
Vol.: (0123456789)

Hydrobiologia 
https://doi.org/10.1007/s10750-025-05946-7

POND BIODIVERSITY AND FUNCTIONS

Vegetated buffer strips show variable capacity to reduce 
nutrient loading and sediment influx in ponds in two 
European countries

Louisa‑Marie von Plüskow  · Thomas Mehner · Maxime Fajgenblat · Louis‑Marie Le Fer · 
Mareike Brehm‑Benedix · Asja Vogt · Maria Auxiliadora Peso · Kiani Cuypers · Robby Wijns · 
Luc De Meester · Pieter Lemmens

Received: 6 March 2025 / Revised: 16 June 2025 / Accepted: 27 June 2025 
© The Author(s) 2025

Abstract Eutrophication is a pervasive threat to 
freshwater ecosystems, and while the implementation 
of vegetated  terrestrial buffer strips is increasingly 
promoted as a measure to reduce nutrient runoff into 
riverine systems, little is known on their effectiveness 
in protecting ponds in agricultural landscapes. We 
investigated the effect of buffer strip width on pond 
nutrient concentrations (TN, TP), the concentration 
of total suspended solids (TSS) and phytoplankton 
biomass (CHLa) using data from 34 ponds located 

on agricultural land in Belgium and Germany. We 
found a strong negative relation between buffer strip 
width and the concentrations of TN, TP and TSS in 
the German set of ponds. While even small buffer 
strips (5 m) can already be effective, our results also 
show that larger buffer strips are considerably more 
effective. In contrast, we did not find an association 
between buffer strip width and the concentrations of 
TN, TP and TSS in the Belgian ponds. This could be 
linked to differences in landscape characteristics, his-
torical eutrophication and pond hydroperiod between 
both countries. In addition, we did not find evidence 
for an effect of buffer strips on phytoplankton bio-
mass, which is likely reflecting the fact that, even 
with buffer strips, nutrient concentrations remained 
very high in the studied ponds.
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Introduction

Small standing waterbodies such as ponds are abun-
dant ecosystems in virtually all geographical regions 
on Earth (Downing et al., 2006). They deliver multi-
ple vital ecosystem services (Downing, 2010; Biggs 
et al., 2017) and are recognized for their strong con-
tribution to biodiversity (Williams et  al., 2004; De 
Bie et  al., 2007), often supporting multiple rare, 
endemic and threatened species (Biggs et  al., 2000; 
Nicolet et  al., 2004). Ponds are also key elements 
of blue landscape connectivity, serving as step-
ping stones for the dispersal of species (Fortuna 
et  al., 2006; Céréghino et  al., 2008). A vast number 
of ponds is located in intensively managed agricul-
tural areas. Small ponds are especially vulnerable to 
the impact of surrounding land use (Declerck et  al., 
2006; Novikmec et  al., 2016) due to their relatively 
small size and shallow depth, their high perimeter-to-
volume ratio and the fact that they are often located 
in local depressions in the landscape (Gołdyn et  al., 
2015; Reverey et al., 2016).

It has been shown that agriculture in close prox-
imity of ponds can enhance nutrient load (Moss 
et  al., 2013; Musseau et  al., 2022), sediment runoff 
(Robotham et al., 2021) and pesticide contamination 
(Lorenz et al., 2022; Almeida et al., 2023). Nutrient 
enrichment strongly affects the structure and the func-
tioning of pond ecosystems (Scheffer & Jeppesen, 
1998; Moss, 2008; Wurtsbaugh et al., 2019) and ulti-
mately leads to the loss of aquatic biodiversity by 
promoting excessive algae and periphyton growth 
and the loss of submerged aquatic vegetation (Egert-
son et  al., 2004; Phillips et  al., 2016). Sediment 
influx coming from land erosion represent another 
threat to ponds due to increases in water turbidity and 
pond filling up leading to terrestrialization (Sayer & 
Greaves, 2020; Swartz & Miller, 2021).

The fact that small ponds respond strongly to land 
use in their close proximity and that they characteristi-
cally have small catchment areas (Davies et  al., 2008) 
suggests that measures at relatively small spatial scale 
are likely effective in reducing adverse external influ-
ences of land use. One such measure is the creation of 

vegetated terrestrial buffer strips that reduce the inflow 
of pollutants from the surrounding terrestrial environ-
ment into the ponds (Englund et al., 2021). Buffer strips 
are commonly defined as an area of land separating 
agricultural land from valued aquatic or terrestrial hab-
itats (Gene et al., 2019; Prosser et al., 2020). Previous 
studies on the effect of vegetated terrestrial buffer strips 
show that they can reduce diffuse pollution in streams 
(Stutter et al., 2012; Poole et al., 2013; Aguiar Jr. et al., 
2015; Cole et al., 2020; Vormeier et al., 2023) through 
a range of physical, hydrological, chemical and bio-
logical processes (Vought et al., 1995; Tabacchi et al., 
2000; Dosskey et  al., 2010; Knight et  al., 2010; Cole 
et al., 2020; Calvo et al., 2024). Fueled by the evidence 
for their effectiveness, the establishment of buffer strips 
around freshwater systems is increasingly implemented 
in management programs and policies directed at safe-
guarding freshwater biodiversity. In Germany, buffer 
strips are governed by multiple layers of legislation. 
The paragraph 38 of the German Water Resources Act 
(BGBl, 2009) mandates a minimum 5  m buffer strip 
along surface water bodies to protect against nutrient 
and pesticide runoff. Each federal state has the flexibility 
to adapt this requirement to local contexts, but the state 
of Brandenburg abides to it (paragraph 77a of GVBl., 
2012). These provisions align with the National Action 
Plan on the Sustainable Use of Plant Protection Products 
(BMEL, 2013), which focuses on reducing pesticide-
related risks. The Fertilizer Ordinance (paragraph 13a, 
BGBl, 2020) further restricts fertilizer application near 
surface waters, generally requiring a distance of 5 to 
10 m, which may extend up to 30 m on sloped terrain. 
In Flanders (Belgium), buffer strip regulations address-
ing fertilizers and pesticides are also grounded in several 
key legislative texts. The Flemish Decree on Integrated 
Water Policy (article 9 to 10 of Belgisch Staatsblad, 
2003) requires unfertilized zones of at least 5  m, and 
up to 10 m along surface water bodies in ecologically 
sensitive or sloped areas, to prevent nutrient runoff. The 
Flemish Manure Decree (Belgisch Staatsblad, 2006) 
sets further restrictions on the use, timing and quantity 
of nitrogen and phosphorus fertilizers. Complement-
ing these, the Royal Decree on the Sustainable Use of 
Plant Protection Products and Additives (article 5 to 9 of 
Belgisch Staatsblad, 2013) regulates pesticide use, man-
dating untreated buffer zones along surface waters of 
typically 1 to 3 m, but up to 30 m depending on product 
toxicity. In both Belgium and Germany, these require-
ments align with broader EU directives such as the 
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Water Framework Directive (European Union, 2000), 
the EU Nitrates Directive (European Union, 1991) and 
the EU Common Agricultural Policy (CAP) (European 
Union, 2021). The CAP conditions subsidy eligibility 
on environmental compliance through GAEC (Good 
Agricultural and Environmental Conditions) standards. 
However, those legislations noticeably refer to surface 
waters in general but the types of water bodies are not 
explicitly mentioned, leaving it unclear whether ponds 
and small water bodies would be included or not.

So far, the majority of the studies on buffer strips 
has been conducted on riverine systems and at rela-
tively large spatial scales (e.g., catchments), whereas 
studies including ponds rather focused on how they 
could be used in combination with “classical” veg-
etated buffer strips to filter agricultural runoff (Uusi‐
Kämppä et  al., 2000; Wang et  al., 2005; Zak et  al., 
2018). Studies generally observe a positive relation 
between buffer strip width and the reduction of nutri-
ent and pesticide inflow from surrounding agricul-
tural land (reviewed in Prosser et al., 2020). Although 
these earlier findings are promising, important knowl-
edge gaps remain with regard to the effectiveness 
of buffer strips to safeguard the ecological state and 
biodiversity of small standing water bodies such as 
ponds. Filling that knowledge gap is crucial to formu-
late relevant policy recommendations that aim to rec-
oncile nature conservation and agriculture.

The aim of the present study is to assess the effect 
of buffer strips on the nutrient concentration (total 
nitrogen, total phosphorus), the concentration of total 
suspended solids and the phytoplankton biomass in 
ponds. We expect (1) a negative relationship between 
buffer strip width and the concentrations of total nitro-
gen, total phosphorus, total suspended solids and the 
phytoplankton biomass, but also that (2) even small 
buffer strips result in substantially lower concentrations 
of total nitrogen, total phosphorus, total suspended sol-
ids and phytoplankton biomass in the water column.

Material and methods

Pond selection and study area

We surveyed a set of 34 small (63 to 6561  m2, median 
size of 569  m2) and shallow (depth ranging from 9 
to 250 cm, median depth of 57 cm) ponds located in 
different regions in Belgium and Germany (Fig.  1, 

Table  1). Twelve ponds were located in Flanders 
(Northern Belgium), and twenty-two ponds were 
located in the state of Brandenburg (North-Eastern 
Germany). All selected ponds had at least 80% cover-
age with intensive land use (cropland and grassland) 
in their 100  m perimeter and differed with respect 
to their median buffer strip width (ranging from 0 to 
17 m in Belgium and from 0 to 53 m in Germany). 
The smaller size of the buffer strips in Belgium might 

Fig. 1  Overview map of the study area (upper panel) and the 
location of the ponds in the two study regions. Middle panel is 
Flanders (Belgium), and the lower panel is Brandenburg (Ger-
many)
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be linked to the smaller size of the agricultural fields, 
reducing the available space. The ponds can be cat-
egorized as eutrophic to hypertrophic (see Table 1 for 
details on pond characteristics).

From the 34 investigated ponds, 19 ponds periodi-
cally dry out during summer (2 in Belgium and 17 in 
Germany), while 15 ponds hold water permanently 
(10 in Belgium and 5 in Germany). None of the ponds 
was hydrologically connected to other water bodies.

Data collection

We sampled all 34 ponds in late spring 2021 
(May–June) and measured four key variables associ-
ated with eutrophication: total nitrogen concentration 
(TN), total phosphorus concentration (TP), total sus-
pended solids concentration (TSS) and phytoplank-
ton biomass as chlorophyll a. In each pond, we col-
lected depth-integrated water samples in the open 
water zone at different locations using a tube sampler 
(length 1.5  m; diameter 75  mm), avoiding contact 
with vegetation and the bottom substrate during sam-
pling. Samples for the analysis of nutrients (TN and 
TP) and TSS were stored cool in dark conditions in 
the field. In vivo chlorophyll a concentration (CHLa) 
was used as proxy for phytoplankton biomass and 
was directly measured as the mean of three measure-
ments taken in a row in a black bucket containing the 
depth-integrated water samples, using a handheld 
fluorometer (AquaFluor, Turner Designs and Algae-
torch, bbe-moldaenke in Belgium and Germany, 
respectively). The concentration of total suspended 
solids (TSS) was determined gravimetrically in the 
laboratory by filtering a known volume of pond water 
on a pre-weighted glass fiber filter (Whatman GF/F, 
diam. 47 mm). Nutrient samples were either kept in 
the fridge at 4 °C for a few days (in Germany) or fro-
zen at −20  °C (in Belgium) until further processing 
in the laboratory. Total nitrogen concentrations were 
determined with NDIR after combustion (TOC/TN 
analyzer) (DIN EN 1484 (DEV, H3) Water analysis—
Guidelines for the determination of total organic car-
bon (TOC) and dissolved organic carbon (DOC); total 
(TN) NDIR after combustion EN 12260 (DEV, H 34) 
Water quality—Determination of nitrogen—Determi-
nation of bound nitrogen (TNb), following oxidation 
to nitrogen oxides). Total phosphorus concentrations 
were determined by using the potassium peroxydisul-
fate method (Murphy & Riley, 1962; Solórzano & Th
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Sharp, 1980; Worsfold et al., 2016) using a photome-
ter device (CARY 1E from Varian). The proportion of 
the pond surface area covered by floating, submersed 
and emersed macrophytes was estimated visually in 
the field. Pond hydroperiod was assessed based on 
expert knowledge and based on visual observation 
during field visits (from April to November 2021, 
roughly every month and a half).

The quantification of buffer strip width

We defined a buffer strip as the vegetated and non-
cultivated area located between the edge of the pond 
and the agricultural fields surrounding it. As water 
levels can vary considerably throughout the year, the 
edge of the pond was delimited by the shoreline that 
is inundated at maximum water level in the  winter 
period.

We used satellite images of the year 2021 avail-
able on Google Earth Pro to measure the width of 
the buffer strip along eight cardinal lines (crossing at 
the pond’s centroid) starting from the pond´s edge to 
the start of the agricultural field. Obtained data were 
subsequently verified based on in  situ field observa-
tions collected in 2021. Measurements along the eight 
cardinal lines were summarized for each pond by the 
median to obtain one value of buffer strip width for 
each pond. The median value was the best descrip-
tor because buffer strip width was sometimes irreg-
ular. Using the minimum buffer width would have 
yielded similar patterns given its high correlation 
with median buffer width (Pearson correlation coeffi-
cient of 0.95). The vegetation within the buffer strips 
was mostly composed of reed, grasses and ligneous 
vegetation.

Statistical analysis

We used multiple Bayesian generalized linear models 
(GLMs) to separately assess the effect of buffer strip 
width on the concentration of TN, TP, TSS and CHLa. 
GLMs were based on a Gamma distribution and a 
log-link function because the response variables rep-
resent nonnegative continuous quantities (McCullagh 
& Nelder, 1989; Bolker, 2008). The models included 
country-specific intercepts and slopes to account for 
baseline differences in physical and chemical vari-
ables and differential effects of buffer strip width 
between both countries, respectively. In addition, we 

performed a sensitivity analysis by adding the volume 
of the pond (approximation by multiplying the area 
by the depth) as covariate. The addition of the volume 
did not change the effects of buffer strip width on the 
response variables (see SI 2, Figure S2 for details).

The main goal of our statistical analysis was to 
estimate the regression coefficients for the effect of 
buffer strip widths on the considered variables for 
each country (Belgium and Germany) and to evaluate 
the statistical support for the association being nega-
tive. We then assessed the biological relevance of 
these findings by calculating the percentage decrease 
in the concentrations of TN, TP, TSS and CHLa with 
increasing buffer strip width. Using empirical data 
that included buffer widths ranging from 0 to 53 m, 
we generated posterior predictions for TN, TP, TSS 
and CHLa along a grid of buffer width values. For 
each buffer width and posterior iteration, we calcu-
lated the percentage decrease relative to the model-
predicted concentration at a buffer width of 0 m.

We fitted the Gamma GLMs through the “brms” 
package v.2.16.3 (Bürkner, 2017) in R v.4.0.3 (R Core 
Team 2021), which performs Bayesian inference by 
means of a dynamic Hamiltonian Monte Carlo algo-
rithm (Carpenter et al., 2017). We used a vague zero-
centered Normal(0,3) prior for the regression param-
eters (the intercept and the effect of median buffer 
strip width, country and their interaction) and a vague 
Gamma(0.1,0.1) prior for the shape parameter of the 
Gamma distribution (McElreath, 2020). We ran sep-
arate models for each of the four outcome variables 
(concentrations of total nitrogen, total phosphorus, 
total suspended solids and phytoplankton biomass). 
For each model, we ran eight chains with 5,000 itera-
tions each, of which the first 2,500 were discarded 
as warm-up. MCMC convergence test, goodness-of-
fit and prior sensitivity analyses yielded satisfactory 
results (see SI 3, and Figure S3, S4, S5 for details).

Results

We found high posterior probabilities for a nega-
tive relationship between median buffer strip width 
and the concentrations of TN, TP and TSS in the set 
of ponds that were sampled in Germany (99.78%, 
99.80% and 99.95%, respectively) (Fig.  2). In con-
trast, the results for Belgium are characterized by high 
uncertainty and we did not find statistical support for 
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a negative relationship between buffer strip width and 
the concentrations of TN, TP and TSS in the set of 
investigated ponds in Belgium (58.28%, 56.69% and 
24.98%, respectively) (Fig. 2). In addition, we did not 
find strong support for a relation between buffer strip 
width and CHLa in the set of investigated ponds from 
both countries (posterior probability of a negative 
effect of 75.26% in Germany and 72.96% in Belgium; 
Fig. 2). Table 2 summarizes the predicted reductions 
in TN, TP and TSS concentrations for buffer widths 
of 5, 10, 50 and 100  m compared to ponds without 
buffer strips in the German context. Large increases 
in buffer strip widths are associated with even 
stronger differences in concentration, but the relative 
change with increasing buffer strip width becomes 
less profound (Figs. 3, 4).

Discussion

Our study provides empirical evidence for the capac-
ity of buffer strips to reduce concentrations of nutri-
ents and total suspended solids in small ponds sur-
rounded by agricultural land, while also revealing a 
differential buffer strip effect between Germany and 

Belgium. While we observed a consistent negative 
relation between buffer strip width and the concentra-
tion of total nitrogen (TN), total phosphorus (TP) and 
total suspended solids (TSS) in ponds located in Ger-
many, we did not find clear evidence for such rela-
tions for ponds in Belgium. In Germany, relatively 
small buffer strips (5 m width) already seem to result 
in lower concentrations of nutrients and suspended 
solids, but their effectiveness increases considerably 
with increasing width. In contrast to our expectations, 
we did not observe a relation between buffer strip 
width and phytoplankton biomass in the set of investi-
gated ponds in both countries.

Based on our models, German ponds surrounded 
by a buffer strip of 5  m are predicted to have 12% 
(TN), 17% (TP) and 20% (TSS) lower concentra-
tions of key drivers of pond productivity compared to 
ponds without buffer strip. This finding is in line with 
earlier studies that show positive effects of buffer 
strips on reducing agricultural runoff of nitrogen, 
phosphorus and suspended solids into surface waters 
(Zhang et  al., 2010; Sweeney & Newbold, 2014; 
Prosser et al., 2020; Lyu et al., 2021). Earlier investi-
gations have shown that buffer strips are highly effec-
tive in trapping organic or sediment-bound forms of 

Fig. 2  Regression coef-
ficients reflecting the 
effect sizes of a one-meter 
increase in buffer strip 
width on the concentration 
of TN, TP, TSS and CHLa, 
four variables that are 
linked to the productivity 
of ponds. Green and orange 
shaded areas show the full 
posterior distribution of the 
coefficients for German and 
Belgian ponds, respectively, 
while the dots show the 
posterior means and hori-
zontal lines the 95% cred-
ible intervals. The vertical 
dashed line represents the 
line of no effect
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nitrogen and phosphorus (Yang et al., 2015), which is 
likely due to their capacity to promote the deposition 
of large-sized particles (e.g., silt and sand) and the 
infiltration of small-sized particles (e.g., clay) into the 
soil by slowing down the flow of agricultural runoff 
(Dillaha & Inamdar, 1997; Mankin et al., 2007; Ghar-
abaghi et  al. 2006). Therefore, the observed lower 
concentrations of TN and TP in ponds surrounded 
by buffer strips in our study likely result from a 
higher retention of suspended solids (TSS). Although 
buffer strips have proved highly effective at trapping 
sediment-bound nutrients, they are much less effec-
tive at trapping water-soluble forms of nitrogen and 
phosphorus such as nitrate and phosphate, requiring 
larger buffer widths to allow water infiltration into the 
soil (Yang et  al., 2015). This could explain why we 
observe that larger buffer strips are still much more 
effective than smaller ones. However, since sediment-
bound phosphate is the dominant form of phosphorus, 
representing 75–90% of the phosphate in agricultural 
runoff (Sharpley et  al., 1993), buffer strips can trap 
most of the runoff phosphorus.

As a reasonable approximation, our results sug-
gest that with each increase in buffer width of 5  m, 
TN, TP and TSS levels are reduced by an additional 
10%. While the relationship between median buffer 
strip width and the reduction in nutrients and sus-
pended solids for the German ponds deviates from a 
linear relationship and shows a pattern of diminishing 
returns, we observe that a roughly 10% reduction per 
5  m median buffer strip width holds up to approxi-
mately 20 m for TN, 35 m for TP and almost 40 m 
for TSS. Similarly, Sirabahenda et al. (2020) showed 
that sediment retention rates in riparian buffer strips 
level off at widths above 50  m. Our results show a 
50% reduction at a buffer strip width of approxi-
mately 30 m for TN and approximately 20 m for TP 
and TSS. Those buffer widths are considerably larger 
than those reported for streams in a meta-analysis by 
Lind et al. (2019) where a minimum of 75% reduction 
in nitrogen, phosphorus and sediments was found to 
occur at an average buffer strip width of 11 m (rang-
ing from 0.7 to 30 m), 11 m (ranging from 4 to 18 m) 
and 8.8 m (ranging from 3.3 and 18 m), respectively. 
Those differences might be related to variations in 
catchment sizes. However, streams would be expected 
to require larger buffer strips than small waterbodies 
such as ponds, given their generally larger catchment 
sizes (Davies et al., 2008). Apart from that, both the Ta
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results of Lind et al. (2019) and those reported in our 
study show that significant reductions in phosphorus 
and sediment concentrations occur within similar 
buffer width ranges, whereas reductions in nitrogen 
concentrations may require larger buffer widths. Our 
findings show that the implementation of minimum 
5-m-wide buffer strips along water bodies, as man-
dated by the Water Resources Act (BGBl, 2009) 
in Germany and the Flemish Decree on Integrated 
Water Policy (Belgisch Staatsblad, 2003) in Belgium, 
can already have a mitigating effect, but that larger 
buffer strips are needed to achieve strong reductions 
of agricultural runoff.

In contrast to our expectations, we did not observe 
a clear effect of buffer strips on ponds located in Bel-
gium. In addition to the smaller sample size, this find-
ing might result from several other aspects. First, the 

spatial and temporal organization of the agricultural 
landscape is to some extent different in Germany 
(Brandenburg) compared to Belgium (Flanders). 
While the landscape surrounding the set of German 
ponds has been characterized by large-scale, intensive 
crop farming for several decades, the landscape sur-
rounding the set of Belgian ponds is more heteroge-
neous, with agriculture being applied at smaller spa-
tial scales and with regular rotation between intensive 
cropland and grassland. The agricultural landscape 
surrounding the considered Belgian ponds also has 
more small landscape elements, such as hedges and 
small forest patches, which themselves can trap agri-
cultural runoff (Fiener et al., 2011) and limit close to 
the ground aerial transport and deposition of soil and 
chemical particles (Raupach & Leys, 2000). Those 
landscape elements can therefore reduce the potential 

Fig. 3  TN, TP, TSS and CHLa concentration in relation to 
buffer strip width for Belgium (orange) and Germany (green) 
separately. The full lines indicate the posterior median relation-

ship, while the shaded areas indicate 95% credible intervals. 
Original data points are shown as dots. A logarithmic scaling 
for the y-axis was used for clarity purposes
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additional effect of buffer strips around ponds, mak-
ing it less noticeable. The large-scale, long-term 
intensive crop farming around the ponds in Germany 
likely results in high agricultural runoff, which might 
explain the observed overall higher nutrient concen-
trations (TN and TP) in German ponds compared 
to Belgian ponds in our study and could strongly 
enhance the potential mitigating effect of buffer strips 
around ponds.

Second, differences in hydroperiod regimes 
between the investigated ponds in Belgium (10 per-
manent and 2 temporary ponds) and in Germany (5 
permanent and 17 temporary ponds) may also explain 
the observed differential effect of buffer strips in both 
countries. Regular periodic pond drying can affect 
the potential effect of current buffer strips by reduc-
ing the importance of historical pond eutrophication 
due to (1) lowering internal N loading by promoting 
losses during the dry phase via mineralization, ammo-
nia volatization and denitrification (Sahuquillo et  al., 
2012), and (2) reducing bioturbation-induced internal 
eutrophication (Vanni, 2002; Goeke et  al., 2024) by 
preventing the establishment of dense fish populations 
(Snodgrass et  al., 1996). Historical pond eutrophica-
tion is thus expected to be more important in perma-
nent ponds compared to temporary ponds, especially 
in the presence of dense fish populations that promote 

internal eutrophication by sediment resuspension 
(Vanni, 2002; Goeke et al., 2024). Based on this, we 
expect a stronger relation between current buffer strip 
width and nutrient status in temporary ponds than in 
permanent ponds. Unfortunately, collinearity between 
landscape characteristics and between hydroperiod 
and country does not allow us to identify the exact 
mechanism behind the lacking association between 
buffer strip width and TN, TP and TSS in Belgium.

We did not observe a significant negative effect of 
buffer strip width on phytoplankton biomass in any 
of the sampled pond sets. This might be due to the 
fact that all investigated ponds in our study are highly 
eutrophic to hypertrophic. Nutrient concentrations in 
the studied ponds might thus still be high enough to 
sustain phytoplankton and in particular cyanobacteria 
blooms, which depend less on nutrient influx given 
the capacity of some cyanobacteria to fix nitrogen 
from the air (Scheffer & Jeppesen, 1998; Hargeby 
et al., 2004; Wurtsbaugh et al., 2019). This hypothesis 
is supported by the fact that we did not observe a cor-
relation between phytoplankton biomass and nutri-
ent concentrations (both TN and TP) (Figure  S1). 
The large variation in CHLa concentrations between 
ponds (ranging from 0.02 to 280.7 µg/L in Belgium 
and from 8.7 to 488  µg/L in Germany) suggests 
that other factors than nutrients limit phytoplankton 

Fig. 4  Percentage reduction in TN, TP and TSS concentra-
tions with increasing median buffer strip width in the inves-
tigated German ponds. The blue full line represents the pos-
terior mean concentration reduction, while the shaded area 
represents corresponding 95% credible intervals. The dashed 
vertical blue line indicates the buffer width at which the con-
centrations of TN, TP and TSS are reduced by 50%. For ease 
of interpretation, we added two lines: The orange line shows a 

linear increase in reduction with increasing buffer strip width 
at the same rate as for the first 5 m (illustrating that there is a 
reduction from linearity at higher buffer strip widths) and the 
green line shows a 10% decrease in concentrations of the end-
point for every 5 m increase in buffer strip width (illustrating 
that, depending on the endpoint, increases in buffer strip width 
of up to 20 to 40 m result in a higher reduction than this 10% 
decrease in values per 5 m)
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growth (e.g., (self-)shading, grazing or competition 
with macrophytes; (Søndergaard & Moss, 1998; Yeh 
et  al., 2011; de Tezanos Pinto & O’Farrell, 2014). 
However, no relation was observed between sub-
merged, free-floating or emersed macrophyte cover-
age and phytoplankton biomass (Figure S1). We note 
that the exceedingly high nutrient concentrations in 
the study ponds imply that a very strong reduction in 
nutrient loading would be required for these ponds 
to achieve high water quality standards. In the Ger-
man context, our results predict 80% reduction in TP 
(from 1.7 to 0.3 mg/L) when buffer strips reach 50 m, 
which is the widest buffer width that was observed in 
the field. However, this substantial reduction might 
not suffice to maintain the good ecological status of 
those ponds, as illustrated by the absence of effect of 
buffer width on phytoplankton biomass. As a compar-
ison, Poikane et al. (2019) showed that shallow alka-
line European lakes (< 3 m deep) tend to shift from 
“good” to “moderate” ecological status (determined 
based on vegetation) at TP values between 0.058 and 
0.078 mg/L. Based on our predictions, such concen-
trations would be reached at a buffer strip width of 
about 100  m. With that regard, the minimum width 
of 5 m buffer strips mandated by the German Water 
Resources Act is probably not a sufficient measure 
on its own to protect water bodies in highly intensive 
agricultural areas. In order to achieve the nutrient 
concentrations required for the maintenance of good 
ecological conditions, additional measures comple-
mentary to buffer strips might be needed, such as 
pond dredging and the reduction of fertilizer input to 
limit external nutrient loading.

While our results provide valuable insights on 
the effectiveness of buffer strips around small stand-
ing waterbodies, there are limitations. First, we 
focused only on buffer strips width, whereas their 
effectiveness also depends on factors like slope, soil 
composition (Prosser et  al., 2020) and plant com-
munity (Aguiar et  al., 2015; Prosser et  al., 2020; 
Cole et  al., 2020). Second, we assumed that TN 
and TP concentrations in pond water directly reflect 
nutrient runoff, but internal processes (e.g., nutri-
ent uptake, legacy effects, sediment dynamics and 
fish presence) also influence nutrient concentra-
tions (Bennion & Smith, 2000; Nowlin et al., 2005; 
Adámek & Maršálek, 2013; Lischeid et  al., 2018). 
Despite these factors, our results clearly show a 
negative relationship between buffer strips width 

and nutrients and suspended solids concentrations 
in German ponds.

In conclusion, our study shows that implement-
ing vegetated  terrestrial buffer strips around small 
ponds located in agricultural areas can be an effec-
tive measure to mitigate the detrimental impact of 
agriculture on the nutrient status of ponds. How-
ever, our results also suggest that the effectiveness 
of buffer strips may depend on other factors, includ-
ing pond hydroperiod, specific landscape charac-
teristics and historical eutrophication. While even 
small buffer strips (5 m) proved effective in the Ger-
man context, our result also show that larger buffer 
strips are considerably more effective. Importantly, 
the creation of buffer strips alone may not be suf-
ficiently effective to restore the good ecological sta-
tus of ponds, on which multiple ecosystem services 
depend (Biggs et  al., 2017). Such systems likely 
need additional management interventions, such 
as nutrient removal by dredging. Further research 
could target best management practices for optimiz-
ing the effectiveness of buffer strips in runoff reten-
tion and further investigate the valuable ecosystem 
services that healthy ponds and buffer strips can 
provide to farmers such as increased pollination and 
biocontrol of pest insects through the promotion 
of biodiversity (Walton et  al., 2021; Cuenca-Cam-
bronero et al., 2023) and the control of soil erosion 
(Schütz et al., 2022).
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