
Complex & Intelligent Systems (2025) 11:388
https://doi.org/10.1007/s40747-025-02022-4

ORIG INAL ART ICLE

Verticox+: vertically distributed Cox proportional hazards model with
improved privacy guarantees

Florian van Daalen1,2 · Djura Smits3 · Lianne Ippel4 · Andre Dekker1 · Inigo Bermejo1,5

Received: 4 February 2025 / Accepted: 1 July 2025
© The Author(s) 2025

Abstract
Federated learning allows us to run machine learning algorithms on decentralized data when data sharing is not permitted
due to privacy concerns. Various models have been adapted to use in a federated setting. Among these models is Verticox, a
federated implementation of Cox proportional hazards models, which can be used in a vertically partitioned setting. However,
Verticox assumes that the survival outcome is known locally by all parties involved in the federated setting. Realistically
speaking, this is not the case in most settings and thus would require the outcome to be shared. However, sharing the survival
outcome would in many cases be a breach of privacy which federated learning aims to prevent. Our extension to Verticox,
dubbedVerticox+, solves this problem by incorporating a privacy preserving 2-party scalar product protocol at different stages.
This allows it to be used in scenarios where the survival outcome is not known at each party. In this article, we demonstrate
that our algorithm achieves equivalent performance to the original Verticox implementation. We discuss the changes to the
computational complexity and communication cost caused by our additions.

Keywords Federated learning · n-Party scalar product protocol · Privacy preserving · Verticox · Cox proportional hazard
model

B Florian van Daalen
f.vandaalen@maastrichtuniversity.nl

Djura Smits
d.smits@esciencecenter.nl

Lianne Ippel
gje.ippel@cbs.nl

Andre Dekker
andre.dekker@maastro.nl

Inigo Bermejo
i.bermejo@maastrichtuniversity.nl

1 Department of Radiation Oncology (MAASTRO), GROW
School for Oncology and Reproduction, Maastricht
University Medical Centre, Maastricht, The Netherlands

2 Department of Health Promotion, Care and Public Health
Research Institute (CAPHRI), Maastricht University,
Maastricht, The Netherlands

3 Netherlands eScience Center, Amsterdam, The Netherlands

4 Methodology, Statistics Netherlands, Heerlen, The
Netherlands

5 Data Science Institute, Hasselt University, Hasselt, Belgium

Introduction

Federated learning is a field that recently rose in prominence
because of an increased focus onprivacyby thegeneral public
aswell as from legal bodies [1, 2]. In order to fulfill the stricter
privacy requirements that were demanded by new laws such
as the EuropeanGeneral Data protection Regulation (GDPR)
existing models were adapted and improved. Verticox is one
such adaptation.

Verticox as described by Dai et al. [3] aims to provide
a privacy preserving implementation of a Cox proportional
hazards (CPH) model [4] in a vertically partitioned federated
learning setting. Data is said to be vertically partitionedwhen
the attributes are split between multiple parties. In contrast
it is said to be horizontally partitioned when the records are
split between multiple parties. Verticox utilizes an Alternat-
ing Direction Method of Multipliers (ADMM) framework
[5] to preserve privacy. It can be used both for the training of
a new Cox model as well as to classify a new individual.

However, Verticox relies on the assumption that the
survival outcome is known locally at every party. This
assumption is unfortunately not realistic as in vertically par-

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-025-02022-4&domain=pdf
http://orcid.org/0000-0002-2229-8587

 388 Page 2 of 11 Complex & Intelligent Systems (2025) 11:388

titioned scenarios each attribute will normally only be locally
known at one party, this includes the survival outcome.

A number of alternatives exist, such as the method pro-
posed by Miao et al. [6] to compute CPH using cyclical
coordinate descent, but it is still the case that outcome data
needs to be shared with other parties. Kamphorst et al. [7]
train a CPH model that uses secure multiparty computation
[8] to compute log-partial likelihood at every iteration with-
out revealing patient level data to other parties. However,
the cryptographic protocols add significantly to the compu-
tational complexity and communication overhead. As such
neither alternative is practical. Finally, Lu et al. [9] propose
an algorithm that executes the computation of homomorphi-
cally encrypted data at a trusted third party (TTP). However,
this approach introduces a single point of failure- the TTP-
which could pose a significant security risk.

In this article, we propose a new extension to Verticox,
which we have dubbed Verticox+. By utilizing the privacy
preserving 2-party scalar product protocol [10], we avoid the
assumption made in the original Verticox implementation.
We will also experimentally show that the added compu-
tational complexity of using this protocol is negligible in
practice.

The rest of the article is built up as follows; first, we will
discuss how the original Verticox protocol works, followed
by an explanation of the privacy preserving n-party scalar
product protocol. Once both protocols have been explained
we will describe the improved protocol Verticox+. We will
then describe our experimental validation followed by a short
discussion.

The implementation of Verticox+ is available on GitHub1

and has been designed to work with the vantage6 federated
learning framework [11].

Background

In the following subsections we will discuss the background
of our solution. First, we will introduce Verticox, and then
we will introduce the scalar product protocol.

Verticox

Verticox is a decentralized version of the Cox proportional
hazards regressionmodel where covariates can be distributed
over multiple data sources. The parameters are computed
without sharing raw data between the parties and the result-
ing model is equivalent to a centralized version of a Cox
model. The original algorithm achieves this by decompos-
ing the original optimization problem for Cox proportional
hazards into subproblems that can be solved separately. This

1 https://github.com/CARRIER-project/verticox.

provides a layer of protection for the data against honest-but-
curious adversaries with access to any of the clients or central
server.

The Verticox algorithm first estimates the parameters at
the client-side based on the covariates that are available
locally to each party. Next, an aggregation of these results
is sent to a central server, which combines the results of the
various parties, and further optimizes the parameters. The
updated values are then passed back to the parties at the start
of a new iteration. For amore detailed description of the exact
techniques used we refer to reader back to the original paper
[3].

Scalar product protocol

In order to solve the privacy issues that are present in the orig-
inal Verticox algorithm, we use can use a privacy preserving
scalar product protocol. The privacy preserving scalar prod-
uct protocol is an important building block inmany federated
data analysis and machine learning applications. There exist
several variants [10, 12–17]. Our proposed protocol requires
the use of a 2-party privacy preserving scalar product proto-
col when dealing with vertically split data. Furthermore, we
noticed that a future potential adaptation to a hybrid, that is
to say both horizontally and vertically, split scenario would
require an-party protocol. Tobe ready for this potential future
adaptation, we choose to utilize the n-party protocol variant
[12] in our implementation,which is basedon the 2-party pro-
tocol proposed by Du and Zhan [10]. This method introduces
a third party, labeled the commodity server, to generate the
random vectors that are used to encrypt the data. This server
does not participate any further in the computation.

As we will be focused on vertically split scenarios we will
only describe the 2-party scenario in this paper. The 2-party
algorithm by proposed by Du and Zhan works as follows:

The protocol

There are two parties, Alice and Bob. Alice has a vector A
and Bob has another vector B, both of the vectors have n
elements. Alice and Bob want to compute the scalar product
between A and B, such that Alice gets V1 and Bob gets V2,
where V1 + V2 = A · B and V2 is randomly generated by
Bob. Namely, the scalar product of A and B is divided into
two secret pieces, with one piece going to Alice and the other
going to Bob. We assume that the following computation is
based on the real domain.

1. ATrustedThirdParty (TTP) server generates two random
vectors Ra and Rb of size n, and lets ra + rb = Ra · Rb,
where ra (or rb) is a randomly generated number. Then
the TTP sends (Ra, ra) to Alice, and (Rb, rb)to Bob.

123

https://github.com/CARRIER-project/verticox

Complex & Intelligent Systems (2025) 11:388 Page 3 of 11 388

2. Alice sends Â = A + Ra to Bob, and Bob sends B̂ =
B + Rb to Alice.

3. Bob generates a random number V2, and computes Â ·
B + (rb − V2), then sends the result to Alice.

4. Alice computes (Â · B + (rb − V2)) − (Ra · B̂) + ra =
A · B − V2 + (rb − Ra · Rb + ra) = A · B − V2 = V1

For a more detailed description of the exact techniques
used we refer to reader back to the original paper [12].

Verticox+

Verticox+ is an extension ofVerticox that no longer a requires
sharing the survival outcome data with all parties involved.
By making use of the scalar-product-protocol, we have been
able to isolate the outcome data to the aggregation server.
We make a slight modification to the original algorithm to
incorporate the scalar product protocol. Table 1 explains the
notations that will be used throughout the reminder of the
article.

The original Verticox pseudocode can be summarized as
found in Algorithm 1. The full pseudocode can be found
in original paper by Dai et al.. Note the emphasis on the
requirement that outcome data [E1, ...ET] is present at every
party.

Themain privacy issue lieswithin solvingβ
p
k . This is done

using Eq. 1

β
p
k =

[
ρ

N∑
n=1

xTnk xnk

]−1

·
⎡
⎣ N∑
n=1

(ρz p−1
nk − γ

p−1
nk)xTnk +

T∑
t=1

∑
n∈Et

xnk

⎤
⎦

(1)

Table 1 Notation

Notation Description

K Total number of parties

N Total number of records

βk Coefficients at party k

T Number of distinct event times

tn Distinct event time of patient n

p Index of iteration

ρ Penalty parameter of ADMM method

z Auxiliary variable

Et The index set of records with observed events

xnk The local feature value at index n for party n

Algorithm 1: Original Verticox algorithm
Data:

Subsets of covariates: xnk for every patient n, for every party k

Outcome data Et for every t , needs to be available at every party
Result: Converged Cox proportional hazard model

1 initialization;

2 while Stopping criterion has not been reached do

3 for Each party k do

4 Solve β
p
k ;

5 Compute σnk = βT
k xnk ;

6 Send σnk to central server;

7 end

8 Central server aggregates subresults ;

9 Central server calculates auxiliary value z p ;

10 Central server updates z pnk ;

11 Central server sends z pnk and aggregation to parties ;

12 Local parameters are updated ;

13 end

The problem lies in the last part of the equation:∑T
t=1

∑
nεEt

xnk . This part has a reference to Et , which is
the index set of samples with an observed event at time t .
Therefore, for every time t we need to select the samples with
an observed event. This requires the availability of outcome
data at every party. In real-world use cases, this is not always
possible.

Verticox+ will solve this problem by making use of the
scalar-product-protocol. To do that, we translate the inner

sum
∑

nεEt
xnk to a scalar product: ukt = xk · −−→

(Et)

In this case,
−−→
(Et) is the Boolean vector of length N that

indicates for each sample whether it had an event at time t
(indicated as 1) or not (indicated as 0). β p

k will now be solved
according to Eq. 2.

β
p
k =

[
ρ

N∑
n=1

xTtnk xtnk

]−1

=
[

N∑
n=1

(
ρz p−1

nk − γ
p−1
nk

)
xTnk +

T∑
t=1

ukt

]

(2)

Since ukt per time t stays constant over iterations, we
will only need to compute this once at the initialization step.
The rest of the algorithm will remain the same. Addition-
ally, as this can be resolved independently for each feature,
and it is known that the data is vertically split we know that
even if more than 2 parties are involved in the complete
analysis, only 2 parties are involved for computing ukt at
a single institution k, which limits the computational com-
plexity introduced by its use.

123

 388 Page 4 of 11 Complex & Intelligent Systems (2025) 11:388

A summary of the updated Verticox+ algorithm can found
in Algorithm 2:

Algorithm 2: The Verticox+ algorithm
Data:

Subsets of covariates: xnk for every patient n, for every party k

Outcome data Et for every t , needs to be available only at the central server
Result: Converged Cox proportional hazard model

1 initialization;

2 At every party k compute: ukt = xk · −−→
(Dt) ;

3 while Stopping criterion has not been reached do

4 for Each party do

5 Solve β
p
k using precomputed ukt ;

6 Compute σnk = βT
k xnk ;

7 Send σnk to central server;

8 end

9 Sever aggregates subresults ;

10 Server calculates auxiliary value z p ;

11 Server updates z pnk ;

12 Server sends z pnk and aggregation to parties ;

13 Local parameters are updated ;

14 end

In the updated version of the algorithm, there is no longer
a need to share outcome data with all collaborating parties.
Figure 1a show that while the algorithm only sends aggrega-
tions back and forth between parties, it requires the outcome
data (censor and event time) to be present at every institution.
Figure 1b show that this is not necessary any more. When a
party needs to compute ukt using the 2-party scalar prod-
uct protocol it exchanges the values as shown in Fig. 2. We
are making use of the implementation of the n-party scalar
product protocol, which is equivalent to the 2-party protocol
when combining data from 2 parties. The figure also shows
that when one of the institutions needs to combine data with
the aggregator (where the outcome data is located), the other
institution can be used as a trusted third party. Institutions
are switching roles between n-party server and TTP server
depending on which party needs to calculate ukt .

Time complexity & communication overhead

In this section we will discuss the time complexity and
communication overhead of Verticox+. We will start by dis-
cussing these aspects of Verticox, to provide a baseline.
Afterwards we will discuss the time complexity of the n-
party scalar product protocol. Finally, we will discuss the
consequences of combining these two protocols.

Fig. 1 In the original Verticox algorithm, the survival outcome (event
time, censored) is required to be available at all parties (a), while in
our Verticox+ algorithm, the survival outcome only needs to be at the
central aggregator server (b)

Fig. 2 When an institution needs to compute Ukt it will perform the
2-party scalar product protocol together with the aggregator server. The
other institution will take the role of TTP

Time complexity

Let us consider how the addition of the scalar product pro-
tocol affects the time complexity. Since the scalar product
protocol has only been used at the client side, the time com-
plexity at the server side will remain O(N 3), which is the
complexity of the Newton–Rhapson optimization.

123

Complex & Intelligent Systems (2025) 11:388 Page 5 of 11 388

At the client side, the original computational complex-
ity was determined by generating and inverting matrix∑N

n=1 xnk x
T
nk are O(NM2

k) and O(M3
k) respectively. Our

adaptations add in the scalar product protocol which is
O(N 2). In practice though we will see that the main bot-
tleneck can be found in the aggregation server.

Communication cost

The original Verticox sends intermediate values znk , γ n , and
σ n from the central server to the clients at every iteration. In
turn, the clients send back σ nk . This results in a communica-
tion cost of 4NK . Additionally, the scalar product protocol
has a cost of 4N , which will need to be run for every insti-
tution, which leads to a cost of 4NK . However, the scalar
product protocol is only run once per analysis, while the
intermediate values are communicated every iteration. This
leads to a communication cost of 4NK + I ∗ 4NK , where I
stands for the number of iterations for convergence.

Fixed precision

The n-party scalar product protocol is designed towork using
integer values. However, within Verticox+ it will be used to
calculate results that depend on floating point values. In order
to make these values useable within the scalar product pro-
tocol we will make use of fixed-point precision. The values
will be scaled by a fixed factor; this factor corresponds to the
required precision (e.g. the value will be scaled by a factor
10, 000 when working with a fixed precision of 5 decimals).
Once the scalar product protocol has finished the final result
will be scaled back to the desired precision.

This fixed precision approach makes it viable to use the
scalar product protocol even when it is necessary to work
with floating point values. In principle any level of precision
can be chosen, however there will be a trade-off; a greater
precisionwill result in larger numbers being used in the scalar
product protocol. This can create technical problems when
it results in a number overflow error. Additionally, numbers
with more digits will take longer to multiply. As such, a high
precision will eventually affect the runtime performance of
Verticox+. However, we experimentally determined that a
fixed precision of 5 decimals is sufficient for most purposes.
Furthermore, we expect the effect on the total runtime of
Verticox+ to be minimal as the bottleneck is outside of the
part that utilizes the scalar product protocol.

In addition to thiswewould like to note that fixed precision
could potentially be used to further improve privacy guar-
antees. A lower precision can obfuscate records containing
values that are unique at a higher level of precision. Its exact
potential warrants further investigation in future research.

Table 2 Experimental parameters

Parameter Fixed value

Penalty parameter ρ 0.25

Fixed precision of n-party protocol 5

Newton–Raphson precision 0.00001

Experimental validation

We ran several experiments to validate our method. We
implemented the algorithm in Python and Java, and ran the
parties in separateDocker containers.Weused a single virtual
machine with Ubuntu 22.04, 8 cores with a clock speed of
1996.250 MHz and 32 GB RAM running in SURF research
cloud, which is part of the Dutch national research infras-
tructure. As data we used part of the SEER dataset [18]. The
parameters of the algorithm that we kept fixed can be found
in Table 2.

We ran 3 different experiments. In the first experiment, we
fixed the number of records to 100 and varied the number of
parties and iterations to see how that will affect runtime and
accuracy. Accuracy has been measured in 4 different ways.
In theory, adding the n-party protocol to the original Verticox
algorithm will introduce inaccuracy into the model because
the values need to be expressed in fixed-point precision. To
test whether this is true in practicewe ran our implementation
of the original Verticox algorithm with the same parameters.
We use c-index [19] to compare the predictions of the model
to the ground truth. Additionally, we used 3 metrics to com-
pare the resulting coefficients against ones that have been
computed by a central Cox proportional hazards model. For
this, we compute mean squared error (MSE), summation of
the absolute difference (SAD), and maximum absolute dif-
ference (MAD). As can be seen in Table 3 the accuracy of the
central model is identical to the accuracy of Verticox+. This
is because the variables in the SEER dataset require limited
precision, since they consist of values with no more than 2
digits. Looking at MSE, SAD and MAD (Fig. 3), we can see
that the difference betweenVerticox+ and a Cox proportional
hazards model learned on centralized data diminishes after a
few hundred iterations.

The second experiment evaluates how runtime scales with
increasing number of covariates (features) in the model.
Again, we fixed the number of records to 100 and the number
of iterations to 500. The number of parties has been fixed to
3. We evaluated the algorithm runtime from 2 and up to 10
features.

As can be seen in Figs. 4, 5, and 6, our addition of the scalar
product protocol does not negatively affect the runtime. In
fact, Verticox+ even has a shorter runtime for preparation as
the number of parties increases. This is unexpected and likely

123

 388 Page 6 of 11 Complex & Intelligent Systems (2025) 11:388

Ta
bl
e
3

Pe
rf
or
m
an
ce

of
ce
nt
ra
lC

ox
pr
op
or
tio

na
lH

az
ar
ds

vs
.V

er
tic
ox
+
al
go
ri
th
m

Pa
rt
ie
s

It
er
at
io
ns

Pr
ep
ar
at
io
n
ru
nt
im

e
C
on
ve
rg
en
ce

ru
nt
im

e
m
se

sa
d

m
ad

c-
in
de
x
ve
rt
ic
ox

+
c-
in
de
x
ce
nt
ra
lC

ox
m
od

el

2
10
0

5.
34
97
67

80
.2
17
79
9

4.
20
80
e–
09

2.
58
62
e–
04

1.
48
83
e–
04

0.
63
44
63

0.
63
38
98

20
0

5.
25
48
44

12
8.
45
11
24

2.
73
79
e–
14

7.
12
84
e–
07

3.
57
88
e–
07

0.
63
38
98

0.
63
38
98

30
0

5.
38
98
99

16
2.
82
79
23

2.
92
45
e–
15

1.
92
41
e–
07

1.
18
96
e–
07

0.
63
38
98

0.
63
38
98

40
0

5.
30
90
92

20
0.
63
12
22

5.
87
59
e–
15

2.
47
82
e–
07

1.
78
57
e–
07

0.
63
38
98

0.
63
38
98

50
0

5.
29
89
18

22
5.
58
29
57

7.
26
22
e–
16

9.
86
87
e-
00
8

5.
93
57
e-
00
8

0.
63
38
98

0.
63
38
98

10
00

5.
30
85
58

39
4.
35
31
62

6.
45
18
e–
16

7.
45
55
e-
00
8

6.
17
78
e-
00
8

0.
63
38
98

0.
63
38
98

3
10
0

6.
05
02
40

82
.8
93
00
1

6.
50
99
e-
00
9

3.
23
13
e-
00
4

1.
84
06
e-
00
4

0.
63
36
16

0.
63
38
98

20
0

6.
11
36
31

14
2.
58
28
30

6.
46
38
e–
13

3.
27
63
e-
00
6

1.
58
17
e-
00
6

0.
63
38
98

0.
63
38
98

30
0

6.
12
57
30

18
0.
78
64
34

3.
11
75
e–
14

5.
69
94
e-
00
7

4.
15
06
e-
00
7

0.
63
38
98

0.
63
38
98

40
0

6.
17
22
21

21
4.
34
98
78

1.
33
09
e–
16

3.
78
55
e-
00
8

2.
76
29
e-
00
8

0.
63
38
98

0.
63
38
98

50
0

6.
02
94
85

24
5.
12
16
09

7.
15
98
e–
18

1.
27
24
e-
00
8

5.
23
42
e-
00
9

0.
63
38
98

0.
63
38
98

10
00

6.
10
55
57

40
8.
77
17
61

1.
33
22
e–
16

3.
77
14
e-
00
8

2.
76
29
e-
00
8

0.
63
38
98

0.
63
38
98

4
10
0

6.
88
61
46

84
.7
21
81
4

5.
65
19
e-
00
9

3.
49
69
e-
00
4

1.
48
31
e-
00
4

0.
63
38
98

0.
63
38
98

20
0

6.
92
43
60

14
1.
27
39
31

2.
71
49
e–
11

2.
01
21
e-
00
5

1.
02
84
e-
00
5

0.
63
38
98

0.
63
38
98

30
0

6.
83
23
69

19
7.
66
39
62

8.
54
44
e–
14

1.
02
57
e-
00
6

6.
87
63
e-
00
7

0.
63
38
98

0.
63
38
98

40
0

6.
90
16
01

22
8.
78
69
64

7.
91
07
e–
16

1.
17
89
e-
00
7

5.
93
57
e-
00
8

0.
63
38
98

0.
63
38
98

50
0

6.
75
12
54

25
7.
55
32
03

6.
59
69
e–
15

2.
82
61
e-
00
7

1.
78
57
e-
00
7

0.
63
38
98

0.
63
38
98

10
00

6.
86
44
45

41
7.
91
06
66

6.
03
46
e–
16

7.
53
56
e-
00
8

5.
93
57
e-
00
8

0.
63
38
98

0.
63
38
98

5
10
0

7.
70
40
99

85
.9
08
52
3

6.
42
46
e-
00
8

1.
27
48
e-
00
3

4.
49
72
e-
00
4

0.
63
41
81

0.
63
38
98

20
0

7.
73
27
30

13
9.
65
62
96

3.
41
36
e–
10

7.
04
54
e-
00
5

3.
95
77
e-
00
5

0.
63
38
98

0.
63
38
98

30
0

7.
67
38
41

19
1.
09
02
84

3.
17
04
e–
12

6.
99
55
e-
00
6

3.
48
90
e-
00
6

0.
63
38
98

0.
63
38
98

40
0

7.
70
35
14

23
9.
15
18
00

3.
01
57
e–
14

5.
44
75
e-
00
7

4.
19
41
e-
00
7

0.
63
38
98

0.
63
38
98

50
0

7.
69
89
04

26
6.
68
37
73

5.
74
75
e–
16

8.
01
96
e-
00
8

5.
74
32
e-
00
8

0.
63
38
98

0.
63
38
98

10
00

7.
67
29
42

41
4.
22
89
58

6.
01
21
e–
16

7.
02
63
e-
00
8

5.
98
52
e-
00
8

0.
63
38
98

0.
63
38
98

123

Complex & Intelligent Systems (2025) 11:388 Page 7 of 11 388

Fig. 3 The MSE, SAD, & MAD
scores of Verticox+

Fig. 4 Comparison between Verticox+ and Verticox of the runtime
duration of the preparation phase

Fig. 5 Runtime duration of Verticox+ with various numbers of parties

Fig. 6 Runtime duration of Verticox+ with various numbers of maxi-
mum iterations

Fig. 7 Runtime duration of the preparation phase of Verticox+ using
various numbers of records

123

 388 Page 8 of 11 Complex & Intelligent Systems (2025) 11:388

Fig. 8 Runtime duration of the convergence phase of Verticox+ using
various numbers of records

Fig. 9 Runtime duration of the preparation phase of Verticox+ using
various numbers of features

Fig. 10 Runtime duration of the convergence phase of Verticox+ using
various numbers of features

relates to the implementation details of the n-party protocol.
While we reimplemented the original Verticox algorithm in
Python, the n-party protocol was actually implemented in
Java. Since Java is a compiled language, it generally performs
faster than the interpreter language Python. In the end, the
bottleneck will not be in the preparation time, but rather in
runtime of the main part of the algorithm where the model
converges. In this part, Verticox+ performs the same as its
predecessor (see Figs. 7 and 8).

In the third experiment we fixed the number of iterations
to 500 and the number of parties to 3. We set the number
or records to 50, 100 or 500 and timed the runtime. As can
be seen in Figs. 9 and 10, the number of records does not
affect the runtime significantly during the preparation phase.
Convergence runtime is affected by the number of records,
but not more than the original verticox.

Discussion

With the addition of the scalar product protocol to the Ver-
ticox algorithm, all data used for the analysis can stay at
the source, including outcome data. Moreover, the addi-
tion of this protocol, which is potentially heavy in terms of
computation, did not add significantly to the total runtime
in our experiments. Neither does the additional overhead
introduced by the fixed-point precision. This is because
the bottleneck of the computation lies within the Newton–
Raphson optimization from the original algorithm. This
indicates that Verticox+ is a viable extension of the origi-
nal algorithm.

There are still a couple of security issues to consider
though. The Verticox+ algorithm shares record-level aggre-
gations with the central server. That is, in every iteration the
parties share their risk estimates for every record with the
central server. Although this is not raw data, it is still patient
level information. Additionally, it can be viewed as relatively
sensitive data as it represents the risk of a given disease for
a specific patient. Direct access to this information could be
problematic if it falls in the wrong hands.

However, by placing the server in the care of the party that
already owns the survival outcome data the practical risk is
limited. Providing this party with the risk scores minimizes
the privacy concerns as this party already knows the survival
outcome this risk score represents, and thus would not learn
anything new. This limits the risk of direct access to the risk
score.

Access to the risk estimates in each iteration also opens
an additional possible attack [20–22]. The aggregating party
could attempt to reverse engineer the training data belonging
to each other party based on the intermediate values revealed
between the iterations. However, this does require the aggre-
gating party to knowwhich attributes are present at each other

123

Complex & Intelligent Systems (2025) 11:388 Page 9 of 11 388

party. Additionally, reversing this information becomesmore
complex as the number of attributes at the other party grows.

This privacy concern could be mitigated by moving the
central aggregation away from the outcome datasource and
performing the central aggregation on a “neutral” server pro-
vided by a trusted third party. The outcome data would
have to be queried by the central server using the scalar
product protocol. Unfortunately, this means that the scalar
product protocol would have to be run in every iteration,
instead of only during the preparation phase. The concern is
that this will add a significant increase to the total runtime.
Adding this protocol with complexity O(N 2)to the Newton–
Rhapson optimization (O(N 3))will turn it into a complexity
of O(N 4). Additionally, the n-party protocol will add a con-
stant communication overhead to this part of the computation
(O(6)). Although this overhead is constant, in practice the
communication overhead is the bigger bottleneckwhen com-
pared to the computational cost, and will add significantly to
the total duration of the algorithm.

A more practical solution may be to mandate the use of a
framework like Vantage6, which provides an infrastructure
that explicitly limits what the aggregating party is able to do
by only allowing pre-approved Docker images with vetted
code to be executed. By explicitly creating this limitation,
the various parties involved can establish a sufficient level of
trust that no data will be leaked.

This risk, and the limitations imposed by the time com-
plexity of the technical solutions, highlight the need for a
comprehensive legal and infrastructure solutions to augment
the technical privacy preserving solutions in any real world
project. This also means that Verticox+ is best used in a
setting where such things can viably be implemented. Imple-
menting such solutions, and establishing the required level of
trust, is difficult in an open internet of things setting, where
any party is free to join. However, in a formal research setting
this is indeed viable.

The scalar product protocol brings one additional pri-
vacy concern compared to the broader Verticox+ protocol.
It requires a trusted third party, which can generate secret
shares and aggregate the intermediate results of the proto-
col. However, in comparison to Lu et al. [9], the TTP has
reduced privileges and does not need to process any data
directly. This reduces the risks of using a TTP considerably.
Additionally, similar to the previous concerns, framework
such as Vantage6 is an excellent solution to set up the neces-
sary infrastructure to ensure the reliability of the trusted third
party, further limiting the potential risks.

Future work

There are currently threemajor limitations that wewould like
to improve upon. The current implementation of Verticox+

has not beenmade to dealwith a hybrid split in the data, that is
to say a split that is partially horizontal and partially vertical.
While certain parts, such as the scalar product protocol, do
not need any additional work to fit in a hybrid setting, we
need to determine if it is possible to use the algorithm as a
whole in a hybrid setting.

Secondly, the role of aggregator currently befalls to the
party that owns the outcome data. If the role of aggregator
could be moved to a neutral party without data, it would
not know which records the intermediate values are linked
to. This lowers the risk of data leaking. Lastly, we wish to
improve the runtime complexity of the optimization step, for
example by using a different faster optimization algorithm.
This step is currently a considerable bottleneck in the algo-
rithm, and improving it would lead to significant gains in
terms of the running time of the algorithm.

Conclusion

In this paper, we have provided an extension to the origi-
nal Verticox protocol that we dub Verticox+. The original
protocol allows the user to train a Cox Proportional Hazard
model in a vertically partitioned federated setting. However,
the original algorithm relies on the assumption that every
party involved has access to the survival outcome for each
record. This is unrealistic in a vertical scenario and would
most likely require this survival outcome to be shared, which
represents a serious privacy concern as the survival outcome
used to train a Cox proportional hazard model represents a
sensitive attribute, such as a hospitalization event or death
due to a certain disease. Verticox+ removes the need for this
assumption by using the scalar product protocol to perform
the relevant calculations in a privacy preserving manner.

Our experiments show that Verticox+ achieves compa-
rable performance to both Verticox and a centrally trained
model. This indicates Verticox+ works as intended. Addi-
tionally, our experiments show that the added overhead
introduced by using the scalar product protocol is manage-
able as the optimization step forms a much more significant
bottleneck. As such, the runtime duration is comparable to
the original Verticox algorithm as well.

While Verticox+ improves the privacy guarantees, a num-
ber of practical concerns remain. The scalar product protocol
relies on a trusted third party. Additionally there is a the-
oretical possibility of a malicious party reconstructing an
approximation of the data, akin to a gradient leak attack
in deep learning settings. These risks can be mitigated by
applying multiple layers of security measures, such as offer-
ing access to only a small number of trusted researchers.
Additionally the relevant legal frameworks also need to be
established. The need for such frameworks also serves as a
reminder that purely technical privacy preserving solutions

123

 388 Page 10 of 11 Complex & Intelligent Systems (2025) 11:388

are not sufficient to establish the necessary trust needed for
any federated learning project.

The need for such frameworks, as well as the time
complexity of Verticox+, does limit Verticox+ to certain sce-
narios. Scalability concerns, as well as the need for trusted
third parties and a complexity of creating the necessary legal
and infrastructure frameworks, means that Verticox+ is not a
great fit for an internet of things scenario with many parties,
all of which have an extremely low level of trust. However, in
formal settings, where it is easier to vet the parties involved,
and where parties have access to the technical infrastructure
necessary to deal with the scalability issues, it is a great tool
in the federated learning toolbox.

Summary

In this paper we have proposed an improvement to the Verti-
cox algorithm dubbed Verticox+. Verticox+ brings improved
privacy guarantees. Our experiments show that Verticox+
produces the same end-result, without a noticeable change
in overhead costs.

Author Contributions F. van Daalen and D. Smits are co-first authors.

Funding This research received funding from the Netherlands Orga-
nization for Scientific Research (NWO): Coronary ARtery disease:
Risk estimations and Inter- ventions for prevention and EaRly detection
(CARRIER): project nr. 628.011.212.

Data availability Not applicable.

Code availability the code is available and can be found here: Main
algorithm code: https://github.com/CARRIER-project/verticox.

Declarations

Conflict of interest The authors have no relevant financial or non-
financial interests to disclose.

Ethical approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Kairouz P, McMahan HB, Avent B, Bellet A, Bennis M, Bhagoji
AN, Bonawitz K, Charles Z, CormodeG, Cummings R, D’Oliveira
RGL, Rouayheb SE, Evans D, Gardner J, Garrett Z, Gascón A,
Ghazi B, Gibbons PB, Gruteser M, Harchaoui Z, He C, He L, Huo
Z, Hutchinson B, Hsu J, Jaggi M, Javidi T, Joshi G, Khodak M,
Konečný J, Korolova A, Koushanfar F, Koyejo S, Lepoint T, Liu Y,
Mittal P, Mohri M, Nock R, Özgür A, Pagh R, Raykova M, Qi H,
Ramage D, Raskar R, Song D, Song W, Stich SU, Sun Z, Suresh
AT, Tramèr F, Vepakomma P, Wang J, Xiong L, Xu Z, Yang Q, Yu
FX, Yu H, Zhao S (2019) Advances and Open Problems in Fed-
erated Learning. arXiv:1912.04977 [cs, stat]. arXiv: 1912.04977.
Accessed 2021-03-02

2. Li L, Fan Y, Tse M, Lin K-Y (2020) A review of applications in
federated learning. Comput Ind Eng 149:106854. https://doi.org/
10.1016/j.cie.2020.106854. (Accessed 2021-03-03)

3. Dai W, Jiang X, Bonomi L, Li Y, Xiong H, Ohno-Machado L
(2020) VERTICOX: vertically distributed Cox proportional haz-
ards model using the alternating direction method of multipliers.
IEEETransKnowlDataEng. https://doi.org/10.1109/TKDE.2020.
2989301. Accessed 2021-05-26. (Accessed 2021-05-26)

4. Cox DR (1972) Regression models and life-tables. J Roy Stat Soc:
Ser B (Methodol) 34(2):187–202. https://doi.org/10.1111/j.2517-
6161.1972.tb00899.x. (Accessed 2024-05-22)

5. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed
optimization and statistical learning via the alternating direction
method of multipliers. Found Trends Mach Learn 3(1):1–122.
https://doi.org/10.1561/2200000016. (Accessed 2024-05-21)

6. MiaoG, Yu L, Yang J, Bennett DA, Zhao J,Wu SS (2024) Learning
from vertically distributed data across multiple sites: an efficient
privacy-preserving algorithm for Cox proportional hazards model
with variable selection. J Biomed Inform 149:104581. https://doi.
org/10.1016/j.jbi.2023.104581

7. Kamphorst B, Rooijakkers T, Veugen T, Cellamare M, Knoors D
(2022) Accurate training of the Cox proportional hazards model
on vertically-partitioned data while preserving privacy. BMCMed
Inform Decis Mak 22(1):49. https://doi.org/10.1186/s12911-022-
01771-3

8. Yao AC (1982) Protocols for secure computations. In: 23rd Annual
Symposium on Foundations of Computer Science (sfcs 1982),
pp. 160–164. https://doi.org/10.1109/SFCS.1982.38 . ISSN: 0272-
5428

9. Lu Y, Tian Y, Zhou T, Zhu S, Li J (2021) Multicenter privacy-
preserving cox analysis based on homomorphic encryption. IEEE
J Biomed Health Inform 25(9):3310–3320

10. Du W, Zhan Z (2002) Building decision tree classifier on private
data. In: Proceedings of the IEEE International Conference on Pri-
vacy, Security and Data Mining - Volume 14. CRPIT ’14, pp. 1–8.
Australian Computer Society, Inc., AUS

11. Moncada-Torres A, Martin F, Sieswerda M, Van Soest J, Geleijnse
G (2021) VANTAGE6: an open source priVAcy preserviNg feder-
aTed leArninG infrastructurE for Secure Insight eXchange. AMIA
Ann Symp Proc 2020:870–877

12. Daalen F, Ippel L, Dekker A, Bermejo I (2023) Privacy Preserv-
ing n-Party Scalar Product Protocol. IEEE Trans Parallel Dis-
trib Syst 34(4):1060–1066. https://doi.org/10.1109/TPDS.2023.
3238768. (Conference Name: IEEE Transactions on Parallel
and Distributed Systems)

13. Shmueli E, Tassa T Mediated secure multi-party protocols for col-
laborative filtering. 11(2), 1–25 https://doi.org/10.1145/3375402.
(Accessed 2022-10-26)

14. Goethals B, Laur S, Lipmaa H, Mielikäinen T (2005) On Private
Scalar Product Computation for Privacy-Preserving Data Mining.
In: Hutchison D, Kanade T, Kittler J, Kleinberg JM, Mattern F,

123

https://github.com/CARRIER-project/verticox
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1912.04977
http://arxiv.org/abs/1912.04977
https://doi.org/10.1016/j.cie.2020.106854
https://doi.org/10.1016/j.cie.2020.106854
https://doi.org/10.1109/TKDE.2020.2989301
https://doi.org/10.1109/TKDE.2020.2989301
https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
https://doi.org/10.1561/2200000016
https://doi.org/10.1016/j.jbi.2023.104581
https://doi.org/10.1016/j.jbi.2023.104581
https://doi.org/10.1186/s12911-022-01771-3
https://doi.org/10.1186/s12911-022-01771-3
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/TPDS.2023.3238768
https://doi.org/10.1109/TPDS.2023.3238768
https://doi.org/10.1145/3375402

Complex & Intelligent Systems (2025) 11:388 Page 11 of 11 388

Mitchell JC, Naor M, Nierstrasz O, Pandu Rangan C, Steffen B,
Sudan M, Terzopoulos D, Tygar D, Vardi MY, Weikum G, Park C-
s, Chee S (eds) Information Security and Cryptology ICISC 2004
vol. 3506, pp. 104–120. Springer, Berlin, Heidelberg. https://doi.
org/10.1007/11496618_9 . Series Title: LectureNotes inComputer
Science. Accessed 2021-06-28

15. Atallah MJ, Du W (2001) Secure Multi-party Computational
Geometry. In: Goos, G, Hartmanis J, Leeuwen J, Dehne F, Sack
J-R, Tamassia R (eds) Algorithms and Data Structures vol. 2125,
pp. 165–179. Springer, Berlin, Heidelberg.https://doi.org/10.1007/
3-540-44634-6_16 . Series Title: Lecture Notes in Computer Sci-
ence. Accessed 2021-07-19

16. Du W, Atallah MJ (2001) Privacy-preserving cooperative statisti-
cal analysis. In: Seventeenth Annual Computer Security Appli-
cations Conference, pp. 102–110. IEEE Comput. Soc, New
Orleans, LA, USA. https://doi.org/10.1109/ACSAC.2001.991526.
Accessed 2021-06-16

17. Vaidya J, Clifton C (2002) Privacy preserving association rule min-
ing in vertically partitioned data. In: Proceedings of the Eighth
ACMSIGKDDInternationalConference onKnowledgeDiscovery
and Data mining. KDD ’02, pp. 639–644. Association for Com-
puting Machinery, New York, NY, USA. https://doi.org/10.1145/
775047.775142. Accessed 2021-06-16

18. Sembay Z (2021) Seer breast cancer data. Zenodo. https://doi.org/
10.5281/zenodo.5120960

19. Harrell FE Jr, Lee KL, Mark DB (1996) Multivariable prognostic
models: issues in developing models, evaluating assumptions and
adequacy, andmeasuring and reducing errors. StatMed 15(4):361–
387

20. Wang J, Guo S, Xie X, Qi H (2022) Protect privacy from gra-
dient leakage attack in federated learning. In: IEEE INFOCOM
2022—IEEE Conference on Computer Communications, pp. 580–
589. IEEE, London, United Kingdom. https://doi.org/10.1109/
INFOCOM48880.2022.9796841. Accessed 2024-05-21

21. Jin X, Chen P-Y, Hsu C-Y, Yu C-M, Chen T (2021) CAFE: catas-
trophic data leakage in vertical federated learning. In: Advances
in Neural Information Processing Systems, vol. 34, pp. 994–1006.
Curran Associates, Inc., https://proceedings.neurips.cc/paper_
files/paper/2021/hash/08040837089cdf46631a10aca5258e16-
Abstract.html. Accessed 2024-05-21

22. Wei W, Liu L, Loper M, Chow K-H, Gursoy ME, Truex S, Wu Y
(2020) A framework for evaluating gradient leakage attacks in fed-
erated learning. arXiv. arXiv:2004.10397 [cs, stat]. https://doi.org/
10.48550/arXiv.2004.10397 . arxiv:2004.10397 Accessed 2024-
05-21

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/11496618_9
https://doi.org/10.1007/11496618_9
https://doi.org/10.1007/3-540-44634-6_16
https://doi.org/10.1007/3-540-44634-6_16
https://doi.org/10.1109/ACSAC.2001.991526
https://doi.org/10.1145/775047.775142
https://doi.org/10.1145/775047.775142
https://doi.org/10.5281/zenodo.5120960
https://doi.org/10.5281/zenodo.5120960
https://doi.org/10.1109/INFOCOM48880.2022.9796841
https://doi.org/10.1109/INFOCOM48880.2022.9796841
https://proceedings.neurips.cc/paper_files/paper/2021/hash/08040837089cdf46631a10aca5258e16-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/08040837089cdf46631a10aca5258e16-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/08040837089cdf46631a10aca5258e16-Abstract.html
http://arxiv.org/abs/2004.10397
https://doi.org/10.48550/arXiv.2004.10397
https://doi.org/10.48550/arXiv.2004.10397
http://arxiv.org/abs/2004.10397

	Verticox+: vertically distributed Cox proportional hazards model with improved privacy guarantees
	Abstract
	Introduction
	Background
	Verticox
	Scalar product protocol
	The protocol

	Verticox+
	Time complexity & communication overhead
	Time complexity
	Communication cost
	Fixed precision

	Experimental validation
	Discussion
	Future work
	Conclusion
	Summary

	References

