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Abstract

The serial interval of an infectious disease is a key instrument to understand transmission
dynamics. Estimation of the serial interval distribution from iliness onset data extracted
from transmission pairs is challenging due to the presence of censoring and state-of-the-
art methods mostly rely on parametric models. We present a fully data-driven methodol-
ogy to estimate the serial interval distribution based on interval-censored serial interval
data. The proposed nonparametric estimator of the cumulative distribution function of the
serial interval is based on the class of uniform mixtures. Closed-form solutions are avail-
able for point estimates of different serial interval features and the bootstrap is used to
construct confidence intervals. Algorithms underlying our approach are simple, stable,
and computationally inexpensive, making them easily implementable in a programming
language that is most familiar to a potential user. The nonparametric user-friendly routine
is included in the EpiDelays package for ease of implementation. Our method comple-
ments existing parametric approaches for serial interval estimation and permits to ana-
lyze past, current, or future iliness onset data streams following a set of best practices in
epidemiological delay modeling.

Author summary

Epidemiological delay distributions play a key role in outbreak analyses and in modeling
infectious diseases. The serial interval is the time from illness onset in a primary case to
illness onset in a secondary case and ranks among the most important delay quantities
as it can be used to infer transmission patterns in mathematical and statistical models.
From a statistical perspective, estimation of the serial interval distribution is complicated
by the fact that the exact timing of illness onset is usually unknown and the latter event
is only known to have occurred between two time points; a phenomenon called interval
censoring. We propose a new inferential method to estimate the serial interval distribu-
tion from interval-censored illness onset data without relying on a parametric model.
The nonparametric methodology comes with a low degree of mathematical complexity
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and the underlying algorithms are simple, fast and stable. A user-friendly routine written
in the R programming language is available in the EpiDelays package. The proposed
data-driven method accounts for a set of best practices in epidemiological delay model-
ing and can be used to obtain point estimates and confidence intervals for often reported
serial interval features.

1. Introduction

The serial interval (SI) is an epidemiological delay characterizing a duration between two
well-defined events related to a disease. It represents the time between symptom onset in a
primary case or infector and symptom onset in a secondary case or infectee [1]. This time
delay can be negative as nothing restrains the infectee to experience symptom onset earlier
than the infector [2]. In the literature, this interval is also known as the clinical onset serial
interval [3,4]. Epidemiological and biological factors are responsible for introducing variation
in times between primary and secondary events [5], so that serial intervals can be represented
by a time delay distribution [6]. A different, but closely related delay quantity is the generation
interval, which is defined as the duration between infection events in an infector-infectee pair
[7]. The timing of an infection event is typically less likely to be observed than the timing of a
symptom event and it is common practice to approximate the distribution of generation times
by the SI distribution [8,9]. Serving as a proxy for generation intervals, serial intervals can be
used as an instrument to measure the time scale of disease transmission [10] and are therefore
key in linking the epidemic growth rate with the reproduction number [11,12]. The crucial
role played by the serial interval distribution in disease transmission models emphasizes the
need to have reliable, stable, and replicable statistical methodologies to estimate this quantity.
Ideally, these methodologies should also follow best practices recently described in [5].

Different methods exist to estimate the distribution and features of the serial interval of an
infectious disease based on data. When time intervals of illness onset between infectors and
infectees are observed, the data is considered as a random sample from the population. In that
case, essential features of the serial interval are estimated by either directly computing sum-
mary statistics from empirical serial intervals (e.g. mean, median, standard deviation) or by
fitting a parametric distribution to observed data [13,14]. Parametric methods are by far the
most common and usually include the Lognormal, Weibull, Gamma or Gaussian distribu-
tions [15-20]. For instance, a systematic review and meta-analysis of serial interval estimates
for COVID-19 [21] shows that a majority of studies rely on parametric models with a frequent
use of Gamma and Gaussian distributions. Estimation of model parameters is typically car-
ried out with the maximum likelihood principle or by using the Bayesian approach, and is
often based on a relatively small sample size. To our knowledge, only few attempts have been
made in applying nonparametric methods to serial interval data analysis. For instance, [3]
compute a nonparametric estimate of the cumulative distribution function of the serial inter-
val of influenza based on the method of [22] to see whether different parametric models are in
agreement with it, and [23] use the nonparametric bootstrap to compute confidence intervals
for the clinical onset SI of SARS-CoV-2.

By definition, serial intervals involve transmission pairs. It means that a minimal require-
ment for SI estimation is to have data on symptom onset times for the infector and infectee.
Such data can be extracted from contact tracing programmes, which permit to gain knowl-
edge about who infected whom and provide information on timings of symptoms in infector-
infectee pairs [24,25]. Commonly, serial interval data are interval censored in that only lower
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and upper limits of illness onset timing is observed. This characteristic adds a layer of com-
plexity to the estimation problem. If censoring concerns either the infector or infectee, data
are said to be single interval-censored; and if censoring affects both actors in the transmission
pair, data are called doubly interval-censored [26]. Thinking from a continuous time perspec-
tive, serial interval data is more often than not doubly interval-censored due to the time reso-
lution of reporting. When the time resolution for reporting illness onset is a calendar day (as
is often the case), then censoring is inherent to the calendar day, i.e. the precise timing of ill-
ness onset within the reported calendar day remains unknown. Therefore, even if exact calen-
dar dates are observed, it is good practice to still consider the data as doubly interval-censored
[5].

Despite the large number of studies conducted on the serial interval of different pathogens,
most methods are difficult or impossible to reproduce in the sense that independent
researchers are confronted with serious difficulties in reusing existing procedures to new
data [27]. The field of infectious disease modeling suffers from alarmingly low computational
reproducibility rates [28], which hinders applicability and misaligns with pandemic pre-
paredness objectives. This reproducibility conundrum has several causes. For instance, recent
meta-epidemiological surveys found that very few publications share code or data [29,30].
Other potential causes are code incompleteness and complex dependencies among multiple
scripts without clear guidelines regarding computation order [28]. The study of [31] high-
lights that finding evidence supporting frequently cited serial interval values in the literature
is a challenging task.

Hopefully, more applicable tools and methods have recently emerged to estimate epidemi-
ological delay distributions. Originally developed for estimation of incubation period distri-
butions, the methodology of [26] is available in an R software package [32] and associated
routines are embedded in the EpiEstim package of [33] to estimate the serial interval [34].
[31] reanalyze published serial interval data on different respiratory infections by using a
common statistical method and provide R code and data sets for reproducibility. The epidist
package [35] and the primarycensored package [36] are also operational for serial interval
estimation and account for censoring and truncation. These tools rely on parametric methods
imposing distributional assumptions on the serial interval distribution and leave no room for
data-driven inference.

In an attempt to complement the above-mentioned parametric methods, we develop a
nonparametric approach to estimate the serial interval distribution based on illness onset
data. The proposed method is entirely data-driven and applicable on a wide range of serial
interval data commonly analyzed in the literature. Its chief merits are its mathematical and
computational simplicity. The proposed method also aligns with some of the best prac-
tices recommended by [5], namely: (1) adjusting for double interval censoring, (2) report-
ing guidelines for epidemiological delays, (3) accounting for negative serial intervals and
(4) reproducibility guidelines. Since R is among the most popular programming languages
used in the infectious disease modeling community [28,37], the code underlying our non-
parametric methodology is written in the R language and available in the EpiDelays package
(https://github.com/oswaldogressani/EpiDelays). Source code comes in a lightweight format
and spans only a few lines. It can thus be easily translated in another programming language if
needed (e.g. Python or C++).

Next, we present our nonparametric estimator and briefly discuss some of its theoretical
properties. An entire section is dedicated to simulations in order to assess the performance
of our data-driven approach. Applications to transmission pair data extracted from previ-
ous outbreaks for a diverse set of pathogens underlines the wide, general, and straightforward
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applicability of our method. The article concludes with a discussion surrounding different
aspects of the proposed nonparametric methodology for serial interval estimation.

2. Methods
2.1. The coarse structure of serial interval data

Datasets used to estimate serial interval features are usually obtained from line list informa-
tion collected during epidemics [10,34,38]. The structure is such that a line in the data list
conveys information about calendar dates for the infector and infectee [31,39]. Calendar dates
are not well-suited for statistical analysis. Therefore, conversion from calendar time to analy-
sis time is carried out through a mapping from the set of calendar dates to a set of real num-
bers, and more commonly to a set of integers. The precise calendar date of symptom appear-
ance may be unknown and this uncertainty translates into a range of reported dates. In that
case, serial interval data are referred to as coarse data following the terminology of [40] in

the sense that the timing of symptom onset is only observed to lie within a time interval; a
feature also known as interval censoring. Even when precise dates are reported, there is still
uncertainty with respect to the exact timing of symptom onset within a day. As such, a calen-
dar day can be coarsened to an interval of two consecutive calendar dates, where the reported
day is the lower bound and the following day is the upper bound of the interval. This means
that serial interval data are usually treated as doubly interval-censored [26], i.e. the data con-
tain a range of symptom onset dates for each primary and secondary case. After conversion of
calendar time to analysis time, denote by 7 the illness onset time of the infector and by ¢; the
illness onset time of the infectee in the ith transmission pair. These quantities are treated as
interval-censored because the precise symptom onset time within a day is usually unknown.
Let #;; and f; denote the observed left and right bound, respectively, of the symptom onset
time of the infector in the ith transmission pair and assume EL) < Ez) < +00. For the infectee,

a similar notation is used and we assume t;; < t;r < +00. The four time points (a, EQ, tir, t,-R)
can be used to compute the earliest possible SI time s;; = t;; - ﬁ and the latest possible SI time
siz = tig—ti1. The ST window width s;g—s;; = (E—EL)) +(tir—tir) > 0 sheds light upon the degree
of coarseness associated with the (unobserved) serial interval in the ith infector-infectee pair.
A schematic representation of SI data and its underlying coarseness is shown in Fig 1.

To address uncertainty about who infected whom in outbreak data, robust likelihood-
based methods can be employed that explicitly account for missing or potentially incorrect
transmission links (see e.g. [41]). These methods estimate the probability of transmission
between individuals using contact information and the timing of symptom onset. An iterative
approach is then used to reconstruct plausible transmission trees and to estimate key epidemi-
ological delay distributions, while simultaneously identifying and mitigating the influence
of unreliable data points. An alternative and simplified approach to mitigate the risk of mis-
specifying the infector is to concentrate on a subset of transmission pairs for which there is
reasonable evidence about who the infector is [42], although this could introduce bias in the
analysis.

2.2. A uniform mixture model

Let S be a real-valued random variable representing the serial interval of an infectious
disease and denote by Fs(-) the cumulative distribution function (cdf) of S with Fs(s) =
P(S <) Vs € R. We adopt Laplace’s principle of insufficient reason [43,44] and assume that
the interval-censored SI variable of the ith transmission pair is uniformly distributed over the
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Fig 1.

Schematic representation of the coarse structure of serial interval data. (A) The timings of symptom onset in

infector-infectee pairs are usually reported as calendar dates. (B) Conversion from calendar time to analysis time is done
through a mapping from reported calendar dates to a set of numbers (usually integers). (C) To account for the uncertainty

in the

timing of symptom onset within a day when a single calendar day is reported by the infector or infectee, a one-day

coarsening of the data is implemented by constructing an interval with endpoints corresponding to two numbers resulting
from the mapping of two successive calendar days in analysis time. (D) Coarseness at the serial interval level is obtained by
taking the difference between the right serial interval bound s;z and the left serial interval bound s;z.

https://doi.org/10.1371/journal.pchi.1013338.g001

censoring interval with endpoints s;; and sz, i.e. S; ~ U(siL, sir). The resulting cdf associated
with §; is denoted by:

S—3SiL

ﬁs;(s) = (

) |](51‘L <s SSiR) + I](S>SiR),
SiR — SiL

where [(-) is the indicator function. The ordered pair D; = (s;r, sir) denotes the ith trans-
mission pair SI window constructed from the observed data points s;; and s;z. Also, let
Z={Dy,...,D,} denote the set of ordered pairs representing the information set (or set of
observables) constructed from serial interval data with » transmission pairs. Following previ-
ous work on mixtures of uniform distributions (see e.g. [45,46]), we propose to estimate Fs(-)
by the n-component mixture Fs(s) = Y1, @;Fs,(s) with weights w; =n! for i =1,...,n. The
resulting data-driven estimate is:
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ﬁs(s):%i{( S_SZL )I](s,-LSSSS,-R)+I](s>s,-R)}. (1)

i=1 \\SiR —SiL

The above estimate is a finite convex combination of continuous functions Fs, and is there-
fore itself a continuous function in R. Moreover, it is a non-decreasing function since it essen-
tially accumulates probability mass over intervals when moving along the real line in the pos-
itive direction. It is also easy to verify that lim,_,_¢, Fs(s) = 0 and lim,_, , Fs(s) = 1, so that
Fs is a bona fide cdf. Note also that Fs is a piecewise-linear function with breakpoints or
“bends” arising at observed data points. Piecewise-linear cumulative distribution functions
are endowed with interesting properties that have for instance been studied in [47,48]. These
properties will guide us in computing point estimates of different serial interval features.

In parametric approaches, it is customary to work with the estimated probability den-
sity function (pdf) of the serial interval distribution, while our methodology concentrates
around the estimated cumulative distribution function Fs. This implies no loss of general-
ity as the cdf gives a complete description of the underlying target distribution. For instance,
our method can be used to compute an estimate of the basic reproduction number R, the
average number of secondary cases generated by a primary case in a fully susceptible popula-
tion [49]. The generation interval distribution provides a link between the exponential growth
rate of an epidemic r and the basic reproduction number via the Lotka-Euler equation [11],
namely Ry = ( j0+°° exp(-ra)fg (a)da)_l, where fg is the pdf of the generation interval. Using
the serial interval as a proxy for the generation interval, the latter equation becomes R =
( [ exp(-ra)fs (a)da)_l, where fs is the pdf of the serial interval. Relying on the Riemann-

Stieltjes integral notation, the estimated basic reproduction number using our nonparametric
= - -1

method is Rg = ( f_:om exp(-ra)dFs (a)) , where the integral can be solved numerically. An

alternative way to proceed in estimating R without entirely leveraging our nonparametric

cdf estimate is to work with a classic parametric distribution for the generation time fg and

use a parameterization that aligns with our nonparametric estimate of the mean and variance

of the serial interval.

2.3. Point estimation

The uniform mixture model in (1) is mathematically appealing as it permits to compute fre-
quently reported point estimates of features of the SI distribution in closed form based on the
information set Z. Using the Riemann-Stieltjes integral representation of the expected value,
point estimates of the SI mean E(S) = s and standard deviation \/V(S) = o5 are given by:

Hs E(S):lzn:(fde’FSi(s)):;izn;ﬁ(gi)::lizn;(%ﬂzfsile))

nia

5 [Es?)-m3]" = [;2 ( [ Szdﬁ&.(s)) —ﬁé]m

i=1

L 1/2
M E(S?) - 7
[ﬂ; ( 1) luS:|

)
[
I

1/2
n 2

Z (53, + siLsir + S) (1 i (sie + sir)
3 n 2

1
nia i1
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The estimated quantile function of the random variable S is G, (S) = inf{s € R : Fs(s) > p},
where G, (S) is the p-quantile of S for a given p € (0, 1). Denote bys; and s, two neighboring
breakpoints of Fs satisfying3; <3,. When p is such that p = Fs(31) = F5(33), then Fs has a flat
behavior between3; and3; and s0 G, (S) =73, by definition of the quantile function. When p is
such that F5(3]) < p < Fs(3,), the piecewise-linear property of Fs can be used to compute the
desired estimated quantile G, (S). In fact, by piecewise linearity, the slope of Fs between;
and G, (S) is equal to the slope of Fs betweenG,(S) and 3. This allows to write an equation
that can be solved for the single unknown g, (S). Mathematically:

Fs(@y(S)) -Fs (1) Fs (%) -Fs(@,(S5))

- _ 2
B©) 5-4,(5) @

Solving (2) for G, (S) yields:
3(S) = (Fs() -Fs(®)) " (31 (Fs() -p) +% (p-Fs(3))). 3)

If p satisfies Fs(31) = p < Fs (), then G, (S) =% and if F5(31) < p =Fs(32), then Gp(S) =%

2.4. Quantification of uncertainty

The generic notation 6 is used to represent a given feature of the SI distribution, for instance
0 = us if the mean is of interest or 6 = gg if the focus is on the standard deviation of S. The
bootstrap method will be used to compute measures of accuracy associated with the esti-
mate 8 [50,51]. Let Z* = {D¥, ..., D} } denote a bootstrap sample obtained by sampling ran-
domly and with equal probability # transmission pair SI windows with replacement from Z.
With 7 = 4 transmission pairs, a possible realization is D} = (sa1,52r), D5 = (sa1,$4r)> Dj =
(s10>81r)> D} = (521, $2r) and the bootstrap sample Z* is simply a set of n ordered pairs. For
the features of S presented in Sect 2.3, the bootstrap replication of 8 denoted by 6* can easily
be computed based on Z*. Generating B bootstrap samples and computing their correspond-
ing bootstrap replicate of 8 gives access to Bg. = {5*(1), ., 85 P }, which characterizes the
bootstrap distribution of the statistic 6. The bootstrap estimate of the standard error of 6 can
be used as a measure of accuracy of the estimate 8. It corresponds to the empirical standard
deviation of the values in Bg

. 1 B [ 138, 2
5(0) = g [ =Hgr®
o-lantle ()

A confidence interval for 6 can be constructed from the empirical quantiles of the sample of
bootstrap estimates in By, . Let 5;/2 and 6F_ 2 denote the ar/2 and 1 - /2 sample quantiles
of the values in Bg,. Most software has readily available routines to compute these quantiles
(e.g. the quantile function in R). The 100(1 - a)% confidence interval for 6 using the quan-

1/2

tile method is denoted by CI;_«(8) = [A;/Z,Af_a /2]. Following [52], we recommend using a
bootstrap sample size of at least B = 2000 for confidence interval construction.
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3. Results
3.1. Simulations

3.1.1. Generating mechanism for artificial serial interval data. To simulate artificial
serial interval data, we assume that the target SI has a N (us, 0% ) distribution with mean s
and standard deviation os. At the transmission pair level, the interval-censoring mechanism
is governed by a discrete random variable C with values ¢; = [ for [ = 1, ..., L and probability
mass function P(C = ¢;) = p; with ZIL:1 p1=1. Given a set of parameters us,0s,L and {p}]-,,
a complete dataset for n transmission pairs is obtained by repeating the following four steps n
times. 1. Draw S from a (s, 0% ) distribution. 2. Sample C based on the chosen distribu-
tion. 3. Draw U from a uniform distribution U(0,1). 4. Compute the left bound S and right
bound Sg of the SI window of a transmission pair as S = | (S-UC) | and Sk = [(S+(1-U)C)],
where |- | is the floor function returning the greatest integer less than or equal to its argument
and [-] is the ceiling function returning the smallest integer greater than or equal to its argu-
ment. The distribution of C controls the degree of data coarseness, i.e. the width of the gener-
ated serial interval windows. This simple mechanism permits to simulate frequently encoun-
tered serial interval data in the epidemiologic literature and properly takes into account the
uncertainty regarding the timing of symptoms onset within the day. Said differently, for the
infector and infectee, symptoms onset are only known to lie between two successive calendar
days so that transmission pair data are doubly interval-censored. Mathematically this means
that, under the common mapping of calendar dates to integers, infector coarseness 5; - a
and infectee coarseness t;g — t;;, are both bounded below by one. This implies that SI coarse-
ness measured by s;g - si;, = (fig - E{) —(tir - az)) = (ZR’ —EL’) + (tig - t;1) is bounded below by
two. Fixing ¢; = 1 in our data generating mechanism ensures that the SI window s — s;, is at
least equal to two days. Fig 2 illustrates two sets of simulated serial interval data with n = 15,
Us =2.5, 05 =3 and censoring distribution p; = 0.80, p, = 0.15, p; = 0.05.

3.1.2. First set of simulations. The performance of our nonparametric method is first
assessed by assuming two target SI distributions, namely a SI distribution inspired from the
SARS-CoV-2 Omicron variant S ~ N (us = 2.8,0% = 2.5%) [20] and a SI distribution that imi-
tates results obtained for smallpox S ~ (s = 16.7,0% = 3.3%) [31]. The distribution for the

m True serial interval ® True serial interval

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T

-8 6 4 -2 0 2 4 6 8 10 -3-2-1 0 1 2 3 4 5 6 7 8
Serial interval window Serial interval window

Fig 2. Example of two coarse SI datasets of size n = 15 obtained with our data generating mechanism using us = 2.5,
os =3 and the censoring distribution p; = 0.80, p, = 0.15, p3 = 0.05.

https://doi.org/10.1371/journal.pcbi.1013338.9002
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censoring mechanism is given by p; = 0.80, p, = 0.15, and p5 = 0.05, so that generated SI win-
dow widths vary between 2 and 4 days. For each target SI distribution, we simulate M = 1000
datasets with four different sample sizes n € {10, 20, 50, 100 }; covering frequently encoun-
tered numbers of transmission pairs in the literature [21,53]; yielding a total of 2 X 4 = 8 sce-
narios. The performance of our nonparametric approach is assessed on the following often
reported features of the SI distribution: mean us, standard deviation os and quantiles go o5,
qo.25 90.50> 90.75> o.95- We use bias, empirical standard error (ESE), root mean squared error
(RMSE), coverage probability of 90% and 95% confidence intervals and median confidence
interval width as performance criteria (formulas of these criteria are provided in S1 Text).
Confidence intervals are constructed based on B = 2000 bootstrap samples.

Results for Scenarios 1-4 with underlying SARS-CoV-2 Omicron-like target SI distribu-
tion are shown in Table 1. Overall, our nonparametric method based on uniform mixtures
exhibits fairly good performance with relatively low bias. The coverage of confidence inter-
vals for all the chosen SI features are satisfactorily close to their nominal level starting from
n = 50. Under smaller sample sizes, confidence intervals for the selected SI features tend to
undercover, yet results for the mean and median remain reasonable given the underlying SI
coarseness of at least two days and the small number of transmission pairs. The ESE, RMSE
and width of confidence intervals tend to decrease as the sample size increases. It is also worth
mentioning that estimation of remote quantiles, i.e. o5 and g5 is more challenging and
the bias for these features is usually higher. Results for Scenarios 5-8 with a smallpox-like tar-
get SI distribution are given in Table 2 and the interpretation is the same as for Scenarios 1-4
with an overall good performance of our data-driven approach for all the considered SI fea-
tures. Further simulations with higher average coarseness (Scenarios S1-S3) and scenarios
with a Gamma target SI distribution inspired from measles (Scenarios S4-S7) are provided in
S1 Text.

3.1.3. The impact of coarseness. To illustrate the negative impact of coarseness on esti-
mates of certain SI features, we consider a target serial interval distribution S ~ N (us =
2.1,0% = 1.2%) inspired from influenza A [31] and run four simulation scenarios (Scenar-
ios 9-12) with censoring distribution p; = 0.80, p, = 0.15, p3 = 0.05 and sample size n €
{10,20,50,100}. Results shown in Table 3 reveal how estimation performance is impacted
by working with data having a coarseness degree of at least two days (i.e. doubly interval-
censored SI data). Except for the mean and median, estimates of the chosen SI features tend to
suffer from a larger bias as compared to the previous scenarios (Scenarios 1-8). This is because
the standard deviation of the assumed influenza A serial interval target distribution o5 = 1.2
is smaller than its counterpart in the SARS-CoV-2 Omicron (os = 2.5) and smallpox (os =
3.3) settings. Such a small standard deviation coupled with a degree of coarseness of at least
two days for the serial interval windows blurs the information conveyed by the variation of
the true (and unobserved) serial interval realizations. Said differently, the degree of coarseness
“dominates” or hides the rather small variations of the true (unobserved) SI values around the
mean Us. The price to pay for such a degree of coarseness is a larger bias and lower coverage,
especially for estimates of s and qo.0s, 9025 90.75> Go.95 as shown in Table 3.

To further stress the role played by the degree of coarseness in SI data, we consider the
same influenza A setting but with a hypothetical coarseness degree that is close to zero. In
particular, after generating S, we assume that the left bound of the serial interval window is
81 =S - €/2 and that the right bound is Sg =S + /2 with € = 0.01 so that the degree of coarse-
ness of the SI window is equal to € and we refer to this censoring scheme as e-coarseness. Sim-
ulations under e-coarseness for the influenza A setting are implemented for a sample size n €
{10,20,50,100}, yielding Scenarios 13-16 and results are shown in Table 4. Without surprise,
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Table 1. Results for Scenarios 1-4 with M = 1000 simulated datasets, censoring distribution

(p1 = 0.8,p2 = 0.15,p3 = 0.05), n € {10,20,50,100} and target S ~ N (s = 2.8,0% = 2.5?) inspired from

[20] that imitates the SI distribution of the SARS-CoV-2 Omicron variant. The first column contains the selected
features of S, namely the mean, standard deviation, 5th, 25th, 50th, 75th and 95th quantiles. Bias, ESE, RMSE,
coverage probability (CP) and median confidence interval width (ACI) are used as performance criteria.
Scenario 1 (n = 10) Bias ESE RMSE CPgo% CP95% ACIQO% ACIgs%

Ms 0.043 0.794 0.794 86.60 91.90 2.400 2.850

q0.05 |0.066 |1.493 |1.494 |64.20 |65.10 |2.500 |2.833

mas 000 095 094 8% 8880 2961 331
007 s losn e a0 7o sl

q0.95 0.073 1.420 1.421 57.30 59.10 2.667 2.906
Scenario 2 (n=20) |Bias ESE RMSE CPgyo9 CPos9, AClgg AClgs0
Ms 0.016 0.562 0.562 88.00 93.10 1.800 2.126

q0.05 -0.210 1.060 1.080 82.70 84.60 2333 2619
40.50 |0.001 [0.646  |0.645 |88.60 |94.40 |2.033 |2.442

0.5 0.103 0.981 0.986 78.60 81.00 2.333 2.667
Scenario 3 (n =50) |Bias ESE RMSE CPgo9 CPys0, AClggy, AClgs9

Us -0.005 0.348 0.348 89.10 93.50 1.150 1.375

os 008 0251 0265 8730 9350 0748 080
-0.174 10.645 10.668 188.40 192.80 1963
0.002 [0.404 [0.404 [89.70 [94.30 [1.303 [1.552
| | | | | | |

q0.95 0.152 0.673 0.690 84.30 89.00 1.875 2.151
Scenario 4 (n = 100) Bias ESE RMSE Cpgo% CPg_r,% ACIQO% ACIgs%
Ms 0.013 0.254 0.254 89.60 94.80 0.835 0.990

q0.05 |-0.175 |0.453 |0.486 87.10 |93.20 |1.408 |1.701

005 029 029 |90 ke 09a1 |10

q0.95 0.214 0.465 0.512 85.80 93.40 1.413

https://doi.org/10.1371/journal.pcbi.1013338.t001

when coarseness is virtually zero, our nonparametric method shows good performance with
negligible bias and confidence intervals that tend to have close to nominal coverage values
starting from n = 50 for all the considered SI features.

3.1.4. A note on asymptotic bias. Coarseness is responsible for introducing bias in esti-
mates of SI features. As can be seen from Scenarios 1-12, when n increases, the bias does not
necessarily decrease. This is because the sample size considered in these scenarios is not large
enough to fully reveal how the underlying degree of coarseness impacts the estimates. To
show the “asymptotic” impact of coarseness, we run simulations for the SARS-CoV-2 Omi-
cron, smallpox and influenza A settings with n = 500. Results are shown in S1 Text (Scenarios
$8-S10) and reveal good performance for the mean and median but undercoverage for the
standard deviation and quantiles depending on the setting. To further highlight the asymp-
totic bias argument, we compare how estimates provided by our data-driven approach evolve
with sample size when assuming a degree of coarseness of at least two days and when con-
sidering the hypothetical case of e-coarseness in the SARS-CoV-2 Omicron setting. For a
sequence of sample sizes between n = 6 and n = 500, we compute M = 50 estimates for each
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Table 2. Results for Scenarios 5-8 with M = 1000 simulated datasets, censoring distribution

(p1 = 0.8,p2 = 0.15, p3 = 0.05), n € {10, 20,50,100} and target S ~ N (Us = 16.7,0% = 3.32) inspired from
[31] that imitates the SI distribution of smallpox. The first column contains the selected features of S, namely
the mean, standard deviation, 5th, 25th, 50th, 75th and 95th quantiles. Bias, ESE, RMSE, coverage probability
(CP) and median confidence interval width (ACI) are used as performance criteria.

Scenario 5 (n = 10) Bias ESE RMSE CPgo% CP95% ACIQO% ACIgs%
Ms -0.025 1.065 1.065 85.90 90.50 3.150 3.701

40.05 |0.163 [1.913 [1.919 |48.20 [51.00 [3.167 3.667

q0.50 -0.043 1.253 1.253 86.00 92.90 3.600 4.592

q0.95 -0.187 1.866 1.875 54.50 55.30 3.167 3.667
Scenario 6 (n=20) |Bias ESE RMSE CPyo9 CPos9, AClggy AClgs0
Ms 0.011 0.750 0.750 87.60 93.30 2.325 2.775

q0.05 -0.212 1.483 1.497 67.60 70.10 2.969 3.381

40.50 |0.022 [0.867  |0.866 |88.80 |94.20 |2.667 [3.227

q0.95 -0.067 1.337 1.338 75.40 76.60 3.200 3.538
Scenario 7 (n =50)  |Bias ESE RMSE CPygo9 CPys9, AClggy, AClos9
-0.003 0.476 0.475 89.00 94.20 1.520 1.810

0085 om0 |08 |sso0 w50 2641
0001 (0531 o531 l0 |93 |17 2088

9095 0.096 [0.896  [0.901 [86.20 89.00 [2.732 [3.061
Scenario 8 (n = 100) Bias ESE RMSE CPgo% CP95% ACIQO% ACIgs%
Us -0.008 0.329 0329 89.90 95.20 1.088 1.290

40.05 |-0.146 0612  |0.629 |88.60 |94.30 |1.933 [2.291

q0.50 -0.009 0.379 0.379 89.80 95.40 1.239 1.473

q0.95 0.148 0.638 0.655 88.50 93.80 1.992 2.353
https://doi.org/10.1371/journal.pcbi.1013338.t002

selected SI feature and analyze how the mean estimate evolves with n. Fig 3 shows results

for the SARS-CoV-2 Omicron target SI distribution with a degree of coarseness of at least
two days (panel A) and under the hypothetical case of e-coarseness (panel B). A coarseness
degree of at least two days introduces bias in our estimates. This is especially visible for the
standard deviation and quantiles g 95 and g ¢5. This bias reaches a limit as n grows large and
is an unavoidable facet of coarseness that negatively impacts the confidence interval cover-
age performance. Under the hypothetical e-coarseness setting, our estimates exhibit good
performance and stabilize around the true SI features as n increases.

3.2. Applications

To further validate our nonparametric method, we consider different applications on serial
interval data from past outbreaks that are publicly available. A textual analysis is provided for
each individual dataset and results are summarized in Table 5.

3.2.1. Influenza A (2009 H1N1 influenza) at a New York City school. We start by ana-
lyzing a dataset based on illness onset dates of n = 16 infector-infectee pairs obtained from
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Table 3. Results for Scenarios 9-12 with M = 1000 simulated datasets, censoring distribution

(p1 = 0.8,p2 = 0.15, p3 = 0.05), n € {10, 20,50,100} and target S ~ N (s = 2.1,6% = 1.2%) inspired from

[31] that imitates the SI distribution of influenza A. The first column contains the selected features of S, namely
the mean, standard deviation, 5th, 25th, 50th, 75th and 95th quantiles. Bias, ESE, RMSE, coverage probability
(CP) and median confidence interval width (ACI) are used as performance criteria.

Scenario 9 (n = 10) Bias ESE RMSE CPgo% CP95% ACIQO% ACIgs%

Ms -0.008 0.413 0.413 85.50 90.90 1.200 1.450

40.05 |-0.329 |0.681 |0.756 |65.80 |72.80 |1.350 |1.667

40.50 -0.006 0.432 0.432 86.00 91.40 1.297 1.546
q0.95 0.292 0.693 0.751 75.80 80.20 1.250 1.667
Scenario 10 (n = 20) |Bias ESE RMSE CPyo9 CPos9, AClggy AClgs0
MHs 0.006 0.282 0.282 89.60 94.30 0.925 1.100

q0.05 -0.383 0.485 0.618 79.30 86.00 1.178 1.371

050 [0.010 [0.298 [0.298 [90.00 [94.30 [0.975 [1.159

0.95 0.380 0.492 0.622 84.20 89.50 1.215 1.400

Scenario 11 (n = 50) |Bias ESE RMSE CPyoo CPys9, AClygy AClgs0
-0.003 0.186 0.186 89.20 93.80 0.590 0.710

0100 o315 o5 leslo 7720 losse |1
0003 0203 0203 10 [9310 ey o7

9095 0.412 [0319  o.521 [70.40 [81.40 [0.892 [1.027
Scenario 12 (n = 100) Bias ESE RMSE CPgo% CP95% ACIQO% ACIgs%
Us 0.008 0.134 0.134 87.70 93.60 0.420 0.500

40.05 |-0.408 (0242 [0.474 |41.60 |54.90 |0.707 |0.820

q0.50 0.016 0.148 0.149 87.10 92.80 0.458 0.541

q0.95 0.438 0.222 0.491 51.40 64.60 0.703 0.828
https://doi.org/10.1371/journal.pcbi.1013338.t003

the supplementary appendix of [15]. After fitting a Weibull distribution to the data, the
authors obtain a median serial interval of 2.7 days (CI95%: 2.0-3.5) and a 95th quantile of 5.1
days (CI95%: 3.6-6.5). Our nonparametric method estimates that the median SI is 2.8 days
(58 = 0.6; CI95%: 1.8-3.8) and the 95th quantile estimate is 5.2 days (& = 0.3; CI95%: 4.6-5.7).
Fig 4A summarizes the observed serial interval windows. Fig 4B shows the estimated cdf Fs
(black curve), point estimates (dots) and 95% ClIs for selected quantiles of S.

3.2.2. Influenza A (2009 HIN1 influenza) in San Antonio, Texas, USA. We analyze
another influenza dataset [34,54] containing doubly interval-censored serial interval data
from the 2009 influenza A outbreak in San Antonio, Texas, USA [55]. Our methodology
estimates the mean serial interval at 4.0 days (§¢ = 0.4; CI95%: 3.2-4.9). The standard devi-
ation is estimated at 1.9 days (5€ = 0.3; CI95%: 1.2-2.4) and the 95th quantile is at 7.8 days
(& = 0.8; CI95%: 5.5-8.5). Serial interval windows and estimates of different features of S are
shown in Fig 5.

3.2.3. Illness onset data for COVID-19 in Wuhan, China. [17] share data on illness
onset dates of n = 6 infector-infectee pairs and estimate that the serial interval has a mean
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Table 4. Results for Scenarios 13-16 with M = 1000 simulated datasets, £-coarseness with ¢ = 0.01,

n € {10,20,50,100} and target S ~ N (us = 2.1,0% = 1.22) inspired from [31] that imitates the SI distribu-
tion of influenza A. The first column contains the selected features of S, namely the mean, standard deviation,
5th, 25th, 50th, 75th and 95th quantiles. Bias, ESE, RMSE, coverage probability (CP) and median confidence
interval width (ACI) are used as performance criteria.

Scenario 13 (n = 10) Bias ESE RMSE CPgo% CP95% ACIQO% ACIgs%

Ms -0.011 0.389 0.389 84.10 88.90 1.120 1.333

q0.05 0.159 [0.704  J0.721 |38.00 |38.50 [0.915 [1.192

@as 005 0#%6 046 070 s20 187 &5
0152 4o loase s 350 1a9  [1o02

40.95 -0.166 0.743 0.761 37.90 38.70 0.933 1.204
Scenario 14 (n = 20) |Bias ESE RMSE CPgpo CPys0, AClgpy, AClgs9,
Ms 0.001 0.276 0.276 86.30 91.70 0.845 1.007

q0.05 -0.245 0.609 0.656 59.80 65.00 0.793 1.047
40.50 |-0.071 |0.343 |0.350 |88.40 |92.30 |1.066 |1.226

q0.95 -0.268 0.486 0.555 65.20 65.50 1.302 1.365
Scenario 15 (n = 50) |Bias ESE RMSE CPgo9 CPys0, AClggy, AClgs9

Us -0.003 0.169 0.169 88.50 94.20 0.549 0.653

os  -0018 0116 0118 820 9080 0368 043
0.018 0338 0338 190.90 19220 11260
-0.022 [0.208 [0.209 [90.80 [94.60 [0.695 [0.823
| | | | | | |

q0.95 -0.024 0.345 0.346 89.80 90.90 1.208 1.282
Scenario 16 (n = 100) |Bias ESE RMSE CPggo CPoys9, AClgg AClgs0
Ms 0.002 0.122 0.122 88.60 94.00 0.392 0.466

q0.05 |-0.047 [0257  [0.262 |88.60 |94.20 |0.802 |0.984

0015 1 ol 30 5500 s

q0.95 -0.050 0.245 0.250 87.10 88.50 0.794

https://doi.org/10.1371/journal.pcbi.1013338.t004

of 7.5 days (CI95%: 5.3-19) based on a parametric model involving a Gamma distribu-
tion. Raw data come as calendar dates of illness onset for infector-infectee pairs. We there-
fore apply a one-day coarsening of the data to recover the desired doubly interval-censored
structure. Our nonparametric method gives a mean serial interval estimate of 6.3 days

(58 =0.8; CI95%: 4.7-7.7) and a median SI of 6.7 days (5& = 1.0; CI95%: 4.0-8.0).

3.2.4. Illness onset data for COVID-19 with » = 28 infector-infectee pairs. A richer
serial interval dataset on COVID-19 is provided by [18]. They obtained doubly interval-
censored data on n = 28 infector-infectee pairs and estimated features of the serial interval
based on a Bayesian parametric approach. The authors estimate the median serial interval to
be 4.0 days (CrI95%: 3.1-4.9), where CrI denotes the credible interval. The mean and stan-
dard deviation of the serial interval are estimated at 4.7 days (CrI95%: 3.7-6.0) and 2.9 days
(CrI95%: 1.9-4.9), respectively. Our nonparametric method estimates the median serial inter-
val at 3.8 days (§¢ = 0.4; CI95%: 3.2-4.8). Estimates for the mean and standard deviation are
4.6 days (5€ = 0.5; CI95%: 3.7-5.6) and 2.6 days (5e = 0.3; CI95%: 2.0-3.0), respectively. A
graphical output of the nonparametric results is shown in Fig 6.
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Fig 3. Mean estimates of selected SI features computed over M = 50 simulated datasets for a sequence of sample sizes ranging between n = 6 and n = 500 when the
underlying target SI distribution mimics the SARS-CoV-2 Omicron setting [20]. Dotted lines indicate the true value of a SI feature. (A) Serial interval coarseness of at
least two days generated by the censoring distribution p1 = 0.8, p» = 0.15, p3 = 0.05. (B) Hypothetical -coarseness setting with € = 0.01.

https://doi.org/10.1371/journal.pchi.1013338.9003

3.2.5. Illness onset data for COVID-19 in Belgium. [20] report data on illness onset
dates of n = 2161 transmission pairs for the Omicron variant of SARS-CoV-2 and n = 334
infector-infectee pairs for the Delta variant. Fitting a Gaussian distribution to the data using
a Bayesian approach, the authors obtain a median serial interval of 2.75 days (CrI95%: 2.65-
2.86) and a standard deviation of 2.54 days (CrI95%: 2.46-2.61) for Omicron. For Delta, they
obtain a median serial interval of 3.00 days (CrI95%: 2.73-3.26) and a standard deviation of
2.49 days (CrI95%: 2.31-2.69). Treating the data as doubly interval-censored, our data-driven
approach estimates the median SI at 2.62 days (€ = 0.05; CI95%: 2.52-2.73) and the standard
deviation at 2.60 days (5€ = 0.05; CI95%: 2.50-2.69) for Omicron. For the Delta variant, the
nonparametric approach estimates the median SI at 3.06 days (5€ = 0.16; CI95%: 2.73-3.35)
and the estimated standard deviation is 2.54 days (5€ = 0.09; CI95%: 2.36-2.73).

4. Discussion

Our new data-driven methodology permits to estimate serial interval features based on
coarse illness onset data without making parametric assumptions with respect to the SI
distribution. The proposed nonparametric estimates are based on uniform mixtures and the
resulting piecewise-linear structure of the cumulative distribution function allows to compute
point estimates of several SI features in closed form. Such a mathematical tractability implies
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Table 5. Nonparametric estimates obtained with our method and parametric estimates of SI features (mean i s,
standard deviation s, median o 50, and 95th quantile go 95) for different publicly available serial interval
datasets. Values in round brackets correspond to 95% confidence intervals for our method and 95% confidence
or credible intervals for parametric methods. The third column indicates the sample size. NR: Not Reported. The
symbol * indicates that information was obtained by contacting the corresponding author of the article listed in
the data source column.

Disease and data |Method n Hs s 0.50 q0.95

source

Influenza A [15] Nonparametric |16 2.8(2.1-3.5) 1.5(1.2-2.7) 2.8 (1.8-3.8) 5.2 (4.6-5.7)
Influenza A [15] Parametric [15] |16 2.8 (NR) 1.3 (NR) 2.7 (2.0-3.5) 5.1 (3.6-6.5)
Influenza A [54] Nonparametric |16 4.0 (3.2-4.9) 1.9 (1.2-2.4) 39(3.1-4.7) 7.8 (5.5-8.5)
COVID-19[17]  |Nonparametric |6 6.3 (4.7-7.7) 2.0 (0.9-2.6) 6.7 (4.0-8.0) 9.4 (7.7-9.8)
COVID-19 [17] Parametric [17] |6 7.5 (5.3-19.0) NR NR NR

COVID-19 [18]  |Nonparametric |28 4.6 (3.7-5.6) 2.6 (2.0-3.0) 3.8 (3.2-4.8) 9.6 (7.9-10.1)
COVID-19 [18] Parametric [18] |28 4.7 (3.7-6.0) 2.9 (1.9-4.9) 4.0 (3.1-4.9) 9.8 (7.5-14.8)
COVID-19 Nonparametric (2161 2.75 (2.65-2.86) |2.60 (2.50-2.69) |2.62 (2.52-2.73) (7.32 (6.99-7.59)
Omicron [20]

COVID-19 Parametric [20] 2161 2.75(2.65-2.86) |2.54 (2.46-2.61) |2.75 (2.65-2.86) (6.92 (6.76-7.09)*
Omicron [20]

COVID-19 Delta  |Nonparametric |334 3.00 (2.72-3.26) |2.54 (2.36-2.73) |3.06 (2.73-3.35) |7.13 (6.67-7.70)
[20]

COVID-19 Delta | Parametric [20] |334 3.00 (2.73-3.26) |2.49 (2.31-2.69) |3.00 (2.73-3.26) |7.09 (6.70-7.53)*
[20]

https://doi.org/10.1371/journal.pchi.1013338.t005
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Fig 4. (A) Serial interval windows of influenza A for n = 16 infector-infectee pairs at a New York City school [15]. (B) Nonparametric estimate Fs (black
curve), point estimates (dots) and 95% ClIs (horizontal lines) for selected quantiles of S.

https://doi.org/10.1371/journal.pcbi.1013338.9004

a low computational cost in quantifying uncertainty via the bootstrap. Simulation results
suggest that the proposed nonparametric methodology will provide a reasonable approx-
imation to the true underlying SI distribution in a large number of real-world use cases if
the spread of the target distribution is not too much dominated by the degree of coarseness.
A visual inspection of serial interval windows after adjusting for double interval censoring
already gives an insightful assessment of whether or not coarseness dominates the spread of
the underlying target SI distribution. The smaller the frequency of overlapping SI windows
in one-day intervals, the richer is the signal conveying information about the spread of the
underlying distribution and hence the more confident we can be in estimates of the standard

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013338 August 4, 2025
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Fig 5. (A) Serial interval windows of influenza A for n = 16 infector-infectee pairs in San Antonio, Texas, USA [55]. (B) Nonparametric estimate Fs (black
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Fig 6. (A) Serial interval windows of COVID-19 for n = 28 infector-infectee pairs [18]. (B) Nonparametric estimate Fs (black curve), point estimates (dots)

and 95% Cls (horizontal lines) for selected quantiles of S.
https://doi.org/10.1371/journal.pcbi.1013338.9006

deviation and tail quantiles. Furthermore, we have shown that estimates of some SI features
(mainly the standard deviation and tail quantiles) will remain biased even under large sample
sizes due to the presence of coarseness.

While our method is specifically tailored for working with serial interval data that has been
adjusted for double interval censoring, it is important to highlight that it does not adjust for
right truncation. Right truncation means that SI windows are absent from the data because,
at the time of data collection, the information required to build a SI window for an infector-
infectee pair (i.e. two successive symptom onset times) is not yet available. The problem of
right truncation appears in real-time settings and implies an overrepresentation of shorter
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serial intervals, which in turn can lead to underestimation of SI statistics [5,18]. Right trunca-
tion is accentuated during the early stage of an epidemic when it undergoes a growing phase
[35]. In retrospective analyses, right truncation is usually not a problem if the surveillance
period is long enough to provide a representative sample [5], and in that case, our data-driven
approach does not require further adjustment. Methodological developments to correct for
right truncation bias in estimating serial interval distributions have only recently emerged

in parametric settings [6,18,35]. An interesting future research direction would be to extend
existing right truncation adjustment approaches to our nonparametric setting.

There is a surface-level similarity between the nonparametric approach proposed here and
our previous work on incubation period estimation [56], however these methods are radically
different in several ways. First, in our incubation period paper, we work from a Bayesian per-
spective and leverage the power and flexibility of Laplacian-P-splines [57,58] to estimate the
incubation density. The nonparametric approach proposed here is not Bayesian and does not
require the specification of a prior. Second, the distribution of incubation times is modeled
in a semiparametric way and the model includes spline parameters, while our data-driven
method for serial intervals is entirely parameter-free. Third, there is a non-negligible dif-
ference in terms of computational complexity. In [56], we use Markov chain Monte Carlo
(MCMC) to sample from the posterior distribution of the model parameters, while here, the
computational cost to obtain estimates of SI features is drastically reduced and mostly present
in the resampling scheme of the bootstrap. Our nonparametric method for serial intervals is
also mathematically less technical and thus perhaps more accessible to a broader set of users.
For all these reasons, we believe that our approach for estimating incubation times and the
newly proposed nonparametric method for estimating the serial interval distribution can be
seen as complementary tools.

The proposed nonparametric method has several distinct strengths. First, being entirely
data-driven, the method can be directly used to sketch the main characteristics of the SI dis-
tribution without imposing any parametric assumption. Moreover, the nonparametric esti-
mate of the cumulative distribution function can be used as a benchmark to visually assess
whether a chosen parametric model agrees with our data-driven fit, i.e. as an informal lack-
of-fit test. Second, our method naturally deals with negative serial interval values and can thus
be applied in a wide range of practical settings. Third, mathematical technicalities and com-
putational complexity are kept minimal. This means that algorithms underlying our approach
are very simple and can be easily translated and used in a programming language most pre-
ferred by the user. We developed a user-friendly routine for the proposed nonparametric
serial interval estimation methodology that is available in the EpiDelays package (https://
github.com/oswaldogressani/EpiDelays). Fourth, our method is in alignment with some of
the best practices recommended by [5]. For instance, it naturally accounts for doubly interval-
censored data. Also, our method automatically provides an estimate of variability (standard
deviation) along with an estimate of central tendency, and these estimates are accompanied
by confidence intervals via the bootstrap. Furthermore, the fact that the underlying code has
a small footprint means that the method is easily reproducible. This facilitates serial interval
analyses on past, current or future illness onset data streams.

A limitation of our method is that the estimated cdf obtained with uniform mixtures tells
us that there is zero probability below the smallest observed left SI bound and that the serial
interval lies with probability one below the largest observed right SI bound. Allowing for more
flexible tails that go beyond the range of the observation set may be more realistic.

As previously mentioned, a challenging future research direction would be to adjust the
proposed nonparametric approach for right truncation. Alternatively, it could be interest-
ing to investigate how the data-driven method behaves under different weighting schemes.
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Instead of attributing an equal weight of n™! to each serial interval window, we can for
instance think of a rule that puts more weight to SI windows with smaller widths (i.e. with a
lower degree of coarseness) since those windows are endowed with less uncertainty as com-
pared to wider serial interval windows. Finally, a more theoretic study related to asymptotic
properties and coarseness could provide interesting insights about the behavior of bias in our
setting and give a flavor about the quality of information that can be extracted if the underly-
ing serial interval data are characterized by an overall high degree of coarseness.
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