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1 Introduction 

Interest in sequence databases dates back for at least three decades [14]. For clarity, here, by se-
quence databases, we do not mean relations where the tuples are ordered by some sequence num-
ber or timestamp, possibly arriving in a streaming fashion (e.g., [13, 29, 40, 44]). Rather, we mean 
databases that allow the management of large collections of sequences. 

Example 1.1. To illustrate the idea of a sequence database, consider the following figure depict-
ing a fragment of the metro network of Brussels. 
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In the figure, the stations are named a,  . . .  ,  j instead of their actual names for brevity, and the 
numbers refer to the line numbers of the different metro lines. 
This network can be naturally expressed as a binary relation M where the first component 

represents the line number while the second component represents the full sequence of stations of 
that line. The relation M that corresponds to the above depicted network will have the following 
set of tuples (where the dot represents concatenation). 

In the early years, sequence databases were motivated by applications in object-oriented soft-
ware engineering [6] and in genomics [10, 27]. While these applications remain relevant, more 
recent applications of sequence databases include the following: 

— Process mining [26] operates on event logs, which are sets of sequences. Thus, sequence 
databases, and sequence database query languages, can serve as enabling technology for 
process mining and compliance monitoring [2]. For example, a typical query one may want 
to be able to support is to look for all logs in which every occurrence of ‘complete order’ is 
followed by ‘receive payment’. 

— Graph databases have as their main advantage over relational databases that they offer con-
venient query primitives for retrieving paths. Paths are, of course, sequences. For example, 
the G-CORE graph query language proposal [30] supports the querying of sequences stored 
in the database, separately from the graph; these sequences do not even have to correspond 
to actual paths in the graph. An example query in such a context could be to return the 
nodes that belong to all paths in a given set of paths. We thus see that a full implementation 
of G-CORE must be a sequence database! 

— JSON Schema [37] is based on the notion of JSON pointers, which are sequences of keys nav-
igating into nested JSON objects. The work on J-Logic [23] has shown that modeling JSON 
databases as sequence databases is very convenient for defining JSON-to-JSON transforma-
tions in a logical, declarative manner. 
For a simple example, consider a JSON object Sales that is a set of key–value pairs, where 

keys are items; the value for an item is a nested object holding the sales volumes for the 
item by year. Specifically, the nested object is again a set of key–value pairs, where keys are 
years and values are numbers. We can naturally view Sales as a set of length-3 sequences 
of the form item–year–value. Restructuring the object to group sales by year, rather than 
by item, then simply amounts to swapping the first two elements of every sequence. For 
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another example, checking if two (nested) JSON objects are deep-equal amounts to check-
ing equality of the corresponding sets of sequences. So, again, expressive querying of JSON 
objects requires a sequence database. 

— Logical approaches to information extraction [18, 45] model the result of an information 
extraction as a sequence database. 

 

Given the importance of sequences in various advanced database applications, our research goal 
in this article is to obtain a thorough understanding of the role that different language features 
play in querying sequence databases. For such an investigation, we need an encompassing query 
language in which these features are already present, or can be added. For this purpose, we adopt 
Datalog, a logical framework that is well established in database theory research, and that has 
continued practical relevance [5, 8, 15]. 
Indeed, Datalog for sequence databases, or Sequence Datalog, was already introduced and stud-

ied by Bonner and Mecca in the late 1990s [10, 33]. They showed that, to make Datalog work with 
sequence databases, all we have to do is to add terms built from sequence variables using the con-
catenation operator. In our work, we refer to such terms as path expressions and refer to sequence 
variables as path variables.1 Bonner and Mecca studied computational completeness, complexity, 
and termination guarantees for Sequence Datalog, and showed how to combine Sequence Datalog 
with subcomputations expressed using transducers. 

Sequence Datalog was recently also considered for information extraction (“document span-
ners”), with regular expression matching built-in as a primitive [34, 36]. Such regular expressions 
may be viewed as very useful syntactic sugar, as they are also expressible using recursion. Adding 
regular matching directly may be compared to Bonner and Mecca’s transducer extensions; the 
PTIME capturing result reported by Peterfreund et al. [36] may be compared to Corollary 3 of 
Bonner and Mecca [10]. 
In the present work, we study the relative expressiveness of query language features in the 

context of Sequence Datalog. Some of the features we consider are standard Datalog, namely, re-
cursion, stratified negation, and intermediate predicates.2 The latter feature actually comprises two 
features, since we distinguish between monadic intermediate predicates and intermediate predi-
cates of higher arities. While we omit regular expression matching as a feature, we consider two 
further features that are specific to sequences: 

— Equalities between path expressions, which we call equations, allow for the elegant expres-
sion of pattern matching on sequences. 

— Packing, a feature introduced in J-Logic, is a versatile tool that allows for subsequences to be 
“bracketed” and temporarily treated as atomic values; they can be unpacked later. Intuitively, 
sequences with packed values can be seen as nested sequences, in the spirit of nested lists 
having sub-lists as elements. 

The standard Datalog features, whose expressiveness is well understood on classical relational 
structures [4, 17], need to be re-examined in the presence of sequences; moreover, their interaction 
with the new features needs to be understood as well. For example, consider recursion versus 
equations, and the query that checks whether an input sequence $x consists exclusively of a’s. 
(Path variables are prefixed by a dollar sign.) With an equation we can simply write $x · a = 

1We actually work with a minor variant of Bonner and Mecca’s language; while they additionally introduce index terms, but 

only allow path expressions in the heads of rules, we allow path expressions also in rule bodies, and additionally introduce 

atomic variables. The two variants are equivalent in that one can be simulated by the other requiring no additional features 

such as negation or recursion. 
2We remark that intermediate predicates are the IDB relations names that are not the output IDB relation name. Thus, they 

are used by the program internally but do not form the actual output. 
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a · $x (using the dot for concatenation). Without equations (or other means to simulate equations), 
however, this query can only be expressed using recursion. For another example, consider monadic 
versus higher-arity intermediate predicates. Classically, there are well-known arity hierarchies for 
Datalog [22]. In our setting, however, a unary relation can already hold arbitrary-length sequences, 
and indeed, using a simple coding trick, we will see that the arity feature is actually redundant. 

In our work, we have chosen to define expressiveness in terms of the baseline class of “flat unary 
queries”, namely, functions from unary relations to unary relations, where both the input and the 
output are just sets of plain, unpacked sequences. In this way, we avoid trivial tautologies such 
as “arity is a primitive feature, because without it, we cannot express queries of higher arities”. 
Similarly, we want to avoid a result of the form “packing is a primitive feature, because without it, 
we cannot create packed sequences”. As a matter of fact, we will show that both arity and packing, 
although they certainly are convenient features, are actually redundant for expressing these flat 
unary queries. A result in this direction was already stated for packing in the context of J-Logic 
[23], but the technique used there to simulate packing requires recursion. In the present article, we 
show that packing is redundant also in the absence of recursion. Our proof technique leverages 
associative unification [3], and more specifically, the termination of associative unification for 
particular cases of word equations [16]. 
Our further results can be summarized as follows: 

(1)  At first sight, equations seem to be a redundant feature, at least in the presence of interme-
diate predicates. Indeed, instead of using an equation e1 = e2 as a subgoal, we can introduce 
an auxiliary recursive relation T (e1, e2) that axiomatizes the equality relation, and replace 
the equation by the subgoal T (e1, e2). (Our notation here is not precise but hopefully enough 
to convey the idea.) With negated equations and recursion, however, this simple trick does 
not work as it violates stratification. We still show, however, that equations are redundant 
in the presence of both intermediate predicates and negation. 

(2)  In the absence of intermediate predicates, however, equations are a primitive feature. Indeed, 
the “only a’s” query mentioned above, easily expressed with an equation, is not expressible 
in the absence of intermediate predicates. 

(3)  One can also, conversely, simulate intermediate predicates using equations: a simple folding 
transformation works in the absence of negation and recursion. In the presence of negation 
or recursion, however, intermediate predicates do add power. This is fairly easy to show for 

2 
recursion: the squaring query “for every path p in the input, output a n , where  n is the length 
of p” requires an intermediate predicate in which the output can be constructed recursively. 
In the presence of negation, the primitivity of intermediate predicates can be seen to follow 
from the corresponding result for classical Datalog (by quantifier alternation). Some work 
has still to be done, however, since the classical proof has to be extended to account for path 
expressions and equations. 

(4)  It will not surprise the reader that recursion is primitive in Sequence Datalog. This can be 
seen in many ways; probably the easiest is to use the above squaring query, and to observe 
that without recursion, the length of output sequences is at most linear in the length of input 
sequences. Another proof, that also works for Boolean queries, is by reduction to the classical 
inexpressibility of graph connectivity in first-order logic. As in the previous paragraph, the 
reduction must account for the use of path expressions and equations. 

(5)  A classical fact is that nonrecursive Datalog with stratified negation is equivalent to the 
relational algebra. We extend the standard relational algebra by allowing path expressions 
in selection and projection, and adding operators for unpacking and for subsequences. We 
obtain a language equivalent to nonrecursive Sequence Datalog. 
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Fig. 1. Relative expressiveness of the different sets of Sequence Datalog features (Negation (N), Equations (E), 

Intermediate predicates (I), and Recursion (R); features Arity (A) and Packing (P) will turn out to be entirely 

redundant). An ascending path denotes subsumption; absence of such a path denotes non-subsumption. 

Our results allow us to completely classify the sixteen possible Sequence Datalog fragments in 
a Hasse diagram with respect to their expressive power, as shown in Figure 1. Some fragments are 
equivalent, as shown; also, the features for packing and higher-arity intermediate predicates are 
omitted, since they are redundant independently of the presence or absence of other features. 
A conference version of this article appeared previously [1]. In this version, we remark on the 

relation between the original definition of Sequence Datalog and our own definition in Section 2.4. 
Also, we include the following full proofs that were either sketched or entirely omitted previously: 
Lemmas 4.1, 5.1, 5.4, 5.8, and  7.3; and  Theorems  3.2, 4.17, 5.6, and  7.1. Furthermore, Figure 3 and 
Examples 1.1, 2.1, 2.4, 3.1, 4.8, 4.9, 4.18, and  4.19 are completely new. 

This article is organized as follows. In Section 2, we define the sequence database model and 
the syntax and semantics of Sequence Datalog. In Section 3, we introduce the language features 
and rigorously define what we mean by one fragment (set of features) being subsumed in expres-
sive power by another fragment. Section 4 presents our redundancy (expressibility) results, and 
Section 5 presents our primitivity (inexpressibility) results. The Hasse diagram of Figure 1 is as-
sembled in Section 6. Section 7 presents the relational algebra for sequence databases. We conclude 
in Section 8, where we also discuss additional related work. 

2 Sequence Databases and Sequence Datalog 

In this section, we formally define the sequence database model and the syntax and semantics of 
Sequence Datalog. We do assume some familiarity with the basic notions of classical Datalog [4]. 

2.1 Data Model for Sequence Databases 

A schema Γ is a finite set of relation names, each name with an associated arity (a natural number). 
We fix a countably infinite universe dom of atomic data elements, called atomic values. The sets of 
packed values, values, and  paths are defined as the smallest sets satisfying the following: 

(1)  Every atomic value is a value. 
(2)  Every finite sequence of values is a path. The empty path is denoted by ϵ . 

When writing down paths, we will separate the elements by dots, where the · symbol also 
serves as the usual symbol for concatenation. Recall that concatenation is associative. 

(3)  If p is a path, then ⟨p ⟩ is a packed value. 
(4) Every packed value is a value. 

The set of all paths is denoted by Π. 
For example, if a, b and c are atomic values, then a · b · a is a path; ⟨a · b · a⟩ is a packed value; 

and c · ⟨a · b · a ⟩ is again a path. 
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S($x) ←  R($x) Δ  a · $x = $z Δ $z · $y = ⟨$u⟩ 
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An instance I of a schema Γ is a function that assigns to each relation name R ∈ Γ a finite n-ary 
relation on Π, with n the arity of R. 

It is natural to identify a value v with the one-length sequence v . In this way, values, in particular 
atomic values, are also paths. Hence, classical relational database instances are a special case of 
instances as defined here. We refer to such instances as classical. So, in a classical instance, each 
relation name R is assigned a finite relation on dom. 

2.2 Syntax of Sequence Datalog 

We assume disjoint supplies of atomic variables (ranging over atomic values) and path variables 
(ranging over paths). The set of all variables is also disjoint from dom. We indicate atomic variables 
as @x and path variables as $x . Path expressions are defined just like paths, but with variables added 
in. Formally, we define the set of path expressions to be the smallest set such that: 

(1)  Every atomic value is a path expression; 
(2)  Every variable is a path expression; 
(3)  If e is a path expression, then ⟨e⟩ ⟩ is a path expression; 
(4)  Every finite sequence of path expressions is a path expression. 

A predicate is an expression of the form R(e1,  . . .  , en ), with R a relation name of arity n, and each 
ei a path expression. We call ei the ith component of the predicate. An equation is an expression 
of the form e1 = e2, with e1 and e2 path expressions. 
Many of the following definitions adapt well-known Datalog notions to our data model. 
An atom is a predicate or an equation. A negated atom is an expression of the form ¬A with A 

an atom. We write a negated equation ¬e1 = e2 also as a nonequality e1 �≠ e2. A  literal is an atom 
(also called a positive literal) or a negated atom (a negative literal). A body is a finite set of literals 
(possibly empty). A rule is an expression of the form H ← B, where  H is a predicate, called the 
head of the rule, and B is a body. 

We define the limited variables of a rule as the smallest set such that: 

(1)  every variable occurring in a positive predicate in the body is limited; and 
(2)  if all variables occurring in one of the sides of a positive equation in the body are limited, 

then all variables occurring in the other side are also limited. 

A rule is called safe if all variables occurring in the rule are limited. 

Example 2.1. The rule S($x) ←  R($x) Δ ¬P($y) Δ  ⟨$x ⟩ = $y Δ a · $x = $z Δ $z · $y = ⟨$u⟩ ⟩ is safe 
while neither of the following two rules is. 

S($x) ←  R($x) Δ ¬P($y) Δ  a · $x = $z 

A (Sequence Datalog) program P over a schema Γ is a finite set of safe rules such that all the 
relation names occurring in any of the rules belong to Γ. The relation names occurring in a program 
are traditionally divided into EDB and IDB relation names. The IDB relation names are the relation 
names used in the head of some rules; the other relation names are the EDB relation names. Given 
a program  P over Γ, we use  edb(P) and idb(P) to refer to the set of EDB relation names and the set 
of IDB relation names of P, respectively. 
A program  P over Γ is called semipositive if negated relational atoms are from edb(P). Finally, 

in a stratified program P over a schema Γ, the rules can be partitioned into a finite sequence of 
strata, P1,  . . .  ,  Pm, such that each stratum Pi is a semipositive program over Γ with edb(Pi) ⊆ 
edb(P)∪  

⋃ 
j <i idb(Pj) and with idb(Pi) disjoint from idb(Pj) for every i �≠ j. Henceforth, we always 

use the term program to mean a stratified program unless otherwise specified. 
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Recall that, in classical Datalog, stratified negation intuitively means that when a negated pred-
icate ¬R(e1,  . . .  , en ) occurs in some stratum, then no rule in that stratum or later strata can use R 
in the head predicate. It is easy to see then that classical Datalog programs with stratified negation 
are a special case of our notion of programs, where the only path expressions used are atomic 
values or atomic variables. 

Example 2.2. An NFA can be represented by a unary relation N (initial states), a ternary rela-
tion T (transitions), and a unary relation F (final states). These would be classical relations. Now 
consider a unary relation R containing paths without packing, i.e., strings of atomic values. Then 
the following program, consisting of a single stratum, computes in relation A the strings from R 
that are accepted by the NFA. The program makes use of a ternary relation S that contains the 
different configurations that the NFA goes through while computing on some string. Thus, if z ·y 
is a sequence of symbols in R, then  S(q,y, z) means that after reading the sequence of symbols in 
z, the NFA is at state q and it remains to read the sequence of symbols in y. Recall that atomic  
variables are prefixed with @, and path variables with $. 

 

S(@q, $x, ϵ) ← R($x), N(@q). 
S(@q2, $y, $z·@a) ← S(@q1, @a·$y, $z), T(@q1, @a, @q2). 
A($x) ← S(@q, ϵ,$x), F(@q). 

Example 2.3. Consider unary relations R and S . The following program, again in a single stratum, 
uses packing and nonequalities to check whether there are at least three different occurrences of 
a string from S as a substring in strings from R. The Boolean result is computed in the nullary 
relation A. 

T($u·<$s>·$v) ← R($u·$s·$v), S($s). 
A ← T($x),T($y),T($z), $x�≠$y, $x�≠$z, $y�≠$z. 

Example 2.4. Consider the binary relation M as described in Example 1.1. The following pro-
gram, in two strata, checks whether the metro network expressed by relation M is not connected. 
That is, there are two different stations that are not reachable from each other. The Boolean result 
is computed in the nullary relation A. 

S(@s) ← M(@n, $x·@s·$y). 
C(@u, @v) ← S(@u), S(@v), M(@n, $x·@u·$y·@v·$z). 
C(@u, @v) ← C(@v, @u). 
T(@x, @y) ← C(@x, @y).     
T(@x, @y) ← T(@x, @z), S(@z, @x). 
A ← S(@u), S(@v), ¬T(@u, @v), @u @v. �≠

Intuitively, in the above program, we compute in relation S that stations that appear in the network. 
In relation C , we compute pairs of stations that are on the same line. Furthermore, in relation T , 
we compute the classical reachability relation between the stations of the network. Finally, in A, 
we check that their network is not connected. 

2.3 Semantics 

We have defined the notion of instance as an assignment of relations over Π to relation names. 
A convenient equivalent view of instances is as sets of facts. A fact is an expression of the form 
R(p1,  . . .  ,pn ) with R a relation name of arity n, and each pi a path. An instance I of a schema Γ is 
viewed as the set of facts {R(p1,  . . .  ,pn ) |  R ∈ Γ and (p1,  . . .  ,pn ) ∈  I (R)}. 
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A valuation ν is a function that maps atomic variables to atomic values and path variables to 
paths. We say that ν is appropriate for a syntactical construct (such as a path expression, a literal, 
or a rule) if ν is defined on all variables in that syntactical construct. We can apply an appropriate 
valuation ν to a path expression e by substituting each variable in e by its image under ν and 
obtain the path ν (e). Likewise, we can apply an appropriate valuation to a predicate and obtain 
a fact. 
Let L be a literal, ν a valuation appropriate for L, and  I an instance. The definition of when I ,ν 

satisfies L is as expected: if L is a predicate, then the fact ν (L) must be in I ; if  L is an equation 
e1 = e2, then  ν (e1) and ν (e2) must be the same value; and if L is a negated atom ¬A, then  I ,ν must 
not satisfy A. A body  B is satisfied by I ,ν if all its literals are. Now a rule r = H ← B is satisfied in 
I if for every valuation ν appropriate for r such that I ,ν satisfies B, also  I ,ν satisfies H . 

Let P be a semipositive program over Γ, and let I be an instance over edb(P). Then, the output of 
the program P on the instance I , denoted  P(I ), is the smallest instance over Γ (specifically, edb(P)∪  
idb(P)) that satisfies all the rules of P, and that agrees with I on edb(P). Consequently, for a stratified 
program P := P1,  . . .  , Pm over Γ, we define  P(I ) = Pm(· · ·  P2(P1(I ))). 

Due to recursion, for some programs or instances, P(I ) may be undefined, since instances are 
required to be finite. We also say in this case that P does not terminate on I . If, in the course of 
evaluating a program P with several strata on an instance I , one of the strata does not terminate, 
we agree that the entire program P is undefined on I . As mentioned in the Introduction, Bonner 
and Mecca have done substantial work on the question of guaranteeing termination for Sequence 
Datalog programs. In this article, we only consider programs that always terminate. 

Example 2.5. The program from Example 2.2, while recursive, is guaranteed to terminate on 
every instance. Indeed, this can be easily verified since the sequences of the second component 
of the S relation are guaranteed to decrease in length upon applying the recursive rule. Thus, the 
number of applications of the recursive rule is bounded by the length of the sequences in the input 
relation R. In contrast, the following two-rule program will not terminate on any instance: 

T(a). 
T(a·$x) ← T($x). 

It is worth noting that in the rest of the article, we no longer remark that our programs satisfy 
the above condition of termination since in most of the cases, the form of the recursive rules is 
restricted in a way similar to the recursive rule of the program from Example 2.2  

 
 

. That is,  one of  
the components of the recursive predicate is strictly decreasing in the recursive rule. In the other 
cases, the sequences appearing in the result of the recursive rule are appearing in EDB predicates 
and hence these sequences are bounded by the input relations. 

2.4 Relation to Original Sequence Datalog Features 

Before we investigate our main research question in this article, we briefly show that the Sequence 
Datalog language definition presented in this article is not a restriction of what was originally de-
fined in the works by Bonner and Mecca [10, 33]. They use two constructs in the original definition 
of Sequence Datalog that we did not mention in our variant of the language. These are the indexed 
sequence terms and interpreted transducer terms. 
It is well established that every sequence datalog program that uses interpreted transducer terms 

is equivalent to another that does not use these terms [10]. Thus, we only focus on indexed se-
quence terms. Given that s is a sequence (or a path variable), an indexed sequence term has the 
form s[i : j] or s[i], where  i and j can be any of the following: 
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Table 1. Examples of Some Indexed Sequence Terms and Their Equivalents Using Path Expressions 

indexed sequence term equivalent path expression extra conditions 

s[1] 
s[1 : 3] 
s[N ] 
s[5 :  end] 
s[N : end − 2] 
s[N + 1 :  M] 

@u 
@u1 · @u2 · @u3 

@u 
$x 
$y 
$y 

s = @u · $x 
s = @u1 · @u2 · @u3 · $x 

s = $x · @u · $y 
s = @u1 · @u2 · @u3 · @u4 · $x 

s = $x · $y · @u1 · @u2 
s = $x · $y · $z 

— a numeric constant value such as 1 or 4; 
— a position variable such as N or M ;  
— the  keyword  end which represents that last position of the sequence; or 
— a numeric expression built using other (basic) expressions with the operators + and − such 
as end − 2 + N . 

 

Intuitively, s[i : j] denotes the contiguous subsequence of s starting from position i to (and 
including) position j. Formally, s[i : j] can only be evaluated under valuations ν that assign a path 
to the path variable s as before, but now also assign natural numbers to position variables in such 
a way that ν (i) and ν (j) are positions in ν (s)with ν (i) ≤  ν (j) + 1 and with neither ν (i) nor ν (j)may 
exceed the length of the path ν (s) (otherwise, the indexed sequence term is undefined).3 Moreover, 
s[i] denotes a subsequence of length one which is the element at position i , so  s[i] is a shorthand 
for s[i : i]. 

Example 2.6. Let s be the sequence abcde f д. Then:  
— s[1] evaluates to a. 
— s[1 : 3] evaluates to abc .  
— s[N ] can evaluate to each of the sequences of {a,b, c,d, e, f ,д}, for the possible values N = 
1, 2,  . . .  , 7. 

— s[5 :  end] evaluates to e f  д. 
— s[N : end − 2] can evaluate to each of the sequences of {abcde,bcde, cde,de, e, ε}, for  the  
possible values N = 1, 2,  . . .  , 6. 

 

— s[N + 1 :  M] can evaluate to each of the possible subsequences of bcde f д. 
Accordingly, we could get each of the results of the evaluated indexed sequences using variables, 

concatenation, and equations as shown in Table 1. 
 

The simple simulation of position variables using extra path variables, suggested in Table 1, is  
only sufficient when no position variable is used in different indexed terms. 

 

Example 2.7. Consider the following rule that splits the sequences in the relation R into three 
partitions: 

S($x[1:N1], $x[N1+1:N2], $x[N2+1:end]) ← R($x). 
For this rule, a simple simulation rule works, as we could equivalently rewrite the rule into the 
following: 

S($x1, $x2, $x3) ← R($x), $x=$x1·$x2·$x3. 

or, simply as 

3Strictly speaking, we should write νs (i) and νs (j), since the value of ‘end’ always equals the length of ν (s). 
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Fig. 2. In this figure, we illustrate what each of equations (mentioned on the left) maps to on the sequences 

$x and $y. The colored parts are the parts that should have the same length. The bold rectangles surround 

the parts that should be extracted from the sequences regardless of the length constraints. 

S($x1, $x2, $x3) ← R($x1·$x2·$x3). 

The complication happens when we use the same numeric variable in different indexed sequence 
terms. For example, consider the following rule: 

S($y[N1:N2]) ←P($x, $y), R($x[1:N1]), R($x[N2:end]), Q($y[1:N1], $y[1:N1+N2]). 
The two indexed sequence terms $x[1:N1] and $y[1:N1] in this rule imply an implicit relationship 
between the lengths of the evaluated sequences. Indeed, we want to ensure that the length of the 
sequence returned by $x[1:N1] is the same as the length of the sequence returned by $y[1:N1]. 

 
 

Using the same path variable to get the prefixes of the sequences $x and $y with equations, 
implies that the two prefixes are identical, not only implying the same length constraint. This 
complication is resolved by introducing a new predicate that determines whether two sequences 
have the same length. Because our rules are safe, we know that sequences $x and $y must appear 
entirely in some predicate (in the previous rule, this was the predicate P ). Using this information, 
we can define the required predicate as follows: 

SameLength(ϵ,ϵ). 
SameLength($x1·@u, $y1·@v) ← P($p1·$x1·@u·$x2, $p2·$y1·@v·$y2), 

SameLength($x1, $y1). 

Before, using the SameLength predicate in the translation, we remark that it is always possible 
to rewrite any rule using indexed sequence terms into another equivalent, where the numeric 
variables used in the rule are unique except in equations. For example, the rule from our running 
example is equivalent to the following: 

S($y[N5:N6]) ← P($x, $y), R($x[1:N1]), R($x[N2:end]), Q($y[1:N3], $y[1:N4]), 
N1=N3, N4=N1+N2, N5=N1, N6=N2. 

These equations are constraints on the lengths of the different subsequences ensured by the 
SameLength predicate, which is depicted in Figure 2. 

Now, we can fully translate the previous rule into the following: 
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S(@u2·$t8) ← P($x, $y), $x=$x1·$t1, $y=$y3·$t2, $y=$y4·$t3, $x=$x2·$t4, 
$y4=$t5·$t6, $y=$y6·$t7, $y6=$y5·$t8, SameLength($x1, $y3), 
SameLength($x1, $t4), SameLength($x2, $t6), 
SameLength($x1, $y5), SameLength($x2, $y6), 
R($x1), $x2=$t9·@u1, R(@u1·$t4), Q($y3, $y4), $y5=$t10·@u2.      

The correctness of this translation is justified by Figure 2. 
The discussion of this section has given a proof of our claim that indexed sequence terms are 

expressible in the Sequence Datalog variant we use in this work. Of course, one could add the 
SameLength predicate as syntactic sugar. 
Note that our simulations rely heavily on the SameLength predicate, which we conjecture that 

we cannot express in our Sequence Datalog variant without recursion. However, such a predicate 
is easily expressible in the original Sequence Datalog language in at least two ways: 

SameLength(x1, y1) ← P(x, y), x1=x[N1:M1], y1=y[N2:M2], M1-N1=M2-N2. 
or 

SameLength(x1, y1) ← P(x, y), x1=x[N1:M1], y1=y[N2:M2], 
x1[1:L] = x1, y1[1:L] = y1. 

3 Features, Fragments, and Queries 

In this article, we consider six possible features that a program may use. These features are exactly 
what Sequence Datalog adds to unary unions of conjunctive queries, which are indeed what can 
be formed in the base language that does not use any of the features. Each feature is identified by 
a letter, spelled out as follows: 

Arity A program  uses arity (has the A-feature) if it contains at least one predicate of arity greater 
than one. 

Recursion A program  uses recursion (has the R-feature) if there is a cycle in its dependency 
graph.4  

Equations A program  uses equations (has the E-feature) if it contains at least one equation in 
some rule. 

Negation A program  uses negation (has the N-feature) if it contains at least one negated atom in 
some rule. 

Packing A program  uses packing (has the P-feature) if a path expression of the form ⟨e ⟩ occurs 
in some rule. 

Intermediate predicates A program  uses intermediate predicates (has the I-feature) if it involves 
at least two different IDB relation names. 

Let Φ = {A, I, R, P, E, N} be the set of all features. A subset of Φ is called a fragment. A program  
P is said to belong to a fragment F if it uses only features from F . 

Example 3.1. The following program belongs to fragment {E}. It computes, in relation S , all  
paths from R that consist exclusively of a’s. 

 

S($x) ← R($x), a·$x=$x·a. 

The following six programs compute the same query, but each belongs to a different fragment. The 
first one belongs to fragment {A, I, R}: 

4The nodes of this graph are the IDB relation names, and there is an edge from R1 to R2 if R2 occurs in the body of a rule 

with R1 in its head predicate. 
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T($x, $x) ← R($x).  
T($x, $y) ← T($x, $y·a). 
S($x) ← T($x, ϵ). 

The second alternative program belongs to fragment {I, E, N}:  

T($x·@w·$y) ← R($x·@w·$y), @w�≠a. 
S($x) ← R($x), ¬T($x).  

The third alternative program belongs to fragment {I, R, P}: 

T(<$x>·<$x>) ← R($x). 
T(<$x>·<$y>) ← T(<$x>·<$y·a>).  
S($x) ← T(<$x>·<ϵ>). 

The fourth alternative program belongs to fragment {A, I}:  

T(a·$x, $x) ← R($x).  
S($x) ← T($x·a, $x). 

The fifth alternative program belongs to fragment {I, P}: 

T(<a·$x>·<$x>) ← R($x). 
S($x) ← T(<$x·a>·<$x>). 

Last but not least, the sixth alternative program belongs to fragment {I}:  

T(a·$x·$x) ← R($x). 
S($x) ← R($x), T($x·a·$x).  

We can even see from the seven different ways that we have always used either feature E or feature 
I. So an interesting question, is there a program that computes such a query without using neither? 
We can later see that this is not possible, in general. 

3.1 Queries and Subsumption Among Fragments and Main Theorem 

Our goal is to compare the different fragments with respect to their power in expressing queries. 
Our methodology is to do this relative to a baseline class of queries that do not presuppose any 
feature to begin with. That is, if a query is expected to compute a binary relation over Π, then it is  
not possible to investigate whether arity is redundant or not since the output must use that feature. 

 

Thus, we next formally define the queries we consider in our investigation.  
We call a schema monadic if each of its relation names has arity zero or one. Also, we call an 

instance flat if it contains no occurrences of packed values. 
 

Given a monadic schema Γ and relation name S ∉ Γ of arity at most one, a query from Γ to S is a 
total mapping from flat instances over Γ to flat instances over {S}. A program  P is said to compute 

such a query Q if 
(1) P is over a schema Γ ∪ Γ ' , with Γ ' being disjoint schema from Γ and with edb(P) ⊆  Γ and 

idb(P) ⊆  Γ ' ; 
(2)  P terminates on every flat instance of Γ; 
(3)  S is an IDB relation of P; and    
(4) P(I )(S) equals Q(I ) for every flat instance I of Γ.  
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We now say that fragment F1 is subsumed by fragment F2, denoted  by  F1 ≤ F2, if every query 
computable by a program in F1 is also computable by a program in F2. Note that it is possible, for 
different F1 and F2, that  F1 ≤ F2 and F2 ≤ F1. Such two fragments are equivalent in expressive 
power. There will turn out to be 11 equivalence classes; in Section 6, we will prove the following 
main theorem that characterizes the subsumption relation as shown in Figure 1. 

THEOREM 3.2 (MAIN THEOREM). For any fragments F1 and F2, we have F1 ≤ F2 if and only if the 
following five conditions are satisfied: 

(1)  N ∈ F1 ⇒ N ∈ F2; 
(2)  R ∈ F1 ⇒ R ∈ F2; 
(3) E ∈ F1 ⇒ (E ∈ F2 ∨ I ∈ F2); 
(4)  (I ∈ F1 Δ R ∉ F1 Δ N ∉ F1) ⇒ (I ∈ F2 ∨ E ∈ F2); 
(5) (I ∈ F1 Δ (R ∈ F1 ∨ N ∈ F1)) ⇒ I ∈ F2. 

3.2 Redundancy and Primitivity 

We will explore the subsumption relation by investigating the redundancy or primitivity of the 
different features with respect to other features. A feature might be redundant in an absolute 
sense, in that it can be dropped from any fragment without decrease in expressive power. This 
is a very strong notion of redundancy, and we cannot expect it to hold for most features. Yet a 
more relative notion of redundancy may hold, meaning that some feature does not contribute to 
expressive power, on condition that some other features are already present, or are absent. This 
leads to the following notions. 

Definition 3.3 (Redundancy). Let X be a feature and let Y and Z be sets of features. 
— X is redundant if F ≤ F − {X } for every fragment F . 
— X is redundant in the presence of Y if F ≤ F − {X } for every fragment F such that Y ⊆ F .  
— X is redundant in the absence of Z if F ≤ F −{X } for every fragment F such that Z is disjoint 
from F . 

— X is redundant in the presence of Y and absence of Z if F ≤ F − {X } for every fragment F 
such that Y ⊆ F and Z is disjoint from F . 

Similarly, but conversely, a feature might be primitive in an absolute sense, in that dropping 
it from a fragment always strictly decreases the expressive power. Then again, for other features 
only more relative notions of primitivity may hold. 

Definition 3.4 (Primitivity). Let X be a feature and let Y and Z be sets of features. Recall that Φ 
is the set of all features. 

— X is primitive if {X } ⋠ Φ − {X }. 
— X is primitive in the presence of Y if {X } ∪  Y ⋠ Φ − {X }. 
— X is primitive in the absence of Z if {X } ⋠ Φ − ({X } ∪  Z ).  

4 Expressibility Results 

In this section, we show various expressibility results that lead to absolute or relative redundancy 
results for various features. 

4.1 Arity 

Using a simple encoding trick we can see that arity is redundant. Indeed, let a and b be two different 
atomic values. For any paths s ' ' 

1, s2, s and 1 s , we have the following: 2 
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' ) if and only if2 s1 · a · s2 · a · s1 · b · s2 = s
' ·1 a · s ' ·2 a · s ' ·1 b · s

' .2

' '



's1 · a · s2 · a · s1 · b · s2 = s1 · a · s2 · a · s1 · b · s2 

' '
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PROOF. The only-if direction is trivial. For the if-direction, we consider 

and we observe that a appears in the middle of both sequences. Hence, 

(a)  's ' 
1 · a · s2 = s1 · a · s2 and 

(b) s1 · b · s2 = s ·1 b · s .2         

For the sake of contradiction, let us assume |s1 | < |s ' |. Then  s ' = s1 · x for a nonempty sequence 1 1 

x . Thus, equation (a) can be rewritten as s1 · a · s ' 
2 = s1 · x · a · s , which  simplifies to  a · s2 =2  x · a · s ' .2 

Hence, the sequence x must start with a. In the same way, however, we can deduce from (b) that 
x must start with b. Hence, the assumption we made is false. 

Analogously, |s1 | > |s ' | can be seen to be false as well, so we know that |s  |s ' 1 | = |. Then clearly 1 1 

|s2 | = |s ' | as well. Hence, from (a) and (b) we get that s ' ' 
1 = s and s2 = s . 2 1 2 □

Using this encoding, arities higher than one can be reduced by one. Since we can do this repeat-
edly, we obtain: 

THEOREM 4.2. Arity is redundant. 

Example 4.3. Consider the following program which computes in S the reversals of the paths 
in R: 

T($x, ϵ) ← R($x). 
T($x, $y·@u) ← T($x·@u, $y). 
S($x) ← T(ϵ, $x). 

The same query can be expressed without arity as follows:  

T($x·a·a·$x·b) ← R($x). 
T($x·a·$y·@u·a·$x·b·$y·@u) ← T($x·@u·a·$y·a·$x·@u·b·$y). 
S($x) ← T(a·$x·a·b·$x).    

4.2 Equations 

In the presence of I and A, positive equations are readily seen to be redundant, by introducing an 
auxiliary intermediate predicate in the program. We only give an example: 

Example 4.4. Recall the program from Example 3.1: 

S($x) ← R($x), a·$x=$x·a. 

The same query can be computed without equations as follows: 

T(a·$x, $x) ← R($x). 
S($x) ← T($x·a, $x). 

This simple method works only in the absence of negation, because, when applied to a negated 
equation in a rule that belongs to a recursive stratum, stratification is violated. However, negated 
equations can be handled by another method: 

LEMMA 4.5. E is redundant in the presence of I, A and N. 

PROOF. Positive equations can be handled as above. For each stratum Δ that contains negated 
equations, we insert a new stratum Δ ' , right  before  Δ, consisting of the following rules. Let ρ be 
a renaming that maps each head relation name in Δ to a fresh relation name; relation names that 
occur only in bodies in Δ are mapped to themselves by ρ. 
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For each rule H ← B in Δ without negated equations, we add the rule ρ(H ) ←  ρ(B) to Δ ' . 
For each rule r : H ← B Δ e �≠ e ' 1 Δ . . .  Δ1 en �≠ e ' n in Δ with n negated equations, we again 

add ρ(H ) ←  ρ(B) to Δ ' . Moreover, using a fresh relation name T , we add the following n rules for 
i = 1,  . . .  ,n: 

Here, the v’s are all variables appearing in B. 
Finally, in Δ, we replace r by the following rule: 

H ← B Δ ¬T (v1,  . . .  ,vm ). □ 

Example 4.6. The following program retrieves in S those paths from R that can be written as 
a1 · · ·anbn · · ·b1 with ai �≠ bi for i = 1,  . . .  ,n: 

U($x, $x) ← R($x). 
U($x, $y) ← U($x, @a·$y·@b), @a @b. �≠
S($x) ← U($x, ϵ).  

Applying the method to eliminate negated equations, we obtain: 

U1($x, $x) ← R($x). 
U1($x, $y) ← U1($x, @a·$y·@b). 
T($x, $y, @a, @b) ← U1($x, @a·$y·@b), @a=@b. 
S1($x) ← U1($x, ϵ). 
U($x, $x) ← R($x). 
U($x, $y) ← U($x, @a·$y·@b), ¬T($x, $y, @a, @b). 
S($x) ← U($x, ϵ). 

We remark that the rule defining the relation S1 is not needed and hence can be removed from 
the program as an optimization step. Nonetheless, we add it to the rewritten program since our 
rewriting technique discussed in the proof does this. 

From the above, we conclude that E is redundant in the presence of I and A. Since we already 
know that arity is redundant, we obtain: 

THEOREM 4.7. E is redundant in the presence of I. 

4.3 Packing 

In this section, we show that packing is redundant. The main task will be to eliminate packing from 
equations in nonrecursive programs. We will follow the following strategy to achieve this task: 

(1) In Section 4.3.3, we show how to eliminate all variables that can hold values with packing. 
We will call such variables impure. The elimination is achieved by “solving” equations in-
volving impure variables. This assumes equations of specific form, called one-sided nonlinear 
equations. 

(2)  Thereto, we will extend a known method for solving word equations that is guaranteed 
to terminate on one-sided nonlinear word equations. We begin by recalling this method in 
Section 4.3.1. In Section 4.3.2, we present the extension to path expressions. 

 
 

(3)  When all variables are pure, equations involving packing can only be satisfiable if the two 
sides have a similar “shape”, called packing structure. We formalize this in Section 4.3.4. 

 

The main result concerning packing is then proven in Section 4.3.5. 
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4.3.1 Solving Equations. Consider an equation e1 = e2 and let X be the set of variables occurring 
in the equation. A valuation ν on X is called a solution if ν (e1) and ν (e2) are the same path. 

Example 4.8. Consider the equation $x · a = b · $y with $x and $y being distinct path variables 
and both a and b being atomic values. It is clear that one possible solution to this equation is the 
valuation ν with ν : {$x → b, $y → a} since ν ($x · a) = b · a = ν (b · $y). In general, we can see 
that for every possible path p, the valuation ν : {$x → b · p, $y  → p · a} constitutes a solution to 
the equation. 

◦ ◦

◦ ◦

As highlighted by the previous example, one can see that the set of solutions is typically infinite, 
so we would like a way to represent this set in a finite manner. Thereto one can use variable 
substitutions: partial functions that map variables to path expressions over X . Such a variable 
substitution ρ is called a symbolic solution to the equation if ρ(e1) and ρ(e2) are the same path 
expression. Every symbolic solution ρ represents a set of solutions 

[ρ] := {ν ◦ ρ | ν a valuation on X }. 
 

A set  R of symbolic solutions is called complete if 
⋃ 

ρ ∈R [ρ] yields the complete set of solutions to 
the equation. 

Example 4.9. Continuing on Example 4.8, one can verify that each of the following is a symbolic 
solution to the equation and together they form a complete set of symbolic solutions: 

— ρ1 : {$x → b, $y → a}; and  ◦ ◦  
— ρ2 : {$x → b · $x , $y → $x · a}.  ◦ ◦    

The classical setting of word equations [3] can be seen as a special case of the situation just 
described. A word equation corresponds to the case where e1 and e2 contain no packing, and no 
atomic variables, i.e., all variables are path variables. 
Plotkin’s “pig-pug” procedure for associative unification [39] generates a complete set of sym 

bolic solutions to any word equation. However, not every word equation admits a finite complete 
set of symbolic solutions; a simple example is our familiar equation $x ·a = a ·$x . Hence, in general, 
the procedure may not terminate.5 Nevertheless, pig-pug is guaranteed to terminate on “one-sided 
nonlinear” equations [16]. These are word equations where all variables that occur more than once 
in the equation, only occur on one side of the equation. 

-
 
 
 
 

We briefly review the pig-pug procedure. The procedure constructs a search tree whose nodes 
are labeled with word equations; the root is labeled with the original word equation. For each 
node we generate children according to a rewriting relation, ⇒, on word equations. Intuitively, at 
any node, we look to the first symbol from both sides of the equation, and then consider all the 
matching possibilities between those two symbols. In the most general case of having variables 
on both sides of the equation, it is possible that the two symbols (i.e., variables) have paths of the 
same length, or that one is longer than the other. For each such possibility, a child node is added 
to the search tree representing the equation of that possibility. Specifically, we have the following 
rewrite rules: 

(1)  Cancellation rule: (x · w1 = x · w2) ⇒ (w1 = w2), for  x ∈ dom ∪ X . 
(2)  Main rules: each one of the rules is associated with a substitution, ρ. Let  x and y be distinct 

variables and let a be an atomic value. 
(a)  (x · w1 = y · w2) ⇒ (x · ρ(w1) = ρ(w2)) with ρ(x) = y · x         
(b)  (x · w1 = y · w2) ⇒ (ρ(w1) = ρ(w2)) with ρ(x) = y      

5The reader may be interested to know that other means of finite representation (different from a finite set of substitutions) 

have been discovered, that work for arbitrary word equations [38]. 
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Fig. 3. Pig-pug procedure applied on equation $x · a = b · $y. Paths from root to leaf of bold edges indicate 

the successful branches. 

(c)  (x · w1 = y · w2) ⇒ (ρ(w1) = y · ρ(w2)) with ρ(y) = x · y 
(d)  (x · w1 = a · w2) ⇒ (x · ρ(w1) = ρ(w2)) with ρ(x) = a·x        
(e)  (x · w1 = a · w2) ⇒ (ρ(w1) = ρ(w2)) with ρ(x) = a       
(f) (a · w1 = y · w2) ⇒ (ρ(w1) = y · ρ(w2)) with ρ(y) = a·y 
(g)  (a · w1 = y · w2) ⇒ (ρ(w1) = ρ(w2)) with ρ(y) = a 

When no rule is applicable to an equation, we have reached a leaf node in the search tree. There 
are three possible cases for such a leaf equation: 

(1)  (ϵ = ϵ). 
(2)  (a · w1 = b · w2), for atomic values a �≠ b. 
(3) (ϵ = w) or (w = ϵ), for nonempty w . 

The first case is successful, while the other two are not. Each path from the root to a leaf node 
of the form (ϵ = ϵ) yields a symbolic solution, formed by composing the substitutions given by the 
rewritings along the path. When starting from a one-side nonlinear equation, the tree is finite and 
we obtain a complete finite set of symbolic solutions.6 As an illustration, the DAG representation of 
the search tree of the equation from Example 4.8 is given in Figure 3. The two successful branches 
represent the two symbolic solutions given in Example 4.9. 

 
 
 
 
 

4.3.2 Extension to Path Expressions. Our equations differ from word equations in that path ex-
pressions can involve packing as well as atomic variables. To this end, we extend the rewriting 
system as follows. 

(h) Given an equation of the form (@x ·w1 = @y ·w2), the only possibility is for @x and @y to be 
the same. Thus, we add the rule (@x · w1 = @y · w2) ⇒ (ρ(w1) = ρ(w2)) with ρ(@x) = @y. 

(i)  An equation of the form (@x · w1 = $y · w2) is not very different from the case where we 
have a constant instead of @x . Thus, we add two rules similar to rules (f) and (g) where the 

6It is standard in the literature on word equations to consider only solutions that map variables to nonempty words. The 

above procedure is only complete under that assumption. However, allowing the empty word can be easily accommodated. 

For any equation eq on a set of variables X , and any subset Y of X , let eqY be the equation obtained from eq by replacing 

the variables in Y by the empty word. Let RY be a complete set of symbolic solutions for eqY where we extend each 
substitution to X by mapping every variable from Y to the empty word. Then the union of the RY is a complete set of 

symbolic solutions for eq, allowing the empty word. If eq is one-sided nonlinear, then eqY is too. This remark equally 

applies to the extension to path expressions presented in Section 4.3.2. 
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first covers the case when the length of $y path is strictly larger than one while the second 
covers the case when the length of $y path is exactly one: 
—  (@x · w1 = $y · w2) ⇒ (ρ(w1) = $y · ρ(w2)) with ρ($y) = @x · $y 
— (@x · w1 = $y · w2) ⇒ (ρ(w1) = ρ(w2)) with ρ($y) = @x 

(j)  Analogously, we add rules similar to rules (d) and (e): 
— ($x · w1 = @y · w2) ⇒ ($x · ρ(w1) = ρ(w2)) with ρ($x) = @y · $x 
—  ($x · w1 = @y · w2) ⇒ (ρ(w1) = ρ(w2)) with ρ($x) = @y 

(k)  Given an equation of the form (⟨w1 ⟩· w2 = ⟨w3 ⟩· w4), we work inductively and solve the 
equation (w1 = w3) first. Assuming we can find a finite complete set R of symbolic solutions 
for this equation, we then add the rules (⟨w1 ⟩· w2 = ⟨w3 ⟩· w4) ⇒ (ρ(w2) = ρ(w4)) for ρ ∈ R. 

 

 
(l)  An equation of the form (⟨w1 ⟩· w2 = $y ·w3) is again not very different from the case where 

we have a constant instead of ⟨w1 ⟩. Thus, we add two rules similar to rules (f) and (g): 
  

— (⟨w1 ⟩· w2 = $y · w3) ⇒ (ρ(w2) = $y · ρ(w3)) with ρ($y) = ⟨w1 ⟩· $y 
—  (⟨w1 ⟩· w2 = $y · w3) ⇒ (ρ(w2) = ρ(w3)) with ρ($y) = ⟨w1 ⟩ 

(m)  Analogously, we again add rules similar to rules (d) and (e): 
—  ($x · w1 = ⟨w2 ⟩· w3) ⇒ ($x · ρ(w1) = ρ(w3)) with ρ($x) = ⟨w2 ⟩· $x 
— ($x · w1 = ⟨w2 ⟩· w3) ⇒ (ρ(w1) = ρ(w3)) with ρ($x) = ⟨w2 ⟩

Furthermore, we now have extra four non-successful cases for leaf equations, namely, all equa-
tions of the form (@x ·w1 = ⟨w2 ⟩·w3), (⟨w2 ⟩·w3 = @y ·w1), (a ·w1 = ⟨w2 ⟩·w3), or  (⟨w2 ⟩·w3 = b ·w1).  

It remains to argue that on any one-sided nonlinear equation, our extended rewriting system 
terminates and yields a finite complete set of symbolic solutions. In general, any side of an equation 
(that is not empty) may begin with an atomic value, an atomic variable, a packed value, or a path 
variable. The completeness is clear since all possible ways that could match the first two symbols 
of any of the four aforementioned cases are covered by our rules. 

 
 
 
 

As for the termination, the argument is less clear but it easily extends known arguments [16]. 
Thereto, suppose that we have a one-sided nonlinear equation where the left side of the equation 
is linear. Notice that, in this case, the rewriting rule for (k) is equivalent to the following simpler 
rule: (⟨w1 ⟩· w2 = ⟨w3 ⟩· w4) ⇒ (w2 = ρ(w4)) for ρ ∈ R where R is the symbolic solution set of 
(w1 = w3). Indeed, the equivalence follows from the fact that none of the variables that appear 
in w2 appear anywhere else in the equation and hence ρ(w2) = w2. Accordingly, we observe that 
none of the rewriting rules can increase the number of variables or values (and hence the symbols) 
in the left side nor can it increase the nesting of the packing in the left side. Moreover, in case 
the rewriting rule does not strictly decrease the number of the symbols in the left side, the right 
side then is guaranteed to decrease in that case. In a similar way, we observe that although some 
of the rules can make the right side of the equation larger, all of those rules make the left side 
strictly smaller. Hence, the number of times such rules can be executed is bounded by the number 
of variables and values appearing in the left side. 

Example 4.10. Figure 4 shows a DAG representation of the search tree for the equation $x · 
⟨@y · $z ⟩· @w = $u · $v · $u. There are four successful branches, so the following substitutions 
comprise a complete set of symbolic solutions: 

{$x  @y · $z→ @w, $u → @w, $v → ⟨  ⟩} ◦ ◦ ◦

◦ ◦ ◦

{$x ⟩· @w · $v, $u → ⟨@y · $z ⟩· @w}→ ⟨@y · $z  ◦ ◦

{$x  @y · $z  @y · $z→ $x · ⟨  ⟩· @w · $v · $x , $u → $x · ⟨  ⟩· @w} ◦ ◦

4.3.3 Pure Variables and Pure Equations. We introduce a syntactic “purity check” on variables 
that guarantees that they can only take values that do not contain packed values. Since later we will 
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Fig. 4. Associative unification on an equation on path expressions. Bold edges indicate the successful 

branches. 
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⟩ ⟩S($x) ←  R($x , $y) Δ  ⟨$x = ⟨$y ⟩Δ a · $x = $z Δ $y = ⟨$u 

⟩ ⟩ ⟩S($x) ←  R($x , $y) Δ  ⟨$y = $z Δ ⟨$x = ⟨$z 

⟩ ⟩S($x) ←  R($x , $y) Δ  ⟨$t = ⟨$z ⟩Δ $z = ⟨$y ⟩Δ $t = ⟨$x 

' u1 = v1 Δ . . .  Δ un = vn Δ e1 = e2 
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work stratum per stratum, it is sufficient in what follows to focus on semipositive, nonrecursive 
programs with only one IDB relation name. 
Consider a rule in such a program. When a variable appears in some positive EDB predicate, we 

call the variable a source variable of the rule. Now we inductively define a variable in the rule to 
be pure if 

(1)  it is a source variable (since we focus on flat input instances); or 
(2) it appears in one side of a positive equation, such that 

— all the variables in the other side of the equation are pure, and 
— the other side of the equation has no packing. 

By leveraging associative unification, we are going to show that we can always eliminate impure 
variables. The method is based on a division of the positive equations of a rule into three categories: 

Pure equations involve only pure variables. 
Half-pure equations have all variables in one side pure, and at least one of the variables in the 

other side is impure. 
Fully impure equations have impure variables in both sides. 

Example 4.11. The three equations in the rule 

are pure. The two equations in the rule 

are half-pure. The equation ⟨$t ⟩ = ⟨$z ⟩ in the rule 

is fully impure. 

It is instructive to compare the notion of pure variable with that of limited variable, used to 
define the notion of safe rule. Indeed, the set of limited variables can be equivalently defined as 
follows, where we only change the base case of the induction to immediately include all pure 
variables: 

— Every pure variable is limited; and 
— If all the variables occurring in one side of an equation in the rule are limited, then all the 
variables occurring in the other side are also limited. 

Therefore, if there is at least one impure variable in a safe rule, then there must be at least one 
half-pure equation in the rule. In other words, it is not possible for a rule to have fully impure 
equations without having half-pure ones. 

LEMMA 4.12. Let r be a rule in a semi-positive, nonrecursive program P with only one IDB relation 
name. Then there exists a finite set of rules, equivalent to r on flat instances, in which all positive 
equations are pure. 

PROOF. By induction on the number of half-pure equations. Let r : H ← B Δ e1 = e2, where  
e1 = e2 is half-pure with e1 the pure side and e2 the impure side. Let u1,  . . .  ,un be the list of all 
occurrences of variables in e1. Let  v1,  . . .  ,v be ' 

n n fresh variables, and let e be 1 e1 with each ui 
replaced by vi . Now  replace  e1 = e2 by the following conjunction of n + 1 equations: 

Here, abusing notation, we use the same notation ui for the variable that occurs at ui . 
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Denote the result of this replacement by r ' . The equation e ' = e2 is one-sided nonlinear; by 1 

Section 4.3.2, there exists a finite complete set R of solutions. If we let r '' be r ' without e ' =1  e2, 
then clearly r is equivalent to the set of rules {ρ(r '' ) |  ρ ∈ R}. However, some of these rules may 
not have strictly less half-pure equations than r , which is necessary for the induction to work. 
We can solve this problem as follows. Call ρ ∈ R valid if it maps variables that are pure in r '' 

to expressions without packing. Since all ui and v n  r '' i are pure i  , the equations ρ(ui ) = ρ(vi ) in 
ρ(r '' ) are all pure, so ρ(r '' ) does have strictly less half-pure equations than r . 
Fortunately, we can restrict attention to the valid ρ ∈ R, so the induction goes through. Indeed, 

following the definition of a pure variable, one can readily verify that for nonvalid ρ, the rule ρ(r '' ) 
is unsatisfiable on flat instances. □ 

4.3.4 Packing Structures. By Lemma 4.12, all positive equations can be taken to be pure. We 
now reduce this further so that all positive equations are free of packing. Thereto we introduce 
the packing structure of a path expression e , denoted by δ (e), and defined as follows: 

— δ (ϵ) = ∗.  
— δ (a) = ∗, with a a variable or an atomic value.  
— δ (⟨e ⟩) = ∗ ·  ⟨δ (e)⟩ · ∗. 
— δ (e1 · e2) equals δ (e1) ·  δ (e2), in which we replace any consecutive sequence of stars by a 
single star. 

Assume δ (e) has n stars. Then, e can be constructed from δ (e) by replacing each star by a unique 
(possibly empty) subexpression of e . We call these subexpressions the components of e . Crucially, 
they do not use packing. 
If e does not use packing, δ (e) is simply ∗. If  e begins or ends with packing, or if some packing 

in e begins or ends with another packing, then some components will be empty. 

Example 4.13. Let e = @a · ⟨⟨$x · $y ⟩· $z ⟩ · ⟨ϵ ⟩. Then,  δ (e) = ∗ ·  ⟨∗  ·  ⟨∗⟩ ·  ∗⟩ · ∗ ·  ⟨∗⟩ · ∗. The  seven  
components of e are @a, ϵ , $x · $y, $z, ϵ , ϵ , and  ϵ . 

A pure equation e1 = e2 can only be satisfiable on flat instances if e1 and e2 have the same 
packing structure. Suppose there are n stars in this packing structure. Then, the equation can be 
replaced by the conjunction of n equations, where we equate the corresponding components of e1 
and e2. These equations are still pure, and free of packing. 
Moreover, when all positive equations are pure, then all variables in the rule are pure, since the 

rule is safe. Now a negated equation e1 �≠ e2 over pure variables is equivalent to the disjunction 
of the nonequalities between the corresponding components of e1 and e2. Then the rule can be 
replaced by a set of rules, one for each disjunct, and the component nonequalities are free of 
packing. We can repeat this for all negated equations. 
We have arrived at the following: 

LEMMA 4.14. Let r be a rule in a semi-positive, nonrecursive program P with only one IDB relation 
name. Then there exists a finite set of rules, equivalent to r on flat instances, in which all variables 
are pure, and all equations (positive or negated) are free of packing. 

4.3.5 Redundancy of Packing. We are now ready for the following result. The proof further 
leverages packing structures. 

LEMMA 4.15. Packing is redundant in the absence of recursion. 

PROOF. Consider a query computed by a nonrecursive program P. We must show that P can be 
equivalently rewritten without packing. If P has only one IDB predicate, Lemma 4.14 gives us what 
we want. Indeed, by the Lemma, we may assume that equations are already free of packing. Now 
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A ← T($x1,$x2,$x3), T($y1,$y2,$y3), T($z1,$z2,$z3), $xi�≠$yi, $xj�≠$zj, $yk�≠$zk. 
% for i=1,2,3, j=1,2,3, k=1,2,3 
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since the input is a flat instance, any positive (negated) EDB predicate that contains packing may 
be taken to be always false (true). Also, the result of the query is a flat instance, so IDB predicates 
containing packing are false as well. We thus obtain a program free of packing as desired. 

 
 

When P uses intermediate predicates, the elimination of packing from IDB predicates requires 
more work. Since P is nonrecursive, we may assume that every stratum involves only one IDB 
relation name. Since arity is redundant, we may assume that P does  not use  arity,  but feel free to  
use arity in the rewriting of P. 
Let us consider the first stratum. For every rule, we proceed as follows. Let R(e) be the head of 

the rule. Let m be the number of stars in δ (e) and let e1,  . . . ,  em be the components of e . Replace 
the head with Rδ (e)(e1,  . . .  , em) where Rδ (e) is a fresh relation name. 
After this step, the rules in the first stratum no longer contain packing in the head. Of course, 

R-predicates in rules in later strata must now be updated to call the new relation names. So, assume 
R(e) appears in the body of some later rule r . For each of the packing structures ps introduced for R, 
we make a copy of r in which we replace R(e) by the conjunction R ($e ,  . . .  , $e )Δe = e ' ps 1 m , where   

— m is the number of stars in ps;  
— $e1,  . . .  , $em are fresh path variables; and 
— e ' is obtained from the packing structure ps by replacing the ith star by $ei , for  i = 1,  . . .  ,m. 

This rewriting introduces equations in later strata, which is necessary because these later strata 
have not yet been purified per Lemma 4.14.  
We do the above for every stratum. So, stratum by stratum, we first remove packing from 

equations, leaving only pure variables in rules; we replace head predicates; and rewrite calls to 
these head predicates in later rules. 
After this transformation, packing still appears in negated IDB predicates, which have been 

untouched so far. Fortunately, all rules have pure variables at this point. Thus, a literal ¬R(e), 
where δ (e) matches one of the packing structures of R, say  ps , with m stars, can now be replaced 
by ¬Rps (e1,  . . .  , em), where  ei is the ith component of e . If  δ (e) does not match any of the packing 
structures introduced for R, the negative literal is true on flat instances and can be omitted. 

Observing that packing in EDB predicates can be handled as in the semipositive case, we are 
done. □ 

Example 4.16. Rewriting the program from Example 2.3 without packing yields a program with 
28 rules: 

T($u, $s, $v) ← R($u·$s·$v), S($s).  
 

To get from Lemma 4.15 to the following theorem, it remains to show that packing is redundant 
in the presence of recursion. Building on the flat–flat theorem for J-Logic [23, 24] we can close 
that gap and we obtain: 

THEOREM 4.17. Packing is redundant. 

PROOF. It remains to show that P is redundant in the presence of R. Earlier work on J-Logic 
(flat-flat theorem [23, 24]) is easily adapted to Sequence Datalog and shows that P is redundant in 
the presence of  R and N. The general idea of the rewriting used in that proof is as follows (where, 
for completeness, we briefly explain the idea with a slight modification): 

(1)  We add a new stratum at the beginning of the program, where we preprocess the input 
relations as follows: every path k1 · k2 · ·  ·  · · kn is replaced by its doubled version k1 · k1 · k2 · 
k2 · ·  ·  · ·  kn · kn . 
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(2)  We modify the program so that it works with doubled EDB and IDB relations. Packing is 
imulated using a technique of simulated delimiters, which relies on the doubled encoding. 
Intuitively, since every (flat) path p is doubled as p ' , using a ·b ·p ' ·b ·a suffices to represent the 
path ⟨p ⟩ by considering a ·b and b ·a as the delimiters of the packing operator. Precisely, every 
rule in the original program is rewritten where every atomic variable and every constant is 
doubled. That is, @x and a will be considered in the new program as @x ·@x and a ·a. More-
over, every occurrence of packing is replaced by the aforementioned delimiters. Every path 
variable $x in the original rule is kept as it is in the rewritten rule, but we need to make sure 
that it encodes a valid (doubled and delimited) subpath. Thereto, suppose that $x appears in 
a predicate T , then an extra predicate is added to the rule of the form PathT ($x) where PathT 
is a relation that is defined recursively to obtain all subpaths of T that are of valid form. 

s

(3)  In the last step, we undouble the doubled output.  

We remark that steps 1 and 3 as published introduce negation even if the original program does 
not use negation. We next show that this can be avoided. Instead, we introduce arity, which is 
harmless as arity is redundant. 
We double an EDB relation R into R ' as follows: 

T(ϵ, $x) ← R($x). 
T($x·@y·@y, $z) ← T($x, @y·$z). 
R’($x) ← T($x, ϵ). 

We undouble a doubled output relation S ' into S as follows: 

T($x, ϵ) ← S’($x).  
T($x, @y·$z) ← T($x·@y·@y, $z). 
S($x) ← T(ϵ, $x). 

□ 

Example 4.18. Consider the third program of Example 3.1 which is repeated below for conve-
nience. 

T(<$x>·<$x>) ← R($x). 
T(<$x>·<$y>) ← T(<$x>·<$y·a>). 
S($x) ← T(<$x>·<ϵ>). 

Equivalently, the program can be rewritten without packing (over the doubled EDB relations and 
the doubled output relation) as follows: 

T(a·b·$x·b·a·a·b·$x·b·a) ← R’($x). 
T(a·b·$x·b·a·a·b·$y·b·a) ← T(a·b·$x·b·a·a·b·$y·a·a·b·a), PathT ($x), PathT ($y). 
PathT (ϵ) ← . 
PathT (a·b·$x·b·a) ← T($u·a·b·$x·b·a·$v), PathT ($x). 
PathT (@y·@y·$x) ← T($u·@y·@y·$x·$v), PathT ($x). 
PathT ($x·@y·@y) ← T($u·$x·@y·@y·$v), PathT ($x). 
S’($x) ← T(a·b·$x·b·a·a·b·b·a), PathT ($x). 

4.4 Intermediate Predicates 

The following result is straightforward and uses well-known techniques showing that compo-
sitions of nonrecursive rules can be unfolded into a single nonrecursive rule [4, Section 4.3]: 
intermediate predicates can be eliminated by folding in the bodies of the intermediate rules, 
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using equations to unify calling predicates with intermediate head predicates. This idea is simply 
illustrated by an example. 

Example 4.19. Recall the last program of Example 3.1. 

T(a·$x·$x) ← R($x). 
S($x) ← R($x), T($x·a·$x). 

This program can be equivalently rewritten without intermediate predicates as follows:  

S($x) ← R($x), $x·a·$x=a·$y·$y, R($y). 

We thus obtain: 

THEOREM 4.20. I is redundant in the presence of E and the absence of N and R. 

5 Inexpressibility Results 

In this section, we show various inexpressibility results that lead to absolute or relative primitive 
results for various features. 

5.1 Recursion 

To see that recursion is primitive also in the context of Sequence Datalog, we can make the follow-
ing observation. 

LEMMA 5.1. Let Q be a query that can be computed by a nonrecursive program. Then for any input 

instance I , the lengths of paths in Q(I ) are bounded by a linear function of the maximal length of a 

path in I . 

PROOF. Let P be a nonrecursive program computing a query Q . Let  P ' be P with all negated 
literals removed. The Q ' query computed by P ' contains Q , so if we can prove the claim for Q ' , it  
also holds for Q . 
By Theorem 4.20, we know that Q ' is computable by a program P '' that does not use intermediate 

predicates. Let n be the number of rules, and for i = 1,  . . .  ,n, let  S(ei ) be the head of the ith rule; 
ai the number of path variables in ei ; and  bi the number of atomic values and variables in ei . Then  
the length of sequences returned by the ith rule is at most ai x + bi , with x the maximal length 
of a sequence in the input. The desired linear function can now be taken to be ax + b, where  
a = max{ai | 1 ≤ i ≤ n} and b = max{bi | 1 ≤ i ≤ n}. □ 

We immediately get: 

PROPOSITION 5.2. Let a be a fixed atomic value and let Q be any query from {R} to S satisfying 
2 

the property that for every instance I and every natural number n with R(an ) ∈  I , the string a n is a 
substring of a path in Q(I ). Then  Q is not expressible without recursion. 

We readily obtain: 

THEOREM 5.3. Recursion is primitive. 

PROOF. First, we show that R is primitive in the presence of I. Consider the following recursive 
2 

program P, computing the query Q returning all paths a n where n is a natural number such that 
R(an ) is in the input: 

T(ϵ, $x, $x) ← R($x). 
T($y·$x, $x, $z) ← T($y, $x, a·$z). 
S($y) ← T($y, $x, ϵ). 
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By Proposition 5.2, query Q is not expressible without recursion. 
The above program uses intermediate predicates. In the absence of this feature, consider just 

the program P ' consisting of the first two rules. Strictly, this program does not compute a query, 
as T is ternary. However, we can turn P ' into a program P '' using the arity simulation technique 
of Lemma 4.1. Program  P '' computes a well-defined query Q '' from {R} to T . Although  Q '' is not 
a natural query, Proposition 5.2 applies to it, so it is not expressible without recursion. □ 

5.1.1 Boolean Queries. The above queries showing primitivity of recursion are unary. What 
about Boolean queries? It turns out that for Boolean queries, in the presence of intermediate pred-
icates, recursion is still primitive. In the absence of intermediate predicates, however, recursion is 
redundant for Boolean queries, for trivial reasons. 
Let us go in a bit more detail. Let R be a binary relation viewed as a directed graph. Let Qa→b? be 

the Boolean query from {R} to S that checks whether b is reachable from a. It is well-known that 
Qa→b?, as a classical relational query, is not computable in classical Datalog without recursion. We 
can view Qa→b? as a query on sequence databases by encoding edges (a,b) by paths a · b of length 
two. Under this encoding, the query is clearly computable by a Sequence Datalog program in the 
fragment {I, R}: 

T(@x·@y) ← R(@x·@y). 
T(@x·@z) ← T(@x·@y),R(@y·@z). 
S ← T(a·b). 

We can now show that Qa→b? is not computable without recursion in Sequence Datalog by show-
ing that, on input instances containing only sequences of length two, any nonrecursive Sequence 
Datalog program can be simulated by a classical nonrecursive Datalog program. This simulation 
is similar to the one shown in Lemma 5.4 appearing later. The only added complication is that, due 
to intermediate predicates, sequences of lengths longer than two can appear. However, since there 
is no recursion, these lengths are bounded by a constant depending only on the program. 
In the absence of the I-feature, we note that any Boolean query, computed by a recursive program 

without intermediate predicates, is already computed by the nonrecursive rules only. Indeed, if the 
result of the query is false, then none of the rules is fired. If, on the other hand, the result of the 
query is true, then at least one rule is fired; however, no recursive rule can be fired before at least 
one nonrecursive rule is fired. 

5.2 Intermediate Predicates 

It is well known that in classical Datalog, without intermediate predicates, we can not express 
queries that require universal quantifiers [12]. We can transfer this result to Sequence Datalog by 
a simulation technique. 

Let Γ be a monadic schema and let I be an instance of Γ. We say that I is “two-bounded” if 
only paths of lengths one or two occur in I . We can encode two-bounded instances by classical 
instances as follows. Let Γc (‘c’ for classical) be the schema that has two relation names R1 and R2 

for each R ∈ Γ. For I two-bounded as above, we define the classical instance I c of Γc as follows: 
— I c (R1 ) = {a ∈ dom | a ∈ I (R)}; 
—  I c (R2 ) = {(a, b) |  a  · b ∈ I (R)}. 

LEMMA 5.4. Let P be a program in the fragment {E, N, R}, with IDB relation name S , such that the 
result of P on a two-bounded instance is still two-bounded. Then there exists a semipositive classical 

Datalog program Pc using only the IDB relation names S1 and S2 , such that for every two-bounded 
instance I of Γ, we have Pc (I c ) = (P(I ))c . 
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PROOF. Our goal is to eliminate path variables as well as concatenations in path expressions. 
We start with path variables. In any rule containing a head predicate or positive predicate of the 
form S(e1 · $x · e2) or R(e1 · $x · e2), we can replace $x either by ϵ , @x , or @x1 ·@x2 (splitting the 
rule in three versions). 
Path variables may still occur in equations. By safety, they must appear in positive equations, and 

inductively we may assume that any remaining path variable $x occurs in a positive equation e1 = 
e2 where e1 contains no path variables. This equation is then of the form a1 · · ·an = b1 · · ·bm ·$x ·e , 
where the as and  bs are atomic variables or values. 

— If  m = n, replace $x by the empty path. 
— If  m > n, the equation is unsatisfiable and the rule can be removed.  
— If  m < n, replace $x by am+1 · · ·ai , for  m < i ≤ n (splitting the rule in n −m + 1 versions). 

After these steps, all equations (positive or negated) are of the form a1 · · ·an = b1 · · ·bm , where  
the as and  bs are atomic variables or values. Such equations can be easily eliminated. Moreover, 
any predicates, possibly negated, that are of the form R(e)with e empty or strictly longer than two, 
can be eliminated as well. 
We finally replace every remaining predicate (head or body) of the form R(a) by R1 (a) and every 

predicate of the form R(a1 · a2) by R
2 (a1, a2), and we are done. □ 

As a consequence, the query computed by the following program, belonging to the fragment 
{I, N}, cannot be expressed without intermediate predicates: 

W(@x) ← R(@x·@y), ¬B(@y). 
S(@x) ← R(@x·@y), ¬W(@x). 

Indeed, the classical counterpart of this query is the query asking, on any directed graph where 
some nodes are “black”, for all nodes with only edges to black nodes. That query is well-known 
not to be expressible in classical semipositive Datalog [12] (recalled in Section 2.2). 
We thus obtain: 

THEOREM 5.5. I is primitive in the presence of N. 

We also have the following primitivity result in the presence of recursion. The proof merely 
combines some observations we have already made. 

THEOREM 5.6. I is primitive in the presence of R. 

PROOF. Recall the squaring query Q from the proof of Theorem 5.3, which is expressible in the 
fragment {I, R}. Suppose, for the sake of contradiction, that Q can be computed by a program 
without intermediate predicates. Consider the behavior of this program on the family of singleton 
instances I n 

n = {R(a )}, for all natural numbers n. Since Q(In ) is nonempty, at least one of the 
rules must fire, which is only possible if at least one of the nonrecursive rules fires. Since there 
are no intermediate predicates; however, this firing of the nonrecursive rule already produces the 

(unique) correct output S(a n2 
). This contradicts Lemma 5.1. Hence, the nonrecursive rule outputs 

a wrong result, and our supposed program is wrong. □ 

5.3 Equations 

The two theorems in the previous subsection provide counterparts to Theorem 4.20. The following 
theorem confirms that the presence of equations is necessary for Theorem 4.20, and implies that 
the fragments {I} and {E} are actually equivalent. 

THEOREM 5.7. E is primitive in the absence of I. 
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This result follows immediately from the following lemma. 

LEMMA 5.8. Let a be an atomic value. The Boolean query that checks if the input relation R contains 
a path consisting exclusively of a’s, cannot be computed by a program that lacks features I and E. 

PROOF. By the redundancy of packing and arity, we may ignore these features. Also, in 
Section 5.1.1, we already noted that in the absence of intermediate predicates, recursion does not 
help in expressing Boolean queries. Hence, it suffices to show that the query cannot be computed 
by a program in the fragment {N}. For the sake of contradiction, suppose such a program 
exists. 
Take any rule from the program, and consider the instance J obtained from the positive 

predicates in the body by “freezing” all variables, i.e., viewing them as atomic values distinct from 
the atomic values already occurring in the rule. Unless the rule is unsatisfiable (in which case we 
may ignore it), it will fire on J . So the query is true on J and the body must contain a positive 
predicate of the form R(a l ). 
Now consider the instance I = {R(an )} where n is strictly larger than all values l as above 

found in the rules. Then no rule can fire on I , but the query is true on I , so we have the  desired  
contradiction. □ 

   

Indeed, that query is readily expressed using an equation, as we well know. 

6 Putting it all Together 

The results from the previous two sections allow us to characterize the subsumption relation 
among fragments (defined in Section 3) and prove Theorem 3.2 (restated below for convenience) 
as follows. 

THEOREM 3.2 (MAIN THEOREM). For any fragments F1 and F2, we have F1 ≤ F2 if and only if the 
following five conditions are satisfied: 

(1)  N ∈ F1 ⇒ N ∈ F2; 
(2)  R ∈ F1 ⇒ R ∈ F2;  
(3) E ∈ F1 ⇒ (E ∈ F2 ∨ I ∈ F2); 
(4)  (I ∈ F1 Δ R ∉ F1 Δ N ∉ F1) ⇒ (I ∈ F2 ∨ E ∈ F2); 
(5) (I ∈ F1 Δ (R ∈ F1 ∨ N ∈ F1)) ⇒ I ∈ F2. 

PROOF. For the only-if direction, we verify the five conditions, assuming F1 ≤ F2. 

(1) Immediate from the primitivity of negation. We have not stated this primitivity as a theorem 
because it is so clear (any fragment without negation can express only monotone queries; 
with negation we can express set difference which is not monotone). 

(2)  Immediate from primitivity of recursion. 
(3)  Immediate from Theorem 5.7. 
(4)  Assume I ∈ F1 Δ R ∉ F1 Δ N ∉ F1 Δ E ∉ F2 Δ I ∉ F2. By Theorem 4.7 , we have  {E} ≤  F1. Now  

Theorem 5.7 leads to a contradiction with F1 ≤ F2. 
(5)  Immediate from Theorems 5.5 and 5.6. 

For the if-direction, since arity and packing are redundant, F1 ≤ F2 if and only if F̂1 ≤ F̂2, 
where F̂ = F − {A, P}. Now  Figure  5 infers F̂  ˆ

1 ≤ F2 from the five conditions and the redundancy 
results. □ 

7 Sequence Relational Algebra 

Given the importance of algebraic query plans for database query execution, we show here how to 
extend the classical relational algebra to obtain a language equivalent to recursion-free Sequence 
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Fig. 5. If-direction of Theorem 3.2. 

Datalog programs. We note that a similar language, while calculus-based rather than algebra-based, 
is the language StriQuel proposed by Grahne and Waller [21]. 
The (unnamed) relational algebra, with operators projection; equality selection; union; differ-

ence; and cartesian product, is well known [4, 46]. To extend this algebra to our data model (Sec-
tion 2.1), we generalize the selection and projection operators and add three extraction operators. 
In what follows, let R be an n-ary relation on Π, that is, a finite set of tuples t such that each tuple 
is viewed as the valuation that maps $i to ti for i = 1,  . . .  ,n where ti is the path at the ith position. 
Selection: The classical equality selection σ$i=$j (R), with i, j ∈ {1,  . . .  ,n}, returns {t ∈ R | ti = tj }. 

We  now allow path expressions  α and β over the variables $1, . . . ,$n and have the selection 
operator 

σα =β (R) := {t ∈ R | t(α) = t(β)}. 
Projection: For path expressions α1,  . . . ,  αp over variables $1,  . . .  , $n as above, we define 

πα1, ...,αp (R) := {(t(α1),  . . .  ,  t(αp )) | t ∈ R}. 

Unpacking: For i ∈ {1,  . . .  ,n}, the operator UNPACKi (R) returns 

Substrings: SUBi (R) equals 

{(t1,  . . .  ,  tn , s) | (t1,  . . .  ,  tn ) ∈  R and s is a substring of ti }. 

Atoms: ATOMi (R) equals  

{(t1,  . . .  ,  tn ,a) | (t1,  . . .  , tn ) ∈  R and a is an atomic value from ti }. 

We could also have defined a more powerful unpacking operator, which extracts components 
from paths using path expressions, similar to the use of path expressions in Sequence Datalog. 
Such an operator is useful in practice but can for theoretical purposes be simulated using the given 
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operators, as we will show. First, we give an example of a sequence relational algebra expression 
that corresponds to the all a’s query: 

σ$1·a=a ·$1(R). 
“Sequence relational algebra” expressions over a schema Γ, built up using the above operators 

from the relation names of Γ and constant relations, are defined as usual. We have, as expected, 
the following theorem. Note that this result applies for arbitrary instances, not only for flat inputs 
and flat outputs. 

THEOREM 7.1. For every program P without recursion and every IDB relation name T , there exists 
a sequence relational algebra expression E such that for every instance I , we have P(I )(T ) = E(I ). The  
converse statement holds as well. 

That sequence relational algebra can be translated to Sequence Datalog is clear. Nonetheless, 
for completeness the translation is given in Proposition 7.2. 

PROPOSITION 7.2. Let E be a sequence relational algebra expression over a schema Γ. There exists 
a Sequence Datalog program PE and IDB relation name TE such that for every instance I over Γ, we  
have E(I ) = PE (I )(TE ). 

PROOF. We establish the proof by structural induction on the sequence relational algebra ex-
pression E. As in classical relational algebra, every expression is associated to a particular arity. 
The base cases are: 

— If  E := {t} with t being an n-ary tuple, then define TE by the rule 

TE (t1,  . . .  ,  tn ) ←  

and take P to be the program with the above rule. 

 

E 

— If  E := R for some n-ary relation R, then define  TE by the rule 

TE ($v1,  . . .  , $vn ) ←  R($v1,  . . .  , $vn ) 

and take PE to be the program with the above rule. 

As for the induction step, assume that E1 and E2 are n-ary expressions and that E3 is an m-ary 
expression such that we have equivalent rules defining TE1 , TE2 , and  TE3 and programs PE1 , PE2 , 
and PE3 , respectively. 

— If  E := σα =β (E1) with E1 being an n-ary expression, then define TE by the rule 

TE ($v1,  . . .  , $vn ) ←  TE1 ($v1,  . . .  , $vn ),θ (α) = θ (β) 

with θ being the obvious mapping from position variables $i to the corresponding path vari-
ables $vi . Now take PE to be the program with the above rule in addition to the rules in 
PE1 . 
If  E := πα1, ...,αp (E1) with E1 being an n-ary expression, then define TE by the rule 

TE (θ (α1),  . . .  ,θ (αp )) ← TE1 ($v1,  . . .  , $vn ) 

with θ being the obvious mapping from position variables $i to the corresponding path vari-
ables $vi . Now take PE to be the program with the above rule in addition to the rules in 
PE1 . 

—

— If  E := UNPACKi (E1) with E1 being an n-ary expression and for i ∈ {1,  . . .  ,n}, then define  
TE by the rule 

TE ($v1,  . . .  , $vi ,  . . .  , $vn ) ←  TE1 ($v1,  . . .  , $vi−1, ⟨$vi ⟩, $vi+1,  . . .  , $vn ) 

and take PE to be the program with the above rule in addition to the rules in PE1 . 
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— If  E := SUBi (E1) with E1 being an n-ary expression and for i ∈ {1,  . . .  ,n}, then define  TE by 
the rule 

TE ($v1,  . . .  , $vn , $y) ←  TE1 ($v1,  . . .  , $vn ), $vi = $x · $y · $z 
and take PE to be the program with the above rule in addition to the rules in PE . 1

– If  E := ATOMi (E1) with E1 being an n-ary expression and for i ∈ {1,  . . .  ,n}, then define  TE 
by the rule 

TE ($v1,  . . .  , $vn ,@y) ←  TE1 ($v1,  . . .  , $vn ), $vi = $x · @y · $z 

and take PE to be the program with the above rule in addition to the rules in PE1 . 
— If  E := E1 ∪ E2 with both E1 and E2 being n-ary expressions, then define TE by the two rules 

TE ($v1,  . . .  , $vn ) ←  TE1 ($v1,  . . .  , $vn ) 
TE ($v1,  . . .  , $vn ) ←  TE2 ($v1,  . . .  , $vn ). 

Now take PE to be the program with the above rules in addition to the rules in PE1 and the 
rules in PE2 . 

— If  E := E1 − E2 with both E1 and E2 being n-ary expressions, then define TE by the rule 

TE ($v1,  . . .  , $vn ) ←  TE1 ($v1,  . . .  , $vn ),¬TE2 ($v1,  . . .  , $vn ). 

Now take PE to be the program with the above rule in addition to the rules in PE1 and the 
rules in PE2 . 

— If  E := E1 × E3 with E1 being an n-ary expression and E3 being an m-ary expression, then 
define TE by the rule 

TE ($x1,  . . .  , $xn , $y1,  . . .  , $ym ) ←  TE1 ($x1,  . . .  , $xn ),TE3 ($y1,  . . .  , $ym ). 

Now take PE to be the program with the above rule in addition to the rules in PE1 and the 
rules in PE3 . □ 

 

 

Our approach to translate in the other direction is for the most part standard. We can make use of 
the following normal form. Afterward, this normal form is utilized in Proposition 7.4 establishing 
the second direction of Theorem 7.1. 

LEMMA 7.3. Let P be a nonrecursive Sequence Datalog program that does not use equations. Then 

there is a nonrecursive program P ' computing the same query as P where each rule in P ' has one of 
the following six forms: 

(1)  R1(v1,  . . .  ,vn ) ←  R2(e1,  . . .  , em ); 

(2)  R1(v1,  . . .  ,vn , e) ←  R2(v1,  . . .  ,vn ); 
(3)  R1(v1,  . . .  ,vn ) ←  R2(x1,  . . .  ,xk ),R3(y1,  . . .  ,y l); 
(4)  R (v ,  . . .  ,v ) ←  R (v ,  . . .  ,v ), ¬R (v ' , ' 

1 1 n 2 1 n 3 . . .  ,1 v m ); 

(5)  R ' ' 
1(v ,  . . .  ,1 v m ) ←  R2(v1,  . . .  ,vn ); 

(6)  R(p) ←  . 

The following restrictions apply: 

— In all forms, v1,  . . .  ,vn are distinct variables. Moreover, in forms 2 to 6, each vi must be a path 

variable. 

— I n form 3, the  xi and yj are path variables and {v1,  . . .  ,vn } is contained in {x1,  . . .  ,xk } ∪  

{y ,  . . .  ,y l}. 
 

1

— In forms 4 and 5, v ' ,  . . .  ,  ' 1 v m are distinct variables taken from {v1,  . . .  ,vn }. 
— In  form  6,  p is a path (constant relation). 

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 12. Publication date: June 2025. 

' '

ℓ
' '

' '

ℓ
' '



Expressiveness within Sequence Datalog 12:31 

PROOF OF LEMMA 7.3. The conversion to normal form is best described on a general example. 
Consider the following one-rule Sequence Datalog program: 

T(a·b·c, @x·c·$y, $z·$z)← P1($y·$y, $z·a, @u·d), P2($z·@x·c, d), 
¬N1(@x·$y·$z, a·@x), ¬N2(a·b, $y). 

In what follows, we call the rule that we process the main rule and its stratum the main stratum. 

Step 1: Get variables from positive literals. 

Step 1.1. Replace every occurrence of a positive atom P(e1,  . . .  , em ) by a new predicate 
H (v1,  . . .  ,vn ) where {v1,  . . .  ,vn } is the set of variables used in the atom. For each H add a new 
rule of the form H (v1,  . . .  ,vn ) ←  P (e1,  . . .  , em ). Note that these sets of rules are guaranteed to 
be form 1. Moreover, every atomic variable in the main rule should be replaced by a new path 
variable. 

In case the positive atom does not use variables, then we replace every occurrence by a new 
predicate H ($v) with a fresh variable $v . To get this H , we add the two rules H ' ← P(e1,  . . .  , em ) 
and H (a) ←  H ' for a new  predicate  H ' and a ∈ dom. Note that the  first  rule is of form 1, while  the  
second added rule is of form 2. 

H1($y, $z, @u)← P1($y·$y, $z·a, @u·d). 
H2($z, @x)← P2($z·@x·c, d). 
T(a·b·c, $x·c·$y, $z·$z)← H1($y, $z, $u), H2($z, $x), 

¬N1($x·$y·$z, a·$x), ¬N2(a·b, $y). 

Step 1.2. 

— When no positive atoms exist in the main rule, then the rule has no variables. Only in this 
case, we add to the main stratum a new rule of the form R(a) ←  , where  R is a new relation 
name and a is some value from the domain. This added rule is of form 6. Moreover, we add 
R($v) to the body of the main rule, where $v is a fresh path variable. 

— Otherwise, this step should be repeated until only one positive atom remains in the main 
rule. We remove two positive atoms Hi (x1,  . . .  ,xn ) and Hj (y1,  . . .  ,ym ), and replace them 
with H (v1,  . . .  ,vk ), where  H is a fresh predicate name, and the set of variables vs is the  
union of the set of xs and  ys. In addition, we introduce a new rule of the form 

H (v1,  . . .  ,vk ) ←  Hi (x1,  . . .  ,xn ),Hj (y1,  . . .  ,ym ) 

in the main stratum. This rule is of form 3. 

H1($y, $z, @u)← P1($y·$y, $z·a, @u·d). 
H2($z, @x)← P2($z·@x·c, d). 
H($y, $z, $u, $x)← H1($y, $z, $u), H2($z, $x). 
T(a·b·c, $x·c·$y, $z·$z)← H($y, $z, $u, $x), 

¬N1($x·$y·$z, a·$x), ¬N2(a·b, $y). 

Step 2: Separate each negative literal in an intermediate rule. 

Step 2.1. Let H (v1,  . . .  ,vn ) be the only positive atom in the body of the rule. Every literal 
¬N (e1,  . . .  , em ) is replaced by a predicate HN (v1,  . . .  ,vn ), where  HN  is a new relation name. More-
over, we add a rule of the form 

HN (v1,  . . .  ,vn ) ←  H (v1,  . . .  ,vn ), ¬N (e1,  . . .  , em ) 
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to the main stratum, and we remove H (v1,  . . .  ,vn ) from the main rule. 

H1($y, $z, @u)← P1($y·$y, $z·a, @u·d). 
H2($z, @x)← P2($z·@x·c, d). 
H($y, $z, $u, $x)← H1($y, $z, $u), H2($z, $x). 
HN1($y, $z, $u, $x)← H($y, $z, $u, $x), ¬N1($x·$y·$z, a·$x). 
HN2($y, $z, $u, $x)← H($y, $z, $u, $x), ¬N2(a·b, $y). 
T(a·b·c, $x·c·$y, $z·$z)← HN1($y, $z, $u, $x), 

HN2($y, $z, $u, $x). 

Step 2.2. We do the same as in step 1.2, leaving us in the end with a single positive atom holding 
the variables from the original rule. All the rules introduced by this step are of form 3. 

H1($y, $z, @u)← P1($y·$y, $z·a, @u·d). 
H2($z, @x)← P2($z·@x·c, d). 
H($y, $z, $u, $x)← H1($y, $z, $u), H2($z, $x). 
HN1($y, $z, $u, $x)← H($y, $z, $u, $x), ¬N1($x·$y·$z, a·$x). 
HN2($y, $z, $u, $x)← H($y, $z, $u, $x), ¬N2(a·b, $y). 
HN($y, $z, $u, $x)← HN1($y, $z, $u, $x), HN2($y, $z, $u, $x). 
T(a·b·c, $x·c·$y, $z·$z)← HN($y, $z, $u, $x). 

Step 3: Generate negated expressions. We next work on the rules that were introduced to deal 
with the negated atoms. 

Step 3.1. In step 2.1, we added rules with negative literals: 

HN (v1,  . . .  ,vn ) ←  H (v1,  . . .  ,vn ),¬N (e1,  . . .  , em ) 

For each such added rule, we define a sequence of rules in order to generate the values for the 
expressions ei . Since our rule is safe from the beginning, we are guaranteed that all the variables 
used in these expressions are among the vs. 

We inductively generate m rules as follows (where the v ' s are fresh variables) and add them to 
the main stratum: 

(1)  N1(v1,  . . .  ,vn , e1) ←  H (v1,  . . .  ,vn ) 
(2)  for 1 < i ≤ m, the rule 

Each one of the above rules is of form 2. In addition, we replace H (v1,  . . .  ,vn ) in the rule under 
consideration by 

Moreover, we replace ¬N (e ,  . . .  , e ) by ¬N (v ' , ' 
1 m . . .  ,1 v m ). 

H1($y, $z, @u)← P1($y·$y, $z·a, @u·d). 
H2($z, @x)← P2($z·@x·c, d). 
H($y, $z, $u, $x)← H1($y, $z, $u), H2($z, $x). 
N11($y, $z, $u, $x, $x·$y·$z)← H($y, $z, $u, $x). 
N21($y, $z, $u, $x, a·b)← H($y, $z, $u, $x). 
N12($y, $z, $u, $x, $n11, a·$x)← N11($y, $z, $u, $x, $n11). 
N22($y, $z, $u, $x, $n21, $y)← N21($y, $z, $u, $x, $n21). 
HN1($y, $z, $u, $x)← N12($y, $z, $u, $x, $n11, $n12), 
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¬N1($n11, $n12). 
HN2($y, $z, $u, $x)← N22($y, $z, $u, $x, $n21, $n22), 

¬N2($n21, $n22). 
HN($y, $z, $u, $x)← HN1($y, $z, $u, $x), HN2($y, $z, $u, $x). 
T(a·b·c, $x·c·$y, $z·$z)← HN($y, $z, $u, $x). 

Step 3.2. We have now obtained rules of the form 

We now further replace them with 

where FN  is a new relation name. Now this rule is of form 5. Moreover, we add the rule 

which is of form 4, to the  main  stratum.   

H1($y, $z, @u)← P1($y·$y, $z·a, @u·d). 
H2($z, @x)← P2($z·@x·c, d). 
H($y, $z, $u, $x)← H1($y, $z, $u), H2($z, $x). 
N11($y, $z, $u, $x, $x·$y·$z)← H($y, $z, $u, $x). 
N21($y, $z, $u, $x, a·b)← H($y, $z, $u, $x).  
N12($y, $z, $u, $x, $n11, a·$x)← N11($y, $z, $u, $x, $n11). 
N22($y, $z, $u, $x, $n21, $y)← N21($y, $z, $u, $x, $n21). 
FN1($y, $z, $u, $x, $n11, $n12)← 

N12($y, $z, $u, $x, $n11, $n12), ¬N1($n11, $n12). 
FN2($y, $z, $u, $x, $n21, $n22)← 

N22($y, $z, $u, $x, $n21, $n22), ¬N2($n21, $n22).  
HN1($y, $z, $u, $x)← FN1($y, $z, $u, $x, $n11, $n12). 
HN2($y, $z, $u, $x)← FN2($y, $z, $u, $x, $n21, $n22). 
HN($y, $z, $u, $x)← HN1($y, $z, $u, $x), HN2($y, $z, $u, $x). 
T(a·b·c, $x·c·$y, $z·$z)← HN($y, $z, $u, $x). 

Step 4: Generate final head expressions. We are now left to work on the final rule which is nor-
malized in a similar way as step 3.1. The final rule is of the form T (e1,  . . .  , em ) ←  H (v1,  . . .  ,vn ), 
where by safety it is guaranteed that any variable appearing in any of the es is among the vs. 

We inductively generate m rules as follows (where the v ' s are fresh variables): 
(1) T1(v1,  . . .  ,vn , e1) ←  H (v1,  . . .  ,vn ) 
(2)  for 1 < i ≤ m, the rule 

Each one of the above rules is of form 2. The last thing to be done is to update the main rule to 

Now, this rule is of form 5. 
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H1($y, $z, @u)← P1($y·$y, $z·a, @u·d). 
H2($z, @x)← P2($z·@x·c, d). 
H($y, $z, $u, $x)← H1($y, $z, $u), H2($z, $x). 
N11($y, $z, $u, $x, $x·$y·$z)← H($y, $z, $u, $x). 
N21($y, $z, $u, $x, a·b)← H($y, $z, $u, $x). 
N12($y, $z, $u, $x, $n11, a·$x)← N11($y, $z, $u, $x, $n11). 
N22($y, $z, $u, $x, $n21, $y)← N21($y, $z, $u, $x, $n21). 
FN1($y, $z, $u, $x, $n11, $n12)← 

N12($y, $z, $u, $x, $n11, $n12), ¬N1($n11, $n12). 
FN2($y, $z, $u, $x, $n21, $n22)← 

N22($y, $z, $u, $x, $n21, $n22), ¬N2($n21, $n22). 
HN1($y, $z, $u, $x)← FN1($y, $z, $u, $x, $n11, $n12). 
HN2($y, $z, $u, $x)← FN2($y, $z, $u, $x, $n21, $n22). 
HN($y, $z, $u, $x)← HN1($y, $z, $u, $x), HN2($y, $z, $u, $x).  
T1($y, $z, $u, $x, a·b·c)← HN($y, $z, $u, $x).  
T2($y, $z, $u, $x, $t1, $x·c·$y)← T1($y, $z, $u, $x, $t1). 
T3($y, $z, $u, $x, $t1, $t2, $z·$z)← 

T2($y, $z, $u, $x, $t1, $t2). 
T($t1, $t2, $t3)← T3($y, $z, $u, $x, $t1, $t2, $t3). 

□ 

Observe that the previous lemma is stated for programs without equations, since we know that 
equations are redundant in the presence of intermediate predicates. Given the normal form, we 
show the following: 

PROPOSITION 7.4. Let P be a non-recursive program over Γ whose rules are in normal form. Then, 

for every IDB relation name T in P, there exists a sequence relational algebra expression ET such that 
for every instance I over Γ, we have P(I )(T ) = ET (I ). 

PROOF. We establish the proof by structural induction on the form of the rules defining the 
relation names of P. Without loss of generality, we assume that each IDB relation name is defined 
by a single rule. Otherwise, we can always get the union of the different expressions corresponding 
to the different rules defining a single relation name using ∪ operator. 
In what follows, we are also assuming that for every EDB relation name R, there is an expression 

ER that is simply defined as ER := R; and  that  T1 and T2 are IDB relation names with ET1 and ET2 
being their respective equivalent expressions. 

— If  T is defined by a rule of form (1). Equivalently, and without loss of generality, we can view 
that the rule has the form 

T (vi1 ,  . . .  ,vin ) ←  T1(e1,  . . .  , em ) 

such the set of all variables appearing in the path expressions are v1,  . . .  ,v l,v l+1,  . . .  ,v l+j 
with the first l being path variables and the last j being atomic variables, and moreover, each 
i is a distinct number from 1 to l + j. 
Suppose that the maximum packing depth in any of the path expressions e is k . We then  
define the following sequence of sequence relational algebra expressions: 

Edepth0 := π$1(ET1 ) ∪  π$2(ET1 ) ∪  ·  ·  ·  ∪  π$m (ET1 ). 
Esubs0 := π$2(SUB1(Edepth0 )). 
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Eatom0 := π$2(ATOM1(Edepth0 )). 
Edepth1 := π$2(UNPACK1(Esubs0 )). 
Esubs1 := π$2(SUB1(Edepth1 )). 
Eatom1 := π$2(ATOM1(Edepth1 )). 
Edepth2 := π$2(UNPACK1(Esubs1 )). 

.. . 
 

Edepthk := π$2(UNPACK1(Esubsk−1 )). 
Esubsk := π$2(SUB1(Edepthk )). 
Eatomk 

:= π$2(ATOM1(Edepthk )). 
Eall_s := Esubs0 ∪ ·  ·  · ∪  Esubsk . 
Eall_a := Eatom0 ∪ ·  ·  · ∪  Eatomk 

. 

Intuitively, by composing the unpacking and substring operations, we can generate all sub-
paths (Eall_s) and atoms (Eall_a) until the maximum packing depth k of the expressions. 
Now, take ET to be the expression 

π$i1, ...,$in (σ$ l+j+1=θ (e1)(· · ·σ$ l+j+m=θ (em )(Eall_s × ·  ·  · ×  Eall_s ×Eall_a ×  · · ·  ×  Eall_a × ET1 ))) 
----------------- ----------------- ------------------  ------------------   

j 

     
l

with θ being the obvious mapping from path and atomic variables vr to the corresponding 
position variables $r . 

— If  T is defined by a rule of the form 

T (v1,  . . .  ,vn , e) ←  T1(v1,  . . .  ,vn ). 

Take ET to be the expression π$1, ...,$n,θ (e)(ET1 ) where θ is the obvious mapping from path 
variables vi to the corresponding position variables $i . 

— If  T is defined by a rule of form (3). Equivalently, we can view that the rule has the form 

T (vi1 ,  . . .  ,vin ) ←  T1(v1,  . . .  ,vk ),T2(vk+1,  . . .  ,vk+ l),vj1 = vj2 ,  . . .  ,vjr = vjr +1 
where all v’s in v1,  . . .  ,vk+ l are distinct and each i and j is a number from 1 to k + l that is 
distinct in the case of i’s. Then, take ET to be the expression 

π$i1, ...,$in (σ$j1=$j2 (· · ·σ$jr =$jr +1 (ET1 × ET2 ))). 

— If  T is defined by a rule of form (4). Equivalently, we can view that the rule has the form 

T (v1,  . . .  ,vn ) ←  T1(v1,  . . .  ,vn ), ¬T2(vi1 ,  . . .  ,vim ) 

where all v’s in v1,  . . .  ,vn are distinct and each i is a distinct number from 1 to n. Then, take 
ET to be the expression 

π$1, ...,$n (σ$i1=$i1 +n (· · ·σ$im =$im +n (ET1 × (π$i1, ...,$im (ET1 ) −  ET2 )))). 

— If  T is defined by a rule of form (5). Equivalently, we can view that the rule has the form 

T (vi1 ,  . . .  ,vim ) ←  T1(v1,  . . .  ,vn ). 

where all v’s in v1,  . . .  ,vn are distinct and each i is a distinct number from 1 to n. Then, take 
ET to be the expression 

π$i1, ...,$im (ET1 ). 
— If  T is defined by a rule of the formT (p) ←. Then, take ET to be the expression {($1 : p)}. □ 
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8 Conclusion 

Sequence databases and sequence query processing (e.g., [43]) were an active research topic twenty 
years ago or more. We hope our article can revive interest in the topic, given its continued rele-
vance for advanced database applications. Systems in use today do support sequences one way or 
another, but often only nominally, without high expressive power or performance. This situation 
may cause application builders to bypass the database system and solve their problem in an ad-hoc 
manner. 
Of course, to support data science, there is much current research on database systems and query 

languages for arrays and tensors, e.g., [7, 25, 28, 35, 42]. However, in this domain, applications 
are typically focused on supporting linear algebra operations [7, 25, 32]. Such applications are 
qualitatively different from the more generic type of sequence database queries considered in this 
article. 
We note that other sequence query language approaches, not based on Datalog, deserve at-

tention as well. There have been proposals based on functional programming [31], on structural 
recursion [41], and on transducers [9, 11, 19, 20]. On the other hand, a proposal very close in spirit 
to Sequence Datalog can be found in the work by Grahne and Waller [21] already mentioned in 
Section 7. 
Sequence Datalog is also a very useful language for dealing with non-flat instances. In this article, 

for reasons we have explained, we focused on queries from flat instances to flat instances. However, 
using packing, interesting data structures can be represented in a direct manner. For example, a 
tree with root label a and childtreesT1,  . . .  ,Tn can be represented by the path a ·⟨T1 ⟩ ·  ·  · ⟨Tn ⟩ (where 
each Ti is represented by a path in turn). Thus, Sequence Datalog can be used as an XML-to-XML 
query language and more. 
We conclude by recalling an intriguing theoretical open problem already mentioned before [23]. 

It can be stated independently of Sequence Datalog. Consider monadic Datalog with stratified 
negation over sets of natural numbers, with natural number constants and variables, and addition 
as the only operation. Which functions on finite sets of natural numbers are expressible in this 
language? We came across this question because this is what our setting reduces to when the set 
of atomic values is a one-letter alphabet. 
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