

## Value of information of static and modal data for a concrete bridge exposed to reinforcement corrosion

Eline Vereecken (Hasselt University), Wouter Botte and Robby Caspeele (Ghent University), Geert Lombaert (KU Leuven)



### Introduction

## "The most sustainable building is the building you don't have to build."

Carl Elefante

- →Rising interest in assessment of existing structures
- → Measurements to improve estimates
- → Worth the investment?
- → Value of information (VoI) taking into account time-dependent and spatial character of degradation





## Value of Information (VoI)

Taking into account time-dependent and spatial character of degradation

 $E[VoI] = C_{prior} - E[C_{posterior}]$   $\rightarrow \text{Life-cycle costs}$ 







## Value of Information (VoI)

Taking into account time-dependent and spatial character of degradation

Incorporate unknown results of monitoring







## Case study bridge

- 14 RC girders
- L = 13 m
- Analysis: each girder subdivided in 4 elements





## Input VoI analysis

#### Two situations:

- 1. Carbonation-induced corrosion
- 2. Chloride-induced corrosion

#### Different monitoring strategies and data-types:

- Static strain measurements (error 3 με)
- Ambient acceleration measurements
  - Natural frequencies (error  $0.001\overline{\lambda_r}$ )
  - Displacement mode shapes (error  $0.01 \| \overline{\phi_r} \|$ )
- Ambient strain measurements
  - Natural frequencies (error  $0.001\overline{\lambda_r}$ )
  - Strain mode shapes (error 0.5 με)





#### Degradation of the bridge

- Corrosion according to fib bulletin 34 and Duracrete
- Carbonation-induced corrosion:
  - $T_i = LN(51 \text{ years}; 21 \text{ years})$  for c = 40 mm
  - $V_{corr} = LN(0.0075 \text{ mm/year}; 0.005 \text{ mm/year})$
- Chloride-induced corrosion:
  - $T_i = LN(33 \text{ years}; 26 \text{ years})$  for c = 40 mm
  - $V_{corr} = LN(0.21 \text{ mm/year}; 0.18 \text{ mm/year})$





Limit states to evaluate probability of failure

- Bending and shear failure of longitudinal girders
- Corrosion modelled by reduction in steel section

$$x(t) = V_{corr}(t - T_i)$$





Costs in the VoI analysis

- Cost of failure C<sub>F</sub>: € 10 million (cost of bridge itself and indirect (economic) costs)
- Repairs:
  - New bridge: € 1 700 000
  - Upgrading: € 340 000 (repairs and economic damage)
- Measurements:
  - Triaxial acceleration measurements: € 10 000
  - Modal strain with optic fibres: € 20 000
  - Static strain measurements: € 20 000 (20 sensors) to € 28 000 (52 sensors)
  - Installation cost (roadblock): € 30 000





**Decision alternatives** 

#### Action alternatives:

- 1. Do nothing
- 2. Upgrade to  $\beta_{up}$  (4.2) if  $\beta < \beta_{crit}$  (3.57)
- 3. Replace the structure if  $\beta < \beta_{crit}$  (3.57)

#### Actions triggered by measurements:

- Cathodic protection if  $P[x(t) > x_{crit}] \ge P_{crit}$
- Cathodic protection + strengthening if  $P[\alpha > \alpha_{crit}] \ge P_{crit}$





Negative Vol due to slow corrosion process

→ Measurements do not trigger intervention

#### **Carbonation-induced corrosion**







Critical β reached earlier

Dynamic data triggers more repair + actions differ from prior choice (upgrade)

#### **Chloride-induced corrosion**







P<sub>crit</sub> = 25%: optimal action often changes to 'do nothing'
→ Higher Vol

P<sub>crit</sub> = 75%: less elements repaired or maintained

→ Lower Vol

#### Influence P<sub>crit</sub>







\*5, \*10,  $/2 \rightarrow$  Small influence

/5 → Large influence → Posterior most optimal action in all cases = 'do nothing' (prior: 'upgrade')

General behaviour not impacted

- Too early: no action triggered
- Too late: repair already performed

#### Influence failure cost







Limited influence untill t = 40 years

Later: higher Vol for higher C<sub>F</sub>

Optimal strategy unaltered

#### Influence failure cost







### Conclusions

- Small degradation rate → No repairs required → Negative VoI
- Higher degradation rate → Monitoring triggers intervention → Positive VoI with optimum
- Value of P<sub>crit</sub> influences absolute value of VoI, not general behaviour
- Influence of C<sub>F</sub> depends on assumed value and can be limited
- → Sensitivity analysis might be required



