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Abstract
Background Detecting biomarkers is a key objective in microbiome research, often 
done through 16S rRNA amplicon sequencing or shotgun metagenomic analysis. 
A critical step in this process is differential abundance (DA) analysis, which aims to 
pinpoint taxa whose abundance significantly differs between groups. However, DA 
analysis remains challenging due to high dimensionality, compositionality, sparsity, 
inter-taxa correlations, uneven abundance distributions, and missing values—all which 
hinder our ability to model the data accurately. Despite the availability of many DA 
tools, balancing high statistical power with effective false discovery rate (FDR) control 
remains a major limitation.

Results Here, we introduce a novel approach for DA analysis that integrates counts 
adjusted with Trimmed Mean of M-values (CTF) normalization and Centered Log 
Ratio (CLR) transformation with Generalized Estimating Equation (GEE) model. We 
benchmarked our approach against eight widely used tools employing both simulated 
and real datasets in cross-sectional and longitudinal settings. While several tools (e.g. 
MetagenomeSeq, edgeR, DESeq2 and Lefse) achieved high sensitivity, they often failed 
to adequately control the FDR. In contrast, our method demonstrated high sensitivity 
and specificity when compared to other approaches that successfully controlled the 
FDR, including ALDEx2, limma-voom, ANCOM, and ANCOM-BC2.

Conclusions Our approach effectively addresses key challenges in microbiome 
data analysis across both cross-sectional and longitudinal designs. Integrated into 
the R package metaGEENOME (https://github.com/M-Mysara/metaGEENOME), our 
framework provides a flexible, scalable and statistically robust solution for DA analysis, 
offering improved FDR control and enhanced performance for biomarker discovery in 
microbiome studies.
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Background
Within the field of microbiome research, understanding the differential abundance (DA) 
of bacterial species provides essential insights into their ecological and functional roles, 
shedding light on the complex interactions between microorganisms and their environ-
ments [1]. High-throughput sequencing technologies, including 16S ribosomal RNA 
gene sequencing (targeting hypervariable regions such as V1–V3 or V4–V5) and shot-
gun metagenomics, have become the foundation of microbial community profiling [2]. 
There is a growing demand for analytical approaches capable of identifying differentially 
abundant microbes as potential biomarkers for various applications, including early dis-
ease diagnosis [3]. Such methods help unravel the intricate network of microbial interac-
tions and their consequences for broader biological systems [4].

Microbial sequencing primarily yields relative abundance data, which reflects the pro-
portion of individual species rather than the absolute magnitude of the microbial popu-
lation. This inherent compositionality introduces analytical challenges: a change in the 
absolute abundance of one species consequently affects the read-out of the other species 
within the same sample, potentially leading to misinterpretation of differential abun-
dance [5]. Additionally, microbial datasets often exhibit high sparsity, with overinflation 
of zeros. These zeros may arise from biological absence (structural zeros), low sequenc-
ing depth (sampling zeros), or outliers [6]. Further complexity arises due to intra-/inter-
taxa correlations, especially in studies with repeated measurements or longitudinal 
designs. Challenges such as high dimensionality (more taxa than samples), unbalanced 
coverage (differences in the sequencing depth), and imbalance between bacterial spe-
cies (as such exists naturally in low- high abundances) vary across studies and can sig-
nificantly influence analytical outcomes [7]. Effectively addressing these complexities is 
crucial to properly identify bacterial biomarkers.

To confront these issues, numerous approaches have been developed. Initially, meth-
odologies originally designed for RNASeq data has been suggested, including the 
DESeq2 and edgeR [8, 9] strategies leveraging the negative binomial distribution. The 
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strategies incorporate, respectively, the modified Relative Log Expression (RLE) and 
Trimmed Mean of M-values (TMM) normalization without any transformations. Alter-
natively, dedicated approaches for microbial data analysis have been proposed. For 
instance, MetagenomeSeq [10] adopts zero-inflated normalization, and supplements it 
with Cumulative Sum Scaling (CSS) normalization together with the logarithmic trans-
formation. Lefse [2] applied a non-parametric Kruskal–Wallis (KW) sum-rank test 
and the pairwise Wilcoxon rank-sum test, and uses linear discriminant analysis (LDA) 
to estimate the effect sizes. ALDEx2 [11] relies exclusively on the centered log-ratio 
(CLR) transformation, ANCOM applies the additive log-ratio (ALR) transformation, 
while limma-voom combines TMM with the logarithmic transformation [12]. Despite 
these efforts, benchmarking studies (e.g., Hawinkel et al. [13]) reveal that no single tool 
achieves an optimal balance between statistical power to detect DA and effective control 
of the false discovery rate (FDR). This highlights a persistent gap in the field and under-
scores the need for innovative approaches that can improve the trade-off between sensi-
tivity, specificity, and FDR control in DA analysis.

Generalized Estimating Equations (GEE) is a statistical method widely applied in vari-
ous biological analyses, including correlated microbial sequencing studies [14], quan-
tification of polygenic effects [15], analysis of time-course gene sets [16], detection of 
sparse microbial association signals [17], and modifications of variance estimators [18]. 
GEE is particularly suitable for longitudinal or clustered microbiome data, as it accounts 
for within-subject correlations and supports distribution-flexible modeling, facilitat-
ing robust identification of differentially abundant taxa in both cross-sectional and lon-
gitudinal settings. In this study, we propose a GEE-based framework, integrated with 
suitable normalization and transformation strategies, for microbiome data analysis. 
We conduct a benchmarking analysis comparing our approach to other existing meth-
ods in microbial biomarker detection. For this purpose, we use both simulated and real 
datasets capturing both cross-sectional and longitudinal designs. We consolidate our 
downstream analysis steps for microbial data into a unified R package named metaGEE-
NOME, with the objective of improving the analytical framework in this field.

Methods
GEE-CLR-CTF model

We aim to develop an approach capable of addressing the challenges associated with 
microbial differential expression analysis. The approach consists of data normalization, 
transformation, and modelling. Regarding the normalization, a comparative analysis was 
performed using microbial data between various normalization techniques such as CPM 
(counts per million), QNT (quantile), UQ (upper quartile), and CTF (Counts adjusted 
with Trimmed Mean of M-values) [19]. The CTF normalization that assumes the major-
ity of taxa display no differential abundance (DA) between the samples accounting for 
library size variability has demonstrated the highest performance (data not shown). 
Computationally, CTF involves obtaining library size-normalized read counts for each 
taxon in every sample, and calculating the log2 fold change (M value) between two sam-
ples as follows:

M = log2
treatedsamplecount

controlsamplecount
 (1)
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Simultaneously, the absolute expression count (A value) is derived as follows:

A = log2 (treatedsamplecount) + log2(controlsamplecount)
2

 (2)

Further processing entails double-trimming the upper and lower percentages of the data 
(trimming M values by 30% and A values by 5%). The weighted mean of M values is 
obtained after trimming, leading to the calculation of the normalization factor [20].

Regarding the transformation which is a vital part of our approach, we note that 
microbial data exist in the Aitchison simplex sample space (S); hence, we focus on 
meaningful ratios between components (relative abundance) rather than the absolute 
abundance [21]. Through log-ratio transformations, it is possible to transition this com-
positional data from S to a conventional multivariate problem in the real vector space 
RD−1 [22, 23]. For this purpose, we have considered two suitable transformation meth-
ods namely additive log-ratio (ALR) and centered log-ratio (CLR). The formal is sub-
ject to a consistency issue as it requires the identification of a reference taxon, which 
should remain unchanged in absolute counts across samples [24]. However, detecting 
such a reference taxon in relative abundance data is challenging and often unreliable, as 
it typically involves arbitrary selection or ranking methods [5]. In contrast, CLR trans-
formation avoids the need for a reference taxon by averaging the taxa, thereby providing 
more robust results. The superiority of CLR was further confirmed when conducting the 
comparative analysis between both approaches. While both approaches achieved similar 
levels of specificity, controlling the FDR was only possible with the CLR approach, which 
was also capable of achieving double the sensitivity level achieved with ALR transforma-
tion (Supplementary Material 1). The CLR equation below represents the ratio of abun-
dance of each taxon xn divided by the geometric mean of all taxa in every sample G (x):

CLR (x) =
{

log

(
x1

G (x)

)
, . . . , log

(
xn

G (x)

)}
= {log (x1) − log (G (x)) , . . . , log (xn) − log (G (x))} (3)

As for the modelling, we employed the Generalized Estimation Equation (GEE) method, 
introduced by Liang and Zeger in 1986 [25], to estimate without fully specifying the like-
lihood function, making it ideal for handling complex multivariate categorical responses 
[26]. GEE remains robust in estimating regression parameters even when the correlation 
structure is misspecified and offers flexibility in modeling mean structures across dif-
ferent regression techniques. It can also handle missing data, provided that the data are 
missing completely at random (MCAR) [25, 27–31]. As an alternative, one could con-
sider the use of the generalized linear mixed models (GLMMs) [32]. However, apply-
ing GLMMs for distributions other than the normal one is computationally challenging 
because it requires the use of numerical integration to compute the likelihood function. 
Also, GLMMs results lead to subject-specific interpretation, while GEE models can 
be interpreted in terms of population averages. Hence, we consider GEE as the better 
choice for our count-based abundance data, enabling efficient parameter estimation 
without the complexities associated with GLMM [33].

When defining the GEE models, we opted for a compound symmetry (exchangeable) 
working correlation structure which assumes equal correlation across all measure-
ments from each subject. Admittedly, other structures could be considered (e.g., inde-
pendent, unstructured, or autoregressive). However, GEE provides consistent parameter 
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estimates even if the working correlation structure is misspecified [34]. The compound 
symmetry structure offers a reasonable trade-off between the numerical complexity and 
the efficiency of the estimation. This was further confirmed by a sensitivity analysis that 
compared the results obtained for the structure with those yielded by the GEE with the 
independence, unstructured, and autoregressive working correlations (data not shown).

We consider a repeated measures setting, in which K  taxa are measured for N  indi-
viduals at J  different occasions, with individuals grouped in G groups. Note that this 
setting also includes the simplest case of an experiment with a single measurement. The 
general GEE formulation can be written as the following estimating equation for coef-
ficients β of a particular model:

U (β) =
N∑

i=1

(
∂µi

∂β

)T

V −1
i (Yi − µi) = 0 (4)

In Eq. 4, U(β) is the estimating equation for the parameter vector β, Yi represents the 
vector of observed responses for the i-th subject, µi = g−1(Xiβ) is the expected mean 
vector where g−1 is the inverse of the link function [33], and Xi is the matrix containing 
the values of the explanatory variables for the i-th subject, and Vi is the working vari-
ance–covariance matrix for the i-th subject (derived from the chosen working correla-
tion structure).

We apply the GEE approach to the following model:

E
(
Y k

ijg

)
= µk

ijg = βk
0 + βk

1,g + βk
2,j + βk

3,jg  (5)

where Y k
ijg  denotes the CLR- transformed count of the kth taxon for the ith individual 

from the gth group measured at the jth occasion. The interest lies in the regression coef-
ficients β. We assume that βk

1,1 = βk
2,1 = βk

3,11 = · · · = βk
3,G = βk

3,21 = · · · = βk
3,2G = 0, 

so that βk
0  captures the mean value of the CLR- transformed count of the kth taxon for 

the first (reference) group at the first (baseline) occasion, βk
1,g captures the change of 

the mean value for the gth group (i.e., the group effect), βk
2,j captures the change of the 

mean value at the jth occasion (i.e., the time effect), and βk
3,jg captures the additional 

(interaction) change specific for the gth group at the jth occasion (i.e., the group x time 
interaction effect). Furthermore, it is assumed that Y k

ijg  follows a normal distribution 
with mean E

(
Y k

ijg

)
 and that all KJ  measurements (for all taxa and occasions) for the 

ith individual are equicorrelated; in other words, a compound-symmetry (exchangeable) 
working correlation structure is assumed. Note that Eq. 5 implies the use of an identity 
link function, i.e., g

(
µk

ijg

)
= µk

ijg .

Implementation of the GEE-CLR-CTF approach

Our primary objective is the development of a novel approach designed to identify bac-
terial biomarkers by addressing the challenges associated with microbial differential 
expression analysis. These challenges involve several key stages: preprocessing, nor-
malization, transformation, GEE model, and putting it all together in the final output. 
Preprocessing is aimed at eliminating outliers, low-abundance entries, and outlier zeros 
while retaining both sampling and structural zeros for later processing. This is accom-
plished by evaluating the distribution of transformed count data within each group and 
differentiating between standard data points and possible outliers through following 
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preprocessing steps adapted from ANCOM-II [6]. Normalization with CTF is followed 
by adding a pseudo-count to solve the problem of the logarithmic transformation of 
zeros, and transformation with CLR. This should bring the data closer to normality and 
tackle the between-sample error and the compositionality issues. Subsequently, the GEE 
Model is employed by using the geepack R package, enabling robust statistical DA anal-
ysis for datasets of both independent and dependent (repeated measures) experimen-
tal set-ups. This model can comprehend diverse distributions and correlation patterns 
while effectively handling missing values. The Final output includes both global and local 
results, providing vital statistical metrics like P-values and Wald tests. The global results 
indicate the taxa that are significant overall data, while the local results enquire into the 
interaction of these taxa with the variable groups. These steps were combined in a single 
function entitled GEE-CLR-CTF within our developed metaGEENOME package in R. A 
visual representation of GEE-CLR-CTF function illustrated in Fig. 1, providing a com-
prehensive understanding of the DA patterns and their associations within the dataset.

Data sources

For benchmarking purposes, we used both simulated and real-life data. Regarding the 
cross-sectional setting, we considered the Human Microbiome Project (HMP), which 
uses Roche-454 FLX Titanium sequencing for the 16S rRNA gene’s V1–V3, V3–V5, 
and V6–V9 variable regions. Data preprocessing involved QIIME software encompass-
ing steps like retrieving SFF, mapping files from the project's website, and cleaning via 
PrimerProspector. Subsequent steps included operational taxonomic unit (OTU) selec-
tion, chimera checking, clustering OTUs at a 97% similarity threshold, and taxonomic 
assignment. We utilized 464 human samples from various body sites, including stool, 
tongue dorsum, and mid-vagina and included only the health group [35]. Additionally, 
we considered the American Gut Project (AGP), which provided a database of human 
gut microbiome featuring 16S rRNA V4 gene fragments from Illumina sequencing. 
The sequences were processed by Deblur v1.0.2, involving trimming and integrating 
into the Greengenes reference tree. Taxonomic assignment was performed by using the 
RDP classifier within QIIME2. Therefore, we used 2621 human fecal samples from both 
health and patients with inflammatory bowel disease (IBD) [36].

For the repeated measures setting, we considered the Pelvic Irradiation study which 
investigated microbiome responses and intestinal mucositis induced by pelvic radiother-
apy. The samples were sequenced for the V3–V4 hypervariable region using the Illumina 
platform. We used 20 mice fecal samples from non-radiated control group (Saline_0) 
within time points week 0 and week 3 [37]. The ANTICIPATE study examined intestinal 
microbiota in Clostridioides difficile hospitalized patients. The samples from patients 
were subjected to 16S rRNA sequencing gene through the Illumina protocols, primar-
ily targeting the V3–V5 regions. We used 654 human fecal samples from two infectious 
groups (J01C and J01D) within time points day 1 and day 6 [38]. Both studies employed 
the OCToPUS v1.0 pipeline for preprocessing, involving de-noising, contig creation, 
alignment of retained contigs with the SILVA database, elimination of contigs outside 
the V3–V4 region with high homopolymers using the Illumina Paired-End Denoiser 
algorithm, de novo chimera removal, and OTU clustering, followed by classification by 
the Ribosomal Database Project (RDP).
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Simulated and real-life data setup

Comprehensive benchmarking assessments require the utilization of both simulated and 
real data, each addressing the limitations of the other. Simulated data offer an optimal 
approach for sensitivity detection due to the knowledge of the ground truth. Bench-
marking using real-life data is a standard practice for tools without artificial processes, 
despite the lack of precision in its ground truth evaluation that might result in an inflated 
number of false positives and false negatives.

Simulated data were obtained by introducing a threefold changes in abundance for 
selected taxa in the health group using the negative binomial distribution in both up and 

Fig. 1 Illustration of workflow of GEE-CLR-CTF for microbial differential abundance (DA) analysis. The flow chart 
outlines the steps for analyzing microbiome DA under both cross-sectional and longitudinal data scenarios using 
GEE-CLR-CTF that as an example we have 3 samples in group 1 (grp1:1, grp1:2, grp1:3) and 3 samples in group 2 
(grp2:1, grp2:2, grp2:3). Utilizing the Phyloseq R package (V 1.40.0), the workflow involves: (1) Preprocessing step, 
including removing outliers, low-prevalence taxa, samples with low library size, and accounting for zero inflation, 
such as taxa and samples marked with red above. (2) Regarding for the compositional nature of data, the filtered 
data is transformed using the combination of CTF with CLR methods after adding 1 to the abundance as pseudo-
count to prevent the error of logarithmtic zero. (3) The GEE model is then applied to the transformed data, accom-
plished using geepack R package (V 1.3.9). 4) The result of the GEE model consists of local coefficients for taxa and 
their interactions with various variables. These local results are then used to create a global result. Both the global 
and local tables provide statistical tests such as Wald or chi-squared tests, along with p value
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down-regulation. Subsequently, multiple sub-data were created by randomly selected 
taxa and shuffling between the group of the simulated data. Additionally, to ensure the 
robustness of simulated data results, efforts were made to counter naivety and ensure 
data cleanliness by introducing outliers and establishing correlations between taxa. 
Real-life data were created through sub-dataset division and comparison against verified 
truth. The additional details are provided in the Supplementary Material 4.

To ensure data reliability, we excluded low-prevalent taxa present in less than 10% 
of the samples. Following the logic outlined by the analysis of Hawinkel et al. [13], we 
adjusted our benchmarking approach to account for both the repeated measures and 
cross-sectional scenarios. In cross-sectional settings, we employed HMP in simulated 
data to generate 1000 sub-datasets, with each including 100 randomly selected taxa, 50 
shuffled samples, and two groups (healthy and simulated). For real data, the AGP was 
used, resulting in 750 sub-datasets, consisting of 100 randomly selected taxa, 250 shuf-
fled samples, and two groups (healthy and IBD). Each sub-dataset was split into three 
smaller sets to evaluate the results of significant taxa within the smaller set by compar-
ing them to the verified truth taxa of the entire sub-dataset.

Additionally, for repeated-measures settings, we retained the same assumptions as 
before, but with modifications to fit into the longitudinal data. The Pelvic Irradiation 
data was employed in simulated data, derived from mice dataset, aimed at reducing the 
complexity of confounders during data simulation. The Saline_0 group was selected due 
to its stable abundance across time points, generating 100 sub-datasets with 100 random 
taxa, 40 shuffled samples, and complex metadata, including two groups (Saline_0 and 
simulated) across two-time points (week 0 and week 3). Also, ANTICIPATE study was 
used in real data, featuring two groups (J01C and J01D) and two-time points (day 1 and 
day 6) divided into 58 verified sub-data with 300 shuffled samples and 100 random taxa, 
divided into three parts evaluated data, as previously described.

To address various challenges in microbial data analysis, we simulated cross-sectional 
HMP data, using the same method described earlier, by adjusting the parameters to sim-
ulate these specific challenges. Outliers and sampling artifacts were controlled by adjust-
ing Pearson residuals (up to values of 3, 4, or 5) based on library sizes, with lower values 
leading to more induced outliers. To introduce greater complexity in the data dimen-
sions, we expanded the number of taxa in the dataset to include 100, 150, and 200 taxa. 
Unbalanced sequencing coverage was modeled by varying the sequencing depth, rang-
ing from low coverage (half the depth) to high coverage (double the depth). To simulate 
abundance imbalances, taxa were classified into three groups: low abundance (< 10%), 
intermediate abundance (10%-90%), and high abundance (> 90%). Zero inflation and 
sparsity were examined by manipulating the effect size (fold changes of 2, 3, and 4), and 
by comparing data scenarios with and without compensation (upregulation versus both 
upregulation and downregulation). For datasets incorporating compensation, structural 
zeros were introduced by reducing actual abundance values to log-negative values. The 
default parameters for each sub-dataset simulation included 50 samples, 100 taxa, Pear-
son residuals below 5, a threefold change in effect size, and zero-inflated compensatory 
data.
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Benchmarking design and tool comparison

The study aimed to evaluate the GEE-CLR-CTF model's performance against estab-
lished DA tools in both cross-sectional and repeated-measures settings through the 
application to simulated and real-life data. We included in our evaluation tools that 
assume binomial distribution such as edgeR (V 3.40.0) [20], DESeq2 (V 1.38.0) [8], and 
MetagenomeSeq (V 1.40.0) [10]. Moreover, we also included tools based on the Pois-
son distribution including limma (V 3.54.0) [39]. Additionally, ALDEx2 (V 1.30.0) [11], 
ANCOM (ANCOMBC V 2.0.1) [40], and ANCOMBC2 (ANCOMBC V 2.0.1), Lefse (lef-
ser V 1.14.0) [2] were considered (Table 1).

Performance criteria included sensitivity TP/(TP + FN), specificity TN/(TN + FP), and 
false discovery rate (FDR) FP/(FP + TP), computed based on true positive (TP), true neg-
ative (TN), false positive (FP), and false negative (FN) counts. We sought a tool char-
acterized by high sensitivity, high specificity, and low FDR. Performance results were 
analyzed by using the Kruskal–Wallis test followed by post hoc pairwise Wilcoxon rank-
sum tests to identify significant differences. The Benjamini-Hochberg (BH) procedure 
was applied to adjust p values for multiple testing [41]. The adjusted two-sided p values 
were evaluated by using the 0.05 level.

Results
Cross-sectional setting

For the simulated data, the results reflect the average across 1000 sub-datasets created 
from the HMP data. Each sub-dataset included 100 taxa, 50 samples, and two groups. 
Subsequently, the results of all methods were compared using the Kruskal–Wallis test 
followed by post hoc pairwise Wilcoxon Rank Sum tests. Lefse, MetagenomeSeq, and 
edgeR demonstrated sensitivity averaging at 16.7% and specificity averaging at 94.6%, 
while failing to control the FDR (averaging at 52.7%). DESeq2 achieved a sensitivity of 
about 6.7% and a specificity of 99.6% without proper control of FDR (8.8%). The other 
methods such as GEE-CLR-CTF, ANCOM, ANCOM-BC2, ALDEx2, and limma-voom 
displayed exceptional specificity levels, averaging above 99.9%, while maintaining the 

Table 1 Comparing microbial differential abundance tools used in the benchmarking
Tool 
(version)

Distribution Statistical 
model

Normalization Transformation Re-
peated 
measures

GEE-CLR-CTF 
(0.1.0)

Poisson GEE CTF CLR Yes

ANCOM 
(2.0.1)

Non-parametric ANOVA, 
Mixed-ef-
fects model

None ALR Yes

ALDEx2 
(1.30.0)

Dirichlet-multinomial ANOVA, 
t-test

None CLR No

limma-voom 
(3.54.0)

Normal linear 
modelling

log-CPM log Yes

Metage-
nomeSeq 
(1.40.0)

zero-inflated 
normalization

zero-inflated 
mixture 
model

CSS log No

edgeR 
(3.40.0)

Negative binomial exact test TMM None No

DESeq2 
(1.38.0)

Negative binomial generalized 
linear model

RLE None No

Lefse (lefser 
1.14.0)

Non-parametric Kruskal–Wal-
lis

CPM None No
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FDR levels at an average of 0.7%, and achieving a sensitivity of about 3.9% on average. 
Interestingly, the GEE-CLR-CTF model exhibited a mean sensitivity level of 6.8% which 
was significantly higher when compared to other methods able to control the FDR (BH 
adjusted p value from 5.3 × 10−16 into 0.00021 in pairwise Wilcoxon Rank Sum tests) 
while conservatively controlling the FDR at 0.3% (adjusted p-value from 2 × 10−16 into 
0.0074 in Wilcoxon Rank) and yielding a specificity of 99.7% (Fig. 2A, Supplementary 
Material 2).

For the real-life data, the ground truth was inferred, as proposed by Hawinkel et al. 
[13], based on coherence between the findings obtained by using the complete data and 
a subset of the data. The 750 examined sub-datasets, derived from AGP, consisted of 
100 taxa, 250 samples, and two groups. As expected with the tools not able to control 
the FDR because of assuming amount of significant taxa, Lefse, MetagenomeSeq, and 
edgeR achieved a sensitivity level averaging 44.9% and specificity level averaging 89.2%. 
The remaining methods yielded substantially lower sensitivity around, on average, 10%, 
while offering a specificity of about 100% on average. GEE-CLR-CTF yielded a sensitivity 
of 14.5% and specificity of 98.6%, close to ANCOM and limma (Supplementary Material 
2) and similar to its performance in the simulated data. Interestingly, most tools man-
aged to adequately control the FDR, except for DESeq2 (Fig. 2B).

Repeated-measures setting

For the simulated data, we employed the Pelvic Irradiation study to create 100 sub-data-
sets with 100 taxa, 40 samples, two groups, and two-time points. MetagenomeSeq and 
DESeq2 demonstrated sensitivity levels of about 50.9% and 19.9%, respectively. Their 
specificity was equal to about 49.6% and 84%, respectively. They exhibited poor control 
of the FDR (averaged 90.3%). The remaining methods achieved specificity above 95%, 
but not all of them, except of GEE-CLR-CTF, could achieve a balance between sensitiv-
ity and the control of the FDR. For instance, edgeR yielded a sensitivity of 2.7% with 
the FDR of 55.4%, while ANCOM gave a sensitivity of 6.7% and the FDR of 90.7%. For 
limma-voom, ALDEx2, and ANCOM-BC2, sensitivity was below 1%, but the FDR was 
adequately controlled. The GEE-CLR-CTF achieved a sensitivity of 6.8% (adjusted 
p-value from 0.000000088 into 0.0000073 in Wilcoxon Rank), specificity 99.6% (adjusted 
p value from 2 × 10−16 into 0.000008 in Wilcoxon Rank), and the FDR of 14.9% (adjusted 
p value from 0.0000041 into 0.000017 in Wilcoxon Rank) (Fig. 3A, Supplementary Mate-
rial 2).

For the real-life data, ANTICIPATE dataset was utilized to generate 58 sub-datasets 
with 100 taxa, 300 samples, two groups, and two time points. MetagenomeSeq and 
DESeq2 exhibited sensitivity levels similar to those observed in the simulated data 
(about 29.5%), with an average specificity of 92.1%. GEE-CLR-CTF, EdgeR, and ANCOM 
yielded lower sensitivity, averaging 13.3%. The sensitivity of the remaining methods was 
even lower (at most 0.1%). All the methods approached almost 100% specificity. The FDR 
was the lowest for GEE-CLR-CTF (30%, adjusted p value from 2 × 10−16 into 0.0175 in 
Wilcoxon Rank) and specificity of 99.5% (adjusted p value from 2 × 10−16 into 0.0207 in 
Wilcoxon Rank) (Fig. 3B, Supplementary Material 2).



Page 11 of 18Abdelkader et al. BMC Bioinformatics          (2025) 26:189 

Tool-specific performance to varying data complexity

Biomarker detection was evaluated using simulated HMP cross-sectional data with 
adjustments to assess challenges such as high dimensionality, unbalanced sequencing 
coverage, species abundance imbalance, outliers, and sparsity (Supplementary Material 
3). With increasing the data dimensions, Lefse, edgeR, DESeq2, limma, metagenomeSeq, 
and ANCOM-BC2 maintained stable sensitivity (20–31%) and high specificity (86–99%) 
but showed limited false discovery rate (FDR) control, with uncorrected FDR reaching 

Fig. 2 Evaluation of differential abundance tools in cross-sectional simulated and real evaluated data. Panels il-
lustrate comparisons in sensitivity, specificity, and 1-FDR (the reverse of FDR values) across tools for cross-sectional 
data analysis, tested in both simulated and real scenarios. A The parallel coordinate plot demonstrates tool per-
formance, where higher levels of sensitivity, specificity, and 1-FDR indicate better performance. Lefse, Metageno-
meSeq and edgeR display high sensitivity but lower specificity and fail to control 1-FDR (< 95%), while DESeq2 
follows with moderate sensitivity and high specificity without controlling 1-FDR. GEE-CLR achieves balanced per-
formance with comparatively high sensitivity and excellent control over specificity and 1-FDR. Despite the other 
tools exhibiting good controlling over FDR and specificity, they have very low sensitivity level B The radar chart 
reinforces these findings, illustrating improved performance with larger triangle areas. C Real data assessment re-
veals tool performance in sensitivity, specificity, and 1-FDR panels, independent of ground truth knowledge. Lefse, 
MetagenomeSeq and edgeR demonstrate high sensitivity but lower specificity, while limma-voom, ANCOM with a 
detection rate of 0.6, and GEE-CLR-CTF exhibit well-balanced performance across these parameters
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up to 84%. GEE-CLR-CTF, ANCOM, and ALDEx2 retained nearly perfect specificity 
with controlled FDR (< 5%) but showed declining sensitivity as dimensionality increased. 
With unbalanced coverage, most tools showed higher sensitivity with increasing the 
sequencing depth, except for ANCOM-BC2 which unexpectedly declined. ALDEx2 con-
sistently showed high specificity (100%) with controlled FDR, while ANCOM exhibited 
fluctuating FDR levels. GEE-CLR-CTF was able to maintain FDR control (< 3%) and high 
specificity (99.8%).

Fig. 3 Evaluation of differential abundance tools in longitudinal simulated and real evaluated data. The figures 
present comparative analyses of sensitivity, specificity, and 1-FDR (the inverse of FDR values) across various tools for 
dependent data assessment, evaluated in both simulated and real set-ups. A In simulated data, MetagenomeSeq 
and DESeq2 have high sensitivity level without controlling either specificity or FDR. While many tools, namely 
limma-voom, ALDEx2, and ANCOM-BC2, show no sensitivity, others demonstrate higher sensitivity and specificity 
with low level FDR. GEE-CLR-CTF has balance in achieving high sensitivity, high specificity and low level FDR. B 
The radar chart reinforces these findings, illustrating improved performance with larger triangle areas. C In real-
evaluated data, many tools fail to control FDR, such as DESeq2, limma-voom, ALDEx2, and ANCOM, while ANCOM-
BC2 has no sensitivity level. GEE-CLR-CTF outperforms MetagenomeSeq and edgeR due to its ability to maintain 
high levels of specificity and 1-FDR with achieving a good level of sensitivity
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Under the influence of outliers, most tools experienced sensitivity declines, yet only 
ALDEx2 and GEE-CLR-CTF managed to control FDR (< 5%) and maintain the high 
specificity. With increasing fold changes in sparsity, most tools’ sensitivity increased; 
however, only ALDEx2 and GEE-CLR-CTF consistently held FDR below 5%. With 
higher structural sparsity, the tools were able to achieve higher sensitivity yet mostly 
ALDEx2 and GEE-CLR-CTF were able to control the FDR levels. In terms of species 
abundance imbalance, ALDEx2 identified merely half of the low-abundance species 
identified by GEE-CLR-CTF, while the latter was able to capture both low and high 
abundances (6.25% and 12.5%, respectively).

Development of the metaGEENOME R package

We integrated the GEE-CLR-CTF model inside R package called the metaGEENOME, 
aiming at simplifying the downstream analysis pipeline of microbial biomarkers. This 
package begins with preprocessing steps aligned with the GEE-CLR-CTF, eliminating 
low-prevalence, zero-inflated, and outlier data. Subsequently, it implements explor-
atory data analysis employing various visualization techniques including histograms 
for sequencing depth distributions, and taxa rank abundance curves. Alpha diversity 
assessments on rarefied datasets employ various methods, illustrated through taxa 
count boxplots. Significance testing for assigned variables utilizes non-parametric tests 
like the Wilcoxon rank-sum test for observed taxa and Shannon diversity. Beta diversity 
calculations use pre-assigned methods, represented via grouped variable boxplots and 
heatmaps.

metaGEENOME facilitates visualizing metadata variables using multiple ordination 
techniques, encompassing unconstrained and constrained methods (e.g., RCM—Ref-
erence Curve Multivariate), employing eigenvalues or distance-based methods like 
DCA, CCA, RDA, NMDS, MDS, and PCoA. Statistical identification of these variables 
involves hypothesis testing through distance matrices using PERMANOVA and adonis2, 
along with pairwise comparisons. The pipeline also incorporated the GEE-CLR-CTF 
approach for differential abundance (DA) analysis, with detailed supplementary figures. 
Finally, it compiles all analytical outputs into a comprehensive report for easy access and 
navigation.

Discussion
The correct identification of differentially abundant bacterial species is a key step in 
biomarker discovery and remains a major challenge in 16S rRNA amplicon sequencing 
and shotgun metagenomics. This difficulty arises from the complex nature of microbi-
ome data, which includes sparsity, imbalances between taxa, compositionality, high 
dimensionality, intra/inter-taxa correlation, missing data, and difficulties in modeling 
accurate data distributions [5–7]. Although several efforts have addressed these chal-
lenges through various normalization, transformation, and modeling techniques [12], 
most fail to achieve high statistical power and sensitivity without compromising control 
over the false discovery rates (FDR) and specificity [13, 42]. As a result, the accuracy of 
identifying differentially abundant species—and thus the integrity of detected microbial 
biomarkers—is often jeopardized. In this work, we introduce a novel statistical model 
coupling both normalization and transformation methods to resolve these challenges, 
through our introduced GEE-CLR-CTF approach.
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A major obstacle in differential abundance (DA) analysis is the sparsity and inflation 
of zeros, often arising from outliers, structural zeros, or sampling bias. Our model effec-
tively mitigates this by identifying and excluding outlier zeros while retaining biologi-
cally meaningful (sampling and structural) zeros for further analysis. This preserves data 
integrity without inflating false positives. Building on previously described methods [6], 
we evaluated count distributions within each group to distinguish typical data points 
from potential outliers. To address imbalances among taxa and variations in sequenc-
ing depth, we employed a normalization strategy using counts adjusted with trimmed 
mean of M-values (CTF). This method, robustly validated in both RNA-seq and micro-
biome datasets [19], minimizes the impact of between-sample biases while controlling 
for taxa imbalances. Additionally, the CLR (Centered Log Ratio) was applied to account 
for data compositionality [21], a known source of inflated false positives in microbiome 
studies [5]. To further enhance detection power, our model leverages the Generalized 
Estimating Equations (GEE) framework which is suited for longitudinal or clustered 
microbiome data as it accommodates correlations within repeated measures and varying 
distributions, offering reliable identification of differentially abundant taxa across cross-
sectional and longitudinal data. [25, 27, 29, 30]. Lastly, we integrate taxa-variable inter-
actions (local result) with a comprehensive global result, to better understand complex 
underlying relationships in the data.

We validate our GEE-CLR-CTF approach through comprehensive benchmarking 
based on two possible scenarios: cross-sectional and repeated-measures. This evalua-
tion utilized both simulated data and real-life data, offering enhanced control over the 
ground truth in the former and capturing the complexity of real data in the latter. In the 
cross-sectional scenario, Lefse, MetagenomeSeq, and edgeR failed to adequately con-
trol FDR, with values ranging between 68.8 and 25.4%, and demonstrated low specific-
ity (reaching a maximum of 94.3%), despite achieving higher sensitivity. This shortfall 
is likely due to the absence of restrictive transformation methods that alleviate compo-
sitional biases [43]. Conversely, tools incorporating transformation processes, such as 
ANCOM, ANCOM-BC2, and ALDEx2, exhibited better control FDR, ranging from 0.4 
to 0.1%, as shown in the previous studies [13, 44], yet with specificity reaching 100% and 
sensitivity of 2.6%, 1.9%, and 4%, respectively. GEE-CLR-CTF achieved a high control of 
the FDR at 0.29%, alongside a modest enhancement in sensitivity at 6.9%, and specific-
ity as high as 99.7%, demonstrating superior balance and consistent performance across 
both simulated and real datasets.

As for the repeated-measures assessment, several tools such as ALDEx2, limma-voom, 
and ANCOM-BC2 were not designed to handle the repeated-measures analysis properly 
and thus failed to achieve an acceptable level of sensitivity (not exceeding 1%). Other 
tools, namely ANCOM, MetagenomeSeq, DESeq2, and EdgeR, achieved inflated FDR 
levels ranging from 50 to 90%. GEE-CLR-CTF when compared to those tools was able to 
achieve the lowest FDR level (14.9%) while maintaining a high level of specificity (99.6%) 
and the highest sensitivity of 6.8%. These findings were observed to a lesser extent in 
our real data analysis which might be attributed to in challenging nature of ground truth 
identification in the real data. That being said, GEE-CLR-CTF was also capable of cap-
turing the complexity of the microbiome data whilst having the lowest FDR. This dem-
onstrated the capability of the GEE model to handle repeated measures analysis as well 
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as the cross-sectional analysis, demonstrating its suitability in diverse scenarios, as pre-
viously reported in a different context [29].

DA tools often face a trade-off between sensitivity and FDR control. Our findings 
show that methods like MetagenomeSeq, edgeR, DESeq2, Lefse, and limma exhibit high 
sensitivity but lack strict FDR control. The GEE-CLR-CTF approach surpasses the other 
tools such as ANCOM and ALDEx2, which offer a better FDR control and account for 
the Poisson-like distribution of the data. To challenge the efficiency of these tools against 
various challenges within the microbial data, we conducted several modifications on our 
simulated data including high dimensionality, unbalanced sequencing coverage, species 
abundance imbalance, outliers, and sparsity biases. It was observed that Lefse, edgeR, 
DESeq2, limma, metagenomeSeq, and ANCOM-BC2 were not able to control the FDR 
(frequently exceeding 5%), despite showing high sensitivity (exceeding 10%) and specific-
ity (reaching up to 90%). ANCOM struggled to control the FDR yet managed to achieve 
an average specificity of 99% with a lower average sensitivity of 6%. In contrast, both 
ALDEx2 and GEE-CLR-CTF maintained FDR control below 5%, with near-perfect spec-
ificity (100%). Notably, GEE-CLR-CTF achieved nearly twice the sensitivity of ALDEx2 
across all simulation scenarios.

Despite these promising results, further refinement is needed, particularly in increas-
ing statistical power while maintaining FDR control below 5%. As also emphasized by 
Mazer et al. [42], the issue of controlling the FDR is far more pressing for reliable micro-
bial biomarkers identification. It is worth noting that at the time of writing, ANCOM-
BC2 is still under active development; our benchmarking utilized version 2.4.0. Another 
issue that is yet to be addressed is the classification of the differentially abundant OTUs/
ASVs, which poses a huge challenge considering the difficulty to delineate species 
boundaries with such a short region [45]. Yet the methods included in our study shed 
light on the broken promise of balance between sensitivity, specificity, and FDR levels in 
this field. Therefore, the GEE-CLR-CTF approach has been incorporated into a unified R 
package called metaGEENOME, covering an inclusive microbiome downstream analysis 
pipeline, which integrates crucial steps (from initial data filtering to exploratory analysis 
and hypothesis testing) providing a comprehensive platform for discovering microbial 
biomarkers.

Conclusion
In conclusion, identifying differentially abundant bacterial species is critical for bio-
marker discovery but remains challenging due to the complexity of 16S rRNA and shot-
gun metagenomic data. While existing tools often trade off sensitivity for FDR control or 
vice versa, our evaluation confirms this imbalance—tools like MetagenomeSeq, edgeR, 
DESeq2, Lefse, and limma favor sensitivity but risk false positives, whereas ANCOM, 
ANCOM-BC2 and ALDEx2 control FDR at the cost of sensitivity. To address this, we 
developed GEE-CLR-CTF, a novel approach that combines established methods—GEE 
regression, CLR transformation, and CTF—with advanced zero handling. This inte-
grated method demonstrated superior performance in both simulated and real datasets, 
achieving better FDR control, higher sensitivity, and strong specificity. Integrated into 
the metaGEENOME R package, GEE-CLR-CTF offers a robust, end-to-end platform for 
microbial biomarker discovery and hypothesis testing in both cross-sectional and longi-
tudinal studies.
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Abbreviations
OTU  Operational taxonomic unit
RLE  Relative log expression
TMM  Trimmed mean of M-values
CSS  Cumulative sum scaling
ALR  Additive log ratio
CTF  Counts adjusted with trimmed mean of M-values
CLR  Centered log ratio
GEE  Generalized estimating equations
TP  True positive (Correctly identifying a taxon as significant when it is indeed significant in the dataset)
TN  True negative (Correctly identifying a taxon as not significant when it is truly not significant in the dataset)
FP  False positive (Incorrectly labeling a taxon as significant when it is not actually significant in the dataset, type I 

error)
FN  False negative (Incorrectly failing to identify a taxon as significant when it is actually significant in the dataset, 

type II error)
FDR  False discovery rate
BH  Benjamini-Hochberg
DA  Differential abundance
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