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Early prediction of disability progression in multiple sclerosis (MS) remains challenging despite its critical
importance for therapeutic decision-making. We present the first systematic evaluation of personalized
federated learning (PFL) for 2-yearMSdisability progression prediction, leveragingmulti-center real-world
data from over 26,000 patients. While conventional federated learning (FL) enables privacy-aware
collaborative modeling, it remains vulnerable to institutional data heterogeneity. PFL overcomes this
challenge by adapting shared models to local data distributions without compromising privacy. We
evaluated two personalization strategies: a novel AdaptiveDualBranchNet architecture with selective
parameter sharing, and personalized fine-tuning of global models, benchmarked against centralized and
client-specific approaches. Baseline FL underperformed relative to personalized methods, whereas
personalization significantly improved performance, with personalized FedProx and FedAVG achieving
ROC-AUC scores of 0.8398 ± 0.0019 and 0.8384 ± 0.0014, respectively. These findings establish
personalization as critical for scalable, privacy-aware clinical prediction models and highlight its potential
to inform earlier intervention strategies in MS and beyond.

Multiple Sclerosis (MS) is a complexneurological disorder affectingmillions
of people worldwide1. In the absence of a cure, current treatment strategies
focus on controlling disease progression and preventing relapses2.However,
the heterogeneity of MS complicates disease management, as each patient
experiences unique disease progressions and varying responses to

treatment3. The primary challenge lies in capturing this heterogeneity to
enable personalized, data-driven treatment strategies4–6.

A promising approach for personalizing care involves leveraging the
increasing availability of Real-World Data (RWD) through the application
of Machine Learning (ML)7. Previous studies have shown that ML can
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significantly improve our understanding of MS progression, uncover new
biomarkers, and predict individual treatment responses8–13.

Despite recent advances, developing advanced ML models for MS
remains constrained by limited access to large-scale, high-quality datasets,
which often require data centralization14. Although MS impacts an esti-
mated 2.8million individuals globally1, the clinical data needed for precision
modeling remain fragmented and siloed across healthcare institutions.
Aggregating such data is complicated by legitimate but complex regulatory
constraints, data ownership concerns, and inconsistent data quality
standards15–18. Consequently, these factors present significant obstacles to
conventional centralizedmodel training,motivating the need for alternative
approaches.

However, this centralization challenge is not unique toMS andhas been
observed in other fields as well, motivating the development of Federated
Learning (FL)19,20. FL is a decentralized learning paradigm that enables
trainingMLmodels while preserving data localization21,22. This decentralized
approach is strongly aligned with data privacy and protection standards,
offering a solution to the dilemmas inherent in data centralization23–26.

Within healthcare, FL has shown success in a broad spectrum of
applications, ranging from predicting hospitalization for cardiac events21,27,
to enhancingwhole-brainmagnetic resonance imaging segmentation28, and
even advancing drug discovery29. The potential of FL in MS is evident,
although only a few studies have investigated this synergy, primarily
focusing on imaging data30–32.

Nevertheless, conventional FL methods rely on a single global model
shared across all clients, which often performs poorly when local data dis-
tributions differ significantly. This challenge is particularly pronounced in
MS, where clinical presentation, disease progression, and treatment
response vary markedly across patients and institutions. In such hetero-
geneous settings, conflicting client updates can hinder convergence during
training, while the absence of client-specific adaptation limits the model’s
relevance to local contexts. These shortcomings not only impair overall
performance but may also reduce the incentive for participation among
underrepresented clients33. Personalized Federated Learning (PFL) has
emerged to address these gaps33, enabling models to incorporate local data
characteristics and thereby improving both predictive accuracy and
robustness in diverse clinical environments such as MS.

Building on this motivation, our study evaluates the practical applic-
ability of FL andPFL for analyzing routine clinical RWDinMS.Weassessed
multiple strategies for predicting disability progression and examined their
feasibility in real-world healthcare environments. In doing so, we aimed to
provide both empirical evidence and actionable insights to guide the
effective deployment of FL-based solutions in clinical practice.

Specifically, we investigated five main data analysis paradigms: (1)
centralized modeling, where all data are pooled into a single dataset; (2)
baselineFL,which trains a jointmodel ondecentralizeddata; (3) and (4) two
PFL approaches that enable personalization; and (5) local modeling, where
each client trains its model independently.

The first PFL approach introduces a novelML architecture specifically
designed for FL, called AdaptiveDualBranchNet. This method modifies the
learning process by maintaining individual models with varying depths for
each client and federating only partial model parameters. The second
approach involvesfine-tuning,where each client personalizes its ownmodel
after the FL setup using local data. The frameworks for baseline FL, aswell as
the adaptive and fine-tuned PFL approaches, are illustrated in Fig. 1,
highlighting their respective architectures and workflows.

Our experiments leveraged the MSBase registry, the largest global
database ofMS patients, and simulated a realistic data partitioning scenario
to reflect the heterogeneity observed in real-world clinical settings34,35. This
comprehensive experimental design enabled us to identify the conditions
under which FL can be effectively applied to MS research.

Contributions: (1) Systematic evaluation of FL and PFL inMS research:
we present the first comprehensive assessment of federated and PFL
approaches for modeling disability progression in MS using routine clinical
RWD. (2) Identification of conditions for effective FL deployment: Through

extensive benchmarking, we identify key factors that influence the success of
FL in MS, offering actionable guidance for researchers and healthcare prac-
titioners. (3) Development of AdaptiveDualBranchNet: we introduce Adap-
tiveDualBranchNet, anovelFLarchitecture that enablespartialmodel sharing
and demonstrates improved performance compared to existing FL baselines.

Results
The federated experiments incorporated different strategies, including the
FedAVG36, FedProx37, and FedOpt (FedYogi, FedAdam, FedAdagrad)
algorithms38. For the binary classification task of this study, we carried out an
extensive hyperparameter tuning using grid search for each FL strategy39 to
find the best set of parameters. To maintain consistency and strengthen the
reliability of our results, we repeated each experiment 10 times to confirm the
robustness of our findings. TheAreaUnder theCurve (AUC) of the Receiver
Operating Characteristic (ROC) and Precision-Recall (PR) curves for these
results are shown in Fig. 2, with detailed metrics provided in Table 1. The
results of the experiment runtime as anothermetric also presented inTable 2.

Centralized superiority in overall performance, bridged by per-
sonalized federated learning
Among these results, the centralized model consistently outperformed all
federated models, achieving the highest ROC–AUC (0.8092 ± 0.0012) and
AUC–PR (0.4605 ± 0.0043) scores. This highlights the benefits of having
access to centralized data, which enables more effective model training.

Within the federated models, FedAdam and FedYogi demonstrated
the best performance, with ROC–AUC and AUC–PR scores of
0.7920 ± 0.0031and0.4488 ± 0.0061 forFedAdam, and0.7910 ± 0.0028and
0.4420 ± 0.0078 for FedYogi, respectively. However, these gains came at the
cost of higher computational demands, as FedAdam required the longest
training time at 236min, about 23% more than FedProx.

FedAVG provided a balanced alternative, with a ROC–AUC of
0.7840 ± 0.0019 and anAUC–PRof 0.4030 ± 0.0059, completing training in
~193min. FedProx, while offering similar performance to FedAVG,
reduced training time by around 11%, completing in 172min, making it a
practical option for faster execution.

FedAdagrad, although slightly lower in performance (ROC–AUC:
0.7762 ± 0.0021, AUC–PR: 0.3913 ± 0.0061), showed a comparable training
duration of 190min, balancing efficiency and accuracy.

Nevertheless, baseline FL remained limited in overall performance. As
shown in Fig. 4, challenges such as non-IID data distributions, varying
dataset sizes, and class imbalance hindered themodel’s ability to generalize.
To overcome these limitations, we evaluated two personalization strategies
aimed at improving overall performance and compared their results in the
following analysis.

To begin with, AdaptiveDualBranchNet (referred to as “Adaptive”)
demonstrated clear improvements in model performance compared to the
baseline FL paradigm. As shown in Table 1, the adaptive method con-
sistently increased both ROC–AUC and AUC–PR across all FL strategies.
However, as Table 2 indicates, these gains came at the cost of increased
computational time.

FedProx, which is developed as a federated strategy to tackle system
heterogeneity, variations in client data distributions and computational
resources, demonstrated a 7.2% improvement in ROC–AUC and a 31%
increase in AUC–PR over the baseline federated model. This suggests that
FedProx’s adaptive personalization enhances its ability to capture diverse
data patterns effectively.However, this increased flexibility camewith a 27%
longer training time, highlighting a trade-off between improved accuracy
and computational efficiency. Using FedAVG, a simpler strategy that
averages neural network parameters across clients, showed a similar
improvement in AUC–PR (28%) while requiring only a 7% increase in
computational time. This indicates that Adaptive FedAVG benefits from
personalization with minimal added computational burden, making it a
strong choice in resource-constrained scenarios where personalization is
desired. The adaptive approach also boosted the performance of FedAda-
grad, FedYogi, and FedAdam, all of which utilize adaptive optimization
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techniques. FedAdagrad demonstrated a 7.7% improvement in ROC–AUC
and a 31% increase in AUC–PR, though it came with a 21% increase in
training time. FedYogi improved AUC–PR by 6.4%, but required a 28%
increase in time. On the other hand, FedAdam achieved a 16% increase in
AUC–PRwith only a 4% increase in training time, indicating its efficiency in
handling personalization through optimized learning rate and momentum
adjustments, although its initial training time was relatively high.

Following adaptive personalization, fine-tuning also improved
model performance by adapting the global model to each client’s local
data distribution, allowing it to better capture individual patient pat-
terns. Fine-tuned models consistently demonstrated improvements in
both ROC–AUC and AUC–PR metrics, as summarized in Table 1. For
instance, both FedProx and FedAVG achieved the highest performance
following fine-tuning. The FedProx model reached a ROC–AUC of
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Fig. 1 | Analysis paradigms for predicting disability progression in multiple
sclerosis using real world data. a Baseline Federated Learning (FL): Depicts the
classic iterative process in which multiple clients (e.g., clinical sites) collaboratively
train a single global model. Each client gets the current global model (Step 1) and
trains it locally on its private dataset (Step 2). The locally updated parameters are
then uploaded to a central server (Steps 3) and aggregated (Step 4), refining the
globalmodel without exchanging any raw patient data. (Step 5)Dissemination of the
updated global model to all clients for continued local training based on aggregated
knowledge. b Personalized Federated Learning (PFL) with Adaptive Partial Para-
meter Exchanges (AdaptiveDualBranchNet): Illustrates a dual branch architecture
where each client’s model is split into a shared core (federated across all clients) and
local extension layers (trained solely with private data). During each federated round

(Steps 1, 3, 5), only the shared core parameters are exchanged and aggregated at the
central server, preserving common knowledge. The local extension layers remain
entirely onsite (Step 2), allowing each client to further personalize itsmodel based on
unique data distributions or sample sizes. c PFL via Fine Tuning: Shows how a pre-
trained global FLmodel (Step 1) is shared with each client. Each client fine tunes this
model on its local dataset (Step 2), creating a personalized version (Step 3) that
reflects client specific characteristics. This approach retains the benefits of cross site
collaboration while allowing for tailored predictions. Collectively, these paradigms
form part of a broader analysis that also includes centralized (pooled data) and local
(client specific) training baselines. This holistic evaluation framework helps eluci-
date the strengths and trade offs of each approach in leveraging real world data for
predicting disability progression in multiple sclerosis.
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0.8375, reflecting a 6.91% improvement over its baseline of 0.7834,
while FedAVG closely followed with a ROC–AUC of 0.8370. For
AUC–PR, FedProx saw an increase from 0.4081 to 0.5221, representing
an ~28% gain.

Among the strategies tested, FedAdagradbenefited themost fromfine-
tuning, with a 7.5% increase in ROC–AUC and a 28.9% rise in AUC–PR.
This suggests that FedAdagrad was particularly responsive to fine-tuning,
allowing it to better adapt to the data distributions specific to individual
clients.

Figure 3 also confirms that fine-tuned models generally outperform
federated models. This is evident from the consistently positive differences
in both ROC-AUC and AUC-PR scores across all methods. Moreover, the
fact that these differences rarely cross zero indicates that the advantages of
Adaptive models are statistically meaningful. When it comes to comparing
adaptive andfine-tunedmodels, thedifferences areminor andhover around
zero, suggesting that these two approaches are quite similar overall. While
adaptive models hold a slight edge in methods like FedAdam and FedYogi.
Note that the x-axis scale varies across the plots.

Federated models struggle against centralized model at the
client level
Toperformadetailed client-level comparisonacross countries,we evaluated
five key paradigms: federated, fine-tuned, adaptive, centralized, and local.
For consistency, FedProxwas selected as the representative federatedmodel

Fig. 2 | Comparative analysis of federated learning model performance. Evalu-
ating ROC–AUC and AUC–PR Metrics Across Different Strategies. (Left) Receiver
Operating Characteristic: The centralized model achieves the highest performance
with an ROC–AUC = 0.8092 ± 0.0012, demonstrating the advantage of having a
pooled dataset. Among FL strategies, FedAdam and FedYogi perform best, with
ROC–AUC values of 0.7920 ± 0.0031 and 0.7910 ± 0.0028, respectively. The other
FL methods, including FedAvg and FedProx, show slightly lower performance,
underscoring the challenges of a global federated model in heterogeneous data

settings. (Right) Precision-Recall Curve: Again, the centralized model outperforms
with an AUC–PR = 0.4605 ± 0.0043. Among FL methods, FedAdam achieves the
highest AUC–PR of 0.4488 ± 0.0061, while FedYogi and FedProx follow closely with
values of 0.4420 ± 0.0078 and 0.4081 ± 0.0058, respectively. The drop in perfor-
mance compared to the centralized approach reflects the difficulty of capturing
minority class predictions in federated settings. These results emphasize the per-
formance gap between centralized and federated learning strategies, particularly in
heterogeneous and imbalanced data scenarios.

Table 1 | Performance metrics (ROC–AUC and AUC–PR) for personalized federated learning models compared to federated
learning baseline across various strategies

ROC–AUC ↑ AUC–PR ↑

Personalized FL FL Personalized FL FL

Experiments Fine-tuned Adaptive Baseline Fine-tuned Adaptive Baseline

FedAVG 0.8370 ± 0.0016 0.8384 ± 0.0014 0.7840 ± 0.0019 0.5156 ± 0.0046 0.5290 ± 0.0062 0.4030 ± 0.0059

FedProx 0.8375 ± 0.0019 0.8398 ± 0.0019 0.7834 ± 0.0019 0.5221 ± 0.0044 0.5346 ± 0.0029 0.4081 ± 0.0058

FedAdagrad 0.8340 ± 0.0012 0.8361 ± 0.0021 0.7762 ± 0.0021 0.5043 ± 0.0043 0.5131 ± 0.0062 0.3913 ± 0.0061

FedYogi 0.8369 ± 0.0027 0.8178 ± 0.0026 0.7910 ± 0.0028 0.5379 ± 0.0072 0.4702 ± 0.0059 0.4420 ± 0.0078

FedAdam 0.8339 ± 0.0015 0.8324 ± 0.0032 0.7920 ± 0.0031 0.5383 ± 0.0050 0.5197 ± 0.0073 0.4488 ± 0.0061

Centralized 0.8092 ± 0.0012 0.4605 ± 0.0043

“Centralized” results are included for comparisonpurposesanddo not fall under the FLor PFL categories. For brevity, the term “AdaptiveDualBranchNet”will be referred to simply as “Adaptive” throughout
thismanuscript. Additionally, the non-personalizedFLmodel is commonly referred to as the baseline FLparadigm. The value after “±”denotes the standard deviation of themeasurements. The bold values
indicate the best-performing results within each row, where higher values are better, as shown by the arrows in the column headers.

Table 2 | Experiment timing comparison: personalized vs.
baseline federated learning (in min)

Method Experiment Time (min) ↓

Adaptive Baseline

FedAVG 206.81 ± 3.670 192.66 ± 5.370

FedProx 217.51 ± 13.18 171.77 ± 9.440

FedAdagrad 230.91 ± 18.27 190.02 ± 2.240

FedYogi 246.74 ± 5.420 193.21 ± 41.89

FedAdam 225.69 ± 7.910 236.08 ± 13.42

Where lower timing values are preferred, bold is used to highlight thebest timing for eachmodel type
(i.e., the better-performing federated strategy between Adaptive and Baseline for that specific
method). In caseswhere two values are very close and notmeaningfully different, both are bolded to
reflect comparable performance.
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because of its balance of performance and computational efficiency. While
FedAdam showed marginally better performance, FedProx offered a more
favorable trade-off between accuracy and resource usage. Nonetheless,
comprehensive results for all federated strategies are provided in Supple-
mentary Tables 1–4.

The results presented in Table 3 indicated that the centralized model
outperformed all baseline federated approaches, achieving ameanweighted
averageROC–AUCof 0.8092 andanAUC–PRof 0.4605.This represents an
improvement of ~3.3% in ROC–AUC and 12.8% in AUC–PR over the
federated model. These results highlight the advantage of centralized

Table 3 | Performance scores for different learning paradigms across countries

ROC–AUC ↑ AUC–PR ↑

Country Dataset Size Federated Adaptive Fine-tuned Centralized Local Federated Adaptive Fine-tuned Centralized Local

CZ 55435 0.8909 0.9211 0.9193 0.8781 0.8669 0.5875 0.7214 0.6990 0.5568 0.4600

IT 54354 0.7946 0.8168 0.8108 0.7769 0.7603 0.4590 0.5099 0.4924 0.4312 0.3491

TR 37853 0.8365 0.8887 0.8854 0.8467 0.8498 0.4427 0.5953 0.5716 0.483 0.4161

ES 33396 0.7680 0.8027 0.7969 0.7713 0.7609 0.3819 0.4564 0.4393 0.4055 0.3381

CA 27131 0.7370 0.7619 0.7615 0.7488 0.7332 0.3383 0.3965 0.3949 0.3893 0.3407

AU 23906 0.7300 0.7679 0.7657 0.7490 0.7287 0.3098 0.3962 0.3805 0.3882 0.3129

PT 6884 0.7449 0.8475 0.8525 0.8252 0.7972 0.2627 0.4524 0.4774 0.449 0.3562

BE 6534 0.6495 0.8115 0.8156 0.7963 0.7987 0.1559 0.3980 0.4050 0.3553 0.2987

KW 5725 0.7445 0.9137 0.9128 0.8761 0.9164 0.1661 0.5104 0.5111 0.4558 0.4850

HU 4892 0.7128 0.9608 0.9632 0.9495 0.9549 0.3099 0.7810 0.779 0.7311 0.5924

NL 4869 0.5614 0.6595 0.6782 0.6873 0.7107 0.1797 0.2539 0.2756 0.2826 0.2650

TN 4780 0.7857 0.9535 0.9535 0.9319 0.9312 0.503 0.8639 0.8664 0.8178 0.8040

CH 3836 0.6212 0.7650 0.7700 0.7925 0.7274 0.1232 0.3042 0.3196 0.3084 0.1952

IR 2980 0.6396 0.8269 0.8330 0.8158 0.7471 0.2514 0.5570 0.5702 0.5345 0.3682

AR 2440 0.6714 0.8856 0.8719 0.8274 0.8784 0.2625 0.6287 0.6331 0.5801 0.5946

LB 1937 0.5955 0.7589 0.7398 0.7314 0.6553 0.1171 0.3343 0.3187 0.2756 0.2255

US 1344 0.5627 0.7303 0.7368 0.7437 0.7044 0.1383 0.2493 0.2797 0.3128 0.2433

IL 1140 0.6937 0.8750 0.8782 0.8537 0.8503 0.2604 0.5986 0.6310 0.5198 0.5181

OM 969 0.5339 0.8472 0.8731 0.8093 0.7981 0.0962 0.5421 0.5897 0.4763 0.2995

CU 782 0.5625 0.7971 0.8050 0.8062 0.8266 0.1864 0.4190 0.4744 0.4775 0.5260

BR 578 0.5768 0.8063 0.7680 0.7307 0.7070 0.1434 0.4308 0.4200 0.4677 0.4605

SA 256 0.6749 0.8915 0.8677 0.9374 0.8827 0.2466 0.659 0.5619 0.6851 0.7674

GB 221 0.6520 0.6060 0.6880 0.8510 0.5333 0.2576 0.3250 0.3007 0.4774 0.2529

NZ 110 0.3286 0.6095 0.4857 0.4190 0.5873 0.0738 0.1247 0.1094 0.0810 0.1057

GR 99 0.7240 0.8714 0.8703 0.9292 0.7998 0.6495 0.8794 0.8777 0.9082 0.8048

WA 0.7835 0.8398 0.8375 0.8092 0.7983 0.4081 0.5346 0.5221 0.4605 0.3874

The table reports ROC–AUC and AUC–PR metrics for federated learning, adaptive, fine-tuned, centralized, and local approaches. The bold values indicate the best-performing results within each row,
where higher values are better, as shown by the arrows in the column headers.

Fig. 3 | Comparison of ROC–AUC and AUC–PR differences among adaptive,
fine-tuned, and federated models. This figure shows average ROC–AUC and
AUC–PR score differences across five strategies (FedAVG, FedProx, FedAdam,

FedYogi, and FedAdagrad) for each pairwise comparison of model types. Error bars
represent 95% confidence intervals frommultiple runs, with a dashed vertical line at
zero indicating no difference between models.
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training, as it fully leverages the entire dataset, leading to better performance
compared to federated models.

Local models capture specific client insights but lack
generalization
To provide a more comprehensive perspective, we also calculated the
weighted averages for the local models. The local model achieved a
ROC–AUC of 0.7983 and an AUC–PR of 0.3874, placing its ROC–AUC
performance between that of the centralized and federated models, though
its AUC–PR lagged behind the federated models. This suggests that while
local models benefit from training on specific client data, they may lack the
broader insights captured by centralized models and the generalized pat-
terns learned by federated models.

Personalization enhances client-level performance in federated
learning
Bringing together the results from PFL, baseline FL, centralized, and local
models, we analyzed the performance scores presented in Table 3. Notably,
we observed that while the federated model initially lagged behind the
centralizedmodel, thePFL approach allowed it to close the performance gap
and eventually surpass the centralized model. This suggests that persona-
lization can significantly boost the effectiveness of FL by adapting to client-
specific data distribution.

Fromabroader perspective, the adaptive andfine-tunedparadigms are
the top performers, with adaptive models leading in 11 countries and fine-
tuned models in 6. This demonstrates the clear advantage of PFL approa-
ches, which consistently achieve the highest ROC–AUC scores across dif-
ferent countries. The centralized paradigm ranks next, leading in five
countries, showing its occasional competitiveness. The local model out-
performed others in three countries, while federated paradigms did not
achieve the highest performance in any country. This suggests that, without
the personalized adjustments or aggregation benefits seen in centralized
models, federated approaches struggle to match the predictive accuracy of
the other paradigms. A similar pattern was observed for AUC–PR.

Federated vs. local models: impact of dataset size
To assess whether countries experienced greater benefits from federated or
local models (excluding the centralized and PFL paradigms), our analysis of
the ROC–AUCmetric revealed that 19 cases favored local models, while six
cases showedbetter resultswith the federatedapproach. Focusing ondataset
size, particularly for intermediate-sized countries (ranging from BE to AR),
we observed significant performance differences in favor of local models,
with an average advantage of 15.98% in ROC–AUC.

In contrast, these differences were much less pronounced in countries
with larger datasets, such as those from CZ to AU, where federated models
outperformed local models in five of the top six cases.

Further analysis using Spearman correlation confirmed these obser-
vations, revealing a moderate negative correlation (ρ =−0.503, p = 0.010)
between dataset size and the performance gap (ROC–AUC difference)
between federated and localmodels.This pattern suggests that as dataset size
increases, federated models can generalize more effectively, achieving per-
formance comparable to or even surpassing that of local models. Countries
with smaller datasets, the federated model typically underperforms in
comparison to local models, with notable differences in metrics scores. It
appears that local models, when trained on smaller, more specific datasets,
are able to capture unique dataset characteristics that the federatedmodel—
due to its aggregated, generalized approach—may fail to recognize. Simi-
larly, the performance gap between federated and centralized models
showed a strong negative correlation (ρ =−0.761, p < 0.001), underscoring
the ability of federated models to approach centralized model performance
when trained on larger datasets.

Performance trends in the largest data-contributing countries
Focusing on analyzing the top six countries, CZ, IT, TR, ES, CA, AU, which
hold 82%of thedata as highlighted inFig. 4d,Our goal is to identify themost

effective alternative paradigms in comparison to one another. The findings
from this analysis summarized in Table 4 illustrates a notable trend: across
the six countries, the adaptive paradigm outperforms other approaches,
closely followed by the fine-tuned model. These two paradigms frequently
demonstrate superior ROC–AUC scores, surpassing local, centralized and
federated models. A detailed breakdown highlighting the best-performing
models for each country is provided in Supplementary Table 5.

Discussion
Advancing MLmodels for complex conditions such as MS requires access to
large and diverse datasets. However, centralizing sensitive patient data from
multiple institutions presents significant regulatory, logistical, and ethical
challenges14–18. FL offers a privacy-aware alternative by enabling collaborative
model trainingacrossdecentralizeddatasets19,20.Yet, baselineFLmethods, such
as FedAVG, which learn a single global model, often underperform in the
presence of substantial statistical heterogeneity (non-IID data) common in
multi-institutional clinical datasets23,36. These limitations motivate the devel-
opment of PFL approaches, which aim to adapt models to the unique char-
acteristics of each client while preserving the collaborative benefits of FL33.

To systematically investigate this challenge, we compared multiple FL
paradigms against centralized and local baselines for predicting MS dis-
ability progression. The results revealed a clear performance hierarchy
(Tables 1, 3): PFL strategies, including Adaptive and fine-tuning methods,
achieved the highest discrimination performance, surpassing both cen-
tralized and local models. Although centralizedmodels performed well and
ranked third overall, their feasibility is often constrained by privacy reg-
ulations and logistical barriers that complicate large-scale data aggregation.
In many practical healthcare scenarios, assembling centralized datasets
remains challenging. These findings underscore the relevance of federated
approaches, which enable collaborative model development without com-
promising data sovereignty. Importantly, our results show that with
appropriate personalization strategies, FL can become a practical and
privacy-respecting alternative to centralized training.

Beyonddiscrimination performance, clinical applicability also requires
strong calibration and reliable risk estimation. While top-performing PFL
models, such as Adaptive FedProx (ROC-AUC 0.8398), achieved dis-
crimination comparable topublishedbenchmarks for similarMSprediction
tasks10,13, discrimination alone does not guarantee clinical utility. For
meaningful clinical use, particularly at the individual patient level, predic-
tions must accurately reflect the true risk. Current model performance may
support applications such as cohort-level monitoring or population health
analyses, but further improvements in predictive certainty and calibration
are needed before safe deployment in high-stakes clinical decision-making.
In particular, comprehensive reporting of calibration metrics, including
Brier scores, expected calibration error, and calibration diagrams, would
provide a more complete assessment of model reliability40. Ensuring that
predictive outputs are trustworthy is essential to avoid patient harm and
misinformed management41.

Ensuring clinical applicability not only requires discrimination and
calibration but also demandsflexiblemodeling approaches that can adapt to
local data characteristics without sacrificing global knowledge transfer.
Addressing this need, our proposed AdaptiveDualBranchNet architecture
contributes to architectural personalization strategies by enhancing model
flexibility. It introduces dynamic depth in the personalized branch, allowing
complexity to scale with local data volume. Unlike prior approaches such as
FedPer42, which rely on fixed partitions between shared and private layers,
AdaptiveDualBranchNet retains the full global model and integrates client-
specific layers in parallel. This design preserves the expressive capacity and
transferability of the shared global representation while enabling client-
specific adaptation. Benchmarking against representative PFL baselines,
detailed in Supplementary Note Section 1.4, further supports the effec-
tiveness of this approach.

Building upon these improvements, future work could explore
dynamic or learning-based adaptations to enhance personalization flex-
ibility. Rather than relying on heuristically defined thresholds for scaling
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model depth, allowing models to autonomously adjust their complexity in
response to richer client-specific data signals may further improve gen-
eralization and robustness. Beyond architectural adaptivity, optimization
dynamics also represent an important axis for personalization. In this study,
a uniform learning ratewas applied across all parameters of themodels,with
dynamic adjustment governed by a ReduceLROnPlateau scheduler43. Pre-
liminary investigations into more granular strategies, such as distinct
learning rates for global and personalized branches, differential regular-
ization, and gradient clipping, suggested additional opportunities for per-
formance gains. Although not included in thefinal experiments tomaintain
a controlled baseline, these approaches highlight promising future

directions. Moreover, client-specific hyperparameter adaptation, modulat-
ing local learning rates, batch sizes, or regularization strengths based on
client characteristics44–46, may further improve fairness, stability, and
adaptability across heterogeneous federated settings. Together, dynamic
architectural scaling and personalized optimization strategies could enable
more resilient and equitable predictivemodeling in decentralized healthcare
applications.

Complementary to adaptive architectures, post-hoc fine-tuning pro-
vided an additional strategy for personalization. Fine-tuning global models
on local data distributions improved model performance but showed
dependency on data sufficiency. Clients with sparse data faced greater risks

Table 4 | Performance comparison of top six countries by dataset size across different paradigms

Country Best Paradigm Second Best Paradigm Third Best Paradigm Worst Paradigm

CZ Fine-tuned FedYogi 0.9222 Adaptive FedProx 0.9211 Federated FedYogi 0.901 Local 0.8669

Best-Worst: 0.0553 Second Best-Worst: 0.0542 Third Best-Worst: 0.0341

IT Adaptive FedProx 0.8168 Fine-tuned FedYogi 0.8151 Federated FedAVG 0.7960 Local 0.7603

Best-Worst: 0.0565 Second Best-Worst: 0.0548 Third Best-Worst: 0.0357

TR Adaptive FedAVG 0.8891 Fine-tuned FedYogi 0.8881 Local 0.8498 Federated FedAdagrad 0.8339

Best-Worst: 0.0552 Second Best-Worst: 0.0542 Third Best-Worst: 0.0159

ES Adaptive FedAVG 0.8028 Fine-tuned FedYogi 0.8020 Federated FedYogi 0.7793 Local 0.7609

Best-Worst: 0.0419 Second Best-Worst: 0.0411 Third Best-Worst: 0.0121

CA Adaptive FedProx 0.7619 Fine-tuned FedAdagrad 0.7617 Centralized 0.7488 Federated FedAdagrad 0.7327

Best-Worst: 0.0292 Second Best-Worst: 0.0290 Third Best-Worst: 0.0161

AU Adaptive FedAVG 0.7692 Fine-tuned FedAVG 0.7678 Centralized 0.749 Federated FedAdagrad 0.7187

Best-Worst: 0.0505 Second Best-Worst: 0.0491 Third Best-Worst: 0.0303

The second line of each multi-row represents the difference between the given paradigm’s performance and the worst performance.

(a) (b)

(c) (d)

Fig. 4 | Heterogeneity of country-specific data partitions for federated learning.
a Log-scaled distribution of country-specific dataset sizes DCi

, sorted in descending
order, highlighting disparities in data contributions. b Class imbalance across
countries, showing underrepresentation of Class 1 (MS worsening confirmed)
relative to Class 0. c Histogram of dataset sizes using 5K bin intervals, emphasizing

skewed availability across participating centers. d Pie chart illustrating the pro-
portional contribution of each country to the overall dataset. Together, these ana-
lyses demonstrate the significant variability in both data quantity and label
distributions across clients, underscoring the challenges faced by federated learning
models operating in real-world clinical settings.
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of overfitting and unstable evaluation due to small or imbalanced test sets.
Stratified analysis (Supplementary Fig. 2) revealed that fine-tuning yielded
the most consistent improvements for clients with intermediate data
volumes, particularly those initially underserved by the global model.
Detailed stratified results are provided in Supplementary Note Section 1.5.
Thesefindings emphasize the need for personalizationmethods that remain
effective even in low-data settings, such as adapter-based fine-tuning47,48 or
selective layer updating combined with lightweight regularization49.

Several limitations of this study should be acknowledged. First, the study
relied on simulation due to data governance constraints. Although the simu-
lation framework was designed to accurately model algorithmic behavior and
data heterogeneity, it cannot fully capture real-world factors such as network
variability, system heterogeneity, or participant dropout50,51. Consequently,
certainabsolutemetrics,suchasthe~15%increase intrainingtimeobservedfor
the Adaptive model, may not generalize directly. Although computational
overhead was manageable in simulation, real-world deployments will be
necessary to properly assess practical resource demands and communication
efficiency. Nevertheless, the relative performance hierarchies observed across
paradigms offer valuable hypotheses for future validation under real-world
constraints.

Further limitations include the use of retrospective RWD7,52, which
may introducemissingness or bias, and the country-based data partitioning
schema. While pragmatic, country-level partitioning may not fully capture
natural clinical or institutional boundaries. Exploring alternative parti-
tioning strategies, such as clinic-level, regionally grouped, or quantity-
skewed clients, could provide further insights into model robustness under
varied federated topologies. In addition, the use of weighted averaging
during evaluationmay introduce bias favoring larger clients, as discussed in
more detail in Supplementary Note 1.1. Future work could explore com-
plementary evaluation strategies, such as server-side global testing, to pro-
vide a more balanced assessment of model generalizability.

Translating FL models into clinical practice will require rigorous
external validation using independent cohorts across diverse real-world
settings, patient populations, and infrastructures. Such efforts could be
facilitated by initiatives like the EuropeanHealth Data Space53,54 and should
align with established reporting guidelines such as TRIPOD55 to ensure
methodological transparency and reproducibility.

Sustainable and scalable deployment of FL in healthcare will also
require supportive ecosystem development, including trusted inter-
mediaries, standardized governance protocols, and mechanisms for equi-
table benefit-sharing. Initiatives such as theGlobalData Sharing Initiative in
MS14,56 and projects like MELLODDY57 illustrate promising models for
federated collaboration across institutions and industries.

Future technical enhancements should explore integratingmultimodal
data sources (e.g., MRI, Evoked Potentials58), adopting advanced privacy-
preserving techniques (e.g., differential privacy, secure multi-party
computation59,60) while balancing trade-offs, and developing refined per-
sonalization strategies, particularly for low-resource clients.

Ultimately, unlocking the clinical potential of FL will depend not only
on technical advances but alsoonembeddingFLwithin abroaderhealthcare
ecosystem that supports data harmonization, clinician engagement, reg-
ulatory alignment on fairness, interpretability61, and privacy. Demonstrat-
ing real-world clinical utility through prospective impact studies will be
essential to validate technical performance and build trust in FL-enabled
decision support as a safe, fair, and effective tool for patient care62.

Methods
Cohort definition and episode extraction
Data of individuals diagnosed with MS were systematically collected and
combined from146 distinct centers, as documented in theMSBase registry up
to September 202034,35. The data was collected during routine clinical care at
tertiary MS centers. The preliminary extraction of data from MSBase was
governed by certain inclusion criteria: a minimum follow-up period of 12
months, a minimum age of 18 years, and a diagnosis of either relapsing
remittingMS,secondaryprogressiveMS,primaryprogressiveMS,orclinically-

isolated syndrome. The resulting dataset encompassed 44,886 patients. To
uphold the integrity of the data, several quality assurance measures were
employed. These entailed the elimination of duplicate or inconsistent visits
recordedon the sameday, removal of visits datedbefore 1970, and exclusionof
patients exhibiting clinically isolated syndrome at their last documented visit.

Each patient’s clinical trajectory was segmented into multiple, poten-
tially overlapping, episodes, using the exact methodology for definition and
extraction established andvalidated inpriorworkbyDeBrouwer et al.13. For
clarity and completeness within this manuscript, we specify the definition
used: Each episode represents a distinct instance for predicting disability
progression and comprises three core components:
1. A Baseline EDSS Measurement: A single Expanded Disability Status

Scale (EDSS) score recorded at time t = 0.
2. An Observation Window: This includes the complete available clinical

history for the patient prior to the baseline measurement (t≤ 0),
encompassing all recorded EDSS scores, Kurtzke Functional Systems
(KFS) scores, relapse information, treatment history, and other relevant
covariates from the MSBase registry. The duration of this observation
window is therefore variable, depending on the length of the patient’s
recorded history up to t= 0.

3. ADisability Progression Label: A binary outcome indicatingwhether
confirmed disability progression occurred within the two-year period
following the baseline EDSSmeasurement (0 < t ≤ 2 years). Confirmed
disability progression required demonstrating a sustained increase in
EDSS, basedon thresholds definedbyKalincik et al.63, confirmedover a
period of at least six months, and excluding any EDSS measurements
taken within one month of a recorded relapse.

An episode was considered valid for inclusion only if: (i) the obser-
vation window contained at least three EDSSmeasurements within the 3.25
years immediately preceding the baseline (t = 0), ensuring sufficient recent
data density; and (ii) adequate follow-up data existed after t = 0 to ascertain
the confirmed disability progression status within the 2-year prediction
window. Critically, although episodes from the same patient may share
common historical data, each valid episode, defined by its unique baseline
time point and subsequent 2-year outcome period, was treated as an
independent instance for model training and evaluation.

This curation and episode extraction process yielded a final dataset D
comprising ∣D∣ = 283,115 valid episodes derived from 26,246 unique
patients. This dataset forms the basis for the binary classification task aimed
at predicting disease disability progression within a two-year horizon. For a
more comprehensive description of data variables, their definitions, and
their preprocessing, we refer to the publication by De Brouwer et al13.

As the objective of this study is to evaluate the effectiveness of FL, it was
essential to partition the centralized global datasetD to set up FL experiments.
The global dataset (preprocessed dataset from ref. 13)D included a key feature
indicating the geographical origin of the data. Using this feature, the datasetD
was divided into 32 disjoint subsets DCi

, each corresponding to a different
country, as defined by: D ¼ S31

i¼0 DCi
; jDCi

j≥ 5; 8i 2 f0; 1; . . . ; 31g.
Within each subset, the data was split into 60% training, 20% validation, and
20% test. Normalization was performed independently for each partition
using statistics (mean and standard deviation) derived from its respective
training set.

Upon detailed examination of this partitioning scheme, significant var-
iationswere evident in thedataset sizes across the createdcountries, asdepicted
in Fig. 4a. Figure 4c highlights that, ~75% of countries included fewer than
5000 samples. This partitioning was particularly revealing when considered
alongside thepie chart analysis inFig. 4d,which showed that six countries (CZ,
IT, TR, ES, CA, AU) accounted for 82% of the total cohort size. This com-
parison indicated that while the majority of the dataset was concentrated in a
few countries,many countries did not hold a significant share of the total data.

Further analysis revealed substantial class imbalance across countries,
captured in Fig. 4b andTable 5. Both illustrate pronounced variability in the
proportions of Class 0 (“MS worsening not confirmed”) and Class 1 (“MS
worsening confirmed”), with several countries exhibiting complete absence
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of one class. Although Class 0 predominated overall, both themagnitude of
label imbalance and the variation in dataset sizes differed markedly across
clients. This compounded heterogeneity in outcome distributions and
sample availability reflects a fundamental deviation from the classical
assumption of identically and independently distributed (IID) data, pre-
senting additional challenges for federated model development in real-
world clinical settings.

Predicting disability progression
Thisanalysis sets the stage foraddressingakeyclinicalquestion inMSresearch:
the progression of disability. This dimension of MS research is critical, as
underscored in the literature9, due to its substantial impact on PwMS. The
precise prediction and thorough monitoring of disability progression are
instrumental for clinicians in formulating effective treatment strategies, per-
sonalizing patient care, and ultimately, enhancing patient outcomes64,65. Our
study contributes to this by investigating methodologies that not only aim to
augment patient care but also seek to expand the medical community’s com-
prehensionofMS.This isachievedbyharnessing insights fromRWD,stepping
towards the conversion of these insights into tangible real world evidence66.

Building on the foundational work of De Brouwer et al.13, this study
adopted the FL approach for predicting confirmed disability progression
over a two-year period with a 6-month confirmation window, utilizing
RWD. This research leveraged the decentralized and privacy-preserving
attributes of FL, marking a significant shift from conventional centralized
data analyses. The investigation stood at the convergence of clinical need
and technological innovation, with the potential to optimize the utilization
of RWD in MS research. In the following section, we outline the experi-
mental setup used in this study, which includes federated, adaptive, fine-
tuned federated, local, and centralized models.

Federated model
After partitioning the dataset by countries, we trained the FL models using
each country's dataset. The experiment simulated a server-client architecture,
with the server coordinating the learning process and the clients participating
in distributed training. The server initiated the training process by setting up
themodel and distributing this initialmodel parameters to all available clients.
Following this, each client starts local training on their respective dataset.

During each training cycle, or federation round, clients train their local
models, these being the globalmodel received from the server, for E epochs.
After training these E epochs, the clients send their updated models
back to the server, along with relevant metrics and the sizes of their
test set. The server then executes the federated strategy to update the
global model.

This process is iterative, with the server distributing the updated global
model to the clients in each subsequent federation round. The cycle continues
until a predetermined number of federation rounds F were completed.

In our experiments, we selected aMulti-Layer Perceptron (MLP) with
42 input features as thebaselinemodel to facilitate a comprehensive analysis.
While De Brouwer et al.13 explored various architectural frameworks in a
centralized setting,we chose theMLP for its reliableperformanceand lackof
significant differences compared to other models in our analyses.

The training parameters were set with a batch size of B = 512, a local
client learning rate ηk = 1e-4, and a maximum number of epochs E set to
either 10 or 20, depending on the specific experiment. Weight decay was
applied with λ = 5e-5, and early stopping was employed with a patience
parameterP = 5, indicating that trainingwould halt if validation loss did not
improve after five epochs. Regarding the model parameters, both the
baseline and AdaptiveDualBranchNet (Core layers) models had h = 512
hidden units, a dropout rate of δ = 0.1, and l = 5 layers. The Adaptive-
DualBranchNetmodelwas further enhancedwith the ability to dynamically
add up to l extk ¼ 5 extra layers, each comprising hext = 64 hidden units. For
the FL setup, we conducted F = 350 federation rounds acrossK = 32 clients,
with all clients participating in both training and evaluation processes. The
entire experimental process was repeated R = 10 times for robustness.

In terms of the specific federated optimization strategies, FedProx was
configured with a proximal term of μ = 1e-3. For the FedYogi optimization,
parameters included η = 1e-2, ηk = 9.5e-2, τ = 1e-8, β1 = 0.6, and β2 = 0.999.
The FedAdam strategy shared the server learning rate of η = 1e-2 and local
learning rate ηk = 9.5e-2, with a regularization value τ = 1e-8, and
momentum parameters β1 = 0.6 and β2 = 0.999. Lastly, the FedAdagrad
model used η = 1e-2, ηk = 1e-2, and τ = 1e-8.

For training, we used Python 3.9.19 with PyTorch 1.13.1, Flower 1.8.0,
Scikit-learn 1.5.0, and Pandas 2.2.2. The complete source code of this study
is openly accessible at https://github.com/ashkan-pirmani/FL-MS-RWD.
The resources and services used in this work were provided by the VSC
(Flemish Supercomputer Center), funded by the Research Foundation,
Flanders (FWO) and the Flemish Government utilizing Intel Xeon Plati-
num 8468 CPUs (Sapphire Rapids) cluster.

Personalized federated learning
In FL, applying a uniform model architecture across heterogeneous clients
poses significant challenges33. In our setting, clients varied substantially in
dataset sizes and class distributions, deviating from the classical assumption of
IID data. Although it is common practice to deploy a fixed architecture, for
example anMLPwith static depth andwidth, we observed that such one-size-
fits-alldesigns introduceimportant inefficiencies: largermodelsoftenoverfiton

Table 5 | Country-level dataset sizes and class distributions, sorted by dataset size and organized column-wise

Country Dataset Size Class Country Dataset Size Class Country Dataset Size Class

Class
0 (%)

Class
1 (%)

Class
0 (%)

Class
1 (%)

Class 0 (%) Class 1 (%)

CZ 55435 91.26 8.74 TN 4780 77.99 22.01 EG 241 99.59 0.41

IT 54354 85.60 14.40 CH 3836 92.39 7.61 GB 221 88.24 11.76

TR 37853 90.98 9.02 IR 2980 83.99 16.01 NZ 110 91.82 8.18

ES 33396 86.39 13.61 AR 2440 88.11 11.89 MK 103 97.09 2.91

CA 27131 85.65 14.35 LB 1937 93.86 6.14 GR 99 73.74 26.26

AU 23906 88.50 11.50 US 1344 89.96 10.04 RO 89 93.26 6.74

PT 6884 88.83 11.17 IL 1140 87.02 12.98 IE 69 97.10 2.90

BE 6534 90.54 9.46 OM 969 94.12 5.88 IN 59 91.53 8.47

KW 5725 93.15 6.85 CU 782 86.57 13.43 FR 55 100.00 0.00

HU 4892 93.40 6.60 BR 578 87.20 12.80 MT 45 100.00 0.00

NL 4869 84.86 15.14 SA 256 89.84 10.16

The table summarizes the dataset size and theproportion ofClass 0 (MSworsening not confirmed) andClass 1 (MSworseningconfirmed) for eachparticipating country. Countries are sortedbydataset size
indescendingorder. Thedata highlight substantial heterogeneity acrosscountries, both in the numberof available samples and inclassbalance.WhileClass0generally dominates, several countries exhibit
severe class imbalance or complete absence of one class, underscoring the challenges of federated learning across non-identically distributed clinical datasets.
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data-sparse partitions, whereas smaller models fail to fully leverage data-rich
clients.This discrepancyunderscores theneed for adaptivemodeling strategies
that can adjust dynamically to local data characteristics.

Allowing each client to have a distinct architecture would conceptually
address this issue but would render aggregation across clients infeasible due
to mismatched model structures. To overcome this, we propose Adaptive-
DualBranchNet, a model that dynamically modulates its complexity while
maintaining architectural compatibility for aggregation. The network fea-
tures a dual-branch design: a Core branch, comprising five fixed hidden
layerswith512neurons each, andaflexibleExtensionbranchwhosedepth is
determined by the local data volume. The Extension branch can add up to
five additional hidden layers, each with 64 neurons, following a logarithmic
scalingheuristic. Clientswith largerdatasets (e.g.,more than25000 samples)
utilize all extension layers, while clients with smaller datasets (e.g., fewer
than 2000 samples) omit the Extension branch entirely to reduce overfitting
risk. Intermediate clients proportionally incorporate one to four extension
layers based on their dataset size. Outputs from the Core and Extension
branches are merged before the final prediction layer, ensuring a shared
representational space across all clients. During federated training, only
non-extension layers parameters are communicated and aggregated glob-
ally, preserving consistency while enabling localized adaptation. The design
parameters and scaling thresholds were empirically optimized using
development data to balance predictive accuracy, computational efficiency,
and generalization across heterogeneous client populations. Pseudocode for
the AdaptiveDualBranchNet algorithm is provided in Algorithm 1, and a
schematic comparison with a standard MLP is shown in Fig. 5.

Algorithm 1. AdaptiveDualBranchNet: A Step-by-step Pseudocode
Representation

Initialization:
for each client k in K do:
Obtain the dataset size nk
Compute the number of extension layers l extk using the func-
tion l extk ¼ calculate extension ðnkÞ
Initialize the local model parameters Θk;f ¼ fΘ input

k;f ;
Θcore

k;f ;Θ
ext
k;f ;Θ

combine
k;f ;Θoutput

k;f g

where:
Θ input

k;f are the parameters of the input layer,
Θ core

k;f are the parameters of core layers,
Θ ext

k;f are the parameters of the l extk extension layers,
Θ combine

k;f are the parameters of the combining layer, and
Θ output

k;f are the parameters of the output layer.
end for
for federation round f = 1 to Fdo:
Local Training (Roundf):
for each client k in Kdo:
Train the localmodelΘk,f on local data for E epochs or until an
early stopping criterion is met
Update local model parameters to Θ0k;f ¼
fΘ0 inputk;f ;Θ0corek;f ; Θ0extk;f ;Θ0combine

k;f ;Θ0outputk;f g
end for
Local Model Upload (Roundf):
for each client kdo:
Send parameters of all non-extension layers to the central server:

fΘ0 inputk;f ;Θ0corek;f ;Θ0combine
k;f ;Θ0outputk;f g

end for
Aggregation (Roundf):
Aggregate uploaded non-extension layers’ parameters using the
chosen Federated Strategy:

Φf ¼ FedStrategy ðfΘ0 input1;f ;Θ0core1;f ;Θ0combine
1;f ;Θ0output1;f ; . . . ;

Θ0inputK;f ;Θ0coreK;f ;Θ0combine
K;f ;Θ0outputK;f gÞ

Example of FedAVG Strategy:

Φf ¼
PK

k¼1
nk
n Θ0 inputk;f þ Θ0corek;f þΘ0combine

k;f þΘ0outputk;f

� �

Global Model Distribution (Roundf):

Send updated global non-extension model Φf to clients
for each client k do:

Update local model to Θk;fþ1 ¼ fΦf þΘ0 extk;f g
end for
end for
Repeat:
Repeat steps 3–9 for F federation rounds
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(b) AdaptiveDualBranchNet

Fig. 5 | The diagram depicts the structure of the Baseline and AdaptiveDual-
BranchNet models. a The Baseline network features a standard feedforward archi-
tecture. It begins with an Input Layer, which feeds into a series of Hidden Layers. Each
hidden layer comprises neurons arranged in a fully connected structure, with arrows
indicating theflowof information fromone layer to the next. The connections show that
each neuron in one layer is connected to every neuron in the subsequent layer, enabling
thenetwork to capture complex relationshipsbetween inputs.Thenetwork’sfinal layer is
the Output Layer, which aggregates the learned features from the hidden layers to
produce the output Y. The straightforward structure of this network is designed for
general-purpose learning tasks without additional branching or specialized layers.bThe
AdaptiveDualBranchNet architecture extends theBaseline by introducing a dual-branch
structure comprisingCore Layers andExtension Layers. TheCore Layers, highlighted in
yellow, retain the fully connected structure of the Baseline’s Hidden Layers and are
shared across all clients, being trained in a FL setup to capture fundamental and

generalizable features from the data. In contrast, the Extension Layers, shown in orange,
are client-specific and designed to learn personalized representations. These layers
receive input fromthe same InputLayeras theCoreLayersbut followadistinct structural
design tailored to capture additional, domain- or client-specific variations in the data.
Unlike theCoreLayers,which are updated throughFLaggregation, theExtensionLayers
remain locally trained, enabling each client to adapt themodel to its unique distribution
while benefiting from the shared knowledge encoded in the Core Layers. At the final
stage, bothbranches feed intoa set ofprocessingnodes (depictedas c -units in red),which
consolidate the learned representations before reaching the Output Layer Y. This
separation between federated (global) and local (personalized) training allows the
AdaptiveDualBranchNet to balance generalization and personalization, making it par-
ticularly effective inheterogeneousdata environmentswhereboth sharedknowledgeand
client-specific adaptations are necessary.
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Our experimental design aimed to go beyond only training FL
models. To achieve this, we introduced an additional fine-tuning
phase. This phase was crucial for evaluating the impact on model
performance, as it aimed to further optimize the models following the
initial FL process. To make the process clear, initially, a global model
was trained using a federated approach. Upon completion of this global
training, the model was disseminated back to each client for further
refinement. Subsequently, each model locally underwent retraining
exclusively with data from its corresponding client. To be more spe-
cific, each client’s model is individually optimized using client-specific
data. The strategic importance of fine-tuning lies in its ability to
enhance the models’ sensitivity to the unique attributes of their
respective clients. This process synergizes the extensive, general
learning acquired during the global federated training with the
detailed, localized understanding extracted from each client’s data. The
objective was to strike a balance between the global model’s general-
ization capabilities and the local datasets’ specificity.

For fine-tuning, the local client learning rate was reduced to ηk = 1e-4
and dynamically adjusted using a scheduler with a patience threshold of five
epochs. To allow themodel to better explore the data, the batch sizewas also
reduced to B = 128 across all clients, with training extended up to E = 50
epochs. This setup enabled the model to process the data more thoroughly
during the fine-tuning phase.

Local model
In the local model setup, each client independently trained a model
using only their own partition, without any data federation or pooling.
This approach, lacking centralized coordination or parameter sharing,
served as a baseline for comparing the efficacy of FL methods from
another viewpoint.

Centralized model
In this setting, the global dataset D, was employed to train a centralized
model. This served as another benchmark, where all data were aggregated
and utilized in a conventional, non-federated manner for model training
and evaluation.

Evaluation method
In centralized learning, performance is typically gauged using a unified
global test set. However, FL introduces the flexibility of performing eva-
luations either on the server-side or directly on the client-side67. Server-side
evaluation necessitates the existence of one global test set located on the
server. This approach encounters significant obstacles due to the distributed
nature of sensitive RWD across multiple stakeholders and the rigorous
demands of data privacy and regulatory standards. These challenges
severely limit the feasibility of consolidating a singular global test set on the
server-side.

Another challenge with server-side evaluation is ensuring the repre-
sentativeness of the test set. Particularly with heterogeneous, non-IID set-
tings, there is an increased risk of not accurately capturing the full diversity
of thedistributeddatasets. Suchbiases could inadvertently skew the analysis,
leading to findings that are less reliable or generalizable, thus compromising
the study’s validity.

Considering the need to reflect a real-world scenario, our study chose a
federated (client-side) evaluation approach. To guarantee a fair and repre-
sentative assessment and to avoid reliance on a potentially biased global test
set, we implemented a consistent test set across all experiments (including
centralized, federated and fine-tuned). This dataset, selected based on data
partitioned by each country. The local model was tested on the unseen test
sets of each country, and the performance metrics from these tests were
aggregated using a weighted average based on the test set size of each
country.

To explain the evaluation process on the client side clear, let K be
the total number of clients (in our experiment K = 32). The size of the
dataset for the i-th client is ni, where i ranges from 1 to K. The

evaluation metric achieved by the i-th client is represented asMi. The
total size of all clients’ datasets combined is N, calculated as
N ¼ PK

i¼1 ni. The overall evaluation metric E for the global FL model
is given by the formula: E ¼ 1

N

PK
i¼1ðniEiÞ; which reflects the model’s

performance across all clients. This method gives weight to the
individual characteristics of each client, thus offering a detailed
understanding of the model’s performance in different environ-
ments. However, this can cause issues, especially if some clients have
much larger datasets than others, leading to a biased evaluation
metric. This potential bias makes it difficult to directly compare the
performance of the FL model with that of a centralized model gauged
on independent test set.

Metrics
During all experimental setups, the evaluation metrics used included the
ROC–AUC, AUC–PR, and the total experiment time, measured from the
beginning of training to the end of the last federation round. These metrics
served as robust indicators for assessing both the performance and com-
putational efficiency of the models under investigation.
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