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Abstract

Effective postharvest cooling of olive fruit is increasingly critical under rising harvest tem-
peratures driven by climate change. This study models passive cooling dynamics using a
trait-based, mixed-effects statistical framework. Ten olive groups—representing seven culti-
vars and different ripening or size stages—were subjected to controlled cooling conditions.
Surface temperature was recorded using infrared thermal imaging, and morphological and
compositional traits were quantified. Temperature decay was modeled using Newton’s
Law of Cooling, extended with a quadratic time term to capture nonlinear trajse thecto-
ries. A linear mixed-effects model was fitted to log-transformed, normalized temperature
data, incorporating trait-by-time interactions and hierarchical random effects. The results
confirmed that fruit weight, specific surface area (SSA), and specific heat capacity (SHC)
are key drivers of cooling rate variability, consistent with theoretical expectations, but
quantified here using a trait-based statistical model applied to olive fruit. The quadratic
model consistently outperformed standard exponential models, revealing dynamic effects
of traits on temperature decline. Residual variation at the group level pointed to additional
unmeasured structural influences. This study demonstrates that olive fruit cooling behav-
ior can be effectively predicted using interpretable, trait-dependent models. The findings
offer a quantitative basis for optimizing postharvest cooling protocols and are particularly
relevant for maintaining quality under high-temperature harvest conditions.

Keywords: olive fruit; passive cooling; thermal imaging; mixed-effects model; postharvest
handling

1. Introduction

Olive production in the Mediterranean basin faces increasing challenges due to climate
change. Rising harvest temperatures, reduced precipitation, and shifts in phenological
cycles are disrupting the traditional timing and conditions of olive harvesting [1-4]. In
southern Spain—one of the world’s most productive olive-growing regions—harvest now
often coincides with daytime temperatures exceeding 30 °C, especially for early-maturing
cultivars like “Arbequina’ and ‘Koroneiki’. Phenological shifts, including flowering oc-
curring 17 days earlier, have been reported in response to regional warming, along with
increased heat stress during reproductive stages [1,2]. Elevated temperatures during oil
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accumulation and harvest can significantly reduce fruit weight, oil concentration, and final
oil quality. Cultivar-specific declines of up to 15% in oil content have been observed under
high-temperature conditions in Koroneiki and other heat-sensitive cultivars [5,6].

Harvest temperature is a critical determinant of olive oil quality. When olives arrive at
the mill with elevated internal temperatures, additional heat generated during crushing and
malaxation can push fruit temperatures beyond thresholds known to trigger fermentation
and sensory defects [7,8]. Moreover, high field temperatures during transport—especially
in poorly ventilated containers—can accelerate anaerobic metabolism after just a few hours,
leading to off-flavors and reduced commercial grades [9,10]. Although cold-pressing
and thermal-control systems are increasingly employed, they often remain technically or
economically unviable on a large scale [9]. These challenges underscore the urgent need
for a deeper, fruit-specific understanding of postharvest cooling dynamics under realistic
field conditions.

While internal temperature governs fruit quality, the current study focuses on the
external cooling response, as measured by surface temperature decline under controlled
convection conditions. Infrared thermography offers a non-invasive and high-resolution
approach to capturing this dynamic, enabling empirical modeling of how fruit treatments
influence early-stage thermal dissipation. Rather than simulating internal heat conduc-
tion, this study aims to generate trait-dependent biothermal data to inform temperature
management protocols in postharvest systems.

The thermal response of olive fruit is influenced not only by ambient conditions but
also by intrinsic fruit characteristics such as mass, geometry, moisture content, and internal
composition. These factors affect both convective heat loss at the surface and conductive
heat flow within the tissue [11,12]. Nevertheless, many fruit cooling models assume a
constant rate of heat loss, overlooking cultivar- or maturity-related variation. Studies in
apples have demonstrated genotype-dependent differences in cooling behavior related
to surface exposure and airflow conditions, using energy-balance models and thermal
imaging [13-15].

To analyze such variation, robust modeling tools are required. Linear mixed-effect
models (LMMs) are particularly well-suited for modeling longitudinal, hierarchical data
with repeated measurements [16,17]. When extended to include trait-by-time interactions
and observation-level weights, these models can quantify how morphological and composi-
tional traits affect cooling trajectories. Recent exploratory work on olive fruit has shown the
feasibility of using LMMs to model surface cooling behavior [18]. The present study builds
on that foundation with an expanded dataset and a more refined modeling framework,
grounded in an extended (quadratic) form of Newton’s Law of Cooling.

The aim of this study is to quantify how fruit-level morphological and compositional
traits modulate surface cooling behavior in olive fruit, using thermal imaging and a trait-
based mixed-effect modeling approach. While internal temperature ultimately determines
quality outcomes, our focus here is to provide a surface-based thermal framework to
support operational cooling decisions under elevated field temperatures.

2. Materials and Methods
2.1. Experimental Design and Sampling Strategy

The study was based on a laboratory-controlled cooling experiment designed to
simulate rapid temperature drop in olive fruit postharvest. Data were collected over two
seasons (2018-2019) at the Instituto de la Grasa (CSIC), Seville, Spain. Ten olive sample
groups were analyzed, representing seven widely cultivated varieties in southern Spain.
The sampling strategy also accounted for internal variation: three ripening stages of the
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‘Verdial” cultivar (unripe, medium, ripe) and two size-based categories of the ‘Gordal’
cultivar (small and large) were treated as separate groups.

Each sample group comprised 25 individual olives, resulting in a total of 250 fruits.
This sampling frame allowed for exploration of both inter-varietal and intra-varietal cooling
behavior, capturing morphological, developmental, and compositional diversity under
uniform experimental conditions.

2.2. Biometric and Compositional Characterization

Each fruit was individually weighed to the nearest 0.01 g (DENVER Instrument
APX-200) and measured for length and width using a digital caliper (resolution: 0.1 mm).
Assuming a prolate spheroid shape, surface area (SA) and volume (V) were estimated using
geometric formulae [19]:

SA = 2mb* 4 27 /sin" te (1)
V= %mzbz 2)

where a is the semi-major axis (half-length), b the semi-minor axis (half-width), and
e = \/1—b?/a? the eccentricity. Specific surface area (SSA) was then computed as SA
divided by fruit mass (mm?/g), yielding a mass-normalized proxy of external geometry
and potential convective exchange efficiency.

To assess internal composition, all 25 olives per group were homogenized into a paste
using a stainless-steel crusher. Moisture and oil content were determined by near-infrared
spectroscopy (NIR; Foss 5000, wavelength range 1100-2500 nm). Oil content was reported
both on a wet weight basis (CAH) and a dry weight basis (CAS). These values were then
used to compute the water, oil, and solid fractions on a wet mass basis, following the
approach detailed in Appendix A.2. Based on these fractions, the specific heat capacity
(SHC, in J/kg-K) was estimated using a weighted average model:

Cp = Wuwater Cwater + Woil Coil T Wsolids Csolids ©)

where cyater = 4186, ¢4 = 2000, and cs47i45s = 1400 J/kg-K. These values were derived from
standard thermophysical data reported in the ASHRAE Handbook [18].

Although the pit was not modeled as a separate component, its thermal contribution
was implicitly included by treating it as part of the residual solid fraction in the SHC
calculation. Given that the specific heat of pit tissue is expected to be similar to that of
other dry solids (approximately 1300-1500 J/kg-K), this simplification offers a reasonable
approximation of the fruit’s internal heat storage capacity. This approach maintains phys-
ical realism while avoiding unnecessary model complexity, given the focus on surface
cooling behavior.

2.3. Thermal Imaging and Data Acquisition

Prior to cooling, olives were pre-heated to an internal temperature of approximately
39 + 1 °C using a laboratory-grade heating chamber (BINDER FD720, 0.74 m3). However,
repeated opening of the incubator door and the time required for transfer introduced slight
variability in initial temperature. As a result, starting surface temperatures ranged from 36
to 40 °C across samples.

Before imaging, the olives were arranged in a 5 X 5 notch grid on an insulated
polyurethane tray. The tray was rapidly transferred into a freezing chamber maintained at
—17 £ 1 °C. The chamber (volume ~50 m?) provided uniform lateral airflow circulation,
ensuring consistent cooling while avoiding direct air impingement on the samples.

Infrared thermal images were recorded using an FLIR Vue Pro 640 camera (Flir Sys-
tems, Inc., Wilsonville, OR, USA) (spectral range: 7.5-13.5 um; resolution: 640 x 512 pix;
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frame rate: 30 Hz; accuracy: 4 2°C). The camera was positioned 1 m above the tray and
controlled remotely via MAVLink interface. Image capture was programmed at 10 s inter-
vals over 5 to 12 min, depending on sample group, yielding 31 to 70 time points per fruit
(see Appendix A for details).

Regions of interest (ROIs) were manually delineated around each fruit using FLIR Tools
(v6.4), ensuring coverage of the central zone and minimizing edge artifacts. ROI resolution
ranged from ~25 to >75 thermal pixels, reflecting differences in fruit size, orientation, and
alignment. For each ROI at each time point, the mean surface temperature was extracted as
the response variable. The pixel-level standard deviation (SD) was also recorded and used
to estimate observation-level measurement variance.

2.4. Data Normalization and Thermodynamic Modeling

To model fruit cooling, Newton’s Law of Cooling was applied under the assumption of
convective heat loss from the olive surface into a colder environment. This law is commonly
used to describe unsteady heat transfer in biological systems where the Biot number (Bi)
is low—i.e., when internal thermal resistance is small compared to external convective
resistance. Under such conditions, the lumped capacitance approximation holds, and the
fruit can be treated as thermally uniform throughout [20,21].

Given the small size of individual olive fruits, their relatively high thermal conductivity
compared to the convective resistance at the surface, and the uniform airflow conditions of
the experiment, a low Biot number was considered appropriate. Within this framework,
surface temperature decay over fruit follows this expression:

T(t) = Lambient + (TO - Tambient)e_kt (4)

where:

T(t) is the surface temperature at time ¢;

Tp is the initial fruit surface temperature at t = 0;

Tambient is the ambient temperature of the cooling chamber;
k is the cooling rate constant (in s~1);

t is time (in seconds).

The linearized form suitable for estimation is
li’l[T(f) - Tambient] = li’l(To - Tumbient) — kt (5)

To isolate the rate parameter and standardize starting conditions, temperature data

LR

were normalized:

This transformation centers the decay curve to zero, ensuring that differences in initial
temperatures do not bias slope estimates. However, exploratory plots revealed slight
curvature in several log-transformed cooling trajectories, suggesting non-constant rates of
cooling over time. To accommodate this, a quadratic extension was introduced:

T(t) — T) )
log| =4—— | = Byt + Bot 7
g( TO - Tenv '81 ,32 ( )
Here:

B1 represents the initial linear component of the cooling rate;
B2 captures curvature or deceleration/acceleration in the cooling profile over time.
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The initial cooling rate was estimated as ko = — 1, corresponding to the instanta-
neous slope of the curve at t = 0, and was used for between-group comparisons.

Although classical heat transfer parameters such as heat flux, thermal resistance, and
thermal conductivity were not directly measured, their influence was implicitly captured
through trait-level predictors in the statistical modeling framework. Specifically, fruit
weight, SSA, and SHC act as biophysical proxies that jointly determine the fruit’s effective
thermal exchange properties. These traits influence convective heat loss through their
effects on thermal mass, surface area, and internal heat storage capacity, respectively. These
traits, which are thus valid empirical stand-ins for underlying thermal processes under
convective-based formulation, enable interpretable statistical modeling without relying on
invasive or assumption-heavy internal measurements.

2.5. Statistical Modeling Framework

To model temperature decline over time, a linear mixed-effects model (LMM) was
used with both fixed and random effects. The dependent variable was the normalized,
log-transformed temperature for each fruit and time point. Fixed effects included time
(linear and quadratic) and three continuous predictors: fruit weight, SHC, and residualized
specific surface area (SSAresid). SSAresid refers to the residuals obtained by regressing SSA
on weight and SHC; it captures the variation in specific surface area, which is independent
of those two traits.

All continuous variables were z-standardized using the formula z = (x — X) /s, where
X is the variable mean and s is its standard deviation. Standardization facilitated the
interpretability of effect sizes and improved model convergence. Interactions with time
were specified for all continuous traits.

Categorical variables included pit shape (4 levels: narrow, medium, elongated, large—
round) and flesh-to-stone ratio (3 levels: low, medium, high), which were entered as
dummy-coded factors. Random intercepts were specified for both the olive groups (cultivar
or developmental subgroup) to account for the hierarchical data structure.

To address observation-level variance due to differing pixel counts in the thermal
ROISs, precision weights were defined as w = 1/(SD? + ¢), where SD is the pixel-based
standard deviation, and ¢ = 10~® was added to ensure numerical stability.

Residuals were assumed to be independent and homoscedastic after weighting. Al-
though autoregressive residual structures (AR (1)) were explored, they were not retained
due to convergence issues. A diagnostic semi-variogram revealed no meaningful temporal
autocorrelation, indicating that the inclusion of quadratic time terms sufficiently captured
the serial structure.

The final model is expressed as

Ty — T, ,
log (M) = Bo + B1tx + ,321’% + Zr:l ’)/le‘jm + szl Gle-jmtk + J{FIEShStOI’lE,']‘ + (SZTPItShapei]- + uj + vjj + €k (8)

TiO - Ten

where

Bo: overall intercept;

B1, Ba: fixed effects for linear and quadratic time terms;

Ym: fixed effects for main effects of continuous predictors;

Om: fixed effects for trait-by-time interactions;

6T, 61 transposed coefficient vectors for categorical traits;

ty: time point(s);

Xijm: standardized continuous predictors (weight, SHC, SSAresid);
FleshStone;;, PitShape;;: dummy-coded vectors for categorical traits;

uj ~ N(0, 0): random intercept for group;
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vij ~ N (0,02): random intercept for fruit;
gije ~ N(0,0?): residual error.

The model was estimated using the Ime () function from the Ime4 package in R. Model
performance was evaluated via marginal and conditional R?, the Akaike Information
Criterion (AIC), likelihood ratio tests (LRT), and residual diagnostics (Appendix A).

All data preprocessing, model implementation, and figure generation were conducted
in R (version 4.4.3; R Core Team, 2025), using the Ime4, nlme, tidyverse, and ggplot2
packages. ChatGPT (OpenAl GPT-4, 2025) contributed to refining the written presentation
but not to statistical modeling or analytical decisions.

3. Results
3.1. Trait Variability and Thermal Data Overview

Olive fruit samples displayed substantial variability in both biometric and composi-
tional traits across the ten cultivar groups. Table 1 summarizes group means and standard
deviations for weight, surface area (SA), volume, specific surface area (SSA), and spe-
cific heat capacity (SHC). Fruit weight ranged from 1.50 g in ‘Koroneiki’ to 12.60 g in
‘Gordal Big’, with SSA inversely related to mass—exceeding 50 mm?/g in small-fruited
cultivars and falling below 20 mm? /g in the largest. Moisture content spanned 47.2-58.4%,
yielding SHC estimates between ~3140 and ~3780 J/kg-K (moisture data available in
Appendix A Table A2).

Table 1. Biometric and compositional traits of olive fruit groups. Mean and standard deviation (SD)
of weight (g), surface area (SA, mm?), volume (V, mm?), specific surface area (SSA, mm?2/ g), and
estimated specific heat capacity (SHC, J/kg-K) for each olive group (1 = 25 per group).

Olive Group Weight Surface Volume SSA SHC

Arbequina 2.38 £0.36 788.2 £ 804 2088.4 + 325.5 3322+£17.1 3299 £+ 18
Koroneiki 1.50 +£0.17 629.9 £+ 52.1 1459.2 +182.2 4212 +14.4 3129 +21
Cacerefia 4.09 +0.51 958.1 4 104.5 2760.7 £ 442.7 235.5 +12.9 3355 £ 17
Hojiblanca 5.68 = 1.03 1490.4 = 178.3 5375.2 £ 916.9 266.6 =19.9 3142 £ 21
Picual 4.42 + 047 1261.4 +90.9 4153.9 £442.8 2874 £13.1 3155 + 21
Verdial Unripe 294 £0.41 1009.2 +97.6 2967.6 £ 435.6 344.2 £ 184 2880 £ 26
Verdial Medium 3.54 £0.38 1091.2 +77.4 3329.4 £ 351.1 310.3 £14.1 2911 + 26
Verdial Ripe 5.40 &+ 0.57 1440.7 + 116.6 5070.4 £ 599.9 2679 +12.4 2930 £ 26
Gordal Small 7.54 +1.24 1571.3 + 180.8 5786.6 + 980.6 2103 +11.4 2950 £ 25
Gordal Big 12.60 £ 1.03 2317.3 £ 206.0 1026.0 = 1383.0 184.0 £8.9 2852 £+ 27

Thermal measurements were collected at high temporal resolution (31 to 70 time
points per fruit), producing over 7500 observations. Figure 1 presents group-level mean
cooling trajectories with 95% confidence intervals over the 360 s interval. All groups
demonstrated monotonic decreases in surface temperature, but cooling rates and curve
shapes differed markedly across cultivars and size classes. Arbequina, Picual, and Verdial
Medium showed rapid declines, reaching temperatures below 10 °C by the end of the
experiment. In contrast, Cacerefia and Gordal Big retained higher temperatures throughout,
indicating slower thermal dissipation and likely greater thermal inertia. These differences
became more pronounced after the initial minute, suggesting that cultivar-specific traits
such as fruit mass, surface-to-volume ratio, and internal composition influence both the
initial cooling response and the longer-term temperature dynamics.
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Mean Temperature £ 95% Cl Over Time (0-360s)

Variety

p— Arbequina
Cacerena
Gordal Big
Gordal Small
Hojiblanca
Koroneiki

: Picual

Mean Temperature (°C)

Verdial Medium

Verdial Ripe

Verdial Unripe

0 30 60 90 120 150 210 240 270 300 330 360

180
Time (s)

Figure 1. Average cooling curves per group with 95% CI (0-360 s). Mean surface temperature (°C)
over time for each of the ten olive groups, recorded at 10 s intervals during passive cooling. Shaded
bands represent pointwise 95% confidence intervals (1 = 25 fruits per group).

3.2. Preliminary Modeling and Empirical Behavior

Initial fits of Newtonian exponential models to normalized temperature trajectories
yielded high R? values, typically above 0.90. However, residuals and visual inspection of
log-transformed curves revealed slight but systematic curvature, suggesting that the cooling
rate was not constant over time. To accommodate this behavior, a quadratic extension of
the log-linear model was implemented:

l@(ﬁﬁgﬁf)zﬁﬁ+mﬂ ©)

Here, T(t) is the fruit surface temperature at time t, Ty is the initial temperature, and
Tenv is the ambient temperature. Parameters 1 and B, allow the cooling rate to vary over
time. Differentiating Equation (9) with respect to time yields the instantaneous cooling rate:

k() =~ flog (T ) = (B + 2pa) (10)

This formulation reveals that when B, < 0, the cooling process decelerates over time—
as expected in larger fruits where internal conduction becomes limiting. Conversely, B> > 0
suggests initial resistance to heat loss followed by acceleration, possibly due to cuticular or
surface effects. When 8, = 0, the model reduces to the classical Newtonian form with a
constant cooling rate k(t) = — B;. In this special case, the temperature decline follows a
pure exponential decay.

The initial cooling rate t = 0, denoted as kg = —p;, was retained as a compara-
tive metric across groups. As shown in Figure 2, these initial rates varied substantially
between cultivars.
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TO - Tenv

log;

0.0

-0.2

-0.5

-0.8
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Arbequina (k = 0.0041, R? = 0.984)
Cacerena (k = 0.0021, R2 = 0.959)
= Gordal Big (k = 0.0019, R? = 0.957)
== Gordal Small (k = 0.0033, R*> = 0.962)
== Hojiblanca (k = 0.0031, R* = 0.942)
=== Koroneiki (k = 0.003, R* = 0.977)
== Picual (k = 0.003, R* = 0.964)
Verdial Medium (k = 0.0032, R* = 0.977)
Verdial Ripe (k = 0.0022, R? = 0.973)
Verdial Unripe (k = 0.0028, R* = 0.983)

100 200 300
Time (s)

Figure 2. Normalized log-linear cooling curves (fruit-level means) fitted with exponential models.
Each line represents the average cooling profile for an olive group, shown as the logarithm of
the normalized temperature difference over time. Slopes correspond to cooling rate constants (k),
with group-specific R? indicated. Dotted lines show empirical group means; solid lines are fitted
exponential regressions.

Among the fastest-cooling groups were ‘Koroneiki’ and ‘Verdial Unripe’, while ‘Gordal
Big’ and ‘Cacerefia’ exhibited the slowest rates. These differences underscore the role
of fruit-level characteristics beyond ambient conditions in modulating cooling behavior.
Inclusion of the quadratic term B,#> allowed the model to capture subtle inflections in the
log-temperature decay curves. High-SSA fruits exhibited steep early declines followed by
stabilization, while larger, heavier fruits showed more gradual and persistent temperature
loss. Thes patterns justify the inclusion of time-varying cooling effects and support the use
of trait-by-time interaction in the fully developed LMM developed in Section 3.4.

Building on these findings, the next section explores the trait-level predictors of
the variation in kg and extends the analysis to a multivariate context through principal
component analysis (PCA).

3.3. Trait Associations with Cooling Rate

Univariate linear regressions showed that specific surface area (SSA) had the strongest
negative association with ko, explaining more than 50% of the variance (R? = 0.512). Fruit
weight and SHC were also negatively associated with cooling rate but showed weaker
correlations (R? = 0.346 and 0.056, respectively).

To explore the multivariate structure among traits, principal component analysis (PCA)
was applied to standardized values of SSA, SHC, and weight. PC1 captured a size—efficiency
gradient, with positive loadings for weight and negative loadings for SSA, reflecting a
contrast between large, slow-cooling fruits and small, fast-cooling ones. PC2 was primarily
driven by SHC, separating cultivars with higher internal energy storage capacity.

The PCA biplot (Figure 3) illustrates how cultivars are distributed in trait space and
how these traits relate to cooling behavior. Fast-cooling groups cluster in the lower-left
quadrant, characterized by high SSA and low SHC, while slow-cooling groups tend to
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occupy regions with higher weight and SHC. The directions and magnitudes of the red
arrows indicate the relative contribution of each trait to the principal components.

PCA Biplot of Olive Fruit Traits

= 0.0035
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Figure 3. PCA biplot of fruit traits (weight, SHC, SSA) with cultivar positions and trait loadings. PC1
and PC2 were computed from standardized values of fruit weight, specific surface area (SSA), and
specific heat capacity (SHC). Points represent olive group centroids, colored by initial cooling rate
(ko). Red arrows show trait loadings; their direction and length indicate each trait’s contribution to
the principal components. Groups with high SSA and low SHC cluster in regions associated with
faster cooling.

A multiple linear regression of kg on PC1 and PC2 yielded an adjusted R? of 0.709,
outperforming any individual trait model. This supports the conclusion that a combination
of morphological and thermal traits jointly explains cooling variability more effectively than
any individual trait. Table 2 summarizes the variance explained by each trait individually
and in the PCA model.

Table 2. Variance explained (R?) in initial cooling rate (ko) by single traits and PCA axes. Adjusted
R? values for univariate regressions of kg on individual traits (SSA, weight, SHC) and for multi-
variate regression using the first two principal components (PC1 and PC2) derived from the trait
structl removure.

Predictor R?
Specific Surface Area (SSA) 0.512
Weight 0.346
Specific Heat Capacity (SHC) 0.056
PCA (PC1 + PC2) 0.709

Note: PCA model includes both PC1 and PC2 as predictors in a linear regression.

Other candidate traits—such as moisture content, pit size, and skin thickness—were
considered during the exploratory analysis but were excluded from the final models. These
traits were either highly collinear with the selected variables or showed limited explanatory
power in univariate or PCA-based models. SSA, SHC, and weight were retained for their
physical relevance, low collinearity, and mechanistic interpretability in relation to thermal
exchange processes.
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3.4. Mixed-Effects Model Results

The linear mixed-effects model provided an excellent fit to the normalized log-
transformed temperature trajectories. The fixed effects for time and time squared were
highly significant (p < 0.001), confirming the nonlinear nature of the cooling process. All
three continuous fruit-level traits—weight, specific heat capacity (SHC), and residualized
specific surface area (SSAresid)—exhibited significant interactions with time (Table 3),
indicating that their influence evolved dynamically over the course of cooling.

Table 3. Fixed-effect estimates from the final linear mixed-effects model (LMM). Estimates, standard
errors (SE), and p-values for all fixed-effect terms in the final LMM, including main effects and
time-by-trait interactions. Continuous predictors were standardized (mean =0, SD = 1).

Term Estimate Std. Error p-Value
(Intercept) 0.1907 0.1301 0.214
Poly(time) 0.005797 2.228 x 107 <0.001
Poly(time?) —6.882 x 1076 6.614 x 108 <0.001
Weight_z —0.001349 0.01104 0.901

SHC_z 0.06679 0.07582 0.425
SSAresid_z —0.01956 0.006275 0.002
Flesh_stone —0.04639 0.04842 0.4

Pit_shape medium —0.05286 0.1939 0.801
Pit_shape elongated -0.1177 0.2647 0.694
Pit_shape large /round —0.0396 0.3408 0.915
Weight_z:time —0.0007029 8.045 x 107 <0.001
time:SHC_z —0.0005999 8.453 x 1076 <0.001
time:SSAresid_z 6.404 x 107° 6.972 x 10~° <0.001

SSAresid exhibited a significant negative main effect (p = 0.002), suggesting that
fruits with greater surface-to-mass ratios experienced faster baseline cooling. Its positive
interaction with time indicates that the cooling rate in high-SSA fruits decreased more
sharply over time, consistent with rapid initial heat loss followed by earlier stabilization.
In contrast, while SHC and weight did not show significant main effects, both exhibited
highly significant negative interactions with time (p < 0.001), indicating that higher SHC and
heavier fruits slowed the rate of temperature decline, likely due to increased thermal inertia.

The model’s marginal R? was 0.905, indicating that fixed effects alone explained over
90% of the variance in temperature response. The conditional R? rose to 0.984 when group-
and fruit-level random effects were included, indicating excellent model performance
at both fixed and hierarchical levels. Diagnostic checks—including residual plots and
a semi-variogram (Appendix A), revealed no substantial heteroscedasticity or temporal
autocorrelation, supporting the model’s structural adequacy.

Figure 4 illustrates the predicted log-normalized temperature curves for low (—2 SD),
mean, and high (+2 SD) values of each trait. High SSAresid values accelerated initial
cooling but led to faster deceleration. Conversely, greater weight and SHC prolonged the
cooling process, flattening the curve.
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Predicted normalized temperature

0.0

SSAresid (a)

SHC (b) Fruit Weight (c)
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Figure 4. Predicted cooling trajectories by trait level with confidence intervals. Model-predicted
log-transformed normalized temperature curves for low (—2 SD), average (0), and high (+2 SD)
values of each continuous trait: (a) residualized specific surface area (SSAresid), (b) specific heat
capacity (SHC), (c) fruit weight. Curves illustrate how trait variation alters the rate and curvature
of cooling.

3.5. Derived Cooling Rates and Group-Level Effects

The effective cooling rate k¢ () was computed as the time derivative of the predicted
log-normalized temperature trajectories:

Kogp(t) = — a0 an

ijk — Tombient At

Based on the model structure, by incorporating quadratic time and trait-by-time
interactions into the model given in Equation (8), the full derivative becomes

aT _ 2 y- OmX 12
o =Pt Bat+ Y O Xijm (12)
m=1
While ky = —pB; serves as a convenient scalar summary of the initial cooling capacity,

the effective cooling rate k. ¢f(t) captures the dynamic, time-dependent nature of cooling.
Traits such as SSAresid tend to accelerate early-stage cooling, while SHC and weight reduce
the overall slope, consistent with higher thermal inertia. This distinction is particularly
important in fruits exhibiting non-constant cooling behavior, where the rate of temperature
change evolves due to their internal structure and composition.

Group-level predictions were generated by averaging the predicted log-normalized
temperature curves within each cultivar group (Figure 5). Even after accounting for
biometric traits, substantial between-group differences remained.

These group-specific deviations, captured by the random intercepts, highlight ad-
ditional sources of anatomical or structural variation—such as pit architecture, cuticle
thickness, or skin permeability—that were not directly modeled. While random effects
do not influence the rate of temperature decline over time, they provide insight into
cultivar-specific thermal profiles not explained by the measured predictors.
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Figure 5. Predicted group-level cooling curves with confidence bands by olive group. Log-normalized
temperature trajectories predicted by the final model for each group. Although the y-axis appears
to rise, this reflects the diminishing temperature difference from ambient temperature as cooling
progresses. The predictions incorporate both trait-based effects and group-level random intercepts.

3.6. Sensitivity Analysis and Model Robustness

The contribution of each continuous fruit-level trait to model performance was
assessed through nested model comparisons. For each trait—fruit weight, SHC, and
SSAresid—a reduced model was fitted excluding the trait and its interaction with time.
Likelihood ratio tests (LRTs) and changes in the Akaike Information Criterion (AAIC) were
used to evaluate the impact of each exclusion.

Trait exclusion tests provided strong evidence for the independent contribution of
each predictor. Removing weight led to a large drop in log-likelihood (LRT = 6297.8, df = 2,
p <2.2 x 1071¢) and an AIC increase of 6257.1. Excluding SHC produced similarly strong
effects (LRT = 3913.1; AAIC = 3882.2). While the magnitude was smaller, the removal of
SSAresid still significantly impaired the model fit (LRT = 86.1; AAIC = 51.9).

To further evaluate robustness, the full model was re-estimated on 100 random sub-
samples (each 80% of the data). Across all iterations, the direction and magnitude of
fixed-effect estimates remained consistent. Standard errors showed minimal inflation, and
time-by-trait interactions retained statistical significance. These results suggest that the
model’s outcomes are not overly dependent on any particular subset of the data.

Residual diagnostics showed no evidence of heteroscedasticity or serial correlation.
Plots of standardized residuals versus fitted values displayed no systematic pattern. A
semi-variogram of residuals, computed from within-fruit standardized errors, is pre-
sented in Figure 6. The absence of a rising trend across lags confirmed the assumption of
residual independence.

Finally, an alternative covariance structure assuming autoregressive residuals (AR1)
was tested using the nlme package. However, these models failed to converge due to singu-
larity or rank deficiency. This instability is likely due to the short time series per fruit and
the relatively low variability after accounting for fixed and random effects. Given the strong
empirical support from residual diagnostics and the stability of the simpler model, we
retained the assumption of independent residuals as a parsimonious and justifiable choice.
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Figure 6. Semi-variogram of residuals within fruit. Semi-variance plotted against lag (seconds) across
repeated measurements. The declining pattern confirms low temporal autocorrelation, validating the
independence assumption used in the residual error structure.

Together, these analyses affirm the robustness and reliability of the trait-based lin-
ear mixed-effects model in capturing olive fruit cooling dynamics. The model’s key
conclusions—regarding the role of mass, surface geometry, and internal heat capacity—are
statistically stable and resilient to data perturbations and alternative assumptions.

4. Discussion
4.1. Overview of Findings

This study presents a detailed quantitative analysis of passive cooling in olive fruit
under standardized postharvest conditions. High-resolution infrared thermal imaging
and a comprehensive suite of morphological and compositional traits across ten olive
groups were used to develop a trait-by-time modeling framework that characterizes surface
temperature decline.

The application of a curve-level linear mixed-effects model enabled the integration
of fixed and random effects, supporting dynamic, trait-dependent predictions of cooling
behavior while accounting for the hierarchical structure of the data and observation-level
variance. Among the continuous predictors, fruit weight, specific heat capacity (SHC), and
residualized specific surface area (SSAresid) emerged as the most influential traits. Heavier
fruits cooled more slowly due to increased thermal mass, while high SSAresid values
accelerated heat dissipation through increased surface-to-mass ratios. SHC moderated
cooling, with higher values associated with more gradual cooling, consistent with increased
internal energy storage.

A major strength of the modeling approach lies in its ability to capture non-constant
cooling rates via trait-by-time interaction terms. This represents a significant advance-
ment over conventional Newtonian cooling models with fixed decay rates. The resulting
trait-specific cooling profiles are not only statistically robust but also mechanistically in-
terpretable, reflecting the interplay between surface exposure, internal conduction, and
compositional traits. This biologically informed representation of postharvest thermal
behavior provides both theoretical insight and practical guidance for fruit handling under
variable thermal conditions.

The observed curvature in temperature decline, particularly the deceleration of cooling
in heavier fruits and early stabilization in small high-SSA fruits, aligns with the unsteady-
state heat transfer theory. While this general pattern is well known in physical modeling, the
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present study contributes to the literature by formally capturing these dynamics through a
statistically rigorous, trait-based framework. By extending Newton’s Law of Cooling with a
quadratic time component and incorporating trait interactions, the model links measurable
fruit characteristics to temporal cooling trajectories. This structure enables cultivar-specific,
trait-sensitive predictions of cooling behavior in real-world conditions.

Although research on surface cooling dynamics in olives is limited, analogous ther-
mophysical patterns have been reported in apples and other fruits, where factors such as
skin conductance, airflow exposure, and internal composition affect heat loss [13,14]. The
findings of this study contribute to this growing body of literature while offering a novel
statistical approach tailored to olive fruit.

4.2. Methodological Contributions and Limitations

The modeling strategy employed in this study builds on and extends prior exploratory
work by incorporating fruit traits into a mixed-effects framework, thereby linking physi-
ological attributes to thermal behavior. The use of a quadratic log-linear model enabled
more accurate representation of empirical cooling curves compared to classical Newtonian
or segmented alternatives—particularly for fruits exhibiting structural heterogeneity or
non-uniform thermal response.

Several methodological features contributed to the robustness of the model. First,
observation-level precision weights, derived from pixel-level temperature variance, en-
sured that higher-variance observations exerted less influence on parameter estimation,
thereby reducing noise. Second, diagnostic analysis—including residual plots and a semi-
variogram—supported the assumption of independent residuals, validating the model
structure in the absence of autocorrelation. Third, the inclusion of random intercepts at
both the fruit and group levels effectively captured unobserved heterogeneity related to
cultivar-specific traits such as pit architecture, skin permeability, or internal porosity.

Nonetheless, this study has several limitations. The experiment was conducted within
a single, highly controlled thermal environment, which may not fully replicate the thermal
variability experienced during commercial harvest, transport, and storage. The relative
short cooling duration (<12 min) may also limit the detection of slower, long-term conduc-
tive effects, particularly in larger fruits.

Additionally, some potentially important anatomical and compositional traits—such
as wax layer thickness, surface roughness, or tissue density—were not measured and could
further refine trait-based predictions if included in future studies. While the study design
included three ripening stages for Verdial and two size-based classes for Gordal, other
cultivars were not assessed across multiple phenological stages. This imbalance limits the
ability to generalize findings about developmental trends across all varieties.

Finally, although surface temperature was used as a practical and non-invasive proxy
for the thermal state, it does not capture internal temperature gradients or the full extent of
intra-fruit heat conduction. Incorporating internal temperature measurements or develop-
ing multi-zone heat transfer models could provide more complete insight into fruit thermal
dynamics, particularly in applications where core temperature critically affects product
quality or safety.

Despite these limitations, the modeling framework developed in this study remains
broadly applicable and can serve as a foundation for further research on postharvest
thermal behavior in horticultural products.

4.3. Applications and Future Directions

The trait-based findings of this study offer practical value for optimizing postharvest
cooling protocols in olive production systems. By identifying cultivar and developmental
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groups with slower cooling responses, producers and facility operators can adapt pre-
cooling durations, regulate airflow intensity, or modify storage configurations to enhance
temperature uniformity across harvested batches.

The analytically derived effective cooling rate, k,s¢(t), provides a dynamic and in-
terpretable proxy for thermal exchange capacity. This time-resolved rate function can
support the calibration of cooling infrastructure and the tailoring of handling strategies to
cultivar-specific thermal behavior. Recent advancements in pilot-scale thermal conditioning
systems have demonstrated potential for industrial implementation [10,22,23]. However,
such systems typically operate without trait-based customization. The results of this study
suggest that incorporating measurable fruit traits into the control logic of cooling systems
could significantly enhance efficiency and product quality preservation.

Although this study focused on continuous cooling trajectories, an important direc-
tion for future research involves modeling time-to-threshold outcomes—such as the time
required for surface or core temperature to fall below a defined threshold. Framing the
problem within a survival analysis context would enable more flexible and informative
comparisons of cultivar resilience under varying thermal loads. A forthcoming study
will explore this approach, using event-time modeling to quantify differences in cooling
performance across groups and trait profiles.

4.4. Societal Relevance and Ethical Considerations

This research contributes to the broader effort of developing climate-resilient posthar-
vest systems for Mediterranean agriculture. Rising harvest temperatures pose a growing
threat to fruit quality, oil stability, and economic returns—especially for cultivars har-
vested at early maturity or subjected to mechanical handling. By providing a mechanistic,
trait-based understanding of olive fruit cooling, this study supports the transition toward
precision strategies in thermal management.

The modeling approach emphasizes both transparency and reproducibility. Rather
than relying on opaque, data-driven algorithms, the study adopts a physically grounded
statistical framework that enables direct interpretation of model parameters in terms of
fruit morphology and thermophysical properties. This facilitates collaboration between
agronomists, engineers, and postharvest specialists and promotes integration of the findings
into practical applications.

From an ethical perspective, improving cooling strategies aligns with the imperative
to reduce postharvest losses, conserve resources, and support sustainable agriculture. Such
improvements are particularly relevant for small-scale producers and cooperatives, which
often operate under economic and logistical constraints.

By enabling trait-informed handling strategies, the outcomes of this study contribute
to a more adaptive and equitable agricultural value chain. Future implementation of trait-
based cooling protocols could help mitigate climate-related risks while ensuring consistent
product quality across diverse growing regions and market conditions.

5. Conclusions

This study presents a comprehensive, trait-based analysis of passive cooling behavior
in olive fruit under controlled laboratory conditions. By integrating thermal imaging,
detailed morphological profiling, and a hierarchical mixed-effects modeling framework,
the research demonstrates how measurable fruit-level traits govern both the rate and shape
of postharvest temperature decline.

The key findings emphasize the dominant role of fruit mass, specific surface area
(SSA), and specific heat capacity (SHC) in shaping cooling dynamics. Importantly, these
effects were shown to be time-dependent, with trait-by-time interactions capturing the
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evolving nature of thermal exchange. The quadratic extension of Newton’s Law of Cooling
proved essential in accounting for the observed curvature in the cooling trajectories, thereby
enabling the derivation of a dynamic, interpretable effective cooling rate.

The proposed modeling approach is statistically robust, physically interpretable, and
extensible to other fruit systems. Its performance was validated through residual diag-
nostics, nested model comparisons, and subsampling-based sensitivity analyses. The
inclusion of pixel-level measurement variance and random effects enhanced both precision
and generalizability.

From an applied perspective, this study provides actionable insights for optimizing
postharvest cooling protocols. Traits associated with faster or slower cooling behavior
can inform cultivar-specific decisions regarding pre-cooling time, airflow regulation, and
storage design. These recommendations are particularly salient in the context of climate
change, where elevated field temperatures and extended harvest seasons increase the risk
of thermal damage and quality loss.

In summary, the trait-based linear mixed-effects model developed in this study offers a
data-informed framework for understanding and predicting cooling behavior in olive fruit.
The approach bridges physical theory with empirical modeling and lays the groundwork
for future research into internal heat conduction, time-to-threshold performance, and
operational integration in commercial cooling systems. As climate pressures intensify,
such trait-informed strategies may prove essential in supporting resilient and high-quality
postharvest supply chains.
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Appendix A
Appendix A.1. Pixel Count Overview and Sample Times

This appendix provides a detailed overview of the thermal imaging structure used in
the cooling experiment. Table A1 summarizes the number of thermal pixels captured per
observation (per fruit per time point) and the total number of time points acquired for each
of the ten olive groups. These data reflect both biological and technical variability, including
differences in fruit size, shape, orientation, and manual region-of-interest (ROI) delineation.

Most varieties were monitored for 300 s (31 time points at 10 s intervals). However,
three groups were recorded over longer durations—Cacerefia, 36 time points (350 s); Picual,
61 time points (600 s); Hojiblanca, 70 time points (700 s)—though one measurement (at
270 s) was missing. The table below reports the total number of temperature observations
and the average number of thermal pixels per fruit ROI across the cooling series.
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Table Al. Biothermal data.

Olive Group Olives (n) # Points Time Range Mean Pixels Per ROI
Arbequina 25 31 300 s (5 min) 39.97
Koroneiki 25 31 300 s (5 min) 48.53

Cacerefia 25 36 350 s (5 min 50 s) 54.38
Hojiblanca 25 70* 700 s (11 min 40 s) 88.81
Picual 25 61 600 s (10 min) 100.97
Verdial Unripe 25 31 300 s (5 min) 74.28
Verdial Medium 25 31 300 s (5 min) 47.28

Verdial Ripe 25 31 300 s (5 min) 4717

Gordal Small 25 33 320 s (5 min 20 s) 50.33
Gordal Big 25 33 320 s (5 min 20 s) 50.33

* Hojiblanca contains a missing time point at 270 s.

A heatmap of pixel counts per fruit and time point is presented in Figure A1l. The vari-
ation in region-of-interest (ROI) resolution—ranging from ~25 to over 75 pixels—illustrates
both biological and technical heterogeneity. This justifies the use of observation-level
precision weights in the statistical model, ensuring that measurements with lower pixel
counts exert proportionally less influence on fixed-effect estimation.

Pixel count per olive and time by olive group

Arbequina Cacerena Gordal Big Gordal Small
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Figure A1l. Heatmap of pixel counts per fruit and time point. ROI-based pixel counts for each olive
across time, stratified by group. Rows indicate time (in seconds), and columns represent individual
olives. Color scale reflects pixel density, from low (purple) to high (yellow). Differences in pixel
resolution reflect fruit size, ROI delineation, and image alignment.
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Appendix A.2. Biochemical Composition and SHC Estimates

To ensure a physically consistent estimation of specific heat capacity (SHC) for each
olive group, component fractions of water, oil, and residual solids were first converted to a
wet mass basis. The method proceeds as follows:

Water fraction was derived from moisture content, expressed as a percentage of
fresh weight:

Moisture (%
Wwater = T(O) (Al)

The oil fraction was available as follows: CAH, percentage of wet weight, and CAS,
percentage of dry weight. To align CAS with the wet-basis mass balance, it was adjusted
according to the dry matter fraction:

CAS
Wil = (1— wwater)’m (A2)
The remaining mass was attributed to non-oil solids:
Wsolids = (1 — Wwater) — Woir (A3)

SHC was then estimated using a weighted average of the specific heat capacities of the
three components:
Cp = WwaterCwater + Woil*Coil + Wsolids *Csolids (A4)

where

Cunter = 4186 ]/ kg K;
Coil = 2000 J/kg-K (mean value from the 1900-2100 range);
Csolids = 1400 J /kg-K (mean value from the 1300-1500 range).

To reflect the uncertainty in the oil and solid heat capacity values, minimum and
maximum estimates were calculated using the extremes of their respective ranges. These
were used to derive an approximate standard deviation for SHC in each group:

Cmax _ Cmin
D(Cp) = +—"— A
SD(Cp) 1 (A5)
Table A2. Moisture, oil content, and SHC (mean =+ SD) by olive group.

Olive Group CAH (%) CAS (%) Moister (%) Specific Heat (:=SD)
Arbequina 16.70 47.15 64.58 3299.40 £+ 17.71
Koroneiki 19.22 45.69 57.93 3129.26 + 21.03
Cacereiia * 16.15 47.31 66.80 3355.29 + 16.60
Hojiblanca 17.53 42.50 58.76 3142.21 + 20.62

Picual 21.79 52.19 58.31 3155.06 + 20.84
Verdial Unripe 25.82 52.65 47.15 2880.55 + 26.42
Verdial Medium ** 27.29 56.43 4791 2911.14 £ 26.04

Verdial Ripe 28.76 56.43 48.67 2929.74 £ 25.66

Gordal Small 27.85 52.16 50.04 2950.47 + 24.98
Gordal Big 26.30 47.23 46.71 2852.35 + 26.64

* Data retrieved from [24]; ** mean of Verdial Unripe and Medium.
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Appendix A.3. Variance Inflation Factors (VIFs)

To assess multicollinearity among predictors in the final model, variance inflation fac-
tors (VIFs) were computed. The analysis included all continuous variables and interactions
considered during model building.

Prior to model fitting, volume and surface area were excluded due to extreme collinear-
ity with weight (VIF > 150) and SSA, respectively. Additionally, SSA was residualized
against log-weight to create SSAresid, reducing collinearity while preserving independent
geometric information.

The table below summarizes the VIFs for the final set of continuous predictors and
their interaction terms. All values remained well below the commonly used threshold of 5,
indicating that multicollinearity was not a major concern in the final model.

Table A3. Variance inflation factors for continuous predictors (mean effects and interactions).

Predictor VIF
Weight 1.72
SHC 1.39
SSAresid 1.58
Weight x time 1.75
SHC x time 141
SSAresid x time 1.66

Note: VIFs were computed using the car:vif () function after fitting an equivalent linear model with the same
structure (excluding random effects).

Appendix A.4. Likelihood Ratio Tests for Model Sensitivity

To evaluate the individual contribution of each continuous trait to the model’s ex-
planatory power, nested model comparisons were performed using likelihood ratio tests
(LRTs). For each trait, a reduced model was constructed by removing the main effect and
its interaction with time from the full model. These reduced models were then compared
to the full model using maximum likelihood estimation.

Table A4. Likelihood ratio tests for the exclusion of continuous traits.

Predictor Removed A Log-Likelihood DF LRT p-Value AAIC
Weight 6297.8 2 <22 x 1071 +6257.1
SHC 3913.1 2 <22 x 1071 +3882.2
SSAresid 86.1 2 <22 x 10716 +51.9

Each trait—weight, SHC, and SSAresid—significantly contributed to the model’s
ability to explain the variability in cooling trajectories. The largest LRT statistics were
associated with weight and SHC, suggesting their strong independent effects on the tem-
perature decay pattern. While the effect of SSAresid was smaller, its exclusion still resulted
in a significant deterioration in model fit.

These findings confirm that all three continuous predictors are essential to the explana-
tory structure of the final model.
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