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A B S T R A C T

Background: Burn injuries present a significant global health challenge. Among the most severe long-term con-
sequences are contractures, which can lead to functional impairments and disfigurement. Understanding and 
predicting the evolution of post-burn wounds is essential for developing effective treatment strategies. Tradi-
tional mathematical models, while accurate, are often computationally expensive and time-consuming, limiting 
their practical application. Recent advancements in machine learning, particularly in deep learning, offer 
promising alternatives for accelerating these predictions.
Methods: This study explores the use of a deep operator network, a type of neural operator, as a surrogate model for 
finite element simulations aimed at predicting post-burn contraction across multiple wound shapes. A deep 
operator network was trained on three distinct initial wound shapes, with enhancements made to the archi-
tecture by incorporating initial wound shape information and applying sine augmentation to enforce boundary 
conditions.
Findings: The performance of the trained deep operator network was evaluated on a test set including finite 
element simulations based on convex combinations of the three basic wound shapes. The model achieved an R2 

score of 0.99, indicating strong predictive accuracy and generalization. Moreover, the model provided reliable 
predictions over an extended period of up to one year, with speedups of up to 128-fold on the Central Processing 
Unit and 235-fold on the Graphical Processing Unit, compared to the numerical model.
Interpretation: These findings suggest that deep operator networks can effectively serve as a surrogate for 
traditional finite element methods in simulating post-burn wound evolution, with potential applications in 
medical treatment planning.

1. Introduction

Burns occur frequently worldwide and are the fifth non-fatal cause of 
childhood injuries. The number of burn injuries worldwide was nearly 
11 million in 2004, and about 180,000 individuals die as a result of 
severe burn injuries each year (WHO, 2018). Pain, itching, loss of en-
ergy, and psychological factors, among others, cause a decrease in the 
quality of life among patients who survive burn accidents. Extreme pain, 
infection, hypertrophic scars, and skin contractures, where skin con-
tracts so intensively that patients lose mobility, remain major challenges 
in burn treatment (Wang et al., 2018). The problem is aggravated by the 
fact that skin is the largest organ of the human body. Its weight is about 

15% of the total body weight. Roughly speaking, skin consists of three 
layers: the epidermis (top layer), the dermis, and the subcutis. The 
subcutis is connected to underlying fat, organs, and muscles. If only the 
epidermis is damaged, then full healing will occur by the proliferation 
and migration of keratinocytes, which populate the epidermis. If deeper 
layers, such as the dermis or even the subcutis, are damaged, then the 
repair mechanism entails the regeneration of the dermis through 
collagen secretion by fibroblasts and the regeneration of the small blood 
vessel (capillary) network by revascularization. Serious burn injuries are 
characterized by damage to multiple skin (dermal) layers and over large 
areas of the human body. The healing of these large burn injuries often 
goes along with dermal contraction and/or hypertrophy. These 
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mechanisms are mainly caused by fibroblasts’ (strain-induced) differ-
entiation to myofibroblasts (Desmoulière et al., 1993). While fibroblasts 
produce collagen type 1, the natural collagen in undamaged (embry-
onic) skin, myofibroblasts mainly secrete collagen type 3 at a large 
turnover per unit of time. Furthermore, myofibroblasts exert pulling 
forces, eventually making the wound area contract. At the same time, 
the epidermis is closed by the regeneration and migration of keratino-
cytes. Clinicians refer to the injury as a wound during epidermal healing, 
after which the injury is referred to as a scar. Although epidermal closure 
and dermal contraction influence each other, their exact interplay is still 
unclear, and therefore, we will not consider this interaction in the cur-
rent study.

Dermal contraction may reduce the dermal pliability to such an 
extent that joints lose their mobility, and patients can no longer exercise 
or perform daily routines. In these cases, the occurred contraction is 
referred to as a contracture (Goel and Shrivastava, 2010). Another side 
effect that patients with serious burn injuries endure is hypertrophy of 
scars (Tomasek et al., 2002). This hypertrophy is characterized by a 
changed dermal topography, which generally changes the appearance of 
the skin.

While serious burn injuries often resulted in patient death in the past, 
nowadays, more and more patients survive severe burns. This is why 
current health care has shifted its focus from survival to the increase of 
quality of life of the survived patients. Therefore, clinical treatments are 
directed towards changing cellular behavior such that contraction and 
deposition of type 3 collagen are mitigated as much as possible. This 
mitigation is often achieved through methods such as dressings, 
clothing, skin grafting (skin transplantation by depositing epidermal 
parts from other body parts on the injured part), and splinting.

Many scientific studies, both clinical and laboratory, have been 
carried out and are ongoing to improve health care for burn injuries. In 
order to improve health care, one aims to steer the behavior of involved 
cells, and therefore, it is crucially important to understand the chain of 
biophysical mechanisms responsible for the evolution of post-burned 
skin. This knowledge needs to be validated using laboratory experi-
ments and clinical observations, which represent data in numbers and 
patterns, and hence, the developed theory needs to be quantified. This 
quantification proceeds by using mathematical models based on either 
stochastic (random) processes and partial differential equations (con-
tinuum models) or by combinations of the two (Barocas and Tranquillo, 
1997; Dallon et al., 1999; Koppenol, 2017; Menon et al., 2017; 
Stéphanou and Volpert, 2015). Among these, mechanistic models play a 
crucial role in understanding the underlying biophysical processes of 
burn injury and healing. To this extent, the current paper involves 
mathematical models in terms of partial differential equations (PDEs). 
These equations contain input parameters, such as elasticity and cell 
division rates, that are unknown beforehand due to patient-to-patient 
variations. These variations are commonly caused by differences in 
cell division rates, chemical environment, and mechanical parameters, 
such as the stiffness of the skin. All these variations are caused by age, 
gender, pigmentation, genetic composition and life style of the patient. 
The patient-to-patient variations make the uncertainty in the outcomes 
of the model large, even in the hypothetical case that the mathematical 
model contains all the relevant aspects that determine post-burn dermal 
evolution. For this reason, given the inherent patient-to-patient varia-
tions and the complexity of the biological processes, one simulation run 
cannot be deemed reliable in general. Therefore, the focus shifts to un-
derstanding the likelihood of clinical successes under different thera-
pies. This can only be achieved by sampling the input parameters, such 
as initial wound geometry and model input parameters, from prior 
probability distributions to estimate posterior probability distributions 
for the output parameters, such as the extent of wound contraction or 
strain energy.

One of the bottlenecks in making current simulation tools applicable 
to clinical practice is the relatively long simulation time required to run 
one sample. These long simulation times are caused by the non-linear 

nature of the set of partial differential equations of which the solution 
is approximated by a moving finite element method combined with 
time-integration and fixed point problem solvers. To address this issue, 
neural network-based frameworks are being developed, where a 
regression-like model links input parameters to the output parameters of 
interest. Ideally, the resulting model can generate simulation runs at 
very large speedups compared to classical numerical simulations. The 
first neural networks to reproduce post-burn contraction finite element 
simulations in one and two dimensions have been introduced in (Egberts 
et al., 2022; Egberts et al., 2023). These studies indicate high fidelity and 
high-speed reproduction of the finite element simulations. However, a 
limitation of these works is that all simulations were performed on a 
fixed spatial domain, meaning the wound’s size and shape remain 
constant. This is not very representative of real-world scenarios.

In this study, we propose using neural operators to generate a surro-
gate model that reproduces the results of finite-element simulations, 
predicting post-burn wound evolution over time. Neural operators are a 
class of deep learning architectures with the primary application of 
learning surrogate maps for the solution operators of PDEs. Specifically, 
we will focus on deep operator networks (DeepONets) for learning oper-
ators accurately and efficiently from a relatively small dataset (Lu et al., 
2021). In particular, we aim to learn the solution operator of the two- 
dimensional morphoelastic model, which is a type of mechanistic model 
that describes post-burn skin evolution, thus accurately reproducing the 
finite element predictions. A key aspect of this research is incorporating 
multiple initial wound shapes. We train the neural operator network on 
a set of basic wound shapes and evaluate its fidelity using convex 
combinations of the basic wound shapes as input. In this way, our 
research aims to extend the works (Egberts et al., 2022; Egberts et al., 
2023).

The paper is organized as follows. Section 2 describes the method-
ology, focusing on numerical simulations and the machine learning 
models used. Section 3 introduces the datasets and training setup for our 
neural network. The results are presented in Section 4. Finally, Sections 
5 and 6 provide the conclusions and discussion, respectively.

2. Methodology

This sections details the methodology, describing both the numerical 
simulations and the machine learning models employed.

2.1. Numerical simulations

We first present the mathematical model for post-burn contraction, 
starting with the general system of equations and then providing a more 
detailed description of the relevant biological and mechanical compo-
nents. Furthermore, we give the boundary conditions, initial conditions, 
and numerical solver and introduce an important measure of contrac-
tion. We emphasize that the current model was used and introduced in 
some of our earlier works (Egberts et al., 2023; Koppenol and Vermolen, 
2017) and, therefore, only a short model description is provided in this 
paper.

2.1.1. Mathematical morphoelastic model
The general morphoelastic model for post-burn contraction was 

developed by Koppenol (Koppenol et al., 2017), who used the theory of 
morphoelasticity developed by Hall (Hall, 2008) to incorporate the 
formation of long-term deformations (contraction) into the dermal layer 
of the skin.

The model considers four biological constituents and three me-
chanical components as the primary variables. The biological constitu-
ents are the fibroblasts (N), the myofibroblasts (M), a generic signaling 
molecule (c), and collagen (ρ). The mechanical components are the 
dermal layer displacement (u), the dermal layer displacement velocity 
(v), and the effective strain (ε). The following system of partial differ-
ential equations is used as a basis for the model: 
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Dzi

Dt
+ zi(∇⋅v) = − ∇⋅Ji +Ri, (1) 

ρt

(
Dv
Dt

+v(∇⋅v)
)

= ∇⋅σ + f, (2) 

Dε
Dt

+ εskw(∇v) − skw(∇v)ε 

+(tr(ε) − 1)sym(∇v) = − G, (3) 

The operator D
Dt stands for the material derivative: 

D
Dt

≡
∂
∂t
+v⋅∇.

Eq. (1) is the conservation equation for the cell density/concentra-
tion for each of the four biological constituents. Here, zi represents the 
concentration, Ji is the flux per unit area, and Ri is a reaction term 
representing the kinetics of constituent i, for i ∈ {N,M, c, ρ}.

Eq. (2) is the conservation equation for linear momentum, where ρt 
represents the total mass density of the dermal tissue, σ is the stress 
tensor, and f is the total body force working on the dermal layer. 
Furthermore, v = Du

Dt . We note that Eq. (2) actually gives rise to multiple 
equations, one for each component of the velocity vector v. For example, 
in 2D, this results in two equations.

Finally, Eq. (3) is the evolution equation that describes how the 
infinitesimal effective strain (ε) changes over time. This equation cap-
tures the morphoelasticity of the dermal layer, taking into account 
permanent deformation (in this case, contraction) and residual stresses. 
It was formulated by Hall (Hall, 2008) and is based on his extensive 
theory on the zero stress state and morphoelasticity. The second-order 
tensor G is a growth tensor that describes the rate of active change of 
the effective strain.

2.1.2. The fibroblasts
To simplify notation, we will from now on replace zi by i. Hence, zN 

becomes N, the cell density of the fibroblasts in the dermis. The 
appropriate flux-term JN incorporates both the random movement of 
fibroblasts through the dermal layer and the directed movement of fi-
broblasts up the gradient of signaling molecule c, if present. The former 
is modelled by a cell density-dependent Fickian diffusion, and the latter 
process is modelled using a simple model for chemotaxis (Hillen and 
Painter, 2009). Taken together, this gives 

JN = − DFF∇N+ χFN∇c,

where F = N+ M, DF is the (myo)fibroblast diffusion parameter, and χF 
is the chemotactic parameter.

Eq. (1) also contains a reaction term RN describing the kinetics of the 
fibroblasts. Three processes are considered: proliferation, differentiation 
into myofibroblasts, and apoptosis. The first is modelled using an 
adjusted logistic growth model. The presence of a signaling molecule c is 
assumed to enhance both proliferation and cell differentiation: 

RN = rF

(

1+
rmax
F c

aI
c + c

)

(1 − κFF)N1+q − kFcN − δNN.

Here, the parameter rF is the cell division rate, rmax
F is the maximum 

factor with which the cell division rate can be enhanced due to the 
presence of the signaling molecule, and aI

c is the concentration of the 
signaling molecule that causes the half-maximum enhancement of the 
cell division rate. Furthermore, κFF represents the reduction in the cell 
division rate due to crowding, q is a fixed constant, kF is the signaling 
molecule-dependent cell differentiation rate of fibroblasts into myofi-
broblasts, and δN is the apoptosis rate of fibroblasts.

2.1.3. The myofibroblasts
For the myofibroblasts, the flux term in Eq. (1) is very similar to the 

one for the fibroblasts: 

JM = − DFF∇M+ χFM∇c.

The reaction term describing the kinetics of myofibroblasts is also 
very similar. Almost the same adjusted logistic growth model is used, the 
only difference being the assumption that myofibroblasts solely divide 
when the generic signaling molecule is present: 

RM = rF

((
1 + rmax

F
)
c

aI
c + c

)

(1 − κFF)M1+q − kFcM − δMM,

where δM is the apoptosis rate of myofibroblasts.

2.1.4. The signaling molecules
We assume that the signaling molecules diffuse through the dermis 

according to linear Fickian diffusion: 

Jc = − Dc∇c,

where Dc is the diffusion coefficient of the generic signaling molecule.
Furthermore, we assume that both fibroblasts and myofibroblasts 

release and consume the signaling molecules. Additionally, signaling 
molecules are removed from the dermis through proteolytic breakdown 
(breakdown of proteins into smaller components). Hence, we obtain the 
reaction term 

Rc =
kc(N + ηIM)c

aII
c + c

− δc g(N,M, c, ρ)c,

where kc is the maximum net secretion rate of the signaling molecule, ηI 

is the ratio of myofibroblasts to fibroblasts in the maximum net secretion 
rate of the signaling molecules and the collagen molecules, aII

c is the 
concentration of the signaling molecule that causes the half-maximum 
net secretion rate of the signaling molecule, and δc is the proteolytic 
breakdown rate of the signaling molecule.

The function g(N,M, c, ρ) represents the equilibrium concentration of 
a generic metalloproteinase (MMP). This enzyme is assumed to remove 
the signaling molecules through a proteolytic breakdown. In this study, 
we take the following relationship: 

g(N,M, c, ρ) = (N + ηIIM)ρ
1 + aIII

c c
.

The parameter ηII is the ratio of myofibroblasts to fibroblasts in the 
secretion rate of the MMPs, and the 1/

(
1 + aIII

c c
)

term represents the 
inhibition of the secretion of the MMPs due to the presence of the 
signaling molecule.

2.1.5. The collagen molecules
For collagen, we assume no active transport in the dermis. This 

means that the flux-term in Eq. (1) is zero: 

Jρ = 0.

The reaction term includes three processes: collagen molecules are 
produced by both fibroblasts and myofibroblasts, the secretion rate is 
enhanced in the presence of the signaling molecule, and there is an 
MMP-induced proteolytic collagen breakdown analogous to the removal 
of the signaling molecule: 

Rρ = kρ

(

1+
kmax

ρ c
aIV

c + c

)
(
N+ ηIM

)
− δρ g(N,M, c, ρ)ρ.

Here, kρ is the collagen molecule secretion rate, kmax
ρ is the maximum 

factor with which the secretion rate can be enhanced due to the presence 
of the signaling molecule, aIV

c is the concentration of the signaling 
molecule that causes the half-maximum enhancement of the secretion 
rate, and δρ is the degradation rate of the collagen molecules.
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2.1.6. The mechanical components
In Eq. (2), a visco-elastic constitutive relation is used for the stress- 

strain relation in the dermal layer. The visco-elastic relation for the 
dermal stress is: 

σ = μ1sym(∇v)+ μ2[tr(sym(∇v) )I ] +
E ̅̅̅ρ√

1 + ν

(
ε+ tr(ε) ν

1 − 2ν I
)
,

where μ1 and μ2 are the shear and bulk viscosity, respectively, and ν is 
the Poisson’s ratio. Additionally, E ̅̅̅ρ√ represents Young’s modulus 
(stiffness), which we assume to be dependent on the concentration of the 
collagen molecules.

Additionally, the total body force f in Eq. (2) needs a more precise 
description. We assume that the myofibroblasts generate an isotropic 
stress due to their pulling on the extracellular matrix, which is propor-
tional to the product of the cell density of the myofibroblasts and a 
simple function of the concentration of the collagen molecules: 

f = ∇⋅ψ,

ψ = ξM
(

ρ
R2 + ρ2

)

I.

Here, ψ is a second-order tensor representing the total generated 
stress by the myofibroblast population, the parameter ξ is the generated 
stress per unit cell density and the inverse of the unit collagen concen-
tration, and R is a fixed constant.

Finally, we consider the growth contribution tensor G in Eq. (3). We 
assume that the rate of active change of the effective strain is propor-
tional to the product of the amount of effective strain, the local con-
centration of the MMPs, the local concentration of the signaling 
molecule, and the inverse of the local concentration of the collagen 
molecules. Taken collectively, this results in the following symmetric 
tensor: 

G = ζ
(

g(N,M, c, ρ)c
ρ

)

ε = ζ
(
(N + ηIIM)c

1 + aIII
c c

)

ε,

where the parameter ζ is the rate of morphoelastic change.

2.1.7. Boundary conditions
We locate the xy-plane parallel to the surface of the skin and write 

v =
[

v1
v2

]

, and ε =

[
ε11 ε12
ε21 ε22

]

.

In other words, the skin is assumed to be homogeneous perpendi-
culat (orthogonal) to the skin surface. This follows the approach of 
(Koppenol et al., 2017), which assumes an infinitesimally thin skin 
layer.

We perform computations on a reduced, symmetrical domain to 
reduce the computational workload. The solution inherits this sym-
metrical property. We define the computational domain by Ωx and the 
boundary of the computational domain by ∂Ωx. The distance between ∂Ωx 
and the modelled burn is sufficiently large to prevent too much variable 
diffusion near the boundary. Furthermore, the computational domain 
implicitly depends on the time t given that x = x(t). We do not specify 
any boundary conditions for ρ and ε because of over-determination, 
since the equations for ρ and ε are ordinary differential equations for 
time t.

Let ∂Ωx =
{

∂Ωo
x, ∂Ωh

x, ∂Ωv
x

}
, where ∂Ωo

x represents the outer non- 

symmetrical boundaries, ∂Ωh
x represents the horizontal symmetrical 

boundary where y = 0, and ∂Ωv
x represents the vertical symmetrical 

boundary where x = 0. For the chemicals, the following boundary 
conditions hold for all time t and all 

x ∈ ∂Ωo
x : N(x; t) = N, M(x; t) = M,

and c(x; t) = c,
x ∈ ∂Ωp

x : JN/M/c⋅n = 0,

where p ∈ {h, v}, and n is the outward pointing normal vector. Note that 
p = h and p = v, respectively, correspond to the horizontal and vertical 
(internal) boundary of symmetry. We use similar conditions for the 
mechanics, for all time t and all 

x ∈ ∂Ωo
x : v(x; t) = 0,

x ∈ ∂Ωp
x : v⋅n = 0 and (σ⋅n)⋅τ = 0,

where τ is the tangential vector. The boundary conditions reflect that 
there is no flux through the symmetry boundary. The outer boundary is 
assumed to be sufficiently far away from the wound in the sense that, far 
away, the skin is undamaged. Hence, the densities of the (myo)fibro-
blasts reflect the undamaged state there. Symmetry implies that the 
normal component of the displacement velocity is zero. Furthermore, 
the tangential component of the velocity at the symmetry boundary is 
not necessarily zero, but the shear stress is zero. Since the strain ε 
equation does not involve any spatial partial derivatives of ε, boundary 
conditions are not to be imposed for ε. The above boundary conditions, 
combined with initial conditions for all the quantities, are necessary and 
sufficient for mathematical well-posedness of the problem in the sense of 
the existence of a uniquely defined solution. The proof is beyond the 
scope of the paper.

2.1.8. Initial conditions
The initial conditions describe the cell densities and concentrations 

at the onset of the proliferative phase of wound healing. Signaling 
molecules are present in the wound because they are secreted in the 
inflammatory phase of wound healing. Furthermore, fibroblasts and 
collagen are initially assumed to be present in the wound, whereas 
myofibroblasts are assumed to be absent. The initial wound geometry is 
defined by the initial profiles of the collagen, (myo)fibroblasts and 
concentration of the chemokine.

The initial wounded area is denoted by Ωw(0)⊂Ωx,0. The unwounded 
area is then Ωx,0\Ωw(0). Let d(x) be the shortest distance from a point 
x ∈ Ωw to the wound boundary. Let Ωw

s = {x ∈ Ωw(0) : d(x) ≥ s }. Then, 
for z ∈ {N, c, ρ} we have the following initial densities or concentrations: 

z(x,0) =

{
z̃, x ∈ Ωw

s ,

z, x ∈ Ωx,0\Ωw(0),

where z̃, z ∈ ℝ+, the latter indicating the equilibrium value. Further-
more, 

M(x, t) = M = 0, x ∈ Ωx,0.

For the wound boundary steepness, we use half a period of sine- 
functions for N, c, and ρ to smoothly transition from the wound to the 
unwounded area.

Regarding the initial conditions for the mechanical part of the model, 
all quantities are initialized with zero.

2.1.9. Numerical discretizations and solvers
We solve the model equations by applying the finite element method. 

We note that we add the term εi,j[∇⋅v] for i, j ∈ {1,2} to the left-hand side 
and the right-hand side of the effective Eulerian strain equations before 
deriving the weak formulation. Furthermore, we make use of ε21 = ε12 
(symmetric effective strain tensor), which we have proved for all time t 
(Egberts et al., 2020). For a complete overview of the derivation of the 
finite element formulations, we refer to the appendix in Koppenol’s PhD 
thesis (Koppenol, 2017).

We subdivide the computational domain into a finite number of non- 
overlapping triangles Δp (i.e., the elements) that are as equilateral as 
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possible. Let Xh(t)⊂H1(Ωx) the finite element subspace and aj,

j ∈ {1,…, n}, n ∈ ℕ the coordinates of the vertices of the elements. We 
choose piecewise linear Lagrangian basis functions φi ∈ Xh(t) with 
φi
(
aj; t
)
= δij for i, j ∈ {1,…, n} as basis functions for the finite- 

dimensional subspace Xh(t), where δij denotes the Kronecker delta 
function.

We approximate the local displacements of the dermal layer (u)
(with) 

u(x; t+Δt) ≈ u(x; t)+ v(x; t)Δt.

We use the initial condition u(x;0) = 0, ∀x ∈ Ωx,0. Furthermore, 
we update the mesh (triangulation) in every time integration step. For 
the sake of obtaining reliable numerical solutions with a ‘well-condi-
tioned’ discretization (where the impact of rounding errors is negli-
gible), it is crucially important that the mesh quality is good. A high- 
quality mesh requires that the triangular elements should be as close 
as possible to equilateral triangles. The change of shape of the compu-
tational domain near the scar makes it important to be aware of the mesh 
quality. In order to warrant a good mesh, several quantifiers that assess 
the mesh quality exist. We determine the quality of this updated mesh by 
computing 

min
ek

⃒
⃒Jek

⃒
⃒

/

max
ek

⃒
⃒Jek

⃒
⃒, ek ∈ Ω,

with J the Jacobian for the element using a positively oriented 
numbering to warrant positiveness of the Jacobians. In case 
minek

⃒
⃒Jek

⃒
⃒/maxek

⃒
⃒Jek

⃒
⃒ < 0.5, we perform (global) remeshing. The abso-

lute value of the determinant of the Jacobian is twice the area of a 
triangular element. Elements that are near degenerate, that is, having a 
large aspect ratio, tend to have at least one very small angle (and 
possible one very large angle), which makes the discretization prone to 
violating the DeLaunay criterion (the sum of opposite angles of two 
triangles that share a side is at most πs). Violation of this criterion will 
also make the finite element stiffness matrix, as a discrete counterpart of 
the Laplace operator, no longer be an M-matrix (Xiao et al., 2018), 
thereby no longer warranting properties like monotonicity, discrete 
maximum principles and it is no longer guaranteed that spurious oscil-
lations are avoided. Since high aspect ratios of elements are connected to 
relatively low areas, this hints at having the above ratio close to one, 
avoiding these problems.

We use mass lumping and a semi-implicit flux corrected transport 
limiter (Möller et al., 2008) that enforces the positiveness of solutions so 
that loss of monotonicity (i.e., spurious oscillations) is suppressed.

2.1.10. Relative surface area
The wound boundary is explicitly tracked throughout the simulation. 

Initially, a vector of 100 nodes represents the wound boundary. At each 
time step, this boundary is updated using interpolated velocity dis-
placements, ensuring that points on the boundary remain on the 
boundary. Having these boundary points, allows the computation of the 
wound area at each time.

During wound healing, due to myofibroblasts pulling on the sur-
rounding collagen fibers, the wound contracts towards its center and 
retracts after these cells disappear. The relative surface area (of the) 
wound (RSAW) is an important measure, as it gives valuable information 
about contraction. It is defined as follows: 

RSAW(t) =
area(Ωw(t) )
area(Ωw(0) )

.

The minimum RSAW value corresponds to maximum contraction, 
and the asymptotic value indicates the long-term (permanent) 
contraction.

2.2. Machine learning models

In this section, we introduce the methodology of our machine 
learning models for predicting the evolution of the wound shape over 
time. Therefore, we first provide a brief introduction to neural networks, 
then introduce the concept of operator learning, and finally, introduce 
the network architecture of our machine learning model, which is based 
on DeepONets (Lu et al., 2021).

2.2.1. Neural networks
Let us consider a generic supervised machine learning task. There-

fore, let input data X = (x1,…, xN) and output data Y = (y1,…, yN) be 
given, with xi ∈ ℝn and yi ∈ ℝm, for 1 ≤ i ≤ N. Then, we aim at finding a 
parametrized function 

fθ : ℝn→ℝm,

such that 

fθ(xi) ≈ yi; (4) 

where θ ∈ ℝK is a vector consisting of all parameters of the model.
Neural networks are a specific class of parametrized functions. In 

particular, neural networks are composed of functions of the form 

f (j)Wj ,bj
(x) := σ

(
Wj⋅x+ bj

)
(5) 

with the index j, Wj ∈ ℝnj×nj+1 and bj ∈ ℝnj+1 , and a nonlinear activation 
function σ which is applied component-wise to a vector; typical examples 
for the activation function σ are shown in Fig. 1(a). Here, we consider 
only σ(x) = max(0, x), (ReLU). The function f (j)Wj ,bj 

is a composition of a 
multivariate affine function and a nonpolynomial activation function σ. 
A simple feedforward neural network, or multi-layer perceptron (MLP), is 
then the composition of multiple functions of the form given in Eq. (5)
and one final linear map, that is, 

fθ := A∘f (l)Wl ,bl
∘f (l− 1)

Wl− 1 ,bl− 1
∘⋯∘f (1)W1 ,b1

.

Here, A ∈ ℝm×nl+1 corresponds to the linear output layer, and each 
function fj, for 1 ≤ j ≤ l, corresponds to one so-called hidden layer of the 
model; see also Fig. 1(b). The matrices and vectors Wj and bj, for 
1 ≤ j ≤ l, as well as the matrix A constitute the parameter vector θ. We 
call a neural network deep if the number of hidden layers is sufficiently 
large, typically for at least 3 hidden layers.

In order for the model fθ to fit the data as in Eq. (4), a minimization 
problem is formulated. In the simplest case of regression, fitting the 
model can be equivalently written as finding 

θ⋆ = argmin
θ

L (θ) with L (θ) =
1
N
∑N

i=1
‖ fθ(xi) − yi‖

2
2.

We also call L (θ) the loss function, which here is based on the mean 
squared error (MSE). Due to the nonlinearity of fθ, the loss function is 
complicated and, in general, non-convex. The minimization is usually 
performed using a gradient-based optimizer or using a quasi-Newton 
method. Typical examples are stochastic gradient descent (SGD), and 
its variant Adam (Kingma and Ba, 2014), or the limited memory Broy-
den–Fletcher–Goldfarb–Shanno (L-BFGS) method (Liu and Nocedal, 
1989). These methods require gradient information, which can be 
computed efficiently using automatic differentiation using the back-
propagation algorithm (Kelley, 2012).

For more details, see for instance (Goodfellow et al., 2016). Note that 
neural networks can also be used for semi-supervised and unsupervised 
learning. However, we will only consider the case of supervised learning 
in this paper.

2.2.2. Operator learning
In (Kovachki et al., 2021), neural operators have been introduced as 
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neural networks for approximating operators, that is, maps between 
infinite-dimensional function spaces. Suitable neural operator archi-
tectures have universal approximation properties, meaning that, with 
sufficient model capacity (i.e., a sufficiently large number of model 
parameters), they can approximate any given nonlinear continuous 
operator up to arbitrary precision. Furthermore, in (Kovachki et al., 
2021), it is said that neural operators can be made discretization- 
invariant for the following reasons: 1) the model can act on any dis-
cretization of the input function; 2) the model can be evaluated at any 
point in the output domain; 3) when refining the discretization, the 
model converges to a continuum operator.

Neural operators are particularly well-suited for creating surrogate 
models for numerical solvers for PDEs, since the input of the model can 
be a function, such as 

• a right-hand side function of a PDE,
• a spatial distribution of a material parameter,
• a function describing a boundary condition, or
• a level-set function describing the geometry,

and the output of the neural operator can be the solution of the initial 
boundary value problem (IBVP). This is different from, for instance, 
classical physics-informed neural networks (PINNs) (Raissi et al., 2019), 
which generally only approximate the solution of a single IBVP.

Recently, many different neural operator architectures have been 
introduced, with Fourier neural operators (FNOs) (Li et al., 2020) and 
DeepONets (Lu et al., 2021) being the most popular choices. We also 
highlight convolutional neural operators (CNOs) (Raonić et al., 2023), 
which satisfy structure-preserving continuous-discrete equivalence, 
enabling learning operators without discretization-dependent aliasing 
errors. The proposed CNO architecture is an extension of the popular U- 
Net architecture (Ronneberger et al., 2015).

Here, we build a neural operator learning model based on the 
DeepONet architecture, and for the sake of brevity, we will focus only on 
a brief description of this approach. To this extent, consider a generic 
nonlinear continuous operator G : V→W, where V and W are compact, 
nonempty subsets of Banach spaces, which amount to normed function 
spaces on a nonempty, compact subset of physical space-time. We are 
interested in evaluating G(v) at discrete points in the nonempty compact 
portion of physical space-time. The user has to input two sets: (1) the 
points in a compact region in space-time where (s)he wants to evaluate 
G(v) and (2) the input function at points in a compact region in space- 
time, that is v(x1),…, v(xm). Note that the compact regions where v is 
obtained and where G(v) is determined do not have to be the same. The 
Universal Approximation Theorem for Operator Learning states that 
each nonlinear mapping between nonempty subsets of Banach spaces 
can be approximated arbitrarily well, provided that sufficient input in-
formation (such as the dimensionality and features of the input data) 

and complexity (the depth, width, and structure of the neural network) 
are incorporated: 

Theorem 1. (Universal approximation for operators (Lu et al., 2021; 
Chen and Chen, 1995)).

Let σ be a continuous nonpolynomial function, X be a Banach space, 
K1⊂X and K2⊂ℝd two compact subsets, respectively, V be a compact 
subset of C (K1), and G be a nonlinear continuous operator V→C (K2). 
Then, for any ε > 0, there exist positive integers n, p,m and constants ck

i ,

wk
ij,bk

i , b̂k ∈ ℝ, ŵk ∈ ℝd,xj ∈ K1, for i = 1,…,n, k = 1,…,p, and j = 1,…,

m, such that 

∣G(v)(y) −
∑p

k=1

∑n

i=1
ck

i σ
(
∑m

j=1
wk

iju
(
xj
)
+ bk

i

)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
branch

σ(ŵky + b̂k)
⏟̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅⏟

trunk

∣ < ε (6) 

for all v ∈ V and y ∈ K2.
The idea of DeepONets is then to replace what is denoted as branch 

and trunk in Eq. (6) by (deep) neural networks. Note that Eq. (6) relates 
to Eq. (5) in the sense that wk

ij and ŵk are the coefficients of weight 

matrices Wj of the branch and trunk, and bk
i and ̂bk are the coefficients of 

bias vectors bj. Section 2.2 warrants the existence of such a network; 
however, it says nothing about the rate of convergence.

In its general form, the DeepONet architecture is depicted schemat-
ically in Fig. 2. Intuitively, the trunk network corresponds to spatial 
basis functions t1, …, tp, whereas the branch network provides corre-
sponding coefficients b1,…, bp in the basis representation 

G(v)(y) ≈
∑p

k=1
bk(x1,…, xm)tk(y).

Note that DeepONet models are generally not discretization- 
invariant since they depend on a fixed choice of sensor locations or 
basis functions used to discretize the input function. This has been 

Fig. 1. Nonlinear activation functions (a) and a feedforward neural network with two hidden layers (b).

Fig. 2. (Unstacked) DeepONet architecture; based on (Lu et al., 2021).
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observed in literature, and some methods have been proposed to make 
DeepONets invariant to input function discretization; see, for instance, 
(Lin et al., 2023; Zhang et al., 2023; Zhang et al., 2024; Zhang et al., 
2025). Many other variants of DeepONets have been introduced, where 
specific types of networks are chosen as the branch and trunk networks, 
for instance, U-Net (Diab and Al-Kobaisi, 2023) and graph neural 
network (GNN) (Sun et al., 2022) architectures. In many related works, 
the basis functions are prescribed instead of learning them via a neural 
network, for instance, using classical discretizations (Griese et al., 2024; 
Meethal et al., 2023; Möller et al., 2021; Wang et al., 2020). Further-
more, the basis property has also been recently used to learn coarse basis 
functions for robust preconditioning (Kopaničáková and Karniadakis, 
2024). For improved precision, DeepONets can be stacked (Howard 
et al., 2023) and combined with domain decomposition techniques 
(Heinlein et al., 2024).

2.2.3. Deep operator network architecture
We propose a machine learning model based on the DeepONet ar-

chitecture for predicting post-burn contraction over time. The exact 
architecture of our model is schematically depicted in Fig. 3. It consists 
of a branch and trunk network, both of which are simple MLPs with 
three hidden layers, containing 50 neurons per layer. The branch takes 
as input five parameters from the morphoelastic model describing 
wound contraction: the cell diffusion constant DF, the chemotactic 
constant χF, the signaling diffusion constant Dc, the cell differentiation 
rate kF, and the half-maximum cell division enhancement rate aI

c. These 
parameters describe the behavior of cells involved in the wound healing 
process and are characteristics that vary between patients. Note that, in 
our approach, the input to the branch is not a discretization of a sampled 
function from a chosen function space (as depicted in Fig. 2). Instead, we 
have an exact parametrization of the problem, where the five parame-
ters are assumed to be constant across space-time. The branch network 
outputs a vector 

(
b1,…, b2p

)
∈ ℝ2p

The trunk network takes as input a coordinate (t, x, y) in which we 
want to evaluate the displacement u(t, x, y) = (u1, u2). The trunk addi-
tionally takes as input information about the initial wound shape, given 
by the quadruple 

(
ycut , xm, ym, xcut

)
. Fig. 4 shows the three wound shapes 

used for training (see also Section 3.1) and visualizes this extra input to 
the trunk. The latter uniquely determines the initial wound shape at t =

0. The latter uniquely determines the initial wound shape at t = 0. The 

coordinate 
(
xm, ym

)
is chosen as follows: for each shape, the boundary is 

discretized into 100 spatial points. These points are ordered, starting 
from 

(
0, ycut

)
at index i = 1, up to (xcut , 0) at index i = 100. For the 

rectangle, we select for 
(
xm, ym

)
the unique corner point. For the ellipse 

and rhombus, we take the point at index i = 50. While this point is near 
the geometric midpoint, it does not necessarily correspond to it, due to 
non-equidistant spacing of the points. The output of the trunk network is 
a vector 

(
c1,…, cp

)
∈ ℝp. In our simulations, we fix p = 50.

The output of the DeepONet is an inner product of the outputs of the 
trunk and branch networks. Specifically, let T(⋅) be the operation of the 
trunk and B(⋅) be the operation of the branch network, then we have 

c1,…cp = T(t, x, y, ycut , xm, ym, xcut),

b1,…b2p = B
(
DF, χF,DC, kF, aI

C
)
,

û1 =
∑p

i=1
bici,

û2 =
∑p

i=1
bi+pci.

Finally, we apply sine augmentation to the DeepONet outputs, 
ensuring zero displacements at the top and right boundaries of our 
domain. Moreover, it ensures zero x-displacement on the left boundary 
and zero y-displacement on the bottom boundary. Fig. 5(a) summarizes 
the effect on all four boundaries. This hard enforcement of boundary 
conditions is not new; examples can already be found in early works 
employing neural networks to solve PDEs; see, for instance, (Lagaris 
et al., 1998). The final outputs of our model are given by 

u1 = û1⋅sin
(

π
xl

x
)

cos
(

π
2yl

y
)

,

u2 = û2⋅sin
(

π
yl

y
)

cos
(

π
2xl

x
)

.

(7) 

The size of the domain, described by (xl, yl), is visualized in Fig. 4 as 
well.

3. Datasets and training

This section describes the approaches we used to generate datasets to 
train and test our model and the specific training setup.

Fig. 3. The DeepONet architecture used for predicting dermal displacement. The legend at the top describes four other cases against which we have tested our 
proposed model; see Table 2.
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3.1. Training set

We generate a training set consisting of three different geometries for 
the initial wound shape: a rectangle (including a square), a rhombus 
(including a rotated square), and an ellipse (including a circle). We 
consider a quarter of the complete domain, assuming symmetry along 
the x- and y-axis, as shown in Fig. 4.

We run 750 finite element simulations, each run uniformly selecting 
one of the three initial wound shapes. For the wound size, we uniformly 
sample xcut , ycut ∈ (0,5) centimeters. The size of the complete domain is 
then determined as 

xl = 2.5⋅xcut ,

yl = 2.5⋅ycut ,
(8) 

rounded to one decimal. For all simulations, we fix tend = 100 days. The 
training data sampling strategy is as follows: for each finite element 
simulation, 10 time steps are uniformly sampled. Then, for each time 
step, 20 spatial coordinates from the domain are uniformly sampled. 
This gives us 200 coordinates (t, x, y) per simulation, in which we record 
the displacements (u1, u2). Each triplet (t, x, y) is extended with the 
corresponding quadruple, completing the trunk network input.

For each numerical simulation, the five parameter values taken as 
input to the branch are sampled from uniform distributions with pre- 
specified ranges, as listed in Table 1. Furthermore, the values 

(
xl, yl

)
, 

as given in Eq. (8), are tabulated, as they are necessary for defining the 
sine augmentation; cf. Eq. (7).

Following the procedure described above, each finite element 
simulation contributes the following quadruple to the training data: 
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡

⎢
⎢
⎢
⎢
⎢
⎣

DF, χF,Dc, kF, ac

DF, χF,Dc, kF, ac

⋮

DF, χF,Dc, kF, ac

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

t1, x1, y1, ycut , xm, ym, xcut

⋮

t1, x20, y20, ycut , xm, ym, xcut

⋮

t10, x̂1, ŷ1, ycut , xm, ym, xcut

⋮

t10, x̂20, ŷ20, ycut , xm, ym, xcut

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1(t1, x1, y1), u2(t1, x1, y1)

⋮

u1
(
t1, x20, y20

)
, u2
(
t1, x20, y20

)

⋮

u1(t10, x̂1, ŷ1), u2(t10, x̂1, ŷ1)

⋮

u1
(
t10, x̂20, ŷ20

)
, u2
(
t10, x̂20, ŷ20

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xl, yl

xl, yl

⋮

xl, yl

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The first column is input to the branch, the second column is input to 
the trunk, the third column represents the target values, and the final 
column evaluates the sines and cosines in the sine augmentation step. As 
we perform 750 such numerical simulations, we obtain a training set 
containing 150 000 data points. We use an 80% − 20% split for training 
and validation, respectively.

3.2. Training setup

Hyperparameter tuning was initially performed on a simplified 
model considering only one wound shape, and the resulting parameters 
are applied in this case as well (for more details, see the master’s thesis 

Fig. 4. The three initial wound shapes used for training: rectangle (a), rhombus (b), and ellipse (c). Due to symmetry, a quarter of the complete domain is considered. 
Additionally, a visualization of the quadruple 

(
ycut , xm, ym, xcut

)
, which serves as extra input to the trunk. The coordinate 

(
xl, yl

)
is required for the sine augmen-

tation step.

Fig. 5. Enforcement of boundary conditions as a result of sine augmentation (a) and a convex combination of the three basic wound shapes (b).

Table 1 
Ranges for the values of the five parameters taken as input to the branch 
network.

Parameter Range Dimension

DF 7.6167⋅10− 7 − 1.2⋅10− 6 cm 5/(cells day)
χF (2 − 3)⋅10− 3 cm 5/(g day)
Dc (2.22 − 3.2)⋅10− 3 cm 2/day
kF 8⋅106 − 1.08⋅107 cm 3/(g day)
aI

c (0.9 − 1.1)⋅10− 8 g/cm 3
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(Husanovic, 2024)). For training our model, we use the Adam algorithm 
with standard backpropagation to minimize the MSE loss. The learning 
rate is set to 0.001. Through empirical testing, we found that a batch size 
of 100 yields satisfactory results. We train the network for 100 epochs, 
after which we observe that the loss stagnates around 10− 3. Training the 
model for more epochs does not further decrease the loss. Fig. 6 shows a 
plot of the training and validation losses.

3.3. Convex test set

We test the performance of our model on what we call the convex test 
set. This is a more generic data set, containing convex combinations of 
the three basic shapes used for training. Let s ∈ [a, b] and ri = ri(s)
represent a parametrization of the (piecewise) smooth boundary of basic 
wound shape i (i = 1 corresponding to a rectangle, i = 2 to a rhombus, 
and i = 3 to an ellipse), on which the DeepONet is trained. Then, a 
convex combination of the three parametrizations is given by 

r(s, α1, α2,α3) =
∑3

p=1
rp(s)αp, (9) 

where αp ≥ 0 and 
∑3

p=1αp = 1. This parametrization provides the 
boundary of a new wound shape. Fig. 5(b) gives a visualization.

The convex test set was created by executing 150 finite element 
simulations. For each simulation, we create a convex combination of the 
three basic shapes. To this end, we first fix the sizes of the basic shapes 
by uniformly choosing xcut , ycut ∈ (0,5) centimeters. Then, we randomly 
select three weights that sum up to one and perform the multiplication 
as given in Eq. (9).

The remainder of the data sampling strategy is similar to the one 
used for generating the training data described in Section 3.1. The only 
difference now is that for each finite element run, we sample all avail-
able time steps, and for each time step, we sample all available spatial 
coordinates in the domain. This procedure results in a convex test set 
containing 18,035,821 data points.

We note that the quadruples 
(
ycut , xm, ym, xcut

)
no longer uniquely 

define the initial wound shapes for this dataset. This is because it con-
tains convex combinations of the three basic shapes, which do not have a 
straightforward geometric definition that can be captured by these four 
values alone. As a result, the network does not know beforehand the 
exact initial shapes of the samples in the convex test set.

4. Results

This section presents the results. We begin by examining the per-
formance of the trained DeepONet on the convex test set, followed by a 
comparison to four other architectural setups. Lastly, we assess pre-
dictions over an extended period of one year.

4.1. Performance on convex test set

Our DeepONet predicts the x and y displacements in any given 
spatial coordinate in the domain at any given time. We evaluate the 
trained model on each sample in the convex test set. Fig. 7 shows three 
different examples of the obtained predictions versus the corresponding 
targets, each at its respective time of maximal contraction. Note that we 
depict the actual coordinates after applying the displacements here, 
rather than the displacements. We observe good prediction abilities, 
especially at the wound boundary. Given that most of the spatial co-
ordinates in the training set are located at the wound boundaries, the 
network is expected to perform best in these regions. Further away from 
the wound, the prediction accuracy decreases slightly. As we move to-
wards the top and right boundary of the domain, the displacements go to 
zero. We observe this in our predictions as well, which was ensured by 
the sine augmentation step during training.

Furthermore, given that our model is trained on the three basic 
wound shapes, Fig. 7 gives an indication of good generalization abilities. 
This is further validated in the scatter plots in Fig. 8, plotting the true 
displacements against the predicted displacements. The line y = x in-
dicates perfect predictions of the neural network model. The scatter 
plots contain all convex test set samples at all time steps, that is, around 
18 million data points. We observe a strong concentration around the 
lines y = x, with no unusual outliers. This indicates that our model gives 

Fig. 6. Training and validation losses of the proposed DeepONet. The dataset is 
based on 750 finite element simulations, using an 80%–20% split for training 
and validation, respectively.

Fig. 7. Prediction vs. target for three samples from the convex test set, at their respective time of maximal contraction.
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good predictions and that it generalizes well to convex combinations of 
the shapes is was trained on. We note that the scatter plots for x- and 
y-displacement are not exactly the same, as no symmetry was enforced; 
consequently the performance also differs slightly. For both x- and 
y-displacement, we observe that the model is best at predicting very 
small magnitude displacements (close to zero) and the largest magni-
tude displacements (around − 0.8 cm). The former occurs near the 
boundary of the domain at all time steps, and at all spatial coordinates 
when t is small. The latter occurs at the wound boundary at maximal 
contraction, for the largest wound sizes present in the convex set.

Additionally, we evaluate our trained model on the wound bound-
ary. We consider the same convex test set, but only the spatial co-
ordinates on the wound boundary are taken. This enables us to 
determine the RSAW at each time step. Figs. Fig. 9(a) and (b) show the 
best and worst predictions in terms of the RSAW on the convex set along 
with their initial wound geometries. In the best case, the RSAW curve 
mostly overlaps the target, with a very slight underestimation of the 
maximal contraction and overestimation of the final value at t = 100 
days. In the worst case, the model predicts an earlier maximal 
contraction (49 days vs. 53) and retraction, with an overestimation of 
around 4% less contraction from t = 55 days and onwards.

Fig. 9(c) gives more insight into the behavior of the error over time. 

Here, the mean and standard deviation of the absolute error over the 
convex test set are depicted. We observe that the absolute error increases 
over time. The model is most accurate in the first 18 days, where the 
error is up to 0.5% on average. After this time, the error, and the un-
certainty thereof, start to increase. This coincides with a very steep 
contraction. A notable peak can be observed around day 38, after which 
there is a local minimum (of 1.2% on average) around day 50. The latter 
coincides with the average time of maximal contraction, indicating that 
the model is better at predicting the minimum RSAW (maximal 
displacement). The highest absolute error, with the largest uncertainty, 
is around day 90. For all times, the mean plus standard deviation of the 
error never exceeds 3%. Since the model predicts displacements within 
the rough range of [ − 0.9, 0] centimeters, a 3% error corresponds to 
deviations on the order of tenths of millimeters.

4.2. Comparison to different architectures

Table 2 presents the performance metrics of the DeepONet, where a 
comparison is made with four other architecture setups. These are var-
iations of our proposed model (see Fig. 3). First, we define the perfor-
mance measures used to determine the metrics in Table 2. Subsequently, 
we interpret the results.

Fig. 8. True vs. predicted displacement in x- (a) and y-direction (b) on the convex test set.

Fig. 9. Best (a) and worst (b) prediction with their corresponding geometries on the convex test set in terms of the RSAW. Mean and standard deviation of absolute 
error as a function of time (c). The mean is taken over all 150 samples in the convex test set.
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4.2.1. Performance measures
We include the goodness of fit (R2) statistic, the average relative root 

mean squared error (aRRMSE), and the average relative error (aRelErr): 

R2 =
1
2
∑2

t=1

⎡

⎢
⎣1 −

∑n
i=1

(
u(i)

t − û(i)
t

)2

∑n
i=1

(
u(i)

t − ut

)2

⎤

⎥
⎦, (10) 

aRRMSE =
1
2
∑2

t=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
u(i)

t − û(i)
t

)2

∑n
i=1

(
u(i)

t − ut

)2

√
√
√
√
√
√ , (11) 

aRelErr =
1
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∑2

t=1

1
nt
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i=1
I
(

u(i)
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)
⋅

⃒
⃒
⃒
⃒
⃒

u(i)
t − û(i)

t

u(i)
t

⃒
⃒
⃒
⃒
⃒
, (12) 

where 

• u(i)
t is the true displacement (rounded to one decimal place in Eq. 

(12)),
• û(i)

t is the predicted displacement (rounded to one decimal place in 
Eq. (12)),

• ut is the average true displacement,

• I
(

u(i)
t ∕= 0

)
is the indicator function, which is 1 if u(i)

t ∕= 0 and zero 

otherwise,
• nt is the number of samples where u(i)

t ∕= 0,
• n is the total number of samples.

A value of R2 = 1 indicates perfect predictions, whereas R2 = 0 in-
dicates that the model is not better than always returning the expected 
values. For our proposed DeepONet, we find R2 = 0.99. This shows that 
the model can accurately predict dermal displacement. Furthermore, we 
find an aRRMSE of 0.08, showing excellent performance according to 
Despotovic et al. (Despotovic et al., 2016). Lastly, the aRelErr is found to 
be only 0.03, which further indicates that the model can excellently 
reproduce the finite element simulations.

We compare the proposed DeepONet architecture to four variations 
thereof. Fig. 3 shows which blocks are included in the different cases, 
corresponding to the columns of Table 2. We observe that, compared to 
all variations, the proposed model gives the best performance. The 
“skeleton” DeepONet, where the model does not have any information 
about the initial wound shape and no sine augmentation is applied (case 
1), performs significantly worse. We find R2 = 0.90, aRRMSE = 0.32, 
and aRelErr = 0.12. Adding initial wound shape info in the form of the 
quadruple 

(
ycut , xm, ym, xcut

)
to the branch (case 2), even gives slightly 

worse performance. The largest gain is when this initial shape info is 
added to the trunk (case 3). Here we see a decrease of 71% in the 

aRRMSE and a decrease of 63.6% in the aRelErr, compared to case 1. 
This suggests that initial shapes should be input to the trunk, as this 
component of the network is responsible for learning the basis functions. 
Improved representation of basis functions often leads to a more accu-
rate approximation of the solution. It is also the most logical choice 
because the initial shape info is more closely related to the spatial co-
ordinates, which are also fed into the trunk, rather than to the param-
eters, which are input to the branch. Case 4, where the skeleton 
DeepONet only has the addition of the sine augmentation blocks, is the 
worst-performing one with R2 = 0.89, aRRMSE = 0.33, and aRelErr =

0.15. From this, we conclude that the network cannot sufficiently learn 
the dermal displacements without knowledge of the initial shape of the 
wound. Additionally, sine augmentation provides an improvement in 
performance only when the model already performs sufficiently without 
it. Indeed, if we combine cases 3 and 4, we see that our proposed model 
overall results in the best performance.

4.3. Prediction after t = 100

So far, we have taken t ∈ [0, 100] days for all predictions to save time 
when generating data using numerical simulations. However, we are 
interested to see if our final DeepONet is also capable of predicting t ∈
[0, 365] days. Fig. 10 shows two results of evaluating the DeepONet 
trained on t ∈ [0,100] days (the original data), on an entire year. We 
observe that the predicted RSAW is linearly increasing after t = 100 
days, and no asymptotic value is reached, which means the network 
predicts a scar that continues to grow in size. This indicates the need for 
adding data to the training set with tend = 365. We experimented with 
different data sampling strategies. Specifically, we compare the effects 
of incorporating data from additional finite element simulations, to 
drawing more data points from existing samples. Practically, this com-
parison reflects the difference between including data on more burn 
patients versus collecting more data per patient.

We generate a new convex test set for evaluating the model’s per-
formance, consisting of 50 finite element runs with tend = 365. Fig. 10
shows the results from three different training data sampling strategies. 
For each case, we initialize the network with the learned parameters 
from the final DeepONet trained on t ∈ [0, 100] as a good initial guess to 
speed up the training. In this way, the network embeds prior knowledge 
instead of having to start learning from scratch.

We compare the scenario where 50 finite element simulations are 
added to the training set, with 30 time steps sampled for each (scenario 
1), versus the scenario where 150 runs are added, with 10 time steps 
sampled (scenario 2). Note that both result in the same number of 
additional data points (30000). In both the best and worst cases, we 
observe that scenario 2 performs better. Sampling more data per existing 
finite element run does not lead to much improvement. In fact, in Fig. 10
(a), we even observe a decrease compared to selecting 10 time steps. 
Adding new, unique data results in a performance increase. In the best 
case, the predicted RSAW at t = 365 is now only 0.47% higher than the 
target. In the worst case, this is 0.6%.

The above results show that adding more runs is preferred over 
adding more data points within a run, possibly because adding runs 
increases the diversity of the training set. It exposes the network to a 
wider variety of features, which can enable it to generalize better. On the 
other hand, introducing more data per existing samples can introduce 
redundancy, as the network is repeatedly exposed to the same patterns. 
Since these patterns were already learned in the original data, additional 
exposure does not result in significant improvement and can lead to 
overfitting. This means that the network becomes too specialized in 
recognizing the patterns in the training data, reducing its ability to 
generalize to new, unseen data.

Table 2 
Performance of the proposed DeepONet compared to four other setups (see Fig. 3
for a visualization). Boldface indicates the best performance.

Performance 
metric

No sine 
aug. and 
no initial 
shape 
info 
(Case 1)

Initial 
shape 
info 
to 
branch 
(Case 2)

Initial 
shape 
info 
to trunk 
(Case 3)

Sine 
augmentation 
(Case 4)

Sine aug. 
and initial 
shape info 
to trunk 
(Proposed 
model)

R2 0.90040 0.89613 0.99155 0.89083 0.99437
aRRMSE 0.31560 0.32229 0.09166 0.33032 0.07497
aRelErr 0.12160 0.11673 0.04432 0.15050 0.03429
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4.4. Speedup

In this study, all computations were performed on the DelftBlue su-
percomputer, provided by the Delft High Performance Computing 
Centre (Delft High Performance Computing Centre (DHPC), 2024). For 
the finite element simulations, we used a single node equipped with an 
Intel Xeon Gold 6248R CPU, using one core and 2 GB of memory. 
Executing the finite element-based model for a one-year prediction 
required 4.7 min of computing time per sample on average. In contrast, 
using the same computational resources, the DeepONet predicted the 
displacement field in an average of 2.2 s per sample, resulting in a 
speedup of about 128 times. Furthermore, DeepONet has the advantage 
of being evaluated on a GPU. Using one NVIDIA A100 GPU on DelftBlue, 
the average prediction time per sample decreased to 1.2 s, which gives 
an additional speedup of almost two times. This shows that, in addition 
to being effective, DeepONets can serve as fast surrogates for traditional 
finite element methods in simulating post-burn contraction.

However, previous studies (Egberts et al., 2022; Egberts et al., 2023) 
reported larger speedups compared to the numerical model. In (Egberts 
et al., 2023), MLPs were trained for the much simpler task of predicting 
the RSAW and wound boundary over time, given 25 parameters from the 
2D morphoelastic model. Here, a total of 21 spatial points were used to 
describe a fixed initial wound shape. Since this differs from our 
approach of predicting the entire displacement field over time for 
multiple wound shapes, even shapes that were not ‘seen’ in the training 
data, a direct one-to-one comparison is not possible. The CPU time 
needed for our DeepONet to evaluate only the nodes on the wound 
boundary (100 in total) for each t ∈ [0, 365] is, on average, 0.27 s per 
sample. If we compare this to the execution time of the numerical model, 
we find a speedup of about 1044 times.

The 2.2 s reported above for the DeepONet corresponds to evaluating 
the DeepONet on all nodes (t, x, y) in the space-time grid. This means 
that, per sample evaluation, many forward passes need to be made until 
the network has processed all grid points in the domain, for each 
t ∈ [0, 365]. For example, one sample from the convex test used for one- 
year predictions contains an average of 180 010 points (t, x, y). Conse-
quently, with a batch size of 50, the model has to be evaluated 
approximately 3600 times per sample. This is different from the previ-
ous approaches, where the MLP had to be evaluated only once to predict 
all quantities for each case. However, the flexibility regarding geometry 
realized by our DeepONet is a significant advancement, while still 
achieving a speedup of about 128 on CPU and 235 on GPU.

5. Discussion

A key aspect of our research was the novelty of incorporating mul-
tiple initial wound shapes. A promising direction for further research is 
to investigate the application of more complex and realistic initial 
wound geometries, where, for example, no symmetry in x and y is pre-
sent. One possible approach is to include convolutional layers before the 
trunk network, allowing for the direct input of an image of the initial 
wound shape, thereby increasing the model’s applicability. Addition-
ally, an alternative to sine augmentation is to penalize discrepancies 
between the predicted and true displacements on the domain boundary 
within the loss function, adopting a PINN-like approach for softer 
enforcement of the boundary conditions (Raissi et al., 2019). Further 
integration of DeepONets with PINNs can also ensure that all predicted 
displacements adhere more closely to the governing PDEs, which now is 
not necessarily the case (Wang et al., 2021). This could solve potential 
discrepancies between the predictions and the underlying physical laws, 
leading to more reliable outcomes.

Another direction for further research is to include a broader range of 
patient-specific parameters as input to the branch. This approach could 
provide a more comprehensive and applicable model; however, it would 
likely introduce larger variability in the solutions since some parameters 
(e.g., collagen) are particularly sensitive. This would present an inter-
esting opportunity to test whether the model can manage this increased 
complexity. Consequently, the architecture may need to be extended or 
improved.

Some approaches can be used to potentially improve performance. 
One of them is normalizing the magnitude of the inputs to the branch 
network. By ensuring that the input parameters are on a similar scale, we 
may help the model converge faster and prevent any one input feature 
from dominating the learning process. Another potential improvement 
for future work is increasing the variability of the training data to 
enhance the DeepONet’s ability to generalize to more arbitrary wound 
shapes. Currently, the model is trained on three basic shapes, but 
expanding the training set to include a broader range of geometries 
would be a crucial step towards real data-based wounds. While it per-
forms well on convex combinations of the three basic shapes, the shapes 
considered are still too limited to capture the full diversity of wound 
geometries. Training on a wider and more diverse set of shapes would 
improve generalization, enabling the model to handle more arbitrary 
and irregular wound structures effectively. However, our results show a 
promising proof of concept in the sense that a set of basis wound 

Fig. 10. Best (a) and worst (b) prediction in terms of the RSAW on a small convex test set, comparing different training data sampling strategies. The legend denotes 
the number of finite element simulations added to the training set and the number of time steps sampled per simulation.
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geometries can be used so that a convex combination of these basis 
geometries can be modelled reliably. In other words, wound geometries 
that have not been ‘seen’ in the training set can still be simulated with 
high fidelity. We expect that by adding more basis geometries, even 
more general and complicated wound geometries can be simulated.

6. Conclusions

We trained a DeepONet on three different initial wound shapes to 
accurately predict the dermal displacement across the entire domain 
over time. The DeepONet consists of a branch and trunk network. The 
branch network takes as input five parameters from the morphoelastic 
model describing burn injuries: the cell diffusion constant, the chemo-
tactic constant, the signaling diffusion constant, the cell differentiation 
rate, and the half-maximum cell division enhancement rate. The trunk 
takes as input a coordinate (t, x, y) where we want to evaluate the so-
lution, along with information about the initial wound shape and size 
given by the quadruple 

(
ycut , xm, ym, xcut

)
. The final DeepONet output is 

the result of a dot product of the branch and trunk network outputs, such 
that the five input parameters are mapped to the displacement fields for 
100 post-burn days.

We evaluated the performance of the trained DeepONet on a test set 
including finite element simulations based on convex combinations of 
the three basic wound shapes. We found that the predictions closely 
matched targets, demonstrating good generalization. The scatter plots in 
Fig. 8 confirm this, showing a strong concentration around y = x with 
minimal outliers. The model slightly underperformed on mid-range 
y-displacements but excelled in predicting both small and large dis-
placements. The error analysis in Section 4 showed a gradual increase in 
absolute error over time, peaking around day 90. However, the mean 
plus standard deviation of the error never exceeds 3%, which corre-
sponds to deviations on the order of tenths of millimeters. From a 
practical medical perspective, these are very accurate predictions.

We compared our various DeepONet architectures on the convex test 
set, cf. Fig. 3. The final model, incorporating initial wound shape info 
and sine augmentation, achieved the best performance with an R2 score 
of 0.99, an aRRMSE of 0.08, and an aRelErr of 0.03. This confirms the 
model’s strong generalization abilities. The results support that initial 
shape info should be input to the trunk, and sine augmentation enhances 
performance when the model is already well-tuned.

Finally, we extended the DeepONet predictions to one year rather 
than 100 days. We expanded the training set with 50 new finite element 
simulations, where tend = 365. We compared the RSAW curves for two 
scenarios: one where 50 finite element simulations were added to the 
training set, with 30 time steps sampled in t ∈ (100,365], and another 
where 150 runs were added, with 10 time steps each. We found that 
adding new, unique data (the first scenario) results in the greatest 
improvement. Practically, these findings suggest that including more 
patients with less data per patient is preferable to having fewer patients 
with more data per patient. This is likely because introducing new in-
formation provides a more varied learning experience, whereas 

additional data points from existing samples tend to add redundancy, 
offering less benefit.

We conclude that we have successfully trained a DeepONet as a finite 
element surrogate, capable of accurately predicting the post-burn 
dermal displacement field. The training encompassed multiple initial 
wound shapes, with the network demonstrating strong generalization on 
convex combinations of these basic shapes. Furthermore, by adding a 
limited number of samples from one-year finite element simulations into 
the training set, the network achieved reasonable predictions of the 
RSAW over the entire year. We anticipate that including more data with 
tend = 365 will further enhance prediction accuracy.

As a final conclusion, we experimentally found that the speedup of a 
simulation run using the DeepONet is about a factor 128 relative to the 
original finite element simulations (235 when evaluated on a GPU). 
While this speedup is lower than that achieved in (Egberts et al., 2022; 
Egberts et al., 2023) for MLP models on a fixed geometry, the proposed 
DeepONet allows for geometrical flexibility that was not possible with 
the MLPs employed in previous works.

Datasets and code

All relevant code is available at github.com/Selma24/DeepONet-co 
ntraction. All relevant data is available on the 4TU.Centre for 
Research Data at doi.org/10.4121/69d1aefc-a01d-4280-8b32-5c8420d 
9a2a3.
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Appendix

Table 3 lists the fixed parameter values used for the finite element simulations that were not taken as input to the DeepONet’s branch network.
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Table 3 
Overview of the fixed parameter values used for the numerical simulations. ‘NC’ indicates that the parameter value is a consequence of the 
chosen values for other parameters.

Symbol Value Dimension Reference

kc 4⋅10− 13 g/(cells day) (Olsen et al., 1995)
rF 9.24⋅10− 1 cm 3q/(cells q day) (Alberts et al., 1989; Gosh et al., 2007)
rmax
F 2 – (Strutz et al., 2001)

kρ 7.6⋅10− 8 g/(cells day) [NC]
kmax

ρ 10 – (Olsen et al., 1995)
aII

c 10− 8 g/cm 3 (Olsen et al., 1995)
aIII

c 2⋅108 cm 3/g (Overall et al., 1991)
aIV

c 10− 9 g/cm 3 (Roberts et al., 1986)
ηI 2 – (Rudolph and Vande Berg, 1991)
ηII 5⋅10− 1 – (Koppenol and Vermolen, 2017)
κF 10− 6 cm 3/cells (Vande Berg et al., 1989)
q − 4.151⋅10− 1 – [NC]
δN 2⋅10− 2 /day (Olsen et al., 1995)
δM 6⋅10− 2 /day (Koppenol et al., 2017)
δc 5⋅10− 4 cm 6/(cells g day) (Olsen et al., 1995)
δρ 6⋅10− 6 cm 6/(cells g day) (Koppenol et al., 2017)
N 104 cells/cm 3 (Olsen et al., 1995)
M 0 cells/cm 3 (Olsen et al., 1995)
c 0 g/cm 3 (Koppenol et al., 2017)
ρ 1.125⋅10− 1 g/cm 3 (Olsen et al., 1995)
ρt 1.09 g/cm 3 (ICRP, 2010)
μ1 102 (N day)/cm 2 (Koppenol and Vermolen, 2017)
μ2 102 (N day)/cm 2 (Koppenol and Vermolen, 2017)
E 32 N/((g cm)0.5) (Egberts et al., 2021)
ξ 5⋅10− 2 (N g)/(cells cm 2) (Maskarinec et al., 2009; Wrobel et al., 2002)
R 9.95⋅10− 1 g/cm 3 (Koppenol and Vermolen, 2017)
ζ 4⋅102 cm 6/(cells g day) (Koppenol and Vermolen, 2017)
ν 4.9⋅10− 1 – (Egberts et al., 2021)
Ñ 2⋅103 cells/cm 3 [NC]
c̃ 10− 8 g/cm 3 (Egberts et al., 2021)
ρ̃ 1.13⋅10− 2 g/cm 3 [NC]
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