a, $x).

This simple method works only in the absence of negation, because, when applied to a negated
equation in a rule that belongs to a recursive stratum, stratification is violated. However, negated
equations can be handled by another method:

LEMMA 4.5. E is redundant in the presence of I, A and N.

PROOF. Positive equations can be handled as above. For each stratum Δ that contains negated
equations, we insert a new stratum Δ ' , right before Δ, consisting of the following rules. Let ρ be
a renaming that maps each head relation name in Δ to a fresh relation name; relation names that
occur only in bodies in Δ are mapped to themselves by ρ.

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

' ' '' ' ' '

' '

' '

' '

' '

' '

' ' '

'

'T (v1, . . . ,vm) ← ρ(B) Δ ei = ei

Expressiveness within Sequence Datalog 12:15

For each rule H ← B in Δ without negated equations, we add the rule ρ(H) ← ρ(B) to Δ ' .
For each rule r : H ← B Δ e �≠ e ' 1 Δ . . . Δ1 en �≠ e ' n in Δ with n negated equations, we again

add ρ(H) ← ρ(B) to Δ ' . Moreover, using a fresh relation name T , we add the following n rules for
i = 1, . . . ,n:

Here, the v’s are all variables appearing in B.
Finally, in Δ, we replace r by the following rule:

H ← B Δ ¬T (v1, . . . ,vm). □

Example 4.6. The following program retrieves in S those paths from R that can be written as
a1 · · ·anbn · · ·b1 with ai �≠ bi for i = 1, . . . ,n:

U($x, $x) ← R($x).
U($x, $y) ← U($x, @a·$y·@b), @a @b. �≠
S($x) ← U($x, ϵ).

Applying the method to eliminate negated equations, we obtain:

U1($x, $x) ← R($x).
U1($x, $y) ← U1($x, @a·$y·@b).
T($x, $y, @a, @b) ← U1($x, @a·$y·@b), @a=@b.
S1($x) ← U1($x, ϵ).
U($x, $x) ← R($x).
U($x, $y) ← U($x, @a·$y·@b), ¬T($x, $y, @a, @b).
S($x) ← U($x, ϵ).

We remark that the rule defining the relation S1 is not needed and hence can be removed from
the program as an optimization step. Nonetheless, we add it to the rewritten program since our
rewriting technique discussed in the proof does this.

From the above, we conclude that E is redundant in the presence of I and A. Since we already
know that arity is redundant, we obtain:

THEOREM 4.7. E is redundant in the presence of I.

4.3 Packing

In this section, we show that packing is redundant. The main task will be to eliminate packing from
equations in nonrecursive programs. We will follow the following strategy to achieve this task:

(1) In Section 4.3.3, we show how to eliminate all variables that can hold values with packing.
We will call such variables impure. The elimination is achieved by “solving” equations in-
volving impure variables. This assumes equations of specific form, called one-sided nonlinear
equations.

(2) Thereto, we will extend a known method for solving word equations that is guaranteed
to terminate on one-sided nonlinear word equations. We begin by recalling this method in
Section 4.3.1. In Section 4.3.2, we present the extension to path expressions.

(3) When all variables are pure, equations involving packing can only be satisfiable if the two
sides have a similar “shape”, called packing structure. We formalize this in Section 4.3.4.

The main result concerning packing is then proven in Section 4.3.5.

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

'

' '

'

12:16 H. Aamer et al.

4.3.1 Solving Equations. Consider an equation e1 = e2 and let X be the set of variables occurring
in the equation. A valuation ν on X is called a solution if ν (e1) and ν (e2) are the same path.

Example 4.8. Consider the equation $x · a = b · $y with $x and $y being distinct path variables
and both a and b being atomic values. It is clear that one possible solution to this equation is the
valuation ν with ν : {$x → b, $y → a} since ν ($x · a) = b · a = ν (b · $y). In general, we can see
that for every possible path p, the valuation ν : {$x → b · p, $y → p · a} constitutes a solution to
the equation.

◦ ◦

◦ ◦

As highlighted by the previous example, one can see that the set of solutions is typically infinite,
so we would like a way to represent this set in a finite manner. Thereto one can use variable
substitutions: partial functions that map variables to path expressions over X . Such a variable
substitution ρ is called a symbolic solution to the equation if ρ(e1) and ρ(e2) are the same path
expression. Every symbolic solution ρ represents a set of solutions

[ρ] := {ν ◦ ρ | ν a valuation on X }.

A set R of symbolic solutions is called complete if
⋃

ρ ∈R [ρ] yields the complete set of solutions to
the equation.

Example 4.9. Continuing on Example 4.8, one can verify that each of the following is a symbolic
solution to the equation and together they form a complete set of symbolic solutions:

— ρ1 : {$x → b, $y → a}; and ◦ ◦
— ρ2 : {$x → b · $x , $y → $x · a}. ◦ ◦

The classical setting of word equations [3] can be seen as a special case of the situation just
described. A word equation corresponds to the case where e1 and e2 contain no packing, and no
atomic variables, i.e., all variables are path variables.
Plotkin’s “pig-pug” procedure for associative unification [39] generates a complete set of sym

bolic solutions to any word equation. However, not every word equation admits a finite complete
set of symbolic solutions; a simple example is our familiar equation $x ·a = a ·$x . Hence, in general,
the procedure may not terminate.5 Nevertheless, pig-pug is guaranteed to terminate on “one-sided
nonlinear” equations [16]. These are word equations where all variables that occur more than once
in the equation, only occur on one side of the equation.

-

We briefly review the pig-pug procedure. The procedure constructs a search tree whose nodes
are labeled with word equations; the root is labeled with the original word equation. For each
node we generate children according to a rewriting relation, ⇒, on word equations. Intuitively, at
any node, we look to the first symbol from both sides of the equation, and then consider all the
matching possibilities between those two symbols. In the most general case of having variables
on both sides of the equation, it is possible that the two symbols (i.e., variables) have paths of the
same length, or that one is longer than the other. For each such possibility, a child node is added
to the search tree representing the equation of that possibility. Specifically, we have the following
rewrite rules:

(1) Cancellation rule: (x · w1 = x · w2) ⇒ (w1 = w2), for x ∈ dom ∪ X .
(2) Main rules: each one of the rules is associated with a substitution, ρ. Let x and y be distinct

variables and let a be an atomic value.
(a) (x · w1 = y · w2) ⇒ (x · ρ(w1) = ρ(w2)) with ρ(x) = y · x
(b) (x · w1 = y · w2) ⇒ (ρ(w1) = ρ(w2)) with ρ(x) = y

5The reader may be interested to know that other means of finite representation (different from a finite set of substitutions)

have been discovered, that work for arbitrary word equations [38].

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

Expressiveness within Sequence Datalog 12:17

Fig. 3. Pig-pug procedure applied on equation $x · a = b · $y. Paths from root to leaf of bold edges indicate

the successful branches.

(c) (x · w1 = y · w2) ⇒ (ρ(w1) = y · ρ(w2)) with ρ(y) = x · y
(d) (x · w1 = a · w2) ⇒ (x · ρ(w1) = ρ(w2)) with ρ(x) = a·x
(e) (x · w1 = a · w2) ⇒ (ρ(w1) = ρ(w2)) with ρ(x) = a
(f) (a · w1 = y · w2) ⇒ (ρ(w1) = y · ρ(w2)) with ρ(y) = a·y
(g) (a · w1 = y · w2) ⇒ (ρ(w1) = ρ(w2)) with ρ(y) = a

When no rule is applicable to an equation, we have reached a leaf node in the search tree. There
are three possible cases for such a leaf equation:

(1) (ϵ = ϵ).
(2) (a · w1 = b · w2), for atomic values a �≠ b.
(3) (ϵ = w) or (w = ϵ), for nonempty w .

The first case is successful, while the other two are not. Each path from the root to a leaf node
of the form (ϵ = ϵ) yields a symbolic solution, formed by composing the substitutions given by the
rewritings along the path. When starting from a one-side nonlinear equation, the tree is finite and
we obtain a complete finite set of symbolic solutions.6 As an illustration, the DAG representation of
the search tree of the equation from Example 4.8 is given in Figure 3. The two successful branches
represent the two symbolic solutions given in Example 4.9.

4.3.2 Extension to Path Expressions. Our equations differ from word equations in that path ex-
pressions can involve packing as well as atomic variables. To this end, we extend the rewriting
system as follows.

(h) Given an equation of the form (@x ·w1 = @y ·w2), the only possibility is for @x and @y to be
the same. Thus, we add the rule (@x · w1 = @y · w2) ⇒ (ρ(w1) = ρ(w2)) with ρ(@x) = @y.

(i) An equation of the form (@x · w1 = $y · w2) is not very different from the case where we
have a constant instead of @x . Thus, we add two rules similar to rules (f) and (g) where the

6It is standard in the literature on word equations to consider only solutions that map variables to nonempty words. The

above procedure is only complete under that assumption. However, allowing the empty word can be easily accommodated.

For any equation eq on a set of variables X , and any subset Y of X , let eqY be the equation obtained from eq by replacing

the variables in Y by the empty word. Let RY be a complete set of symbolic solutions for eqY where we extend each
substitution to X by mapping every variable from Y to the empty word. Then the union of the RY is a complete set of

symbolic solutions for eq, allowing the empty word. If eq is one-sided nonlinear, then eqY is too. This remark equally

applies to the extension to path expressions presented in Section 4.3.2.

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

⟩{$x @y · $z , $u → @w}→ @w · $x , $v → $x · ⟨

12:18 H. Aamer et al.

first covers the case when the length of $y path is strictly larger than one while the second
covers the case when the length of $y path is exactly one:
— (@x · w1 = $y · w2) ⇒ (ρ(w1) = $y · ρ(w2)) with ρ($y) = @x · $y
— (@x · w1 = $y · w2) ⇒ (ρ(w1) = ρ(w2)) with ρ($y) = @x

(j) Analogously, we add rules similar to rules (d) and (e):
— ($x · w1 = @y · w2) ⇒ ($x · ρ(w1) = ρ(w2)) with ρ($x) = @y · $x
— ($x · w1 = @y · w2) ⇒ (ρ(w1) = ρ(w2)) with ρ($x) = @y

(k) Given an equation of the form (⟨w1 ⟩· w2 = ⟨w3 ⟩· w4), we work inductively and solve the
equation (w1 = w3) first. Assuming we can find a finite complete set R of symbolic solutions
for this equation, we then add the rules (⟨w1 ⟩· w2 = ⟨w3 ⟩· w4) ⇒ (ρ(w2) = ρ(w4)) for ρ ∈ R.

(l) An equation of the form (⟨w1 ⟩· w2 = $y ·w3) is again not very different from the case where

we have a constant instead of ⟨w1 ⟩. Thus, we add two rules similar to rules (f) and (g):

— (⟨w1 ⟩· w2 = $y · w3) ⇒ (ρ(w2) = $y · ρ(w3)) with ρ($y) = ⟨w1 ⟩· $y
— (⟨w1 ⟩· w2 = $y · w3) ⇒ (ρ(w2) = ρ(w3)) with ρ($y) = ⟨w1 ⟩

(m) Analogously, we again add rules similar to rules (d) and (e):
— ($x · w1 = ⟨w2 ⟩· w3) ⇒ ($x · ρ(w1) = ρ(w3)) with ρ($x) = ⟨w2 ⟩· $x
— ($x · w1 = ⟨w2 ⟩· w3) ⇒ (ρ(w1) = ρ(w3)) with ρ($x) = ⟨w2 ⟩

Furthermore, we now have extra four non-successful cases for leaf equations, namely, all equa-
tions of the form (@x ·w1 = ⟨w2 ⟩·w3), (⟨w2 ⟩·w3 = @y ·w1), (a ·w1 = ⟨w2 ⟩·w3), or (⟨w2 ⟩·w3 = b ·w1).

It remains to argue that on any one-sided nonlinear equation, our extended rewriting system
terminates and yields a finite complete set of symbolic solutions. In general, any side of an equation
(that is not empty) may begin with an atomic value, an atomic variable, a packed value, or a path
variable. The completeness is clear since all possible ways that could match the first two symbols
of any of the four aforementioned cases are covered by our rules.

As for the termination, the argument is less clear but it easily extends known arguments [16].
Thereto, suppose that we have a one-sided nonlinear equation where the left side of the equation
is linear. Notice that, in this case, the rewriting rule for (k) is equivalent to the following simpler
rule: (⟨w1 ⟩· w2 = ⟨w3 ⟩· w4) ⇒ (w2 = ρ(w4)) for ρ ∈ R where R is the symbolic solution set of
(w1 = w3). Indeed, the equivalence follows from the fact that none of the variables that appear
in w2 appear anywhere else in the equation and hence ρ(w2) = w2. Accordingly, we observe that
none of the rewriting rules can increase the number of variables or values (and hence the symbols)
in the left side nor can it increase the nesting of the packing in the left side. Moreover, in case
the rewriting rule does not strictly decrease the number of the symbols in the left side, the right
side then is guaranteed to decrease in that case. In a similar way, we observe that although some
of the rules can make the right side of the equation larger, all of those rules make the left side
strictly smaller. Hence, the number of times such rules can be executed is bounded by the number
of variables and values appearing in the left side.

Example 4.10. Figure 4 shows a DAG representation of the search tree for the equation $x ·
⟨@y · $z ⟩· @w = $u · $v · $u. There are four successful branches, so the following substitutions
comprise a complete set of symbolic solutions:

{$x @y · $z→ @w, $u → @w, $v → ⟨ ⟩} ◦ ◦ ◦

◦ ◦ ◦

{$x ⟩· @w · $v, $u → ⟨@y · $z ⟩· @w}→ ⟨@y · $z ◦ ◦

{$x @y · $z @y · $z→ $x · ⟨ ⟩· @w · $v · $x , $u → $x · ⟨ ⟩· @w} ◦ ◦

4.3.3 Pure Variables and Pure Equations. We introduce a syntactic “purity check” on variables
that guarantees that they can only take values that do not contain packed values. Since later we will

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

⟩

⟩

⟩

⟩

⟩

Expressiveness within Sequence Datalog 12:19

Fig. 4. Associative unification on an equation on path expressions. Bold edges indicate the successful

branches.

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

⟩ ⟩S($x) ← R($x , $y) Δ ⟨$x = ⟨$y ⟩Δ a · $x = $z Δ $y = ⟨$u

⟩ ⟩ ⟩S($x) ← R($x , $y) Δ ⟨$y = $z Δ ⟨$x = ⟨$z

⟩ ⟩S($x) ← R($x , $y) Δ ⟨$t = ⟨$z ⟩Δ $z = ⟨$y ⟩Δ $t = ⟨$x

' u1 = v1 Δ . . . Δ un = vn Δ e1 = e2

12:20 H. Aamer et al.

work stratum per stratum, it is sufficient in what follows to focus on semipositive, nonrecursive
programs with only one IDB relation name.
Consider a rule in such a program. When a variable appears in some positive EDB predicate, we

call the variable a source variable of the rule. Now we inductively define a variable in the rule to
be pure if

(1) it is a source variable (since we focus on flat input instances); or
(2) it appears in one side of a positive equation, such that

— all the variables in the other side of the equation are pure, and
— the other side of the equation has no packing.

By leveraging associative unification, we are going to show that we can always eliminate impure
variables. The method is based on a division of the positive equations of a rule into three categories:

Pure equations involve only pure variables.
Half-pure equations have all variables in one side pure, and at least one of the variables in the

other side is impure.
Fully impure equations have impure variables in both sides.

Example 4.11. The three equations in the rule

are pure. The two equations in the rule

are half-pure. The equation ⟨$t ⟩ = ⟨$z ⟩ in the rule

is fully impure.

It is instructive to compare the notion of pure variable with that of limited variable, used to
define the notion of safe rule. Indeed, the set of limited variables can be equivalently defined as
follows, where we only change the base case of the induction to immediately include all pure
variables:

— Every pure variable is limited; and
— If all the variables occurring in one side of an equation in the rule are limited, then all the
variables occurring in the other side are also limited.

Therefore, if there is at least one impure variable in a safe rule, then there must be at least one
half-pure equation in the rule. In other words, it is not possible for a rule to have fully impure
equations without having half-pure ones.

LEMMA 4.12. Let r be a rule in a semi-positive, nonrecursive program P with only one IDB relation
name. Then there exists a finite set of rules, equivalent to r on flat instances, in which all positive
equations are pure.

PROOF. By induction on the number of half-pure equations. Let r : H ← B Δ e1 = e2, where
e1 = e2 is half-pure with e1 the pure side and e2 the impure side. Let u1, . . . ,un be the list of all
occurrences of variables in e1. Let v1, . . . ,v be '

n n fresh variables, and let e be 1 e1 with each ui
replaced by vi . Now replace e1 = e2 by the following conjunction of n + 1 equations:

Here, abusing notation, we use the same notation ui for the variable that occurs at ui .

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

⟩ ⟩

⟩ ⟩

⟩

⟩

⟩ ⟩

⟩

'

'

Expressiveness within Sequence Datalog 12:21

Denote the result of this replacement by r ' . The equation e ' = e2 is one-sided nonlinear; by 1

Section 4.3.2, there exists a finite complete set R of solutions. If we let r '' be r ' without e ' =1 e2,
then clearly r is equivalent to the set of rules {ρ(r '') | ρ ∈ R}. However, some of these rules may
not have strictly less half-pure equations than r , which is necessary for the induction to work.
We can solve this problem as follows. Call ρ ∈ R valid if it maps variables that are pure in r ''

to expressions without packing. Since all ui and v n r '' i are pure i , the equations ρ(ui) = ρ(vi) in
ρ(r '') are all pure, so ρ(r '') does have strictly less half-pure equations than r .
Fortunately, we can restrict attention to the valid ρ ∈ R, so the induction goes through. Indeed,

following the definition of a pure variable, one can readily verify that for nonvalid ρ, the rule ρ(r '')
is unsatisfiable on flat instances. □

4.3.4 Packing Structures. By Lemma 4.12, all positive equations can be taken to be pure. We
now reduce this further so that all positive equations are free of packing. Thereto we introduce
the packing structure of a path expression e , denoted by δ (e), and defined as follows:

— δ (ϵ) = ∗.
— δ (a) = ∗, with a a variable or an atomic value.
— δ (⟨e ⟩) = ∗ · ⟨δ (e)⟩ · ∗.
— δ (e1 · e2) equals δ (e1) · δ (e2), in which we replace any consecutive sequence of stars by a
single star.

Assume δ (e) has n stars. Then, e can be constructed from δ (e) by replacing each star by a unique
(possibly empty) subexpression of e . We call these subexpressions the components of e . Crucially,
they do not use packing.
If e does not use packing, δ (e) is simply ∗. If e begins or ends with packing, or if some packing

in e begins or ends with another packing, then some components will be empty.

Example 4.13. Let e = @a · ⟨⟨$x · $y ⟩· $z ⟩ · ⟨ϵ ⟩. Then, δ (e) = ∗ · ⟨∗ · ⟨∗⟩ · ∗⟩ · ∗ · ⟨∗⟩ · ∗. The seven
components of e are @a, ϵ , $x · $y, $z, ϵ , ϵ , and ϵ .

A pure equation e1 = e2 can only be satisfiable on flat instances if e1 and e2 have the same
packing structure. Suppose there are n stars in this packing structure. Then, the equation can be
replaced by the conjunction of n equations, where we equate the corresponding components of e1
and e2. These equations are still pure, and free of packing.
Moreover, when all positive equations are pure, then all variables in the rule are pure, since the

rule is safe. Now a negated equation e1 �≠ e2 over pure variables is equivalent to the disjunction
of the nonequalities between the corresponding components of e1 and e2. Then the rule can be
replaced by a set of rules, one for each disjunct, and the component nonequalities are free of
packing. We can repeat this for all negated equations.
We have arrived at the following:

LEMMA 4.14. Let r be a rule in a semi-positive, nonrecursive program P with only one IDB relation
name. Then there exists a finite set of rules, equivalent to r on flat instances, in which all variables
are pure, and all equations (positive or negated) are free of packing.

4.3.5 Redundancy of Packing. We are now ready for the following result. The proof further
leverages packing structures.

LEMMA 4.15. Packing is redundant in the absence of recursion.

PROOF. Consider a query computed by a nonrecursive program P. We must show that P can be
equivalently rewritten without packing. If P has only one IDB predicate, Lemma 4.14 gives us what
we want. Indeed, by the Lemma, we may assume that equations are already free of packing. Now

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

' '

'' ' '

''

''

''

'' ''

''

⟩ ⟩ ⟩ ⟩

A ← T($x1,$x2,$x3), T($y1,$y2,$y3), T($z1,$z2,$z3), $xi�≠$yi, $xj�≠$zj, $yk�≠$zk.
% for i=1,2,3, j=1,2,3, k=1,2,3

12:22 H. Aamer et al.

since the input is a flat instance, any positive (negated) EDB predicate that contains packing may
be taken to be always false (true). Also, the result of the query is a flat instance, so IDB predicates
containing packing are false as well. We thus obtain a program free of packing as desired.

When P uses intermediate predicates, the elimination of packing from IDB predicates requires
more work. Since P is nonrecursive, we may assume that every stratum involves only one IDB
relation name. Since arity is redundant, we may assume that P does not use arity, but feel free to
use arity in the rewriting of P.
Let us consider the first stratum. For every rule, we proceed as follows. Let R(e) be the head of

the rule. Let m be the number of stars in δ (e) and let e1, . . . , em be the components of e . Replace
the head with Rδ (e)(e1, . . . , em) where Rδ (e) is a fresh relation name.
After this step, the rules in the first stratum no longer contain packing in the head. Of course,

R-predicates in rules in later strata must now be updated to call the new relation names. So, assume
R(e) appears in the body of some later rule r . For each of the packing structures ps introduced for R,
we make a copy of r in which we replace R(e) by the conjunction R ($e , . . . , $e)Δe = e ' ps 1 m , where

— m is the number of stars in ps;
— $e1, . . . , $em are fresh path variables; and
— e ' is obtained from the packing structure ps by replacing the ith star by $ei , for i = 1, . . . ,m.

This rewriting introduces equations in later strata, which is necessary because these later strata
have not yet been purified per Lemma 4.14.
We do the above for every stratum. So, stratum by stratum, we first remove packing from

equations, leaving only pure variables in rules; we replace head predicates; and rewrite calls to
these head predicates in later rules.
After this transformation, packing still appears in negated IDB predicates, which have been

untouched so far. Fortunately, all rules have pure variables at this point. Thus, a literal ¬R(e),
where δ (e) matches one of the packing structures of R, say ps , with m stars, can now be replaced
by ¬Rps (e1, . . . , em), where ei is the ith component of e . If δ (e) does not match any of the packing
structures introduced for R, the negative literal is true on flat instances and can be omitted.

Observing that packing in EDB predicates can be handled as in the semipositive case, we are
done. □

Example 4.16. Rewriting the program from Example 2.3 without packing yields a program with
28 rules:

T($u, $s, $v) ← R($u·$s·$v), S($s).

To get from Lemma 4.15 to the following theorem, it remains to show that packing is redundant
in the presence of recursion. Building on the flat–flat theorem for J-Logic [23, 24] we can close
that gap and we obtain:

THEOREM 4.17. Packing is redundant.

PROOF. It remains to show that P is redundant in the presence of R. Earlier work on J-Logic
(flat-flat theorem [23, 24]) is easily adapted to Sequence Datalog and shows that P is redundant in
the presence of R and N. The general idea of the rewriting used in that proof is as follows (where,
for completeness, we briefly explain the idea with a slight modification):

(1) We add a new stratum at the beginning of the program, where we preprocess the input
relations as follows: every path k1 · k2 · · · · · kn is replaced by its doubled version k1 · k1 · k2 ·
k2 · · · · · kn · kn .

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

'

'

Expressiveness within Sequence Datalog 12:23

(2) We modify the program so that it works with doubled EDB and IDB relations. Packing is
imulated using a technique of simulated delimiters, which relies on the doubled encoding.
Intuitively, since every (flat) path p is doubled as p ' , using a ·b ·p ' ·b ·a suffices to represent the
path ⟨p ⟩ by considering a ·b and b ·a as the delimiters of the packing operator. Precisely, every
rule in the original program is rewritten where every atomic variable and every constant is
doubled. That is, @x and a will be considered in the new program as @x ·@x and a ·a. More-
over, every occurrence of packing is replaced by the aforementioned delimiters. Every path
variable $x in the original rule is kept as it is in the rewritten rule, but we need to make sure
that it encodes a valid (doubled and delimited) subpath. Thereto, suppose that $x appears in
a predicate T , then an extra predicate is added to the rule of the form PathT ($x) where PathT
is a relation that is defined recursively to obtain all subpaths of T that are of valid form.

s

(3) In the last step, we undouble the doubled output.

We remark that steps 1 and 3 as published introduce negation even if the original program does
not use negation. We next show that this can be avoided. Instead, we introduce arity, which is
harmless as arity is redundant.
We double an EDB relation R into R ' as follows:

T(ϵ, $x) ← R($x).
T($x·@y·@y, $z) ← T($x, @y·$z).
R’($x) ← T($x, ϵ).

We undouble a doubled output relation S ' into S as follows:

T($x, ϵ) ← S’($x).
T($x, @y·$z) ← T($x·@y·@y, $z).
S($x) ← T(ϵ, $x).

□

Example 4.18. Consider the third program of Example 3.1 which is repeated below for conve-
nience.

T(<$x>·<$x>) ← R($x).
T(<$x>·<$y>) ← T(<$x>·<$y·a>).
S($x) ← T(<$x>·<ϵ>).

Equivalently, the program can be rewritten without packing (over the doubled EDB relations and
the doubled output relation) as follows:

T(a·b·$x·b·a·a·b·$x·b·a) ← R’($x).
T(a·b·$x·b·a·a·b·$y·b·a) ← T(a·b·$x·b·a·a·b·$y·a·a·b·a), PathT ($x), PathT ($y).
PathT (ϵ) ← .
PathT (a·b·$x·b·a) ← T($u·a·b·$x·b·a·$v), PathT ($x).
PathT (@y·@y·$x) ← T($u·@y·@y·$x·$v), PathT ($x).
PathT ($x·@y·@y) ← T($u·$x·@y·@y·$v), PathT ($x).
S’($x) ← T(a·b·$x·b·a·a·b·b·a), PathT ($x).

4.4 Intermediate Predicates

The following result is straightforward and uses well-known techniques showing that compo-
sitions of nonrecursive rules can be unfolded into a single nonrecursive rule [4, Section 4.3]:
intermediate predicates can be eliminated by folding in the bodies of the intermediate rules,

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

⟩

' '

'

'

12:24 H. Aamer et al.

using equations to unify calling predicates with intermediate head predicates. This idea is simply
illustrated by an example.

Example 4.19. Recall the last program of Example 3.1.

T(a·$x·$x) ← R($x).
S($x) ← R($x), T($x·a·$x).

This program can be equivalently rewritten without intermediate predicates as follows:

S($x) ← R($x), $x·a·$x=a·$y·$y, R($y).

We thus obtain:

THEOREM 4.20. I is redundant in the presence of E and the absence of N and R.

5 Inexpressibility Results

In this section, we show various inexpressibility results that lead to absolute or relative primitive
results for various features.

5.1 Recursion

To see that recursion is primitive also in the context of Sequence Datalog, we can make the follow-
ing observation.

LEMMA 5.1. Let Q be a query that can be computed by a nonrecursive program. Then for any input

instance I , the lengths of paths in Q(I) are bounded by a linear function of the maximal length of a

path in I .

PROOF. Let P be a nonrecursive program computing a query Q . Let P ' be P with all negated
literals removed. The Q ' query computed by P ' contains Q , so if we can prove the claim for Q ' , it
also holds for Q .
By Theorem 4.20, we know that Q ' is computable by a program P '' that does not use intermediate

predicates. Let n be the number of rules, and for i = 1, . . . ,n, let S(ei) be the head of the ith rule;
ai the number of path variables in ei ; and bi the number of atomic values and variables in ei . Then
the length of sequences returned by the ith rule is at most ai x + bi , with x the maximal length
of a sequence in the input. The desired linear function can now be taken to be ax + b, where
a = max{ai | 1 ≤ i ≤ n} and b = max{bi | 1 ≤ i ≤ n}. □

We immediately get:

PROPOSITION 5.2. Let a be a fixed atomic value and let Q be any query from {R} to S satisfying
2

the property that for every instance I and every natural number n with R(an) ∈ I , the string a n is a
substring of a path in Q(I). Then Q is not expressible without recursion.

We readily obtain:

THEOREM 5.3. Recursion is primitive.

PROOF. First, we show that R is primitive in the presence of I. Consider the following recursive
2

program P, computing the query Q returning all paths a n where n is a natural number such that
R(an) is in the input:

T(ϵ, $x, $x) ← R($x).
T($y·$x, $x, $z) ← T($y, $x, a·$z).
S($y) ← T($y, $x, ϵ).

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

'

' ' '

' ''

Expressiveness within Sequence Datalog 12:25

By Proposition 5.2, query Q is not expressible without recursion.
The above program uses intermediate predicates. In the absence of this feature, consider just

the program P ' consisting of the first two rules. Strictly, this program does not compute a query,
as T is ternary. However, we can turn P ' into a program P '' using the arity simulation technique
of Lemma 4.1. Program P '' computes a well-defined query Q '' from {R} to T . Although Q '' is not
a natural query, Proposition 5.2 applies to it, so it is not expressible without recursion. □

5.1.1 Boolean Queries. The above queries showing primitivity of recursion are unary. What
about Boolean queries? It turns out that for Boolean queries, in the presence of intermediate pred-
icates, recursion is still primitive. In the absence of intermediate predicates, however, recursion is
redundant for Boolean queries, for trivial reasons.
Let us go in a bit more detail. Let R be a binary relation viewed as a directed graph. Let Qa→b? be

the Boolean query from {R} to S that checks whether b is reachable from a. It is well-known that
Qa→b?, as a classical relational query, is not computable in classical Datalog without recursion. We
can view Qa→b? as a query on sequence databases by encoding edges (a,b) by paths a · b of length
two. Under this encoding, the query is clearly computable by a Sequence Datalog program in the
fragment {I, R}:

T(@x·@y) ← R(@x·@y).
T(@x·@z) ← T(@x·@y),R(@y·@z).
S ← T(a·b).

We can now show that Qa→b? is not computable without recursion in Sequence Datalog by show-
ing that, on input instances containing only sequences of length two, any nonrecursive Sequence
Datalog program can be simulated by a classical nonrecursive Datalog program. This simulation
is similar to the one shown in Lemma 5.4 appearing later. The only added complication is that, due
to intermediate predicates, sequences of lengths longer than two can appear. However, since there
is no recursion, these lengths are bounded by a constant depending only on the program.
In the absence of the I-feature, we note that any Boolean query, computed by a recursive program

without intermediate predicates, is already computed by the nonrecursive rules only. Indeed, if the
result of the query is false, then none of the rules is fired. If, on the other hand, the result of the
query is true, then at least one rule is fired; however, no recursive rule can be fired before at least
one nonrecursive rule is fired.

5.2 Intermediate Predicates

It is well known that in classical Datalog, without intermediate predicates, we can not express
queries that require universal quantifiers [12]. We can transfer this result to Sequence Datalog by
a simulation technique.

Let Γ be a monadic schema and let I be an instance of Γ. We say that I is “two-bounded” if
only paths of lengths one or two occur in I . We can encode two-bounded instances by classical
instances as follows. Let Γc (‘c’ for classical) be the schema that has two relation names R1 and R2

for each R ∈ Γ. For I two-bounded as above, we define the classical instance I c of Γc as follows:
— I c (R1) = {a ∈ dom | a ∈ I (R)};
— I c (R2) = {(a, b) | a · b ∈ I (R)}.

LEMMA 5.4. Let P be a program in the fragment {E, N, R}, with IDB relation name S , such that the
result of P on a two-bounded instance is still two-bounded. Then there exists a semipositive classical

Datalog program Pc using only the IDB relation names S1 and S2 , such that for every two-bounded
instance I of Γ, we have Pc (I c) = (P(I))c .

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

'

' ''

'' '' ''

12:26 H. Aamer et al.

PROOF. Our goal is to eliminate path variables as well as concatenations in path expressions.
We start with path variables. In any rule containing a head predicate or positive predicate of the
form S(e1 · $x · e2) or R(e1 · $x · e2), we can replace $x either by ϵ , @x , or @x1 ·@x2 (splitting the
rule in three versions).
Path variables may still occur in equations. By safety, they must appear in positive equations, and

inductively we may assume that any remaining path variable $x occurs in a positive equation e1 =
e2 where e1 contains no path variables. This equation is then of the form a1 · · ·an = b1 · · ·bm ·$x ·e ,
where the as and bs are atomic variables or values.

— If m = n, replace $x by the empty path.
— If m > n, the equation is unsatisfiable and the rule can be removed.
— If m < n, replace $x by am+1 · · ·ai , for m < i ≤ n (splitting the rule in n −m + 1 versions).

After these steps, all equations (positive or negated) are of the form a1 · · ·an = b1 · · ·bm , where
the as and bs are atomic variables or values. Such equations can be easily eliminated. Moreover,
any predicates, possibly negated, that are of the form R(e)with e empty or strictly longer than two,
can be eliminated as well.
We finally replace every remaining predicate (head or body) of the form R(a) by R1 (a) and every

predicate of the form R(a1 · a2) by R
2 (a1, a2), and we are done. □

As a consequence, the query computed by the following program, belonging to the fragment
{I, N}, cannot be expressed without intermediate predicates:

W(@x) ← R(@x·@y), ¬B(@y).
S(@x) ← R(@x·@y), ¬W(@x).

Indeed, the classical counterpart of this query is the query asking, on any directed graph where
some nodes are “black”, for all nodes with only edges to black nodes. That query is well-known
not to be expressible in classical semipositive Datalog [12] (recalled in Section 2.2).
We thus obtain:

THEOREM 5.5. I is primitive in the presence of N.

We also have the following primitivity result in the presence of recursion. The proof merely
combines some observations we have already made.

THEOREM 5.6. I is primitive in the presence of R.

PROOF. Recall the squaring query Q from the proof of Theorem 5.3, which is expressible in the
fragment {I, R}. Suppose, for the sake of contradiction, that Q can be computed by a program
without intermediate predicates. Consider the behavior of this program on the family of singleton
instances I n

n = {R(a)}, for all natural numbers n. Since Q(In) is nonempty, at least one of the
rules must fire, which is only possible if at least one of the nonrecursive rules fires. Since there
are no intermediate predicates; however, this firing of the nonrecursive rule already produces the

(unique) correct output S(a n2
). This contradicts Lemma 5.1. Hence, the nonrecursive rule outputs

a wrong result, and our supposed program is wrong. □

5.3 Equations

The two theorems in the previous subsection provide counterparts to Theorem 4.20. The following
theorem confirms that the presence of equations is necessary for Theorem 4.20, and implies that
the fragments {I} and {E} are actually equivalent.

THEOREM 5.7. E is primitive in the absence of I.

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

Expressiveness within Sequence Datalog 12:27

This result follows immediately from the following lemma.

LEMMA 5.8. Let a be an atomic value. The Boolean query that checks if the input relation R contains
a path consisting exclusively of a’s, cannot be computed by a program that lacks features I and E.

PROOF. By the redundancy of packing and arity, we may ignore these features. Also, in
Section 5.1.1, we already noted that in the absence of intermediate predicates, recursion does not
help in expressing Boolean queries. Hence, it suffices to show that the query cannot be computed
by a program in the fragment {N}. For the sake of contradiction, suppose such a program
exists.
Take any rule from the program, and consider the instance J obtained from the positive

predicates in the body by “freezing” all variables, i.e., viewing them as atomic values distinct from
the atomic values already occurring in the rule. Unless the rule is unsatisfiable (in which case we
may ignore it), it will fire on J . So the query is true on J and the body must contain a positive
predicate of the form R(a l).
Now consider the instance I = {R(an)} where n is strictly larger than all values l as above

found in the rules. Then no rule can fire on I , but the query is true on I , so we have the desired
contradiction. □

Indeed, that query is readily expressed using an equation, as we well know.

6 Putting it all Together

The results from the previous two sections allow us to characterize the subsumption relation
among fragments (defined in Section 3) and prove Theorem 3.2 (restated below for convenience)
as follows.

THEOREM 3.2 (MAIN THEOREM). For any fragments F1 and F2, we have F1 ≤ F2 if and only if the
following five conditions are satisfied:

(1) N ∈ F1 ⇒ N ∈ F2;
(2) R ∈ F1 ⇒ R ∈ F2;
(3) E ∈ F1 ⇒ (E ∈ F2 ∨ I ∈ F2);
(4) (I ∈ F1 Δ R ∉ F1 Δ N ∉ F1) ⇒ (I ∈ F2 ∨ E ∈ F2);
(5) (I ∈ F1 Δ (R ∈ F1 ∨ N ∈ F1)) ⇒ I ∈ F2.

PROOF. For the only-if direction, we verify the five conditions, assuming F1 ≤ F2.

(1) Immediate from the primitivity of negation. We have not stated this primitivity as a theorem
because it is so clear (any fragment without negation can express only monotone queries;
with negation we can express set difference which is not monotone).

(2) Immediate from primitivity of recursion.
(3) Immediate from Theorem 5.7.
(4) Assume I ∈ F1 Δ R ∉ F1 Δ N ∉ F1 Δ E ∉ F2 Δ I ∉ F2. By Theorem 4.7 , we have {E} ≤ F1. Now

Theorem 5.7 leads to a contradiction with F1 ≤ F2.
(5) Immediate from Theorems 5.5 and 5.6.

For the if-direction, since arity and packing are redundant, F1 ≤ F2 if and only if F̂1 ≤ F̂2,
where F̂ = F − {A, P}. Now Figure 5 infers F̂ ˆ

1 ≤ F2 from the five conditions and the redundancy
results. □

7 Sequence Relational Algebra

Given the importance of algebraic query plans for database query execution, we show here how to
extend the classical relational algebra to obtain a language equivalent to recursion-free Sequence

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

ℓ

ℓ

{(t1, . . . , ti−1, s, ti+1, . . . , tn) | (t1, . . . , ti−1, ⟨s⟩ , ti+1, . . . , tn) ∈ R}.

12:28 H. Aamer et al.

Fig. 5. If-direction of Theorem 3.2.

Datalog programs. We note that a similar language, while calculus-based rather than algebra-based,
is the language StriQuel proposed by Grahne and Waller [21].
The (unnamed) relational algebra, with operators projection; equality selection; union; differ-

ence; and cartesian product, is well known [4, 46]. To extend this algebra to our data model (Sec-
tion 2.1), we generalize the selection and projection operators and add three extraction operators.
In what follows, let R be an n-ary relation on Π, that is, a finite set of tuples t such that each tuple
is viewed as the valuation that maps $i to ti for i = 1, . . . ,n where ti is the path at the ith position.
Selection: The classical equality selection σ$i=$j (R), with i, j ∈ {1, . . . ,n}, returns {t ∈ R | ti = tj }.

We now allow path expressions α and β over the variables $1, . . . ,$n and have the selection
operator

σα =β (R) := {t ∈ R | t(α) = t(β)}.
Projection: For path expressions α1, . . . , αp over variables $1, . . . , $n as above, we define

πα1, ...,αp (R) := {(t(α1), . . . , t(αp)) | t ∈ R}.

Unpacking: For i ∈ {1, . . . ,n}, the operator UNPACKi (R) returns

Substrings: SUBi (R) equals

{(t1, . . . , tn , s) | (t1, . . . , tn) ∈ R and s is a substring of ti }.

Atoms: ATOMi (R) equals

{(t1, . . . , tn ,a) | (t1, . . . , tn) ∈ R and a is an atomic value from ti }.

We could also have defined a more powerful unpacking operator, which extracts components
from paths using path expressions, similar to the use of path expressions in Sequence Datalog.
Such an operator is useful in practice but can for theoretical purposes be simulated using the given

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

⟩

Expressiveness within Sequence Datalog 12:29

operators, as we will show. First, we give an example of a sequence relational algebra expression
that corresponds to the all a’s query:

σ$1·a=a ·$1(R).
“Sequence relational algebra” expressions over a schema Γ, built up using the above operators

from the relation names of Γ and constant relations, are defined as usual. We have, as expected,
the following theorem. Note that this result applies for arbitrary instances, not only for flat inputs
and flat outputs.

THEOREM 7.1. For every program P without recursion and every IDB relation name T , there exists
a sequence relational algebra expression E such that for every instance I , we have P(I)(T) = E(I). The
converse statement holds as well.

That sequence relational algebra can be translated to Sequence Datalog is clear. Nonetheless,
for completeness the translation is given in Proposition 7.2.

PROPOSITION 7.2. Let E be a sequence relational algebra expression over a schema Γ. There exists
a Sequence Datalog program PE and IDB relation name TE such that for every instance I over Γ, we
have E(I) = PE (I)(TE).

PROOF. We establish the proof by structural induction on the sequence relational algebra ex-
pression E. As in classical relational algebra, every expression is associated to a particular arity.
The base cases are:

— If E := {t} with t being an n-ary tuple, then define TE by the rule

TE (t1, . . . , tn) ←

and take P to be the program with the above rule.

E

— If E := R for some n-ary relation R, then define TE by the rule

TE ($v1, . . . , $vn) ← R($v1, . . . , $vn)

and take PE to be the program with the above rule.

As for the induction step, assume that E1 and E2 are n-ary expressions and that E3 is an m-ary
expression such that we have equivalent rules defining TE1 , TE2 , and TE3 and programs PE1 , PE2 ,
and PE3 , respectively.

— If E := σα =β (E1) with E1 being an n-ary expression, then define TE by the rule

TE ($v1, . . . , $vn) ← TE1 ($v1, . . . , $vn),θ (α) = θ (β)

with θ being the obvious mapping from position variables $i to the corresponding path vari-
ables $vi . Now take PE to be the program with the above rule in addition to the rules in
PE1 .
If E := πα1, ...,αp (E1) with E1 being an n-ary expression, then define TE by the rule

TE (θ (α1), . . . ,θ (αp)) ← TE1 ($v1, . . . , $vn)

with θ being the obvious mapping from position variables $i to the corresponding path vari-
ables $vi . Now take PE to be the program with the above rule in addition to the rules in
PE1 .

—

— If E := UNPACKi (E1) with E1 being an n-ary expression and for i ∈ {1, . . . ,n}, then define
TE by the rule

TE ($v1, . . . , $vi , . . . , $vn) ← TE1 ($v1, . . . , $vi−1, ⟨$vi ⟩, $vi+1, . . . , $vn)

and take PE to be the program with the above rule in addition to the rules in PE1 .

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

⟩

12:30 H. Aamer et al.

— If E := SUBi (E1) with E1 being an n-ary expression and for i ∈ {1, . . . ,n}, then define TE by
the rule

TE ($v1, . . . , $vn , $y) ← TE1 ($v1, . . . , $vn), $vi = $x · $y · $z
and take PE to be the program with the above rule in addition to the rules in PE . 1

– If E := ATOMi (E1) with E1 being an n-ary expression and for i ∈ {1, . . . ,n}, then define TE
by the rule

TE ($v1, . . . , $vn ,@y) ← TE1 ($v1, . . . , $vn), $vi = $x · @y · $z

and take PE to be the program with the above rule in addition to the rules in PE1 .
— If E := E1 ∪ E2 with both E1 and E2 being n-ary expressions, then define TE by the two rules

TE ($v1, . . . , $vn) ← TE1 ($v1, . . . , $vn)
TE ($v1, . . . , $vn) ← TE2 ($v1, . . . , $vn).

Now take PE to be the program with the above rules in addition to the rules in PE1 and the
rules in PE2 .

— If E := E1 − E2 with both E1 and E2 being n-ary expressions, then define TE by the rule

TE ($v1, . . . , $vn) ← TE1 ($v1, . . . , $vn),¬TE2 ($v1, . . . , $vn).

Now take PE to be the program with the above rule in addition to the rules in PE1 and the
rules in PE2 .

— If E := E1 × E3 with E1 being an n-ary expression and E3 being an m-ary expression, then
define TE by the rule

TE ($x1, . . . , $xn , $y1, . . . , $ym) ← TE1 ($x1, . . . , $xn),TE3 ($y1, . . . , $ym).

Now take PE to be the program with the above rule in addition to the rules in PE1 and the
rules in PE3 . □

Our approach to translate in the other direction is for the most part standard. We can make use of
the following normal form. Afterward, this normal form is utilized in Proposition 7.4 establishing
the second direction of Theorem 7.1.

LEMMA 7.3. Let P be a nonrecursive Sequence Datalog program that does not use equations. Then

there is a nonrecursive program P ' computing the same query as P where each rule in P ' has one of
the following six forms:

(1) R1(v1, . . . ,vn) ← R2(e1, . . . , em);

(2) R1(v1, . . . ,vn , e) ← R2(v1, . . . ,vn);
(3) R1(v1, . . . ,vn) ← R2(x1, . . . ,xk),R3(y1, . . . ,y l);
(4) R (v , . . . ,v) ← R (v , . . . ,v), ¬R (v ' , '

1 1 n 2 1 n 3 . . . ,1 v m);

(5) R ' '
1(v , . . . ,1 v m) ← R2(v1, . . . ,vn);

(6) R(p) ← .

The following restrictions apply:

— In all forms, v1, . . . ,vn are distinct variables. Moreover, in forms 2 to 6, each vi must be a path

variable.

— I n form 3, the xi and yj are path variables and {v1, . . . ,vn } is contained in {x1, . . . ,xk } ∪

{y , . . . ,y l}.

1

— In forms 4 and 5, v ' , . . . , ' 1 v m are distinct variables taken from {v1, . . . ,vn }.
— In form 6, p is a path (constant relation).

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

' '

ℓ
' '

' '

ℓ
' '

Expressiveness within Sequence Datalog 12:31

PROOF OF LEMMA 7.3. The conversion to normal form is best described on a general example.
Consider the following one-rule Sequence Datalog program:

T(a·b·c, @x·c·$y, $z·$z)← P1($y·$y, $z·a, @u·d), P2($z·@x·c, d),
¬N1(@x·$y·$z, a·@x), ¬N2(a·b, $y).

In what follows, we call the rule that we process the main rule and its stratum the main stratum.

Step 1: Get variables from positive literals.

Step 1.1. Replace every occurrence of a positive atom P(e1, . . . , em) by a new predicate
H (v1, . . . ,vn) where {v1, . . . ,vn } is the set of variables used in the atom. For each H add a new
rule of the form H (v1, . . . ,vn) ← P (e1, . . . , em). Note that these sets of rules are guaranteed to
be form 1. Moreover, every atomic variable in the main rule should be replaced by a new path
variable.

In case the positive atom does not use variables, then we replace every occurrence by a new
predicate H ($v) with a fresh variable $v . To get this H , we add the two rules H ' ← P(e1, . . . , em)
and H (a) ← H ' for a new predicate H ' and a ∈ dom. Note that the first rule is of form 1, while the
second added rule is of form 2.

H1($y, $z, @u)← P1($y·$y, $z·a, @u·d).
H2($z, @x)← P2($z·@x·c, d).
T(a·b·c, $x·c·$y, $z·$z)← H1($y, $z, $u), H2($z, $x),

¬N1($x·$y·$z, a·$x), ¬N2(a·b, $y).

Step 1.2.

— When no positive atoms exist in the main rule, then the rule has no variables. Only in this
case, we add to the main stratum a new rule of the form R(a) ← , where R is a new relation
name and a is some value from the domain. This added rule is of form 6. Moreover, we add
R($v) to the body of the main rule, where $v is a fresh path variable.

— Otherwise, this step should be repeated until only one positive atom remains in the main
rule. We remove two positive atoms Hi (x1, . . . ,xn) and Hj (y1, . . . ,ym), and replace them
with H (v1, . . . ,vk), where H is a fresh predicate name, and the set of variables vs is the
union of the set of xs and ys. In addition, we introduce a new rule of the form

H (v1, . . . ,vk) ← Hi (x1, . . . ,xn),Hj (y1, . . . ,ym)

in the main stratum. This rule is of form 3.

H1($y, $z, @u)← P1($y·$y, $z·a, @u·d).
H2($z, @x)← P2($z·@x·c, d).
H($y, $z, $u, $x)← H1($y, $z, $u), H2($z, $x).
T(a·b·c, $x·c·$y, $z·$z)← H($y, $z, $u, $x),

¬N1($x·$y·$z, a·$x), ¬N2(a·b, $y).

Step 2: Separate each negative literal in an intermediate rule.

Step 2.1. Let H (v1, . . . ,vn) be the only positive atom in the body of the rule. Every literal
¬N (e1, . . . , em) is replaced by a predicate HN (v1, . . . ,vn), where HN is a new relation name. More-
over, we add a rule of the form

HN (v1, . . . ,vn) ← H (v1, . . . ,vn), ¬N (e1, . . . , em)

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

'

' '

' ' ' ' Ni (v1, . . . ,vn ,v1, . . . ,vi−1, ei) ← Ni−1(v1, . . . ,vn ,v1, . . . ,vi−1).

' ' Nm (v1, . . . ,vn ,v1, . . . ,v).m

12:32 H. Aamer et al.

to the main stratum, and we remove H (v1, . . . ,vn) from the main rule.

H1($y, $z, @u)← P1($y·$y, $z·a, @u·d).
H2($z, @x)← P2($z·@x·c, d).
H($y, $z, $u, $x)← H1($y, $z, $u), H2($z, $x).
HN1($y, $z, $u, $x)← H($y, $z, $u, $x), ¬N1($x·$y·$z, a·$x).
HN2($y, $z, $u, $x)← H($y, $z, $u, $x), ¬N2(a·b, $y).
T(a·b·c, $x·c·$y, $z·$z)← HN1($y, $z, $u, $x),

HN2($y, $z, $u, $x).

Step 2.2. We do the same as in step 1.2, leaving us in the end with a single positive atom holding
the variables from the original rule. All the rules introduced by this step are of form 3.

H1($y, $z, @u)← P1($y·$y, $z·a, @u·d).
H2($z, @x)← P2($z·@x·c, d).
H($y, $z, $u, $x)← H1($y, $z, $u), H2($z, $x).
HN1($y, $z, $u, $x)← H($y, $z, $u, $x), ¬N1($x·$y·$z, a·$x).
HN2($y, $z, $u, $x)← H($y, $z, $u, $x), ¬N2(a·b, $y).
HN($y, $z, $u, $x)← HN1($y, $z, $u, $x), HN2($y, $z, $u, $x).
T(a·b·c, $x·c·$y, $z·$z)← HN($y, $z, $u, $x).

Step 3: Generate negated expressions. We next work on the rules that were introduced to deal
with the negated atoms.

Step 3.1. In step 2.1, we added rules with negative literals:

HN (v1, . . . ,vn) ← H (v1, . . . ,vn),¬N (e1, . . . , em)

For each such added rule, we define a sequence of rules in order to generate the values for the
expressions ei . Since our rule is safe from the beginning, we are guaranteed that all the variables
used in these expressions are among the vs.

We inductively generate m rules as follows (where the v ' s are fresh variables) and add them to
the main stratum:

(1) N1(v1, . . . ,vn , e1) ← H (v1, . . . ,vn)
(2) for 1 < i ≤ m, the rule

Each one of the above rules is of form 2. In addition, we replace H (v1, . . . ,vn) in the rule under
consideration by

Moreover, we replace ¬N (e , . . . , e) by ¬N (v ' , '
1 m . . . ,1 v m).

H1($y, $z, @u)← P1($y·$y, $z·a, @u·d).
H2($z, @x)← P2($z·@x·c, d).
H($y, $z, $u, $x)← H1($y, $z, $u), H2($z, $x).
N11($y, $z, $u, $x, $x·$y·$z)← H($y, $z, $u, $x).
N21($y, $z, $u, $x, a·b)← H($y, $z, $u, $x).
N12($y, $z, $u, $x, $n11, a·$x)← N11($y, $z, $u, $x, $n11).
N22($y, $z, $u, $x, $n21, $y)← N21($y, $z, $u, $x, $n21).
HN1($y, $z, $u, $x)← N12($y, $z, $u, $x, $n11, $n12),

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

' ' ' '

' '

' '

'

' ' ' ' HN (v1, . . . ,vn) ← Nm (v1, . . . ,vn ,v1, . . . ,v), ¬N (v1, . . . ,v).m m

' ' HN (v1, . . . ,vn) ← FN (v1, . . . ,vn ,v1, . . . ,v);m

' ' ' ' ' ' FN (v1, . . . ,vn ,v1, . . . ,v) ← Nm (v1, . . . ,vn ,v1, . . . ,v), ¬N (v1, . . . ,v),m m m

' ' ' ' Ti (v1, . . . ,vn ,v1, . . . ,vi−1, ei) ← Ti−1(v1, . . . ,vn ,v1, . . . ,vi−1).

' ' ' ' T (v1, . . . ,v) ← Tm (v1, . . . ,vn ,v1, . . . ,v).m m

Expressiveness within Sequence Datalog 12:33

¬N1($n11, $n12).
HN2($y, $z, $u, $x)← N22($y, $z, $u, $x, $n21, $n22),

¬N2($n21, $n22).
HN($y, $z, $u, $x)← HN1($y, $z, $u, $x), HN2($y, $z, $u, $x).
T(a·b·c, $x·c·$y, $z·$z)← HN($y, $z, $u, $x).

Step 3.2. We have now obtained rules of the form

We now further replace them with

where FN is a new relation name. Now this rule is of form 5. Moreover, we add the rule

which is of form 4, to the main stratum.

H1($y, $z, @u)← P1($y·$y, $z·a, @u·d).
H2($z, @x)← P2($z·@x·c, d).
H($y, $z, $u, $x)← H1($y, $z, $u), H2($z, $x).
N11($y, $z, $u, $x, $x·$y·$z)← H($y, $z, $u, $x).
N21($y, $z, $u, $x, a·b)← H($y, $z, $u, $x).
N12($y, $z, $u, $x, $n11, a·$x)← N11($y, $z, $u, $x, $n11).
N22($y, $z, $u, $x, $n21, $y)← N21($y, $z, $u, $x, $n21).
FN1($y, $z, $u, $x, $n11, $n12)←

N12($y, $z, $u, $x, $n11, $n12), ¬N1($n11, $n12).
FN2($y, $z, $u, $x, $n21, $n22)←

N22($y, $z, $u, $x, $n21, $n22), ¬N2($n21, $n22).
HN1($y, $z, $u, $x)← FN1($y, $z, $u, $x, $n11, $n12).
HN2($y, $z, $u, $x)← FN2($y, $z, $u, $x, $n21, $n22).
HN($y, $z, $u, $x)← HN1($y, $z, $u, $x), HN2($y, $z, $u, $x).
T(a·b·c, $x·c·$y, $z·$z)← HN($y, $z, $u, $x).

Step 4: Generate final head expressions. We are now left to work on the final rule which is nor-
malized in a similar way as step 3.1. The final rule is of the form T (e1, . . . , em) ← H (v1, . . . ,vn),
where by safety it is guaranteed that any variable appearing in any of the es is among the vs.

We inductively generate m rules as follows (where the v ' s are fresh variables):
(1) T1(v1, . . . ,vn , e1) ← H (v1, . . . ,vn)
(2) for 1 < i ≤ m, the rule

Each one of the above rules is of form 2. The last thing to be done is to update the main rule to

Now, this rule is of form 5.

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

' ' ' '

' '

' ' ' ' ' '

' ' ' '

' ' ' '

12:34 H. Aamer et al.

H1($y, $z, @u)← P1($y·$y, $z·a, @u·d).
H2($z, @x)← P2($z·@x·c, d).
H($y, $z, $u, $x)← H1($y, $z, $u), H2($z, $x).
N11($y, $z, $u, $x, $x·$y·$z)← H($y, $z, $u, $x).
N21($y, $z, $u, $x, a·b)← H($y, $z, $u, $x).
N12($y, $z, $u, $x, $n11, a·$x)← N11($y, $z, $u, $x, $n11).
N22($y, $z, $u, $x, $n21, $y)← N21($y, $z, $u, $x, $n21).
FN1($y, $z, $u, $x, $n11, $n12)←

N12($y, $z, $u, $x, $n11, $n12), ¬N1($n11, $n12).
FN2($y, $z, $u, $x, $n21, $n22)←

N22($y, $z, $u, $x, $n21, $n22), ¬N2($n21, $n22).
HN1($y, $z, $u, $x)← FN1($y, $z, $u, $x, $n11, $n12).
HN2($y, $z, $u, $x)← FN2($y, $z, $u, $x, $n21, $n22).
HN($y, $z, $u, $x)← HN1($y, $z, $u, $x), HN2($y, $z, $u, $x).
T1($y, $z, $u, $x, a·b·c)← HN($y, $z, $u, $x).
T2($y, $z, $u, $x, $t1, $x·c·$y)← T1($y, $z, $u, $x, $t1).
T3($y, $z, $u, $x, $t1, $t2, $z·$z)←

T2($y, $z, $u, $x, $t1, $t2).
T($t1, $t2, $t3)← T3($y, $z, $u, $x, $t1, $t2, $t3).

□

Observe that the previous lemma is stated for programs without equations, since we know that
equations are redundant in the presence of intermediate predicates. Given the normal form, we
show the following:

PROPOSITION 7.4. Let P be a non-recursive program over Γ whose rules are in normal form. Then,

for every IDB relation name T in P, there exists a sequence relational algebra expression ET such that
for every instance I over Γ, we have P(I)(T) = ET (I).

PROOF. We establish the proof by structural induction on the form of the rules defining the
relation names of P. Without loss of generality, we assume that each IDB relation name is defined
by a single rule. Otherwise, we can always get the union of the different expressions corresponding
to the different rules defining a single relation name using ∪ operator.
In what follows, we are also assuming that for every EDB relation name R, there is an expression

ER that is simply defined as ER := R; and that T1 and T2 are IDB relation names with ET1 and ET2
being their respective equivalent expressions.

— If T is defined by a rule of form (1). Equivalently, and without loss of generality, we can view
that the rule has the form

T (vi1 , . . . ,vin) ← T1(e1, . . . , em)

such the set of all variables appearing in the path expressions are v1, . . . ,v l,v l+1, . . . ,v l+j
with the first l being path variables and the last j being atomic variables, and moreover, each
i is a distinct number from 1 to l + j.
Suppose that the maximum packing depth in any of the path expressions e is k . We then
define the following sequence of sequence relational algebra expressions:

Edepth0 := π$1(ET1) ∪ π$2(ET1) ∪ · · · ∪ π$m (ET1).
Esubs0 := π$2(SUB1(Edepth0)).

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

ℓ ℓ ℓ

ℓ
ℓ

Expressiveness within Sequence Datalog 12:35

Eatom0 := π$2(ATOM1(Edepth0)).
Edepth1 := π$2(UNPACK1(Esubs0)).
Esubs1 := π$2(SUB1(Edepth1)).
Eatom1 := π$2(ATOM1(Edepth1)).
Edepth2 := π$2(UNPACK1(Esubs1)).

.. .

Edepthk := π$2(UNPACK1(Esubsk−1)).
Esubsk := π$2(SUB1(Edepthk)).
Eatomk

:= π$2(ATOM1(Edepthk)).
Eall_s := Esubs0 ∪ · · · ∪ Esubsk .
Eall_a := Eatom0 ∪ · · · ∪ Eatomk

.

Intuitively, by composing the unpacking and substring operations, we can generate all sub-
paths (Eall_s) and atoms (Eall_a) until the maximum packing depth k of the expressions.
Now, take ET to be the expression

π$i1, ...,$in (σ$ l+j+1=θ (e1)(· · ·σ$ l+j+m=θ (em)(Eall_s × · · · × Eall_s ×Eall_a × · · · × Eall_a × ET1)))
----------------- ----------------- ------------------ ------------------

j

l

with θ being the obvious mapping from path and atomic variables vr to the corresponding
position variables $r .

— If T is defined by a rule of the form

T (v1, . . . ,vn , e) ← T1(v1, . . . ,vn).

Take ET to be the expression π$1, ...,$n,θ (e)(ET1) where θ is the obvious mapping from path
variables vi to the corresponding position variables $i .

— If T is defined by a rule of form (3). Equivalently, we can view that the rule has the form

T (vi1 , . . . ,vin) ← T1(v1, . . . ,vk),T2(vk+1, . . . ,vk+ l),vj1 = vj2 , . . . ,vjr = vjr +1
where all v’s in v1, . . . ,vk+ l are distinct and each i and j is a number from 1 to k + l that is
distinct in the case of i’s. Then, take ET to be the expression

π$i1, ...,$in (σ$j1=$j2 (· · ·σ$jr =$jr +1 (ET1 × ET2))).

— If T is defined by a rule of form (4). Equivalently, we can view that the rule has the form

T (v1, . . . ,vn) ← T1(v1, . . . ,vn), ¬T2(vi1 , . . . ,vim)

where all v’s in v1, . . . ,vn are distinct and each i is a distinct number from 1 to n. Then, take
ET to be the expression

π$1, ...,$n (σ$i1=$i1 +n (· · ·σ$im =$im +n (ET1 × (π$i1, ...,$im (ET1) − ET2)))).

— If T is defined by a rule of form (5). Equivalently, we can view that the rule has the form

T (vi1 , . . . ,vim) ← T1(v1, . . . ,vn).

where all v’s in v1, . . . ,vn are distinct and each i is a distinct number from 1 to n. Then, take
ET to be the expression

π$i1, ...,$im (ET1).
— If T is defined by a rule of the formT (p) ←. Then, take ET to be the expression {($1 : p)}. □

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

ℓ ℓ

ℓ

ℓ

ℓ ℓ

12:36 H. Aamer et al.

8 Conclusion

Sequence databases and sequence query processing (e.g., [43]) were an active research topic twenty
years ago or more. We hope our article can revive interest in the topic, given its continued rele-
vance for advanced database applications. Systems in use today do support sequences one way or
another, but often only nominally, without high expressive power or performance. This situation
may cause application builders to bypass the database system and solve their problem in an ad-hoc
manner.
Of course, to support data science, there is much current research on database systems and query

languages for arrays and tensors, e.g., [7, 25, 28, 35, 42]. However, in this domain, applications
are typically focused on supporting linear algebra operations [7, 25, 32]. Such applications are
qualitatively different from the more generic type of sequence database queries considered in this
article.
We note that other sequence query language approaches, not based on Datalog, deserve at-

tention as well. There have been proposals based on functional programming [31], on structural
recursion [41], and on transducers [9, 11, 19, 20]. On the other hand, a proposal very close in spirit
to Sequence Datalog can be found in the work by Grahne and Waller [21] already mentioned in
Section 7.
Sequence Datalog is also a very useful language for dealing with non-flat instances. In this article,

for reasons we have explained, we focused on queries from flat instances to flat instances. However,
using packing, interesting data structures can be represented in a direct manner. For example, a
tree with root label a and childtreesT1, . . . ,Tn can be represented by the path a ·⟨T1 ⟩ · · · ⟨Tn ⟩ (where
each Ti is represented by a path in turn). Thus, Sequence Datalog can be used as an XML-to-XML
query language and more.
We conclude by recalling an intriguing theoretical open problem already mentioned before [23].

It can be stated independently of Sequence Datalog. Consider monadic Datalog with stratified
negation over sets of natural numbers, with natural number constants and variables, and addition
as the only operation. Which functions on finite sets of natural numbers are expressible in this
language? We came across this question because this is what our setting reduces to when the set
of atomic values is a one-letter alphabet.

References

[1] H. Aamer, J. Hidders, J. Paredaens, and J. Van den Bussche. 2021. Expressiveness within sequence datalog. In Pro-

ceedings of the 40th ACM Symposium on Principles of Databases. ACM, 70–81.

[2] H. Aamer, M. Montali, and J. Van den Bussche. 2023. What can database query processing do for instance-spanning

constraints?. In Proceedings of the Business Process Management Workshops. Cristina Cabanillas, Niels Frederik

Garmann-Johnsen, and Agnes Koschmider (Eds.), Springer International Publishing, 132–144.

[3] H. Abdulrab and J.-P. Pécuchet. 1989. Solving word equations. Journal of Symbolic Computation 8, 5 (1989), 499–521.

[4] S. Abiteboul, R. Hull, and V. Vianu. 1995. Foundations of Databases. Addison-Wesley.

[5] M. Alviano and A. Pieris (Eds.). 2019. Datalog 2.0 2019: Third International Workshop on the Resurgence of Datalog in

Academia and Industry. CEUR Workshop Proceedings, Vol. 2368. CEUR-WS.org.

[6] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik. 1989. The object-oriented database system

manifesto. In Proceedings of the 1st International Conference on Deductive and Object-Oriented Databases. W. Kim, J.-M.

Nicolas, and S. Nishio (Eds.), Elsevier Science Publishers, 40–57.

[7] P. Barceló, N. Higeura, J. Pérez, and B. Suercaseaux. 2020. On the expressiveness of LARA: A unified language for

linear and relational algebra. In Proceedings of the 23rd International Conference on Database Theory. C. Lutz and

J.C. Jung (Eds.), Leibniz International Proceedings in Informatics, Vol. 155, Schloss Dagstuhl–Leibniz-Zentrum für

Informatik, 6:1–6:20.

[8] P. Barceló and R. Pichler (Eds.). 2012. Datalog in Academia and Industry: Second International Workshop, Datalog 2.0.

Lecture Notes in Computer Science, Vol. 7494. Springer.

[9] M. Benedikt, L. Libkin, T. Schwentick, and L. Segoufin. 2003. Definable relations and first-order query languages over

strings. Journal of the ACM 50, 5 (2003), 694–751.

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

⟩

Expressiveness within Sequence Datalog 12:37

[10] A. J. Bonner and G. Mecca. 1998. Sequences, datalog, and transducers. Journal of Computer and System Sciences 57, 3

(1998), 234–259.

[11] A. J. Bonner and G. Mecca. 2000. Querying sequence databases with transducers. Acta Informatica 36 (2000), 511–544.

[12] A. K. Chandra and D. Harel. 1982. Structure and complexity of relational queries. Journal of Computer and System

Sciences 25, 1 (1982), 99–128.

[13] J. Chomicki. 1994. Temporal query languages: A survey. In Proceedings of the Temporal Logic: ICTL’94. D. M. Gabbay

and H. J. Ohlbach (Eds.), Lecture Notes in Computer Science, Vol. 827, Springer-Verlag, 506–534.

[14] The Commitee for Advanced DBMS Function. 1990. Third-generation database system manifesto. SIGMOD Record

19, 3 (1990), 31–44.

[15] O. de Moor, G. Gottlob, T. Furche, and A. Sellers (Eds.). 2011. Datalog Reloaded: First International Workshop, Datalog

2010. Lecture Notes in Computer Science, Vol. 6702. Springer.

[16] F. Durán, S. Eker, S. Escobar, N. Martí-Oliet, J. Meseguer, and C. Talcott. 2018. Associative unification and symbolic

reasoning modulo associativity in maude. In Proceedings of the 12th International Workshop on Rewriting Logic and

Its Applications. V. Rusu (Ed.), Lecture Notes in Computer Science, Vol. 11152, Springer, 98–114.

[17] H. -D. Ebbinghaus and J. Flum. 1999. Finite Model Theory (2nd. ed.). Springer.

[18] R. Fagin, B. Kimelfeld, F. Reiss, and S. Vansummeren. 2015. Document spanners: A formal approach to information

extraction. Journal of the ACM 62, 2 (2015), 12:1–12:51.

[19] S. Ginsburg and X. S. Wang. 1998. Regular sequence operations and their use in database queries. Journal of Computer

and System Sciences 56, 1 (1998), 1–26.

[20] G. Grahne, M. Nykänen, and E. Ukkonen. 1999. Reasoning about strings in databases. Journal of Computer and System

Sciences 59, 1 (1999), 116–162.

[21] G. Grahne and E. Waller. 2000. How to make SQL stand for string query language. In Proceedings of the Research

Issues in Structured and Semistructured Database Programming. R.C.H. Connor and A.O. Mendelzon (Eds.), Lecture

Notes in Computer Science, Vol. 1949, Springer, 61–79.

[22] M. Grohe. 1996. Arity hierarchies. Annals of Pure and Applied Logic 82, 2 (1996), 103–163.

[23] J. Hidders, J. Paredaens, and J. Van den Bussche. 2017. J-Logic: Logical foundations for JSON querying. In Proceedings

of the 36th ACM Symposium on Principles of Databases. ACM, 137–149.

[24] J. Hidders, J. Paredaens, and J. Van den Bussche. 2020. J-Logic: a Logic for Querying JSON. arXiv:2006.04277. Retrieved

from https://arxiv.org/abs/2006.04277

[25] D. Hutchison, B. Howe, and D. Suciu. 2017. LaraDB: A minimalist kernel for linear and relational algebra computation.

In Proceedings of the 4th ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond. F. N. Afrati

and J. Sroka (Eds.), 2:1–2:10.

[26] IEEE Task Force on Process Mining. 2011. Process mining manifesto. Retrieved 10 May, 2025 from https://www.tf-

pm.org/resources/manifesto

[27] H. V. Jagadish and F. Olken. 2004. Database management for life science research. SIGMOD Record 33, 2 (2004), 15–20.

[28] H. Jananthan, Z. Zhou, V. Gadepally, D. Hutchison, S. Kim, and J. Kepner. 2017. Polystore mathematics of relational

algebra. In Proceedings of the IEEE International Conference on Big Data. J.-Y. Nie, Z. Obradovic, T. Suzumura, et al.

(Eds.), IEEE, 3180–3189.

[29] Y. Law, H. Wang, and C. Zaniolo. 2011. Relational languages and data models for continuous queries on sequcnes

and data streams. ACM Transactions on Database Systems 36, 2 (2011), 8:1–8:32.

[30] LDBC Graph Query Language Task Force. 2018. G-CORE: A core for future graph query languages. In Proceedings

of the 2018 International Conference on Management of Data. ACM, 1421–1432.

[31] L. Libkin, R. Machlin, and L. Wong. 1996. A query language for multidimensional arrays: Design, implementations,

and optimization techniques. In Proceedings of the 1996 ACM SIGMOD International Conference on Management of

Data (SIGMOD Record, Vol. 25:2). ACM, 228–239.

[32] S. Luo, Z. J. Gao, M. N. Gubanov, L. L. Perez, D. Jankov, and C. M. Jermaine. 2020. Scalable linear algebra on a relational

database system. Communications of the ACM 63, 8 (2020), 93–101.

[33] G. Mecca and A. J. Bonner. 2001. Query languages for sequence databases: Termination and complexity. IEEE Trans-

actions on Knowledge and Data Engineering 13, 3 (2001), 519–525.

[34] Y. Nahshon, L. Peterfreund, and S. Vansummeren. 2019. Incorporating information extraction in the relational data-

base model. In Proceedings of the 19th International Conference on Web and Databases. ACM, 6:1–6:7.

[35] S. Papadopoulos, K. Datta, S. Madden, and T. G. Mattson. 2016. The TileDB array data storage manager. Proceedings

of the VLDB Endowment 10, 4 (2016), 349–360.

[36] L. Peterfreund, B. ten Cate, R. Fagin, and B. Kimelfeld. 2019. Recursive programs for document spanners. In Pro-

ceedings of the 22nd International Conference on Database Theory. P. Barcelo and M. Calautti (Eds.), LIPIcs, Vol. 127,

Schloss Dagstuhl–Leibniz Center for Informatics, 13:1–13:18.

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

12:38 H. Aamer et al.

[37] F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and D. Vrgoč. 2016. Foundations of JSON schema. In Proceedings of the

25th International Conference on World Wide Web. 263–273.

[38] W. Plandowski. 2019. On PSPACE generation of a solution set of a word equation and its applications. Theoretical

Computer Science 792, C (2019), 20–61.

[39] G. Plotkin. 1972. Building-in equational theories. In Proceedings of the Machine Intelligence 7. B. Meltzer and D. Michie

(Eds.), Edinburgh University Press, 73–90.

[40] R. Ramakrsihnan, D. Donjerkovic, A. Ranganathan, K. S. Beyer, and M. Krishnaprasad. 1998. SRQL: Sorted relational

query language. In Proceedings of the 10th International Conference on Scientific and Statistical Database Management.

M. Rafanelli and M. Jarke (Eds.), IEEE Computer Society, 84–95.

[41] E. L. Robertson, L. V. Saxton, D. Van Gucht, and S. Vansummeren. 2009. Structural recursion as a query language on

lists and ordered trees. Theory of Computing Systems 44 (2009), 590–619.

[42] F. Rusu and Y. Cheng. 2013. A survey on array storage, query languages, and systems. arXiv:1302.0103. Retrieved

from https://arxiv.org/abs/1302.0103

[43] R. Sadri, C. Zaniolo, A. Zarkesh, and J. Adibi. 2004. Expressing and optimizing sequence queries in database systems.

ACM Transactions on Database Systems 29, 2 (2004), 282–318.

[44] P. Seshadri, M. Livny, and R. Ramakrishnan. 1995. SEQ: A model for sequence databases. In Proceedings of the 11th

International Conference on Data Engineering. P.S. Yu and A.L.P. Chen (Eds.), IEEE Computer Society, 232–239.

[45] W. Shen, A. Doan, J. F. Naughton, and R. Ramakrishnan. 2007. Declarative information extraction using datalog with

embedded extraction. In Proceedings of the 33th International Conference on Very Large Data Bases. Ch. Koch et al.

(Eds.), ACM, 1033–1044.

[46] J. D. Ullman. 1988. Principles of Database and Knowledge-Base Systems. Vol. I. Computer Science Press.

Received 19 January 2024; revised 26 November 2024; accepted 31 March 2025

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025.

