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Whereas most models for incomplete longitudinal data are formulated within the selec-

tion model framework, pattern-mixture models have gained considerable interest in recent

years. In this chapter, we outline several strategies to fit pattern-mixture models, includ-

ing the so-called identifying-restrictions strategy. Multiple imputation is used to apply

this strategy to realistic settings, such as quality-of-life data from a longitudinal study on

metastatic breast cancer patients.
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1 INTRODUCTION

It is not unusual in practice for some sequences of measurements to terminate early for

reasons outside the control of the investigator, and any unit so affected is often called

a dropout. It might therefore be necessary to accommodate dropout in the modeling

process, either to obtain correct inference, or since this process can itself be of scientific

interest. In this paper, we will restrict attention to dropout, i.e., monotone missingness.

Rubin (1976) and Little and Rubin (1987, Ch. 6) make important distinctions between

different missing values processes. A dropout process is said to be completely random
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(MCAR) if the dropout is independent of both unobserved and observed data and ran-

dom (MAR) if, conditional on the observed data, the dropout is independent of the unob-

served measurements; otherwise the dropout process is termed non-random (MNAR). If

a dropout process is random then a valid analysis can be obtained through a likelihood-

based analysis that ignores the dropout mechanism, provided the parameter describing the

measurement process is functionally independent of the parameter describing the dropout

process, the so-called parameter distinctness condition. This situation is termed ignorable

by Little and Rubin (1987). This leads to considerable simplification in the analysis. In

many examples, however, the reasons for dropout are many and varied and it is therefore

difficult to justify on a priori grounds the assumption of random dropout. Arguably, in

the presence of non-random dropout, a wholly satisfactory analysis of the data is not

feasible. Several approaches have been proposed in the literature (Little 1995, Kenward

and Molenberghs 1999).

Most methods are formulated within the selection modeling frame (Little and Rubin

1987) as opposed to pattern-mixture modeling (PMM; Little 1993, 1994). A selection

model factors the joint distribution of the measurement and response mechanisms into

the marginal measurement distribution and the response distribution, conditional on the

measurements. This is intuitively appealing since the marginal measurement distribution

would be of interest also with complete data. Further, Little and Rubin’s taxonomy is

most easily developed in the selection setting. However, it is often argued that, especially

in the context of non-random missingness models, selection models, although identifiable,

should be approached with caution (Glynn, Laird and Rubin 1986). Therefore, pattern-

mixture models have gained renewed interest in recent years (Little 1993, 1994, Hogan

and Laird 1997). Examples can be found in Verbeke, Lesaffre, and Spiessens (1998),

Curran et al (1999), Molenberghs et al (1998, 1999), Ekholm and Skinner (1998), Little

and Wang (1996), Hedeker and Gibbons (1997), Cohen and Cohen (1983), Muthén et al

(1987), Allison (1987), and McArdle and Hamagani (1992).

An important issue is that pattern-mixture models are by construction under-identified.

Little (1993, 1994) solves this problem through the use of identifying restrictions: ines-

timable parameters of the incomplete patterns are set equal to (functions of) the para-

meters describing the distribution of the completers. Identifying restrictions are not the

only way to overcome under-identification and we will discuss alternative approaches as

well.

All in all, while some authors perceive this under-identification as a drawback, we believe
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it is an asset since it forces one to reflect on the assumptions made. We will indicate

in this paper how it can serve as a starting point for sensitivity analysis. In Section

2 we will introduce the vorozole study, to which our methods will be applied. Section

3 sketches modeling approaches for incomplete data. Sensitivity analysis strategies in

a pattern-mixture context is the topic of Section 4, while in Section 5 the strategy of

identifying restrictions is considered in detail. Finally, in Section 6 we discuss the results

of all methods applied to the vorozole set of data.

2 THE VOROZOLE STUDY

This study was an open-label, multicenter, parallel group design conducted at 67 North

American centers (29 Canadian, 38 US). Patients were randomized to either vorozole

(2.5 mg taken once daily) or megestrol acetate (40 mg four times daily). The patient

population consisted of postmenopausal patients with histologically confirmed estrogen-

receptor positive metastatic breast carcinoma. To expedite enrollment, patients with

nonmeasurable/nonassessable disease were entered and eligible patients were stratified

into three groups according to whether they had measurable, assessable, or nonmeasur-

able/nonassessable disease. All 452 randomized patients were followed until disease pro-

gression or death. The main objective was to compare the treatment group with respect

to response rate while secondary objectives included a comparison relative to duration of

response, time to progression, survival, safety, pain relief, performance status and quality

of life. Full details of this study are reported in Goss et al (1999). This paper focuses

on overall quality of life, measured by the total Functional Living Index: Cancer (FLIC,

Schipper et al 1984). Precisely, a higher FLIC score is the more desirable outcome.

Patients underwent screening and for those deemed eligible a detailed examination at

baseline (occasion 0) took place. Further measurement occasions were months 1, then

from months 2 at bi-monthly intervals until month 44. Goss et al (1999) analyzed FLIC

using a two-way ANOVA model with effects for treatment, disease status, as well as their

interaction. No significant difference was found. The main conclusion from the primary

analysis was that vorozole is well tolerated and as effective as megestrol aceetate in the

treatment of postmenopausal advanced breast cancer patients with disease progression

after tamoxifen treatment. In this paper, we will, apart from treatment, correct for

dominant site of the disease as well as clinical stage.
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3 MODELS FOR INCOMPLETE LONGITUDINAL

DATA

In modeling missing data one is interested in f(yi, di|θ,ψ) which is the joint distrubu-

tion of the measurements Yi and the dropout indicators Di defined by adding 1 to the

time of the last measurement. A first and most popular approach is by using selection

models based on the factorization f(yi, di|θ,ψ) = f(yi|θ)f(di|yi,ψ). In this framework

standard missing data concepts such as MCAR, MAR, MNAR (Rubin 1976, Little and

Rubin 1987) can be constructed. Recently more interest is put in the opposite factor-

ization f(yi, di|θ,ψ) = f(yi|di,θ)f(di|ψ) being the basis for pattern-mixture models.

Molenberghs, Michiels, Kenward, and Diggle (1998) showed that pattern-mixture mod-

els allow for a natural analog of MAR, hence enabling a similar classification of missing

data mechanisms. In this paper we will use a popular model for repeated measurements,

incorporating random effects (Laird and Ware 1982) and serial correlation (Diggle 1988).

Assuming β as the p dimensional vector containing the fixed effects, and εi ∼ N(0, Σ) as

the vector of correlated error terms, we can write this model as follows:

Y i = Xiβ + εi. (1)

For a detailed description we refer to Diggle, Liang, and Zeger (1994), Verbeke and Molen-

berghs (1997, 2000). In the pattern-mixture case, the parameters involved in this model

will be allowed to depend on dropout pattern.

4 PATTERN-MIXTURE MODELS

Sensitivity analysis for pattern-mixture models can be conceived in many different ways.

Crucial aspects are whether pattern-mixture and selection modeling are to be contrasted

with one another or rather the pattern-mixture modeling is the central focus of interest.

In the latter case, it is natural to conduct sensitivity analysis within the pattern-mixture

family. The key area where sensitivity analysis should be focused is on the unidentified

components of the model and the way(s) in which this is handled. We will explicitly

consider three strategies to deal with under-identification.

Strategy 1. Little (1993, 1994) advocated the use of identifiying restrictions and pre-

sented a number of examples. We will outline a general framework for identifying restric-

tions in Section 5, with CCMV (introduced by Little 1993), ACMV, and neighboring case
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missing value restrictions (NCMV) as important special cases. Recall that ACMV is the

natural counterpart of MAR in the PMM framework. This provides a way to compare

ignorable selection models with their counterpart in the pattern-mixture setting. Molen-

berghs, Michiels, and Lipsitz (1999) and Michiels, Molenberghs, Lipsitz (1999) took up

this idea in the context of binary outcomes, with a marginal global odds ratio model to

describe the measurement process (Molenberghs and Lesaffre 1994).

Strategy 2. As opposed to identifying restrictions, model simplification can be done

in order to identify the parameters. The advantage is that the number of parameters

decreases, which is desirable since the length of the parameter vector is a general issue

with pattern-mixture models. Indeed, Hogan and Laird (1997) noted that in order to

estimate the large number of parameters in general pattern-mixture models, one has

to make the awkward requirement that each dropout pattern occurs sufficiently often.

Broadly, we distinguish between two types of simplifications.

Strategy 2a. Trends can be restricted to functional forms supported by the information

available within a pattern. For example, a linear or quadratic time trend is easily ex-

trapolated beyond the last obtained measurement. One only needs to provide an ad hoc

solution for the first or the first few patterns. In order to fit such models, one simply has

to carry out a model building exercise within each of the patterns separately.

Strategy 2b. Next, one can let the parameters vary across patterns in a controlled

parametric way. Thus, rather than estimating a separate time trend within each pattern,

one could for example asssume that the time evolution within a pattern is unstructured,

but parallel across patterns. This is effectuated by treating pattern as a covariate. The

available data can be used to assess whether such simplifications are supported within the

time ranges for which there is information.

While the second strategy is computationally simple, it is important to note that there

is a price to pay. Indeed, simplified models, qualified as “assumption rich” by Sheiner,

Beale and Dunne (1997), are also making untestable assumptions, just as in the selection

model case. In the identifying restrictions setting on the other hand, the assumptions are

clear from the start.

A final observation, applying to both strategies, is that pattern-mixture models do not

always automatically provide estimates and standard errors of marginal quantities of

interest, such as overall treatment effect or overall time trend. Hogan and Laird (1997)
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provided a way to derive selection model quantities from the pattern-mixture model. Sev-

eral authors have followed this idea to formally compare the conclusions from a selection

model with the selection model parameters in a pattern-mixture model (Verbeke, Lesaffre,

and Spiessens 1998, Curran, Pignatti, and Molenberghs 1998, Michiels et al 1999).

5 IDENTIFYING RESTRICTION STRATEGIES

In line with the results obtained by Molenberghs, Michiels, Kenward, and Diggle (1998),

we restrict attention to monotone patterns. In general, let us assume we have t = 1, . . . , T

dropout patterns where the dropout indicator is d = t + 1. For pattern t, the complete

data density is given by

ft(y1, . . . , yT ) = ft(y1, . . . , yt)ft(yt+1, . . . , yT |y1, . . . , yt). (2)

The first factor is clearly identified from the observed data, while the second factor is

not. It is assumed that the first factor is known or, more realistically, modeled using the

observed data. Then, identifying restrictions are applied in order to identify the second

component.

While, in principle, completely arbitrary restrictions can be used by means of any valid

density function over the appropriate support, strategies which relate back to the observed

data deserve privileged interest. One can base identification on all patterns for which a

given component, ys say, is identified. A general expression for this is

ft(ys|y1, . . . ys−1) =
T∑

j=s

ωsjfj(ys|y1, . . . ys−1), s = t + 1, . . . , T. (3)

We will use ωs as shorthand for the set of ωsj ’s used. Every ωs which sums to one provides

a valid identification scheme.

Let us incorporate (3) into (2):

ft(y1, . . . , yT ) = ft(y1, . . . , yt)
T−t−1∏

s=0

 T∑
j=T−s

ωT−s,jfj(yT−s|y1, ..., yT−s−1)

 . (4)

Expression (4) clearly shows which information is used to complement the observed data

density in pattern t in order to establish the complete data density.

Let us consider three special but important cases. Little (1993) proposes CCMV which

uses the following identification:

ft(ys|y1, . . . ys−1) = fT (ys|y1, . . . ys−1), s = t + 1, . . . , T. (5)
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In other words, information which is unavailable is always borrowed from the completers.

This strategy can be defended in cases where the bulk of the subjects are complete and

only small proportions are assigned to the various dropout patterns. Also, extension of

this approach to non-monotone patterns is particularly easy.

Alternatively, the nearest identified pattern can be used:

ft(ys|y1, . . . ys−1) = fs(ys|y1, . . . ys−1), s = t + 1, . . . , T. (6)

We will refer to these restrictions as neighboring case missing values or NCMV.

The third special case of (3) will be ACMV. Thus, ACMV is reserved for the counterpart

of MAR in the PMM context. The corresponding ωs vectors can be shown to have

components:

ωsj =
αjfj(y1, ..., ys−1)∑T
�=s α�f�(y1, ..., ys−1)

. (7)

5.1 Strategy Outline

We will briefly a general strategy. Several points which require further specification will

be discussed in subsequent sections. (1) Fit a model to the pattern-specific identifiable

densities: ft(y1, . . . , yt). This results in a parameter estimate, γ̂t. (2) Select an identifi-

cation method of choice. (3) Using this identification method, determine the conditional

distributions of the unobserved outcomes, given the observed ones:

ft(yt+1, . . . , yT |y1, . . . , yt). (8)

(4) Using standard multiple imputation methodology (Rubin 1987, Schafer 1997, Ver-

beke and Molenberghs 2000), draw multiple imputations for the unobserved components,

given the observed outcomes and the correct pattern-specific density (8). (5) Analyze the

multiply-imputed sets of data using the method of choice. This can be another pattern-

mixture model, but also a selection model or any other desired model. (6) Inferences

can be conducted in the standard multiple imputation way (Rubin 1987, Schafer 1997,

Verbeke and Molenberghs 2000).

5.2 Drawing from the Conditional Densities

In the previous section, we have seen how general identifying restrictions (3), with CCMV,

NCMV, and ACMV as special cases, lead to the conditional densities for the unobserved
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components, given the observed ones. This came down to deriving expressions for ω, such

as in (7) for ACMV. This endeavor corresponds to items 2 and 3 of the strategy outline

(5.1). In order to carry out item 4, we need to draw imputations from these conditional

densities.

Let us proceed by studying the special case of three measurements first. To this end,

we consider an identification scheme and we start off by avoiding the specification of a

parametric form for these densities. The following steps are required: (1) Estimate the

parameters of the identifiable densities: f3(y1, y2, y3), f2(y1, y2), and f1(y1). Then, for each

of the m imputations, we have to execute the following steps. (2) To properly account for

the uncertainty with which the parameters are estimated, we need to draw from them as

is customarily done in multiple imputation. It will be assumed that in all densities from

which we draw, this parameter vector is used. (3) For pattern 2. Given an observation

in this pattern, with observed values (y1, y2), calculate the conditional density f3(y3|y1, y2)

and draw from it. (4) For pattern 1. We now have to distinguish three substeps.

1. The proportions ω need to be chosen or determined. Every ω in the unit interval is

valid. Specific cases are:

• For NCMV, ω = 1.

• For CCMV, ω = 0.

• For ACMV, ω is calculated from (7). Note that, given y1, this is a constant,

depending on α2 and α3.

In order to pick one of the two components f2 or f3, we need to generate a random

uniform variate, U say, except in the boundary NCMV and CCMV cases. Then

continue with (b) and (c).

2. If U ≤ ω, calculate f2(y2|y1) and draw from it. Otherwise, do the same based on

f3(y2|y1).

3. Given the observed y1 and given y2 which has just been drawn, calculate the condi-

tional density f3(y3|y1, y2) and draw from it.

All steps but the first one have to be repeated M times, to obtain the same number of

imputed datasets. Inference then proceeds as outlined Rubin (1987), Schafer (1997) and

Verbeke and Molenberghs (2000).
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In case the observed densities are assumed to be normal, then the corresponding condi-

tional densities are particularly straightforward.

In several cases, the conditional density is a mixture of normal densities. Then an addi-

tional and straightforward draw from the components of the mixture is necessary.

A few comments are in place. Except for in cases with only a few time points, the number

of ω parameters proliferates quite rapidly. There are several ways to deal with it. First,

special but important restrictions such as NCMV, CCMV, and ACMV do not suffer from

this problem since each of the ω’s involved is then determined by the choice of restriction.

Second, one might envisage partial but important sensitivity analysis by letting all ω’s be

equal to a fixed quantity, which is chosen as, for example, a member of a grid filling the

unit interval. Third, one could put prior distributions on the ω’s, perhaps governed by

simple hyperpriors. The first solution is followed in this paper. The other ones require

further exploration.

In addition, determining the conditional distribution of the unobserved outcomes, given

the observed ones, is easy in the Gaussian case. For categorical outcomes this is easy as

well since it comes down to determining conditional multinomial probabilities which are

again multinomial. However, for other distributional forms, this can be quite burdensome.

In that case, the conditional distributions will have to be replaced by the corresponding

ratio of marginal distributions. While this will change the algebra a bit, the methodology

will not undergo fundamental changes.

6 ANALYSIS OF THE VOROZOLE STUDY

In order to concisely illustrate the methodology described in this chapter, we will apply it

to the vorozole study, restricted to those subjects with 1, 2, and 3 follow up measurements,

respectively. Thus, 190 subjects are included into the analysis, with subsample sizes 35,

86, and 69, respectively. The corresponding pattern probabilities are

π̂ = (0.184, 0.453, 0.363)′, (9)

and asymptotic covariance matrix

V̂ar(π̂) =

 0.000791 −0.000439 −0.000352
−0.000439 0.001304 −0.000865
−0.000352 −0.000865 0.001217

 . (10)
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These figures, apart from giving a feel for the relative importance of the various patterns,

will be needed to calculate marginal effects (such as the marginal treatment effect) from

pattern-mixture model parameters.

It is of interest to study the treatment arm specific pattern probabilities as well. For the

vorozole arm, the subsample sizes are 18, 48, and 36, producing probabilities

π̂v(0.177, 0.471, 0.354)′ with asymptotic covariance matrix

V̂ar(π̂v) =

 0.001425 −0.000814 −0.000611
−0.000814 0.002442 −0.001628
−0.000611 −0.001628 0.002239

 .

For the megestrol acetate arm, the subsample sizes are 17, 38, and 33, giving probabilities

π̂m(0.193, 0.432, 0.375)′ and asymptotic covariance matrix

V̂ar(π̂m) =

 0.001771 −0.000948 −0.000823
−0.000948 0.002788 −0.001840
−0.000823 −0.001840 0.002663

 .

The treatment arm specific probabilities are not significantly different from each other. A

classical χ2 test produces p = 0.864. Hence, we will work with expressions (9) and (10).

We will apply each of the three strategies, presented in Section 5.1, to these data. First,

a starting model will be fitted (Section 6.1). Second, it will be illustrated how hypoth-

esis testing can be performed, given the pattern-mixture parameter estimates and their

estimated covariance matrix (Section 6.2). Third, model simplification will be discussed

(Section 6.3).

6.1 Fitting a Model

Strategies 2 and 1

The patients in this study drop out mainly because they relapse or die. This in itself

poses specific challenges that can be addressed within the pattern-mixture framework

much easier than in the selection model framework. Indeed, if one is prepared to make

the assumption that a patient who dies is representative of a slice of the population with

the same characteristics, and with a certain probability to die, then identifying restrictions

(i.e., extrapolation beyond the time of death) is meaningful. In case one does not want to

extrapolate beyond the moment of death, one can restrict modeling to the observed data

only. The former viewpoint refers to Strategy 1, while the latter refers to Strategy 2. An
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intermediate approach would be to allow for extrapolation beyond relapse and not beyond

death. (For the current dataset, the information needed in order to do so is unavailable.)

Note that, while this may seem a disadvantage of pattern-mixture models, we believe it

is an asset, be cause this framework not only forces one to think about such issues, it also

provides a modeling solution, no matter which point of view is adopted. This contrasts

with selection models where extrapolation is always done, be it explicitly by modeling the

profile, averaged over all patterns.

In order to apply the identifying restriction Strategy 1, one first needs to fit a model to the

observed data. We will opt for a simple model, with parameters specific to each pattern.

Such a model can be seen as belonging to the second modeling strategy.

We include time and time2 effects, as well as their interactions with treatment. Further,

time by baseline value interaction is included as well. While we agree such a choice may

seem controversial, it is consistent with the analysis plan and therefore we have opted to

leave this term in. Alternatively, one could either remove this term or model raw scores

rather than change scores. All effects interact with time, in order to force profiles to pass

through the origin, since we are studying change versus baseline. An unstructured 3 × 3

covariance matrix is assumed for each pattern.

Parameter estimates are presented in Table 1, in the “initial” column. Of course, not all

parameters are estimable. This holds for the variance components, where in patterns 1

and 2 the upper 1 × 1 block and the upper 2 × 2 block are identified, respectively. In

the first pattern, the effects in time2 are unidentified. The linear effects are identified by

virtue of the absence of an intercept term.

Let us present this and later models graphically. Since there is one binary (treatment

arm) and one continuous covariate (baseline level of FLIC score), insight can be obtained

by plotting the models for selected values of baseline. Precisely, we chose the average

value (Figure 1). Bold line type is used for the range over which data are obtained for a

particular pattern and extrapolation is indicated using thinner line type. Note that the

extrapolation can have surprising effects, even with these relatively simple models. Thus,

while this form of extrapolation is simple, its plausibility can be called into question.

This initial model provides a basis, and its graphical representation extra motivation, to

consider identifying restriction models. Using the methodology detailed in Section 5, a

GAUSS macro and a SAS macro (available from the authors’ web pages), was written
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Table 1: Vorozole Study. Multiple imputation estimates and standard errors
for CCMV, NCMV, and ACMV restrictions.

Effect initial CCMV NCMV ACMV
Pattern 1:

Time 3.40(13.94) 13.21(15.91) 7.56(16.45) 4.43(18.78)
Time∗base -0.11(0.13) -0.16(0.16) -0.14(0.16) -0.11(0.17)
Time∗treat 0.33(3.91) -2.09(2.19) -1.20(1.93) -0.41(2.52)
Time2 -0.84(4.21) -2.12(4.24) -0.70(4.22)
Time2∗treat 0.01(0.04) 0.03(0.04) 0.02(0.04)
σ11 131.09(31.34) 151.91(42.34) 134.54(32.85) 137.33(34.18)
σ12 59.84(40.46) 119.76(40.38) 97.86(38.65)
σ22 201.54(65.38) 257.07(86.05) 201.87(80.02)
σ13 55.12(58.03) 49.88(44.16) 61.87(43.22)
σ23 84.99(48.54) 99.97(57.47) 110.42(87.95)
σ33 245.06(75.56) 241.99(79.79) 286.16(117.90)

Pattern 2:

Time 53.85(14.12) 29.78(10.43) 33.74(11.11) 28.69(11.37)
Time∗base -0.46(0.12) -0.29(0.09) -0.33(0.10) -0.29(0.10)
Time∗treat -0.95(1.86) -1.68(1.21) -1.56(2.47) -2.12(1.36)
Time2 -18.91(6.36) -4.45(2.87) -7.00(3.80) -4.22(4.20)
Time2∗treat 0.15(0.05) 0.04(0.02) 0.07(0.03) 0.05(0.04)
σ11 170.77(26.14) 175.59(27.53) 176.49(27.65) 177.86(28.19)
σ12 151.84(29.19) 147.14(29.39) 149.05(29.77) 146.98(29.63)
σ22 292.32(44.61) 297.38(46.04) 299.40(47.22) 297.39(46.04)
σ13 57.22(37.96) 89.10(34.07) 99.18(35.07)
σ23 71.58(36.73) 107.62(47.59) 166.64(66.45)
σ33 212.68(101.31) 264.57(76.73) 300.78(77.97)

Pattern 3:

Time 29.91(9.08) 29.91(9.08) 29.91(9.08) 29.91(9.08)
Time∗base -0.26(0.08) -0.26(0.08) -0.26(0.08) -0.26(0.08)
Time∗treat 0.82(0.95) 0.82(0.95) 0.82(0.95) 0.82(0.95)
Time2 -6.42(2.23) -6.42(2.23) -6.42(2.23) -6.42(2.23)
Time2∗treat 0.05(0.02) 0.05(0.02) 0.05(0.02) 0.05(0.02)
σ11 206.73(35.86) 206.73(35.86) 206.73(35.86) 206.73(35.86)
σ12 96.97(26.57) 96.97(26.57) 96.97(26.57) 96.97(26.57)
σ22 174.12(31.10) 174.12(31.10) 174.12(31.10) 174.12(31.10)
σ13 87.38(30.66) 87.38(30.66) 87.38(30.66) 87.38(30.66)
σ23 91.66(28.86) 91.66(28.86) 91.66(28.86) 91.66(28.86)
σ33 262.16(44.70) 262.16(44.70) 262.16(44.70) 262.16(44.70)

to conduct the multiple imputation, to fit the model to the imputed datasets, and to

combinef the results into a single inference. Results are presented in Table 1, for each of

the three types of restrictions (CCMV, NCMV, ACMV). For patterns 1 and 2 there is

some variability in the parameter estimates across the three strategies, although this is

often consistent with random variation (see the standard errors). Since the data in pattern
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Figure 1: Vorozole Study. For average level of baseline value, extrapolation
based on initial model (strategy 2), ACMV, and strategy 3 is shown. The bold
portion of the curves runs from baseline until the last obtained measurement,
and the extrapolated piece is shown in thin type. The dashed line refers to
megestrol acetate; the solid line is the Vorozole arm.

3 are complete, there is of course no difference between the initial model parameters and

those obtained with each of the identifying restriction techniques.

In all of the plots, the same mean response scale was retained, illustrating that the identi-

fying restriction strategies extrapolate much closer to the observed data mean responses.

There are some differences among the identifying restriction methods, but this is not

graphically represented here. This conclusion needs to be considered carefully. Since

these patients drop out mainly because they relapse or die, it seems unlikely to expect a

rise in quality of life. Hence, it is well possible that the dropout mechanism is not CCMV,

since this strategy always refers to the “best” group, i.e., the one with the best prognosis.

ACMV, which compromises between all strategies may be more realistic, but her NCMV

is likely to be better since information is borrowed from the nearest pattern.

Nevertheless, the NCMV prediction looks more plausible since the worst baseline value

shows declining profiles, whereas the best one leaves room for improvement. Should one

want to explore the effect of assumptions beyond the range of (3), one can allow ωs to

include components outside of the unit interval. In that situation, one has to ensure that
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Table 2: Vorozole Study. Strategy 2b.

Effect Pattern Estimate (s.e.)
Time 1 7.29(15.69)
Time 2 37.05(7.67)
Time 3 39.40(9.97)
Time∗treat 1 5.25(6.41)
Time∗treat 2 3.48(5.46)
Time∗treat 3 3.44(6.04)
Time∗base 1 -0.21(0.15)
Time∗base 2 -0.34(0.06)
Time∗base 3 -0.36(0.08)
Time∗treat∗base -0.06(0.04)
Time2 1 -9.18(2.47)
Time2 2 -9.18(2.47)
Time2 3 -7.70(2.29)
Time2∗treat 1.10(0.74)
Time2∗base 0.07(0.02)
σ11 173.63(18.01)
σ12 117.88(17.80)
σ22 233.86(26.61)
σ13 89.59(24.56)
σ23 116.12(34.27)
σ33 273.98(48.15)

the resulting density is still non-negative over its entire support.

Strategy 2b

In this strategy, pattern is included as a covariate. An initial model is considered with

the following effects: time, the interaction between time and treatment, baseline value,

pattern, treatment∗baseline, treatment∗pattern, and baseline∗pattern. Further time2 is

included, as well as its interaction with baseline, treatment, and pattern. No interactions

beyond the third order are included, and unstructured covariance matrix is common to

all three patterns. This implies that the current model is not equivalent to a Strategy

1 model, where all parameters are pattern-specific. In order to achieve this goal, every

effect would have to be made pattern-dependent. The estimated model parameters are

presented in Table 2.

A graphical representation is given in Figure 1. Early dropouts decline immediately,

whereas those who stay longer in the study first show a rise and then decline thereafter.
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However, this is less pronounced for higher baseline values. On the other hand, the

extrapolation based on the fitted model is very unrealistic, in the sense that for the early

dropout sharp rises are predicted, which is totally implausible.

These findings suggest, again, that a more careful reflection on the extrapolation method

is required. This is very well possible in a pattern-mixture context, but then the first

strategy, rather than the second and third strategies, has to be used.

6.2 Hypothesis Testing

For ease of exposition, let us assume we are interested in a single effect, e.g., time∗treatment

interaction. For simplicity, we will generically refer to the parameter of interest as treat-

ment effect. In the simplest case of a single parameter for the effect of interest, the

corresponding selection model would contain exactly this single treatment effect parame-

ter, turning the hypothesis testing task into a very straightforward one. If there would

be several treatment-effect parameters, such as in a three-armed trial or in an analysis

where interactions between treatment and other effects are included, standard hypothesis

testing theory, can be applied.

In pattern-mixture models, it is possible to have a treatment-effect parameter for each

pattern separately. This is the case for all five models in Tables 1 and 2. Let us note

in passing that this does not need be the case. For example, in the final Strategy 2b

analysis in Section 6.3 treatment effect is reduced to a single parameter. In such cases, the

assessment of treatment effect is no more difficult than in a corresponding selection model.

Therefore, this section will focus on the situation where there are pattern-dependent

treatment effects.

It is useful to point out a strong analogy with post-hoc stratification, where pattern plays

the role of a stratifying variable. A selection model corresponds to a pooled analysis, where

data from all patterns (strata) are combined, without correction for the “confounding

effect” stemming from the dropout patterns. A pattern-mixture model on the other hand

does correct for pattern and hence, in a sense, for the confounding effect arising from

pattern. If treatment effect does not interact with pattern, such as in the Strategy 2b

analysis in Section 6.3, then a simple, so-called corrected , treatment effect estimate is

obtained. Finally, if treatment effect interacts with pattern such as in all five models

above (although it is not significant in this case), there is heterogeneity of treatment

effect across patterns (cf. heterogeneity of the relative risks in epidemiological studies).
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In the latter case, two distinct routes are possible. The more “epidemiologic” view-point

is to direct inferences towards the vector of treatment effecs. In our case, this implies,

for example, testing for the treatment by time interaction to be zero in all three patterns

simultaneously. Alternatively, one can calculate the same quantity as would be obtained

in the corresponding selection model. Let us consider the latter option in more detail.

Precisely, let β�d represent the treatment-effect parameter estimates � = 1, . . . , g (assuming

there are g groups) in pattern d = 1, . . . , T and let πd be the proportion of subjects in

pattern d. Then, the estimates of the marginal treatment effects β� are:

β� =
T∑

d=1

β�dπd, � = 1, . . . , g. (11)

The variance is obtained using the delta method. Precisely, it assumes the form

Var(β1, . . . , βg) = AV A′, (12)

where

V =

(
Var(β�d) 0

0 Var(πd)

)
(13)

and

A =
∂(β1, . . . , βg)

∂(β11, . . . , βTg, π1, . . . , πT )
. (14)

The estimate of the variance-covariance matrix of the β̂�d is obtained from statistical

software. The multinomial quantities are easy to obtain from the pattern-specific sample

sizes. In the case of the vorozole data, these quantities are presented in (9) and (10). A

Wald test statistic for the null hypothesis H0 : β1 = . . . = βg = 0 is then given by

β′
0AV A′β0, (15)

where β0 = (β1, . . . , βg)
′.

We will now apply both testing approaches for the models presented in Tables 1 and

2. All three pattern-mixture strategies will be considered. Since the identifying restric-

tion strategies are slightly more complicated than the others, we will consider the other

strategies first.

Strategy 2a

Recall that the parameters are presented in Table 1 as the initial model. The treatment

effect vector is β = (0.33,−0.95, 0.82)′ with, since the patterns are analyzed separately,
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diagonal covariance matrix:

V =

 15.28
3.44

0.90

 .

This leads to the test statistic β′V −1β = 1.02 on 3 degrees of freedom, producing p =

0.796.

In order to calculate the marginal treatment effect, we apply (12)–(15). The marginal

effect is estimated as β̂0 = −0.07 (s.e. 1.16). The corresponding asymptotic p value is

p = 0.95. Both approaches agree on the non-significance of the treatment effect.

bfseries Strategy 2b

The parameters are presented in Table 2. The treatment effect vector is β = (5.25, 348, 3.44)′

with non-diagonal covariance matrix:

V =

 41.12 23.59 25.48
23.59 29.49 30.17
25.48 30.17 36.43

 .

The correlation between them is quite substantial. The reason is that some parameters,

in particular the other treatment effects (three-way interaction with baseline and time,

interaction with time2), are common to all three patterns, hence inducing dependence

across patterns. This leads to the test statistic β′V −1β = 0.70 on 3 degrees of freedom,

producing p = 0.874.

Calculating the marginalized treatment effect, we obtain β̂0 = 3.79 (s.e. 5.44). The

corresponding asymptotic p value is p = 0.49. The different numerical value of the

treatment effects, as compared to those obtained with the other strategies, is entirely due

to the presence of a quadratic treatment effect which, for ease of exposition, is left out of

the picture in testing here. It is straightforward to add this parameter to the contrast(s)

being considered, should one want to do so.

Strategy 1

For this case, we will consider several approximate ways of inference. The CCMV case

will be discussed in detail. The two other restriction types are entirely similar.
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There are three treatment effects, one for each pattern. Hence, multiple imputation

produces a vector of treatment effects and the within, between, and total covariance

matrices:

βCC = (−2.09,−1.68, 0.82)′, (16)

WCC =

 1.67 0.00 0.00
0.00 0.59 0.00
0.00 0.00 0.90

 , (17)

BCC =

 2.62 0.85 0.00
0.85 0.72 0.00
0.00 0.00 0.00

 , (18)

and

TCC =

 4.80 1.02 0.00
1.02 1.46 0.00
0.00 0.00 0.90

 . (19)

In the stratified case, we want to test the hypothesis H0 : β = 0. Using (16)–(18), we can

apply multiple imputation methodology.

Note that, even though the analysis is done per pattern, the between and total matrices

have non-zero off-diagonal elements. This is because the imputation is based on infor-

mation from other patterns, hence introducing inter-pattern dependence. Results are

presented in Table 3. All p values are highly non-significant, in line with earlier evidence

from Strategies 1 and 2, although a bit more extreme.

For the marginal parameter, the situation is more complicated here than with Strategies

1 and 2. Indeed, classical theory often assumes inference is geared towards the original

vector, or linear contrasts thereof. Formula (11) represents a non-linear transformation

of the parameter vector and therefore needs further development. First, consider π to

be part of the parameter vector. Since there is no missingness involved in this part, it

contributes to the within matrix, but not to the between matrix. Then, using (12), the

approximate within matrix for the marginal treatment effect is

W0 = π′Wπ + β′Var(π)β,

with, for the between matrix, simply

B0 = π′Bπ.

The results are presented in the second panel of Table 3. All three p values are in between

those obtained for Strategies 2 and 3. Of course, all five agree on the non-significance
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Table 3: Vorozole Study. Tests of treatment effect for CCMV, NCMV, and
ACMV restrictions.

Parameter CCMV NCMV ACMV

Stratified analysis:

k 3 3 3
τ 12 12 12
denominator d.f. w 28.41 17.28 28.06
r 1.12 2.89 1.14
F statistic 0.044 0.022 0.030
p value 0.988 0.995 0.993

Marginal Analysis:

Marginal effect (s.e.) -0.85(0.77) -0.63(1.22) -0.74(0.85)
k 1 1 1
τ 4 4 4
denominator d.f. w 4 4 4
r 1.49 4.57 1.53
F statistic 0.072 0.018 0.054
p value 0.801 0.900 0.828

of the treatment effect. The reason for the differences is to be found in the way the

treatment effect is extrapolated beyond the period of observation. Indeed, the highest p

value is obtained for Strategy 2a and, from Figure 1, we learn that virtually no separation

between both treatment arms is projected. On the other hand, wider separations are seen

for Strategy 2b. Finally, we note that all conclusions are conditional upon the unverifiable

assumption that the posited restrictions (and hence, dropout mechanisms) are correct.

Therefore, they should preferrably be used in conjunction, within a sensitivity analysis.

6.3 Model Reduction

Model building guidelines for the standard linear mixed-effects model can be found in

Verbeke and Molenberghs (1997, Chapter 2). These guidelines can be used without any

problem in a selection model context, but the pattern-mixture case is more complicated.

Of course, the same general principles can be applied, taking into account the intertwining

between the mean or fixed-effects structure on the one hand and the components of

variability on the other hand.

In addition to these principles, one has to reflect on the special status of pattern in a
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Table 4: Vorozole Study. Strategy 2b. Reduced model.

Effect Pattern Estimate (s.e.)
Time 33.06(6.67)
Time∗treat 0.40(0.84)
Time∗base -0.29(0.06)
Time2 1 -16.71(3.46)
Time2 2 -8.56(1.90)
Time2 3 -7.09(1.78)
Time2∗base 0.06(0.01)
σ11 178.02(18.46)
σ12 121.75(18.30)
σ22 238.31(26.98)
σ13 88.75(24.94)
σ23 121.10(34.70)
σ33 274.58(48.32)

pattern-mixture model. Broadly, we can distinguish between two cases, reflecting Strategy

2a (a per pattern analysis) and Strategy 2b (use pattern as a covariate). In fact, the

identifying restriction strategy leaves the method of analysis unspecified, as mentioned

in item 6 of the strategy outline (Section 5.1). While we have chosen to conduct a per-

pattern analysis (Table 1), as in Strategy 1, it is possible to conduct a global analysis, using

pattern as a covariate, or even to use selection modeling, as long as the proper nature of

the imputation is preserved (Rubin 1987). Therefore, we will discuss and illustrate model

reduction using the second and third strategies.

Strategy 2b

Model reduction in a context where pattern is used as a covariate is clearly of the same

level of complexity as with complete data or for a selection model. Let us reduce the

model presented in Table 2. It is convenient to use a hierarchical representation of the

model. The following effects are removed using a hierarchical sequence of models, and

using F test statistics: the time by pattern by treatment interaction (p = 0.934), the

time by pattern interaction (p = 0.776), the time by pattern by baseline value interaction

(p = 0.707), the time by baseline by treatment interaction (p = 0.165), and the time2 by

treatment interaction (p = 0.093). The reduced model is displayed in Table 4.
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Strategy 2a

For strategy 2a, where a per-pattern analysis is conducted, there are several model build-

ing decisions to be made.

• In the process of simplifying, one can allow that effects are shared between two or

more patterns. However, then this strategy effectively reduces to Strategy 2b and

we will not allow it here.

• When simplifying the model, effects are either absent or common to all patterns.

Again, this approach is close to Strategy 2b, and can be conducted within that

framework without any problem if one start with a model where all effects, including

the covariance parameters. For this reason, we will not pursue it further.

• Finally, model reduction is done entirely separately in each of the patterns. This

may yield different levels of simplification for each pattern and certainly a pattern-

specific set of covariates which is found to influence the response profile. This

strategy will be illustrated.

In order to enable treatment-effect assessment, the interaction between time and treatment

will not be removed from the models. In pattern 1, there is one simplification possible in

the sense that the interaction between time and baseline is not significant (p = 0.415).

Thus, the only effects that remain in the model are time and the time by treatment

interaction. For patterns 2 and 3, there are no non-significant effects to be removed. In

conclusion baseline FLIC score influences the follow up scores in patterns 2 and 3, but

not in pattern 1.

7 CONCLUDING REMARKS

In this paper, we have illustrated three distinct strategies to fit pattern-mixture models.

In this way, we have brought together several existing practices. Little (1993, 1994) has

proposed identifying restrictions, which we here formalized using the connection with

MAR and multiple imputation. Strategies 2 and 3 refer to fitting a model per pattern

and using pattern as a covariate.

By contrasting these strategies on a single set of data, one obtains a range of conclusions

rather than a single one, which provides insight into the sensitivity to the assumptions
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made. Especially with the identifying restrictions, one has to be very explicit about the

assumptions and moreover this approach offers the possibility to consider several forms

of restrictions. Special attention should go to the ACMV restrictions, since they are the

MAR counterpart within the pattern-mixture context.

In addition, a comparison between the selection and pattern-mixture modeling approaches

is useful to obtain additional insight into the data and/or to assess sensitivity.

The identifying restrictions strategy provides further opportunity for sensitivity analysis.

Indeed, since CCMV and NCMV are extremes for the ωs vector in (3), it is very natural to

consider the idea of ranges in the allowable space of ωs. Clearly, any ωs which consists of

non-negative elements that sum to one is allowable, but also the idea of extrapolation could

be useful, where negative components are allowed, given they provide valid conditional

densities.

We believe that our approach can play a useful role, as a member of a collection of sensitiv-

ity tools. Of course, a sensitivity analysis can be conducted within different frameworks,

and there are times where the setting will determine which framework is the more ap-

propriate one (for example Bayesian or frequentist), in conjunction with technical and

computational considerations. Draper (1995) has considered ways of dealing with uncer-

tainty in the very natural Bayesian framework and developments in the missing value

setting are ongoing. A thorough comparison between the various frameworks will be

interesting and worth undertaking in the future.

The SAS and GAUSS macros which have been used to carry out the multiple imputation

related tasks are available from the authors’ web pages.
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