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ABSTRACT: In this study, we introduce a novel encoding algorithm utilizing contrastive
learning to address the substantial data size challenges inherent in mass spectrometry imaging.
Our algorithm compresses MSI data into fixed-length vectors, significantly reducing storage
requirements while maintaining crucial diagnostic information. Through rigorous testing on
data sets, including mouse bladder cross sections and biopsies from patients with Barrett’s
esophagus, we demonstrate that our method not only reduces the data size but also preserves
the essential features for accurate analysis. Segmentation tasks performed on both raw and
encoded images using traditional k-means and our proposed iterative k-means algorithm show
that the encoded images achieve the same or even higher accuracy than the segmentation on
raw images. Finally, reducing the size of images makes it possible to perform t-SNE, a
technique intended for frequent use in the field to gain a deeper understanding of measured
tissues. However, its application has so far been limited by computational capabilities. The

algorithm’s code, written in Python, is available on our GitHub page https://github.com/

kskrajny/MSI-Segmentation.

B INTRODUCTION

High-resolution mass spectrometry imaging (MSI) data are
invaluable for detailed tissue analysis. They directly address the
complexity of tissue biochemical diversity by capturing mass
spectra from each pixel of the tissue cross-section. This
technique enables precise mapping of the spatial distribution of
proteins, lipids, and metabolites and provides a detailed
molecular composition across varying tissue states. The
development of MSI has contributed to biomarker discovery,
enhancement of therapeutic methods, and understanding of
disease mechanisms, demonstrating its critical role in precision
medicine advancements.' ™"

The current landscape of MSI data analysis increasingly
relies on machine learning and neural networks.” Sarkari et al.
investigated the application of k-means and fuzzy k-means
clustering to MSI data, examining the impact of preprocessing
steps and parameter settings on uncovering biologically
significant patterns.” A self-supervised clustering approach
employing contrastive learning and deep convolutional neural
networks has been demonstrated to classify molecular
colocalizations in MSI data, facilitating the autonomous
identification of colocalized molecules.” The use of convolu-
tional neural networks was applied to enhance feature
extraction and interpretability of complex biological MSI data.®

The mentioned tools, while powerful, are significantly
challenged by the substantial size of MSI data sets. The
extensive memory requirements and computational load
imposed by these large volumes of data can hinder the
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efficiency and feasibility of employing machine learning and
neural networks for in-depth analysis. To address these
limitations, researchers aim to optimize the computational
efficiency of data processing. For example, Alexandrov et al.
introduced segmentation techniques that either uniformly
select neighbors or adaptively consider neighboring spectral
similarities, maintaining linear complexity and memory
demands.” In a similar effort to enhance computational
efficiency, Dexter et al. developed a graph-based algorithm
with a two-phase sampling method designed for more efficient
segmentation of anatomical features and tissue types, thereby
aiming to reduce the high CPU and memory usage of
conventional methods."’

In this work, we approach the challenge of memory
limitations from a different angle. Rather than merely
accelerating analytical algorithms, we introduce an encoding
algorithm designed to preprocess MSI data, significantly
reducing its size and making it more manageable for
subsequent analysis. Our algorithm utilizes contrastive
learning, a method that teaches the model to distinguish
between similar and dissimilar data points by comparing
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instances without explicit data set knowledge."" This process
trains the model to generate similar outputs for analogous
inputs and varied outputs for dissimilar ones. Through the
application of contrastive learning, our algorithm efficiently
learns high-level features from MSI data, effectively compress-
ing the data while preserving the essential information needed
for analysis. Notably, the encoding process also adjusts the
data’s output distribution (by setting handy means and
standard deviations where required), making it easier for
subsequent analytical algorithms to operate. As a result, this
methodology not only streamlines data handling but also
enhances the performance of analytical tools employed on the
encoded data.

Our algorithm efficiently compresses each MSI pixel’s
spectrum into a fixed-length vector of float numbers, regardless
of its initial memory size. For instance, an image that initially
occupied 1.5 GB was compressed to 8.5 MB, dramatically
reducing storage requirements and enhancing the image’s
manageability. Importantly, it should be noted that this
transformation is reversible; the encoded spectra can be
decoded to retrieve the original input spectrum, with only
minor quality downgrade, yet ensuring that no critical data are
lost in the compression process.

B MATERIALS AND METHODS

To rigorously evaluate the performance and reliability of our
encoding algorithm, we conducted our experiments using two
specific data sets: a mouse bladder cross-section image and a
set of images of biopsies from patients with Barrett’s esophagus
(Barrett’s esophagus is a precancerous condition characterized
by the abnormal transformation of esophageal cells, often due
to chronic acid reflux). Both data sets were chosen since they
provide reliable baseline models, which aid in assessing the
correctness of our method.

Mouse Bladder Image. The mouse bladder image was
downloaded from the PRIDE database, ID PXD001283.'* The
image is 260 X 134 pixels (34,840 pixels in total), with a pixel
size of 10 pm. Further details on the sample preparation, data
acquisition, and processing can be found in Rémpp et al."> A
histological staining of the tissue section used to generate the
image indicated eight distinct morphological regions."” To
obtain a ground truth segmentation of the MS image, used to
evaluate the accuracy of our algorithm, we have generated ion
images of m/z 422.93, 824.55, and 851.64 Da. We have
overlaid the images to highlight regions with different chemical
compositions. Using the overlaid ion images and guided by the
histological staining, we have delineated different morpho-
logical regions manually in the GNU Image Manipulation
Program.'” The resulting segmentation is shown in Supple-
mentary Figure 7.

Barrett’s Esophagus Biopsies Images. A data set of MS
images of esophagus biopsies was downloaded from the
PRIDE database (PXD028949). The data set comprises 19
images in profile mode, with sizes ranging from 1370 to 7137
pixels. Annotations provided by a trained pathologist
distinguish between the epithelial tissue and stroma. Moreover,
the epithelial tissue may be affected by Barrett’s esophagus, and
thus, the tissue is further classified into levels of dysplasia:
high-grade, low-grade, and nondysplastic (healthy tissue),
which we use for aggregate patients. Using histopathological
tissue labeling, we can verify whether the segmentation
performed on the images encoded by our algorithm accurately

differentiates epithelial tissue and stroma. More details on the
data are available in the study by Beuque et al."

Encoding Algorithm. The encoding algorithm aims to
reduce data size and ensures that encoded spectra possess a
regular probability distribution that can be efficiently dealt with
by neural networks and other analytical algorithms. We refer to
the encoded spectra as embeddings. The size of embeddings is
parameter-controlled; for instance, in the case of the mouse
bladder image, we set it to a vector of length 64. The encoding
operation is reversible; ie., the information in the mass
spectrum can be retrieved by decoding its embedding with
only minor quality loss.

We consider each pixel of MS images as a one-dimensional
intensity vector by aggregating mass spectra to m/z values
rounded to the first decimal. Since our method is based on
convolutional neural networks, profile-mode spectra are a more
natural input than centroid mode.'® In particular, profile-mode
spectra allow for a smoother convolution and are less prone to
shifting the locations of features due to mass accuracy errors
than centroid-mode spectra. Accordingly, for MS images in
centroid mode, we recommend preprocessing them with a
Gaussian filter to generate continuous spectra before
processing them with our neural network. Our tests performed
during the development of the algorithm suggest that the
network can process centroid-mode spectra but with a slight
decrease in accuracy of the results. For MS images in profile
mode, preprocessing with a Gaussian convolution filter also has
the advantage of smoothing the data and is a common step in
computational MS analyses. For the Barret’s Esophagus and
the Mouse Bladder data, we have applied a Gaussian
convolution with ¢ = 0.1 Da.

We combined contrastive learning with the encoder—
decoder architecture and applied several neural network layers
on top of that

e linear layer—controls the portion of the neural network
that executes matrix multiplication followed by bias
addition;

e normalization layer—adjusts the input features to be
distributed with a mean equal to 0 and standard
deviation equal to 1;

e convolutional layer—improves the process of extracting
spatial hierarchies of features, enabling the network to
recognize patterns, textures, edges, and other local
features within data;

e transposed convolutional layer—provides the same
improvements as the convolutional layer but in the
opposite direction, i.e., for embedding’s decoding;

with a rectified linear unit (ReLU) used as an activation
function.

The process of contrastive learning begins with generating a
noisy copy of each input spectrum, called augmentation. In our
case, this noisy copy is obtained by applying small
perturbations to the original spectrum, altering intensity values
by up to 10% while preserving the overall spectral structure.
We consider the input spectrum and its noisy copy to be
similar, while any other pair is considered not similar (positive
or negative pair, respectively). To learn the neural network to
distinguish whether given spectra are similar, we had to involve
several loss functions.

First, we used the contrastive loss function based on cosine
similarity to determine whether a given pair is correctly
classified as positive or negative. We chose this function

https://doi.org/10.1021/acs.analchem.4c06913
Anal. Chem. 2025, 97, 15579—15585



Analytical Chemistry

pubs.acs.org/ac

because it effectively captures structural differences between
spectra by measuring the angle between their representations,
ensuring that structurally similar spectra remain close in the
latent space, even when absolute intensities vary due to
experimental conditions. This makes it particularly well-suited
for high-dimensional MSI data. Moreover, this approach aligns
with previous applications of contrastive learning in MSI,
where cosine-based metrics have proven effective in preserving
meaningful spectral relationships.” Let us assume that we
possess spectra (zl, Zy) e zZN) generated in the augmentation
process, where N is a batch sample size. Contrastive loss
function can be formulated as

contrastive loss = «a Z 0 (Z”z)posﬁlve pair

ij (1)
where
exp (sim(z;, z;)/7)
Y hss exp (sim (2, 2,)/7) (2)

a and y are constants, sim stands for the cosine similarity, and
I, is an indicator function equal to 1 when a given condition g

is satisfied, and O otherwise.

Simultaneously, we controlled if embeddings came from
some sort of regular probability distribution. Let us denote by
w; an embedding corresponding to a spectrum z;. First, we use
mean loss function given by

1 2N
mean loss = — Z MZ(Wi)
NS 3)

where 4(w;) is a mean of the i embedding in the batch. The
aim of applying this loss function is to keep embeddings
around 0. Moreover, we compute standard loss function
defined as

E
1 2
standard loss = — U(W) -1

(4)

where ¢,(w) stands for the standard deviation of the i feature
in the batch of embeddings and F, is a number of the features.
By features, we understand individual positions in embedding
vectors. Using the standard loss in our neural network training
process guarantees that features’ distributions will not deviate
from the average value too much.

So far, each of the applied loss functions ensures that the
encoder will provide embeddings that differentiate spectra
correctly and are handy for the segmentation process.
However, it is equally important to ensure that these
embeddings can be decoded back into meaningful spectra.
To achieve this, an additional loss function is required to
compare the original spectrum z; with its encoded and
subsequently decoded counterpart Z. This type of loss is
commonly termed decoder loss. In our case, we employed the
mean squared error (MSE) loss function for this comparison,
which is expressed as

E
1 &
MSE loss = — z (Zi - Zi)z
E3 (8)
with F; denoting sample vector length. Notably, continuous

monitoring through decoder loss ensures that the encoded and
subsequently decoded spectrum remains close to the original.

We note that this approach calculates the average MSE
distance between the original and decoded spectra over all
pixels. Therefore, changing the intensities of high-intensity
peaks present in many pixels incurs a large penalty. However,
peaks with low intensities or peaks present in only a small
number of pixels can be lost during the encoding.

A sketch of the encoder—decoder architecture, along with
the loss functions used, is presented in Figure 1. Moreover,
numerous examples of loss trajectories across training can be
found in the notebooks on our GitHub page.
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Figure 1. A graph illustrating the encoder—decoder learning process.
First, a contrastive loss is computed to compare whether embeddings
are close or distinct for the positive and negative pairs, respectively.
Simultaneously, mean and standard losses are calculated to ensure
that the distribution of embeddings is neat. Then, embeddings are
decoded, and an MSE loss is computed to check whether the decoded
and input spectra are homogeneous.

Encoder Learning and Parameters. Optimization for
each data set was achieved using the Adam optimizer, with
settings of a 107> learning rate and a 10> weight decay. Losses
were predominantly equalized at a weight of 1, except for the
decoder loss, emphasized at 100. The batch size parameter was
set at 64. If no improvement in the weighted sum of losses is
noted, the patience parameter responsible for stopping training
was set at 30 epochs. The weighted sums of the losses were
1072 for mean and standard deviation losses and 107" for
contrastive loss, with decoder loss adjustments based on data
set specifics: 107> for mouse bladder and 1 for biopsies images.
The computational framework was Google Colaboratory, using
a Tesla T4 GPU.

Image Segmentation. To validate whether the compres-
sion process preserves essential features, we conducted
segmentation, one of the most critical tasks in analyzing MSI
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data, in which our encoding algorithm finds a significant
application. For this purpose, we chose the k-means algorithm
due to its two advantages: first, it is commonly used in the
field, and second, it particularly benefits from the regularity in
data distribution that our encoding ensures.

Note, however, that in real-world scenarios the exact number
of clusters in an image is often unknown. Therefore, the k
parameter typically needs to be chosen with a margin.
However, this approach introduces another challenge: multiple
clusters may represent the same tissue type and must be
merged. In our case, we utilize a baseline model for testing
purposes, as described in the next section. In real-world
applications, a laboratory specialist must perform this merging
manually. To reduce or, ideally, eliminate this necessity, we
propose a modification to the traditional k-means algorithm,
called iterative k-means, which serves as a practical alternative in
certain scenarios.

The iterative k-means algorithm enhances the k-means
clustering process by integrating it with Principal Component
Analysis (PCA) to dynamically determine the optimal number
of clusters based on the silhouette score'” for each principal
component. This approach iteratively adjusts the cluster count
until it meets or surpasses a predefined target. The process is
outlined as follows:

Input: Data points 9, maximal number of clusters K.
Initialize: Apply PCA to O to obtain principal
components. Set the initial cluster count k = 1 and the
currently considered principal component i = 1.

Step 1: For the i principal component, execute k-
means with varying cluster counts, identifying the
optimal number ¢, based on the silhouette score. If ¢ =
1, go to Step 4.

Step 2: Setk=k-candi=i+ L

Step 3: Repeat Steps 1 and 2 until k > K.

Step 4: Aggregate the data points into final clusters by
consolidating the saved clustering results.

Note that since the iterative k-means algorithm processes
principal components sequentially, starting from the most
informative ones, it typically requires only a few components
to estimate the number of clusters. For instance, in the case of
the mouse bladder image, it used just 6 components out of the
64-dimensional latent space. Moreover, note that as the
purpose of iterative k-means is to accurately estimate the
number of classes, applying it to images where only two or
three classes are expected is unnecessary, since the results will
be equivalent to those obtained with the standard k-means
algorithm. We recommend using the iterative version for
images where the number of classes is uncertain but suspected
to be at least four.

Following the completion of segmentation, convolutional
smoothing is applied to refine the results. This phase involves
iteration over each pixel and executes a majority voting
procedure. We assess the class assigned to the target pixel and
its neighbors. The class that predominates among these is then
designated as a new class for the pixel.

Matching and Segmentation Accuracy. To assess the
accuracy of the segmentation results against the actual data
(ground truth or baseline model), it is necessary to align the
classes identified by the segmentation algorithm with those in
the baseline model. To achieve this, we use a voting procedure
known as matching. For each class identified by the
segmentation algorithm, we examine the corresponding pixels’

classes in the baseline model image. The class from the
segmentation is then matched to the baseline model class that
appears most frequently among those pixels. A graphical
representation of this process is provided in Figure S1 in the
Supporting Information. Lastly, an image with matched classes
enables the verification of class alignment with the baseline
model and calculation of the segmentation accuracy. Note,
however, that in the MSI field baseline models are themselves
acquired using specific methods. Therefore, since “accuracy” is
computed relative to these baseline models, it should be
interpreted more as a correlation with the results of another
method rather than an absolute measure.

A visual summary of the process steps described in this
section is presented as a workflow in Figure 2.

L MS IMAGE }

T

PREPROCESSING (PIXEL-WISE):
° INTENSITY AGGREGATION
° CONVOLUTION WITH GAUSS

ENCODING
(PIXEL-WISE)

SEGMENTATION:
o (ITERATIVE) K-MEANS
° CONVOLUTIONAL SMOOTHING

-

\

EVALUATION:
e  MATCHING TO BASELINE OR
GROUND TRUTH & VISUALIZATION
e ACCURACY COMPUTATION

\

Figure 2. A workflow illustrating the processing of MS images,
highlighting the encoding step as the core focus of our work.
Segmentation and Evaluation are included primarily to demonstrate the
efficacy of the encoding process. Detailed descriptions of each point
are provided in the Methods section.

Algorithm Availability. The computations were per-
formed in Python, primarily using the PyTorch'® and scikit-
learn'” packages. The entire code, including neural network
training and segmentation implementations, is freely available
under the MIT license on our GitHub page: https://github.

com/kskrajny/MSI-Segmentation. Additionally, our GitHub

https://doi.org/10.1021/acs.analchem.4c06913
Anal. Chem. 2025, 97, 15579—15585



Analytical Chemistry

pubs.acs.org/ac

page provides detailed parameters and plots of individual loss
functions recorded during neural network training for each
data set.

B RESULTS AND DISCUSSION

Encoding Algorithm’s Performance. In the first data set,
consisting of the mouse bladder image, our goal was to
compare segmentation performance on raw and encoded data.
The image, stored in the Apache Parquet format, had an initial
size of approximately 1.5 GB. The encoder’s training process,
which varied between 1.5 to 2.5 h depending on the
parameters, successfully compressed each image pixel’s
spectrum into a 64-element vector. Here, it is critical to note
that the reported computational times refer to training the
encoder, not the encoding process itself. Once the model is
trained, encoding and decoding of entire MS images take only
a few seconds. This compression reduced the file size to 8.5
MB, achieving a 99.4% reduction in memory usage.

Next, we applied the t-SNE algorithm to the image. This
algorithm is typically used for the preliminary analysis of MS
images to gain a deeper understanding of the measured data
and to estimate the number of biochemical classes that can be
expected in the analyzed images. However, the high computa-
tional demands of t-SNE often make it challenging to apply it
to raw images. In contrast, its application to encoded images
proved successful. Since we had ground truth data and our
primary goal was to demonstrate the feasibility of t-SNE on
encoded images, we used scikit-learn’s default hyperpara-
meters, except for the perplexity parameter, which was set to
10%, without further optimization. Notably, the t-SNE analysis
on the encoded image was completed in approximately 50 min
using sckit-learn’s default hyperparameters. A selected
dimension of the t-SNE output is presented in Figure 3,
indicating that at least three distinct biochemical categories can
be expected. Additional examples can be found in the
Supporting Information.
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Figure 3. Illustration of the t-SNE algorithm output computed on the
encoded image of the mouse bladder. Selected dimensions are
showcased, demonstrating the minimal number of three biochemical
classes can be expected from segmentation. The computations were
performed using scikit-learn with a perplexity parameter of 10°, while
all other hyperparameters remained at their default settings with no
further optimization. The process was completed in approximately 50
min.

Finally, we conducted a segmentation task to verify that the
encoding process did not lose any essential information. The k-
means algorithm was applied to both raw and encoded images,
whereas the iterative k-means algorithm was used exclusively
on encoded images due to the high computational demands of
applying it directly to raw data. Additionally, we evaluated
clustering algorithms on the highest peaks from the spectrum
by calculating the mean for each spectral index across the
image and selecting the 128 indices with the highest means.
Segmentation accuracies are detailed in Table 1, and their
visualizations are presented in Figure 4. More segmentations,
using different parameters and an alternative baseline model,
are available in the Supporting Information.

Table 1. Accuracies of Segmentation Tasks into Seven
Classes for the Mouse bladder Image Using the k-means
Algorithm“

method data accuracy (%)
k-means raw image 42.67
k-means top-128 41.28
k-means encoded image 59.01

iterative k-means encoded image 64.44

“Segmentation was performed on raw and encoded images and
additionally on the highest 128 peaks of each pixel’s spectrum in the
raw image (denoted by top-128). Moreover, the iterative k-means was
applied to the encoded image. Note that accuracy computation was
possible by the availability of a baseline model, which is often not a
real-life scenario.

In contrast to the mouse bladder image, the Barrett’s
esophagus biopsy images are much larger, a size commonly
encountered in mass spectrometry imaging. This allowed us to
demonstrate the encoder algorithm’s performance on signifi-
cantly larger data sets in terms of individual image size and
patient count. Consequently, we encountered a challenge our
work aims to address: computing segmentation on raw images
was not feasible due to extensive CPU requirements.
Therefore, as a basic solution, we once again employed the
commonly used naive approach that involves applying a
segmentation algorithm only to the highest peaks in the pixels’
spectra, with the number of peaks fixed at 128.

The complete data set is 54.21 GB in size. Training the
encoder to compress the data into 128-length vectors for the
entire data set took approximately 2 h, resulting in a
compressed size of 81.26 MB—representing a 99.85%
reduction in memory usage. Each patient’s images were
encoded individually, enabling the encoder to focus on
patient-specific tissue variations rather than interpatient
differences. Segmentations were performed to distinguish
tissue types: epithelial tissue and stroma. The segmentation
results are summarized in Table 2, where cross-section images
are grouped according to the patients’ dysplasia classifications.
Detailed results for each individual cross-section, along with
exemplary visualizations of the segmentations, are available in
the Supporting Information.

Storage of MS Images. Finally, we highlight one more
application of our encoding algorithm: storage of MS images.
Storing all acquired data can be a significant challenge for
laboratories conducting extensive mass spectrometry imaging.
By using our algorithm, only the encoded images and their
corresponding trained models, which are not memory-
intensive, need to be stored. Furthermore, due to the

https://doi.org/10.1021/acs.analchem.4c06913
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Figure 4. Segmentation results for the mouse urinary bladder MS image with the matching procedure were applied. Panel (A) shows the baseline
model, as described in the Mouse Bladder Image section. The following panels present segmentation results: (B) k-means on the original image,
(C) k-means on the 128 highest peaks of the original image, (D) k-means on the encoded image, and (E) iterative k-means on the encoded image.
While the ground truth model consists of seven clusters, we did not use this knowledge directly; instead, we selected k = 12 to allow for a margin. In
the case of iterative k-means, the number of clusters was estimated autonomously, yielding eight clusters. These were then matched to the baseline
model to enable segmentation accuracy assessment and clearer visualization, resulting in S, 6, 7, and 4 classes for panels B—E, respectively.
Segmentation accuracies are reported in Table 1, and segmentations without the matching procedure applied are provided in the Supporting
Information.

Table 2. Summary of the Compression Process and Tissue Segmentation Results, Grouped by Barrett’s Esophagus Overall
Classification”

images’ storage size computation tissue type seg. acc. (%)
patients’ classification raw (GB) encoded (MB) time (min) encoded image top-128
nondysplastic 11.59 17.37 26.08 71.33 66.39
low-grade dysplasia; nonprogressive 16.03 24.05 36.10 70.42 65.24
low-grade dysplasia; progressive 15.69 23.51 35.28 68.02 65.18
high-grade dysplasia 10.90 16.33 24.52 66.87 62.12
¥ = 5421 ¥ = 8126 T = 121.98 avg. = 69.16 avg. = 64.73

“The left side of the table details the compression process, including data size before and after encoding and encoder training times. The right side
presents segmentation outcomes, distinguishing tissue types: epithelial tissue and stroma. Segmentation was performed using the k-means
algorithm, with the 128 highest peaks (“top-128”) used as a baseline due to the high computational demands of applying k-means directly to raw
images.

encoder—decoder architecture, the encoded MSI images can
be easily decoded whenever needed. Moreover, let us recall
that the reported computational times refer to training the
encoder, not the encoding process itself; once trained,
encoding and decoding MS images take only a few seconds.

B CONCLUSIONS

In conclusion, we have introduced a highly eflicient
compression algorithm based on an encoder—decoder neural
network architecture. As demonstrated, applying the encoder
to an MS image significantly reduces its memory footprint and
enables the execution of computations that would be CPU-
intensive for raw images. For instance, the t-SNE algorithm,
ideal for primary analysis for a deeper understanding of data
structures, is often challenging to use on raw images, yet may
be easily applied to encoded ones. Most importantly, encoding
allows for segmentation tasks to be performed on images
without concern about memory requirements. Additionally,
segmentation algorithms like k-means benefit from the regular
distribution ensured by the encoder, resulting in higher

15584

accuracy compared to segmentation performed on raw images,

as demonstrated in our manuscript.
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