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Introduction Sensor placement, activity type influencing wrist movements, and individual characteristics impact accuracy of wrist-worn 
photoplethysmography (PPG)-based heart rate (HR) monitors. This study investigated technical interventions to optimize 
PPG accuracy in patients with cardiac disease.

Methods 
and results

The Fitbit Inspire 2 PPG monitor was evaluated across three cohorts, using a Polar H10 chest strap as reference: (i) 10 
healthy volunteers performed wrist movements with the monitor placed one or three fingers above the wrist to identify 
optimal placement; (ii) 10 volunteers engaged in sport activities (walking, running, cycling, rowing); (iii) 30 cardiac rehabili
tation patients were monitored during exercise to assess baseline accuracy. Patients with low accuracy [mean absolute per
centage error (MAPE) < 10% for <70% of training time] underwent technical interventions (sensor cleaning, forearm 
shaving, position fixation, and/or relocation to the volar wrist). Placement three vs. one fingers above the wrist was signifi
cantly more accurate (mean difference in MAPE: −11.4%, P < 0.001). Walking showed the highest accuracy (MAPE = 3.8%), 
followed by cycling (MAPE = 6.9%) and running (MAPE = 8.5%), while rowing had the lowest accuracy (MAPE = 13.4%, P <  
0.001). Among CR patients, 66.7% achieved high baseline accuracy. Technical interventions improved accuracy in 50.0% of 
those with low baseline accuracy, but no significant predictors of optimization success were identified.

Conclusion Accurate PPG-based monitoring requires a sensor placed higher on the wrist. Nevertheless, only two-thirds of patients are 
suitable for such monitoring, with improvement by technical adaptations possible (but impractical) in the others. Therefore, 
assessing baseline accuracy is a prerequisite before relying on these devices for activity guidance.
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Graphical Abstract

Evaluated the impact on PPG accuracy for:

Baseline accuracy assessment

Optimization A

Optimization B

Sensor placement:
3 fingers vs 1 finger

from wrist joint 

Wrist movements:
rotation and flexion/

extension impair
PPG the most

Sport activities:
accuracy ranking

Sensor position: 3 versus 1 finger from wrist jointvs

Correlation (ICC)
from 0.59 to 0.92

Highest error
(P <0.001) compared

to random movements, 
typing, and exercise 

combined

Assessed during 3 trainings with sensor 3 fingers from wrist joint

20/30 (66.7%) had high accuracy
Defined high accuracy as MAPE <10% in ≥70% of training time

Walking
Running
and cycling
Rowing

Mean absolute
error with 8.3 bpm
(P <0.001)

Under/overshooting
odds with 74%
(P <0.001)

Optimization and pre-use suitability selection for wrist photoplethysmography-based 
heart rate monitoring in patients with cardiac disease

What is the optimal position for wrist-worn PPG HR monitors? 
Do wrist movements and sport activities affect accuracy?

Can technical interventions improve PPG accuracy?

Take-home message

Wrist movements strongly reduce PPG accuracy
Higher sensor placement is a must

Technical fixes help only a few patients
Always check baseline accuracy before clinical use

Wrist movements: protocol tested at
both positions by 10 healthy volunteers

Sport activities: protocol tested at optimal
sensor position by 10 volunteers

All participants wore a PPG-based test device
and an ECG-based reference device

30 patients following cardiac rehabilitation monitored with PPG
and ECG-based reference during training sessions

67% men, median 58.1 years, median 77.8 kg

10/30 (33.3%) had low accuracy      Test technical interventions

3 additional trainings with sensor cleaning + hair removal
+ secure strap

3/10 improved to high accuracy

Those who improved had better baseline accuracy,
but not significant (66% vs 49%, P = 0.08)

7/10 still low accuracy

2/7 improved to high accuracy

Overall: only 50% improved
No reliable predictors + impractical for daily use

bpm: beats per minute; ECG: electrocardiogram; HR: heart rate; ICC: intraclass correlation coefficient, MAPE: mean absolute percentage error; PPG: photoplethysmography 

5/7 still low accuracy

3 additional trainings with sensor moved to volar side

Keywords Exercise • Heart Rate • Wearable Electronic Devices • Fitness Trackers • Cardiac Rehabilitation

Introduction
Wrist-worn photoplethysmography (PPG)-based heart rate (HR) 
monitors are increasingly popular tools for registering physical activity 
(PA) and providing training guidance.1 By detecting changes in blood 
volume through light absorption and reflection, PPG devices offer a 
non-invasive, convenient method for daily and long-term HR monitor
ing.2 Given the established link between physical inactivity and cardio
vascular disease, these monitors have potential for tracking and 
enhancing PA in patients with cardiac disease.3,4

While previous studies have generally reported acceptable accuracy 
for wrist-worn PPG-based HR monitors,5–8 the reliability can vary due 
to multiple influencing factors.9 Firstly, individual characteristics beyond 
immediate control, such as age, sex, BMI, skin tone, and cardiovascular 
pathophysiology, may affect the optical properties of the skin and, 
therefore, the PPG signal.10 Arrhythmias like atrial fibrillation (AF) 
can introduce irregular pulse patterns, further impacting PPG accur
acy.6,7 Moreover, erratic or cyclical wrist and arm movements can gen
erate motion artefacts (MA) that disturb sensor-skin contact, distort 

light signals, reduce signal quality and cause HR over- or underestima
tions.2 Previous studies have shown that PPG accuracy decreases 
with higher-intensity activities involving more arm movement, finger 
gripping or wrist flexion/extension.11–13 However, most studies re
ported mean biases rather than absolute error metrics, which better 
reflect device accuracy because, mean biases can cancel out over- 
and underestimations, even when individual errors are large.1

Additionally, some wrist-worn HR monitors incorporate motion sen
sors to aid PPG-based HR detection, but the extent to which these cor
rections affect accuracy remains unclear due to the proprietary nature 
of device algorithms. Combined with the heterogeneity in results 
across devices, ongoing advancements in sensor technologies, algo
rithms and designs, this highlights the need for rigorous continued re
search to evaluate PPG accuracy during specific wrist movements 
and diverse physical activities, certainly if one wants to use these devices 
in clinical settings.1,8

Some factors that affect PPG accuracy are modifiable. Positioning the 
sensor further from the wrist joint may reduce sensitivity to MA due to 
less blood volume variation and interference from tendons and 
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muscles, while maintaining a stable signal.14 Also, wearing the device on 
the volar side of the wrist, where vascular density is higher, fewer hair 
follicles are present, and anatomical interference from tendons and 
bones is lower, may provide a strong PPG signal.15 Despite some gen
eral recommendations from device manufacturers, such as Fitbit’s user 
manual, which suggests positioning the device on the dorsal side one 
finger from the wrist joint during rest and a bit higher during exercise, 
there is a lack of comprehensive research and formal guidelines on op
timal sensor placement.16 Finally, technical aspects such as wristband 
tightness and sensor cleanliness, also influence signal quality.17

Maintaining consistent and tight sensor placement, potentially using 
band adjustments or support,18 and mitigating interference from 
body hair, debris and oil on the sensor could reduce PPG artefacts.19

Despite these factors’ potential impact, it remains unclear to what ex
tent addressing these technical aspects can effectively improve PPG 
accuracy.

Therefore, this study aimed to evaluate the influence of sensor place
ment, wrist movements, exercise type, and technical adjustments on 
the measurement of HR by a wrist-worn PPG-based monitor in com
parison with an electrocardiogram (ECG)-based chest strap.

Methods
This study comprises three distinct parts, each addressing a specific aspect 
of wrist-worn PPG-based HR monitoring accuracy and its optimization. An 
overview of the methodology is provided in Figure 1. Part 1 determines the 
optimal distance between sensor and wrist joint and explores the impact of 
wrist movements on PPG accuracy. Part 2 examines how different sports 
activities influence PPG performance. Part 3 evaluates PPG accuracy during 
exercise in patients following cardiac rehabilitation (CR) and investigates the 
potential for improving accuracy through technical interventions.

This study was conducted in accordance with ethical principles for med
ical research involving human subjects. Ethical approval for Part 3 was ob
tained from the Ethics Committee of Antwerp University Hospital (UZA) 
and University of Antwerp (UAntwerp), and all participants provided in
formed consent prior to participation.

HR monitors
In all study parts, the Fitbit Inspire 2 wrist-worn tracker, which employs op
tical PPG technology, was used as test device, and the Polar H10 chest strap, 
which measures HR using electrical field signals, served as reference device. 
The Polar H10 was chosen due to its strong correlation with gold standard 
Holter measurements in prior validation studies.20–23 Before each measure
ment, the electrodes on the surface of the Polar chest strap were wetted to 
optimize conductivity, in agreement with manufacturer instructions. For the 
Fitbit PPG device, a single researcher ensured that the wristband was worn 
as tightly as possible while remaining comfortable.

Part 1: effect of wrist movements and sensor 
placement
This part involved 10 healthy volunteers (≥18 years) performing a con
trolled protocol of specific wrist movements twice while wearing the 
Fitbit and Polar HR monitors (Figure 1, Part 1). In the first session, the 
Fitbit was placed at a one-finger-width distance from the wrist joint, and 
in the second session, the Fitbit was positioned at a three-fingers-width dis
tance. This order was consistent for all participants. Both sessions were 
conducted on the same day, with a recovery period between sessions. In 
both sessions, the Fitbit was fitted by the same researcher aiming for con
sistent positioning.

The protocol consisted of five specific movements: random arm move
ments, wrist rotation, wrist flexion and extension, typing on a computer, 
and an exercise in which participants tapped their knees repeatedly and 
then stretched their arms upwards. Participants were instructed to main
tain consistent movement speeds based on visual demonstration, ensuring 
comparable performance. Each movement lasted 3 min, with rest periods 
of 2 min before the protocol, 1 min between movements, and 3 min at 
the end.

Part 2: effect of sport activities
In Part 2, 10 healthy volunteers performed four sport activities: walking, 
running, cycling and rowing (Figure 1, Part 2). Walking and running were per
formed on a treadmill, cycling on a stationary ergometer, and rowing on a 
rowing ergometer. Participants wore the Fitbit positioned at the distance 
identified as optimal in Part 1. Each activity was performed for 4 min, 
with rest periods of 30 s at the start, 2 min between activities, and 3 min 
at the end. Participants selected speeds and wattages that felt comfortable, 
which were retrospectively observed to range between 3 and 4.5 km/h for 
walking, 5.5–11 km/h for running, 80–150 W for cycling, and 75–115 W for 
rowing.

The durations of activities and recovery periods in Part 1 and Part 2 were 
standardized to ensure consistency and align with other PPG validation 
studies.11 These timeframes were considered sufficient to detect the 
chronotropic HR response and to assess whether the PPG device ad
equately tracked HR changes.

Part 3: effectiveness of optimization 
interventions
This part investigated whether specific technical modifications could im
prove the accuracy of PPG-based HR monitoring in patients with cardiac 
disease exhibiting low accuracy during exercise (Figure 1, Part 3; 
Supplementary material online, Figure S1). A total of 30 patients participat
ing in a CR programme were included to ensure sufficient representation of 
individuals with low PPG accuracy, allowing for a meaningful evaluation of 
optimization interventions based on expected variability in accuracy. 
Patients performed controlled exercise sessions as part of their CR, mon
itored with the Fitbit and Polar devices.

Participants and study design
Participants were recruited during the first 6 weeks of their CR programme. 
Inclusion criteria were age ≥18 years, having a smartphone, capacity to pro
vide informed consent, and a history of prior myocardial infarction, percu
taneous coronary intervention (PCI), cardiac ablation, or cardiac surgery. 
Exclusion criteria included severe heart failure (NYHA III-IV), inability to 
speak or read Dutch or English, and cognitive impairment.

Participants completed up to nine CR training sessions of one hour, con
sisting of a combination of strength exercises and moderate-to- 
high-intensity cardio training. Cardio exercises included treadmill walking 
and running, cycling, rowing, arm cycling, the cross-trainer, and the stairmas
ter. Strength exercises included chest press, leg press, low row, vertical trac
tion, and the recumbent bike. The first three sessions served as baseline 
measurement under standard device guidance: the Fitbit was positioned 
three fingers above the wrist joint, tightened securely but comfortably, 
with positioning verified by the study team before each session. Baseline ac
curacy was assessed after these three sessions. Patients were classified as 
having high accuracy if the mean absolute percentage error (MAPE) was 
<10% during at least 70% of registered training time. The 10% MAPE thresh
old was based on previous research and the standard for HR monitors set by 
the American National Standards Institute (ANSI),5,24,25 while the 70% 
threshold was selected by our clinical team as a practical benchmark for re
liable HR monitoring during exercise. Patients with low accuracy (MAPE 
<10% in <70% of training time) proceeded to the optimization phases 
(Figure 1, Part 3; Supplementary material online, Figure S1).

Optimization phases
Patients classified as having low accuracy at baseline entered the first opti
mization phase (optimization A). During this phase, three technical adjust
ments were applied to the Fitbit before each training session: (i) the sensor 
was cleaned and degreased to remove oils or dirt; (ii) with participant con
sent, a part of the forearm was shaved to minimize interference from body 
hair; and (iii) the Fitbit’s position on the wrist was fixated at three fingers 
above the wrist joint using tape and gauze to ensure consistent placement 
and reduce MA. After three training sessions with these adjustments, accur
acy was reassessed, and measurements were classified as having high or low 
accuracy.

If accuracy remained low after optimization A, participants proceeded to 
a second optimization phase (optimization B). In this phase, the Fitbit was 
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relocated from the wrist’s dorsal side to the volar side. The adjustments 
from optimization A (cleaning, shaving, and fixing the position) were main
tained. After three additional training sessions, accuracy was reassessed.

During all training sessions, participants maintained a training diary to re
cord each exercise’s start and end times. This allowed for sub-analyses of 
the various exercise types performed during training. Rowing and arm cyc
ling were categorized as intensive arm movements, whereas other strength 

and cardio exercises (e.g. treadmill walking, cycling, leg press, chest press) 
were classified as non-intensive arm movements.

Data collection and processing
After monitoring, HR data from both devices were synchronized to pseu
donymized accounts via the Fitbit and Polar Beat smartphone applications. 

Figure 1 Methodology overview of the three research parts aiming to evaluate and optimize the accuracy of wrist photoplethysmography based 
heart rate monitoring. CR, cardiac rehabilitation; ECG, electrocardiogram; HR, heart rate; MAPE, mean absolute percentage error; PPG, photoplethys
mography. High accuracy is defined as MAPE <10% for ≥70% of the training time. Low accuracy is defined as MAPE <10% for <70% of the training time.
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The data were exported as CSV files: Polar data through the Polar Flow 
web service and Fitbit data via the Fitbit Web API. The HR data were re
ceived at 1-s intervals for Polar and at 5-s intervals for Fitbit.

Statistical analysis
All statistical analyses were performed using SPSS Statistics version 29 (IBM 
Corp). All P-values were two-sided, and a significance level of P < 0.05 was 
used throughout. Normality of continuous variables was assessed using the 
Shapiro-Wilk test and visual inspection of histograms. When normality 
could not be assumed, non-parametric tests were selected accordingly.

Accuracy of the PPG device was evaluated using multiple statistical metrics. 
Reliability was assessed using the intraclass correlation coefficient (ICC), which 
quantifies the degree of agreement between repeated paired measurements. A 
two-way mixed-effects model with absolute agreement and single measures 
was used, as this approach is optimal for comparing two measurement meth
ods (PPG and ECG) assessing the same construct (HR) across multiple indivi
duals. Values closer to 1 indicate stronger agreement. Device error was 
quantified using the mean absolute error (MAE, in b.p.m.) and MAPE (MAPE, 
in %). Based on prior literature and ANSI standards, a MAPE <10% was con
sidered clinically acceptable.5,24,25 Accurate training time was calculated as the 
proportion of datapoints with MAPE <10%. To classify error types, raw per
centage error was also examined to distinguish undershooting (error ≤ −10%) 
and overshooting (error ≥ +10%).5,24,25

In Part 1 and 2 of the study, linear mixed models were used to compare 
MAE and MAPE across test conditions (e.g. sensor positions, movement 
types, sport activities). These models included participant as a random 
intercept to account for the correlation of repeated measures within indi
viduals and included fixed effects for the condition of interest. Results were 
reported as estimated mean differences with corresponding 95% confi
dence intervals (CI). For binary outcomes such as the presence of under- 
or overshooting, generalized linear mixed models with a binary logistic 
link were applied, yielding odds ratios and 95% confidence intervals. For 
multiple group comparisons (e.g. different sport activities), pairwise com
parisons were conducted using estimated marginal means with 
Bonferroni correction to adjust for multiple testing.

In Part 1, a Friedman test was used for comparing MAE and MAPE across 
all wrist movement types. Given the non-normal distribution, ordinal nature 
of the test conditions, and repeated measures within participants, the 
Friedman test was deemed suitable. In Part 3, accuracy was summarized 
per participant per session as one percentage score representing accurate 
training time, setting the statistical unit at the subject level. Comparisons be
tween independent groups (e.g. high vs. low baseline accuracy) used Mann– 
Whitney U tests due to small sample sizes and non-normal distributions. 
Paired comparisons (e.g. baseline vs. post-optimization A or B) were ana
lysed using Wilcoxon signed-rank tests. Differences in categorical variables 
(e.g. gender, medication use) were assessed using Fisher’s exact test, appro
priate for small cell sizes.

Despite some non-normal distributions, descriptive statistics are reported 
as means and standard deviations when preferred for interpretability and con
sistency with clinical reporting practices. Statistical methods were selected 
based on data type, distribution, group structure, and repeated-measures con
siderations, ensuring appropriateness for each analysis across the study.

Results
Part 1: effect of wrist movements and 
sensor placement
The 10 participants consisted of 5 men and women each, with a median 
age of 24.5 years (interquartile range, IQR: 24.0–30.8) and median 
weight of 75.5 kg (IQR: 71.3–81.0). All participants wore the device 
on their non-dominant wrist. Nine participants had Fitzpatrick skin 
types I-II, and one had Fitzpatrick type 4.

The placement of the PPG sensor three fingers above the wrist joint 
demonstrated highest accuracy (Figure 2, Supplementary material 
online, Figure S2). For all movement and rest periods combined, the 
three fingers distance resulted in a higher reliability (ICC = 0.92) com
pared with one finger (ICC = 0.59), a lower MAE (mean difference: 

−8.3 b.p.m., 95% CI: −8.8 to −7.8, P < 0.001), lower clinically acceptable 
MAPE (mean difference: −11.4%, 95% CI: −12.0 to −10.7, P < 0.001), 
and a lower likelihood of under- and overshooting (OR = 0.26, 95% 
CI: 0.24–0.29, P < 0.001).

During rest periods, the PPG device was more accurate compared 
with movement periods, for both sensor placements. For one-finger 
placement, the estimated MAPE was 20.5% during movement and 
11.5% during rest (mean difference: −9.0%, 95% CI: −10.2 to −7.8, P  
< 0.001). Similarly, for three-finger placement, the MAPE was 7.3% dur
ing movement and 3.4% during rest (mean difference: −3.9%, 95% CI: 
−4.3 to −3.5, P < 0.001).

When comparing wrist movements at one finger distance, wrist ro
tation and flexion/extension showed the lowest accuracy, with signifi
cantly higher MAE (mean difference: 7.7 b.p.m., 95% CI: 6.5–8.9, P <  
0.001) and MAPE (mean difference: 13.7%, 95% CI: 12.2–15.2, P <  
0.001) compared with random movements, typing, and exercise com
bined. None of the movements met the clinical acceptability threshold 
(MAPE <10%). Even at three fingers distance, statistically significant dif
ferences between movements were observed (P < 0.001 for each met
ric), but these differences were less pronounced, with all movements 
showing clinically acceptable MAPE values (from 5.0% to 9.2%).

Part 2: effect of sport activities
Of the 10 participants (7 women, 3 men), the median age was 23.5 years 
(IQR: 23.0–26.5) and median weight of 72.5 kg (IQR: 69.3–77.3). All par
ticipants wore the device on their non-dominant wrist. Nine partici
pants had Fitzpatrick skin types I-II, and one had Fitzpatrick type 4.

The PPG device positioned at three fingers above the wrist joint, de
monstrated highest accuracy during walking and rest periods (Figure 3). 
Walking resulted in a very high reliability (ICC = 0.96), with the lowest 
MAE (3.8 b.p.m.) and MAPE (3.8%), while rest periods similarly showed 
very high reliability (ICC = 0.93) and low MAE (4.9 b.p.m.) and MAPE 
(4.5%). Differences in MAE and MAPE between walking and rest 
were not statistically significant (P = 0.31 for MAE, P = 0.37 for MAPE).

Running and cycling demonstrated moderate accuracy compared with 
walking and rest. Running had an ICC of 0.79, a MAE of 12.1 b.p.m. and a 
MAPE of 8.5%, with significantly higher values than walking (mean differ
ence: 8.0 b.p.m. and 5.0%, both P < 0.001) and rest (mean difference: 6.8 
b.p.m. and 3.7%, both P < 0.001). Cycling had an ICC of 0.81, a MAE of 
8.7 b.p.m. and a MAPE of 6.9%, with significantly higher values than walking 
(mean difference: 4.7 b.p.m. and 3.0%, both P < 0.001) and rest (mean dif
ference: 3.5 b.p.m. and 2.2%, both P < 0.001). Cycling showed slightly bet
ter accuracy than running, with significantly lower MAPE (mean difference: 
1.5%, P = 0.017) and MAE (mean difference: 3.3 b.p.m., P < 0.001).

Rowing had the lowest accuracy of all activities, with an ICC of 0.44, 
the highest MAE (19.8 b.p.m.) and MAPE (13.4%). Both MAE and MAPE 
for rowing were significantly higher than for all other activities (all P <  
0.001), with mean differences ranging from 7.1 to 15.1 b.p.m. for MAE 
and 4.6% to 9.8% for MAPE.

Visual analysis of PPG-based HR patterns (see Supplementary 
material online, Figure S3) showed that the PPG device often exhibited 
a lag in HR increase during the first minute of different activities. This 
was supported by artefact type analysis, which showed that under
shooting was the predominant error type during all activities, with 
the highest undershooting time proportion observed during rowing 
(38.7%) and running (27.8%). Overshooting was minimal and only ob
served during walking (3.7%) and rest periods (7.4%).

Part 3: effectiveness of optimization 
interventions
Baseline assessment (n = 30)
Baseline characteristics of the 30 patients with cardiac disease in Part 3, 
predominantly men (67%) with a median age of 58.1 years and a median 
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weight of 77.8 kg, are summarized in Table 1. Although some patients 
had a history of AF, no episodes were reported or noted during the 
study period.

Of the total cohort, 20 patients (66.7%) demonstrated high baseline 
PPG accuracy, achieving a mean of 88.4 ± 5.2% accurate training time 
(i.e. data with MAPE <10%, Figure 4). This was significantly higher than 
the remaining 10 patients (33.3%), who had an average of 54.3 ± 15.7% ac
curate training time despite wearing the Fitbit at 3 fingers above the joint (P  
< 0.001). Compared with the high-accuracy group, the low-accuracy 
group was significantly older (65.3 years vs. 54.5 years, P = 0.01) and had 
a lower weight (69.8 kg vs. 81.8 kg, P = 0.02). No significant differences 
were observed for other baseline characteristics (Table 1).

Sub-analyses of exercise types performed during baseline training ses
sions of all patients showed that activities involving intensive arm move
ments, i.e. rowing and arm biking, were associated with a significantly 
lower percentage of accurate PPG measurements (56.6 ± 4.3%) com
pared with exercises involving non-intensive arm movements (78.2 ±  
8.8%; P = 0.03) (Figure 5). When divided by baseline accuracy, the high 
baseline accuracy group maintained high accuracy (>70%) across all ac
tivities, including those with intensive arm movements (81.9 ± 4.1% vs. 
88.2 ± 4.9% for intensive vs. non-intensive, P = 0.11). In the low baseline 
accuracy group, intensive arm movements were significantly less accur
ate (26.3 ± 5.9%) than non-intensive arm movements (54.5 ± 12.9%, P  
= 0.03) (see Supplementary material online, Figure S4).

Optimization A (n = 10)
After applying optimization A (i.e. sensor cleaning, shaving, and position 
fixation), three of the 10 patients (30%) with low baseline accuracy 

improved above the threshold for high accuracy (Figure 4). This sub
group demonstrated an average increase of 19.1 ± 4.8% in accurate 
training time, achieving a mean of 85.2 ± 5.4% post-optimization 
A (baseline vs. post-optimization A: P = 0.11). The remaining seven pa
tients (70%) retained low accuracy, with no significant improvement in 
training data accuracy (mean accurate training time of 56.4 ± 17.8% 
post-optimization A; baseline vs. post-optimization A: P = 0.31). 
Notably, patients who improved after optimization A had a higher base
line percentage of accurate training time (66.0 ± 3.8%) compared with 
those who did not (49.3 ± 16.3%), although this difference was not stat
istically significant, likely due to the small groups (P = 0.08).

Optimization B (n = 7)
Of the seven patients with remaining low accuracy despite optimization 
A, two (28.6%) improved to high accuracy after optimization B (i.e. sen
sor relocation to the volar wrist side), with a mean increase of 26.8 ±  
13.2% in accurate training time (57.5 ± 11.9% at baseline vs. 84.3 ±  
1.3% post-optimization B: P = 0.18, Figure 4). The remaining five pa
tients (71.4%) showed no significant improvement, with an average in
crease of only 5.9 ± 26.6% (47.1 ± 17.7% at baseline vs. 52.0 ± 12.2% 
post-optimization B: P = 0.67).

Overall, across both optimizations, five of the original 10 patients 
with low baseline accuracy (50%) achieved high accuracy. No 
significant differences in baseline characteristics, including age (P =  
0.21), weight (P = 0.92), BMI (P = 0.92), baseline accuracy (P =  
0.12), or gender (P = 1.00), were found between patients who im
proved and those who did not, although admittedly, the groups 
are small.

A

C

B

D

Figure 2 Accuracy metrics during various wrist movements with the PPG sensor placed one and three fingers from the wrist joint: (A) intraclass 
correlation coefficient, (B) MAE, (C ) MAPE, and (D) total percentage of under- and overshooting. Bpm, beats per minute; ICC, intraclass correlation 
coefficient; MAE, mean absolute error; MAPE, mean absolute percentage error; PPG, photoplethysmography. Boxplots in panel B and C indicate the 
median, interquartile range (IQR), and whiskers extending to 1.5 × IQR; crosses represent the mean. Under/overshooting was defined as a percentage 
difference of 10% or more compared with the Polar device.
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Discussion
This study confirmed the significant influence of sensor placement, 
wrist movements, and type of sport activities on the accuracy of a wrist- 
worn PPG-based HR monitor. Additionally, it demonstrated the limited 
potential of technical interventions to optimize PPG accuracy during 
CR training sessions. Our findings suggest that some patients may 
not be suitable for PPG-based HR monitoring.

Placement of the PPG sensor higher on the 
wrist for optimal accuracy
In Part 1, we demonstrated that positioning the PPG sensor further 
from the wrist joint (i.e. at a distance of three fingers) significantly im
proved accuracy, with a lower MAPE (mean difference: −11.4%, 95% 
CI: −12.0 to −10.7, P < 0.001) compared with placement near the wrist 
joint. We have demonstrated that dynamic wrist movements, such as 
rotation and flexion/extension, adversely affect accuracy (mean differ
ence in MAPE: 13.7%, 95% CI: 12.2–15.2, P < 0.001). The higher sensor 
placement likely minimizes the impact of such wrist movements due to 
reduced sensor shifting relative to the skin and decreased deformation 
of the tissue under the sensor.28 This placement also reduces interfer
ence from tendons and bones while providing more stable blood flow 
in the monitored area, collectively mitigating MA and enhancing signal 
stability during exercises.14 Therefore, such position is a must for 
PPG-based HR monitoring (and was hence used in the other parts of 
our study).

Our findings align with previous research identifying wrist move
ments as a primary source of PPG signal distortion.28 Studies have 

also suggested that PPG signals obtained from less peripheral sites, 
such as the upper arm or forearm, exhibit fewer artefacts compared 
with those from the wrist region.14 However, our study is the first to 
directly compare sensor placements on the wrist itself (i.e. one finger 
vs. three fingers from the wrist joint), a site that remains practical for 
daily use. This novel insight underscores that ensuring proper place
ment is a simple and impactful step to enhance the reliability of wrist- 
worn PPG devices.

Reduced PPG accuracy during activities 
involving intense arm movement
In Part 2, we demonstrated that the accuracy of the PPG device varied 
significantly across different exercise types. Although the device the 
Fitbit Inspire 2 HR monitor itself has not yet been validated in literature, 
other Fitbit models have been assessed in similar studies, and these data 
were used as a basis for comparison. Activities involving limited arm 
movements, such as walking, yielded the highest accuracy (MAE = 3.8 
b.p.m., MAPE = 3.8%). Our results were slightly better than those re
ported in previous studies, such as Nelson et al.,5 who found a MAE 
of 9.5 b.p.m.,5 and Etiwy et al.,23 who reported a MAPE of 8.6% during 
walking.23 Our study observed moderate accuracy during cycling (MAE  
= 8.7 b.p.m., MAPE = 6.9%) and running (MAE = 12.1 b.p.m., MAPE =  
8.5%), possibly influenced by the gripping of handlebars during cycling 
and MA generated by repetitive arm movements during running. For 
cycling on a stationary ergometer, reported MAPE values in the litera
ture range from 8.4% to 21.1%,9,11,13,23,29 but are all above our ob
served 6.9%, while for treadmill running, reported MAE and MAPE 

A B

C D

Figure 3 Accuracy metrics during various sport activities: (A) intraclass correlation coefficient (ICC), (B) MAE, (C ) MAPE, and (D) total percentage of 
under- and overshooting. Bpm, beats per minute; ICC, intraclass correlation coefficient; MAE, mean absolute error; MAPE, mean absolute percentage 
error; PPG, photoplethysmography. Boxplots in panel B and C indicate the median, interquartile range (IQR), and whiskers extending to 1.5 × IQR; 
crosses represent the mean. Under/overshooting was defined as a percentage difference of 10% or more compared with the Polar device.
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Table 1 Baseline characteristics of the study population in Part 3

All 
patients (n = 30)

High accuracy 
at baseline (n = 20)

Low accuracy 
at baseline (n = 10)

P-value between high accuracy at  
baseline vs. low accuracy at baseline

Age (years) 0.01
Mean ± SD 58.1 ± 11.6 54.5 ± 10.6 65.3 ± 10.4

Range 28–79 28–68 42–79

Gender, Female, n (%) 10 (33.3) 7 (35.0) 3 (30.0) 1.00
Weight (kg) 0.02

Mean ± SD 77.8 ± 13.5 81.8 ± 12.1 69.8 ± 13.1

Range 48.6–99.6 56.8–99.6 48.6–86.0
Height (cm) 0.09

Mean ± SD 173.9 ± 12.4 176.3 ± 13.2 169.0 ± 9.3

Range 148–209 155–209 148–184
BMI (kg/m²) 0.18

Mean ± SD 25.8 ± 4.1 26.5 ± 4.2 24.3 ± 3.6

Range 17.2–35.7 18.6–35.7 17.2–29.2
Skin colora, n (%) 0.54

Type 1 2 (6.7) 1 (5.0) 1 (10.0)

Type 2 16 (53.3) 11 (55.0) 5 (50.0)
Type 3 11 (36.7) 8 (40.0) 3 (30.0)

Type 4 1 (3.3) 0 (0) 1 (10.0)

Type 5 & 6 0 (0) 0 (0) 0 (0)
Hair densityb, n (%) 0.29

Nil 4 (13.3) 2 (10.0) 2 (20.0)

Sparse 15 (50.0) 12 (60.0) 3 (30.0)
Moderate 11 (36.7) 6 (30.0) 5 (50.0)

Dense 0 (0) 0 (0) 0 (0)

Indication CR, n (%)

PCI 14 (46.7) 10 (50.0) 4 (40.0) 0.71

Cardiac ablation 6 (20.0) 5 (25.0) 1 (10.0) 0.63

Myocardial infarction 2 (6.7) 1 (5.0) 1 (10.0) 1.00
Cardiac surgery 8 (26.7) 4 (20.0) 4 (40.0) 0.38

Medical history, n (%)

Atrial fibrillation 7 (23.3) 5 (25.0) 2 (20.0) 1.00
Heart failure 4 (13.3) 3 (15.0) 1 (10.0) 1.00

Coronary artery disease 22 (73.3) 14 (70.0) 8 (80.0) 1.00

CVA/TIA 3 (10.0) 2 (10.0) 1 (10.0) 1.00
Myocardial infarction 7 (23.3) 5 (25.0) 2 (20.0) 1.00

Valve disease 4 (13.3) 2 (10.0) 2 (20.0) 0.58

Vascular disease 4 (13.3) 2 (10.0) 2 (20.0) 0.58
Cardiovascular risk factors, n (%)

Hypercholesteremia 26 (86.7) 18 (90.0) 8 (80.0) 0.58

Hypertension 11 (36.7) 7 (35.0) 4 (40.0) 1.00
Diabetes mellitus 2 (10.0) 2 (10.0) 0 (0.0) 0.54

Smoking status 0.72

Previous 10 (33.3) 7 (35.0) 3 (30.0)
Current 1 (3.3) 1 (5.0) 0 (0.0)

Never 19 (63.3) 12 (60.0) 7 (70.0)

Medication use, n (%)

Rate control 22 (73.3) 15 (50.0) 7 (70.0) 1.00

Beta blocker 18 (60.0) 12 (60.0) 6 (60.0) 1.00

Calcium antagonist 4 (13.3) 3 (15.0) 1 (10.0) 1.00

Continued
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values are 3.1 b.p.m. and 6.3%, respectively.9,13 These differences may 
reflect variations in study methodologies (e.g. healthy volunteers vs. pa
tients with cardiac disease, continuous measurements vs. selected time
points), device-specific algorithms, and individual factors such as 
gripping patterns and arm movement dynamics. Our better findings 
during walking and cycling may certainly be related to the 3-finger pos
ition as discussed above. With our accuracy, HR measuring during the 
most common fitness activities is reassuring.

Our study was the first to report PPG accuracy during rowing, and it 
was significantly lower (MAE = 19.8 b.p.m., MAPE = 13.4%) compared 
with the other activities, which may be attributed to repetitive and 
forceful wrist flexion and gripping motions. Although specific studies 
on rowing are lacking, Gillinov et al.11 reported a MAPE of 11.7% for 
cross-trainer use, an activity also involving upper-limb motion.11 The 
slightly higher accuracy during cross-trainer use may reflect it’s more 
fluid and less forceful arm movements compared with rowing. 
Similarly, in Part 3, sub-analyses of specific exercise types performed 
during baseline CR training sessions showed that the activities involving 
intensive arm movements, such as rowing and arm biking, were asso
ciated with significantly lower accuracy (56.6% ± 4.3% accurate training 
time) compared with non-intensive arm movements like treadmill walk
ing and leg press exercises (78.2% ± 8.8%, P = 0.03). However, in the 
high-accuracy group, this observation was less pronounced and not sig
nificant, as all activities maintained reliable accuracy (>70%), including 
rowing (78.9%) and arm biking (84.8%). These findings collectively indi
cate that activities destabilising sensor placement or inducing substantial 
wrist motion consistently amplify MA and degrade PPG signal quality, 
whether during controlled experiments or real-world CR training ses
sions, but particularly in patients with low baseline accuracy.

Furthermore, during sport activities in Part 2, we observed predom
inantly undershooting errors, contrasting with the overshooting ten
dency observed during wrist movements in Part 1. This aligns with the 
observation of a lag in HR increase detection by PPG sensors at the on
set of activities, supported by findings from other studies.13,30,31 This lag 
can be attributed to physiological factors such as reduced peripheral re
sistance and changes in pulse pressure during exercise, which temporar
ily affect the detection of blood flow by PPG sensors.32 While PPG 
accuracy tends to improve as exercise progresses and HR increases,13

the initial lag poses implications as it may lead to underestimated PA in
tensity during shorter bouts of exercise when these monitors are used 
for PA monitoring and guidance.

Preselection of patients is necessary for 
reliable PPG monitoring
When positioning the PPG monitor three fingers above the wrist joint 
and ensuring a snug fit, our study found in Part 3 that 66.7% of patients 
with cardiac disease achieved high baseline accuracy during CR training 
sessions, defined as at least 70% of training time with a MAPE <10%, in
cluding during intensive arm movements such as rowing and arm biking. 

This high-accuracy group was significantly younger compared with the 
low-accuracy group, consistent with prior research showing that in
creased arterial stiffness and changes in skin characteristics with age 
can degrade PPG signal quality.24 Less expectedly, the high-accuracy 
group had a significantly higher weight, while height and BMI were also 
higher, albeit not statistically significant. Since a higher BMI is generally 
associated with lower PPG signal quality due to increased skin thickness 
and altered blood flow dynamics,10 our findings do not indicate a clear 
trend supporting or contradicting this expectation. Blok et al.19 also ob
served deviations from this general trend, associating a higher BMI with 
better PPG accuracy, though the underlying reasons remain unclear.19

These inconsistencies underscore the complex and sometimes contra
dictory interplay of physical characteristics influencing PPG perform
ance, highlighting the difficulty of predicting PPG accuracy based on 
individual factors.

Our study was the first to evaluate several technical interventions 
aimed at improving PPG performance in patients with low baseline ac
curacy. Optimization A (sensor cleaning, shaving, and wrist position fix
ation) led to high accuracy in 30% of these patients, while a further 20% 
improved following optimization B (relocation to the volar wrist side). 
Despite these successes, 50% did not experience meaningful improve
ments, maintaining low accuracy levels post-optimization.

Patients who responded positively to optimization A tended to 
have higher baseline accuracy compared with non-responders 
(66.0% vs. 49.3%, P = 0.08), suggesting that baseline performance 
may influence responsiveness to technical adjustments. However, 
this association was not statistically significant, and no other baseline 
characteristics, including age, weight, or gender, were identified as 
predictors of improvement. This inability to reliably predict which pa
tients will benefit from optimization strategies, combined with the 
overall low response rate, and the impracticality of doing this on a 
daily basis, leads us to conclude that, beyond positioning the monitor 
correctly on the wrist, as demonstrated in Part 1, additional technical 
interventions are of limited practical value for patients with low base
line accuracy. I.e. some patients are ‘not made for PPG-based HR 
monitoring’…

Hence, our findings indicate the importance of assessing baseline 
PPG accuracy (i.e. PPG-compatibility) before relying on these monitors 
for HR-based PA-load prediction and guidance. Early identification of 
patients with inherently poor PPG performance is essential, as alterna
tive HR monitoring strategies, such as ECG-based chest straps, may be 
required to ensure accurate and reliable PA guidance, despite their re
duced convenience for continuous monitoring.11,33 This can be 
achieved by performing a brief compatibility assessment prior to clinical 
use, consisting of three training sessions during which HR is simultan
eously recorded with the PPG device and a reference ECG-based de
vice, and subsequently calculating the proportion of accurate 
measurements (MAPE <10%), with ≥70% accurate training time serv
ing as a practical threshold to define PPG compatibility. This approach 
offers a novel pragmatic tool to support appropriate patient selection 
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Table 1 Continued

All 
patients (n = 30)

High accuracy 
at baseline (n = 20)

Low accuracy 
at baseline (n = 10)

P-value between high accuracy at  
baseline vs. low accuracy at baseline

Rhythm control 6 (20.0) 4 (20.0) 2 (20.0) 1.00

Bold P-values are significant.
BMI, body mass index; CR, cardiac rehabilitation; CVA, cerebrovascular accident; TIA, transient ischemic attack.
aSkin type was determined according to the Fitzpatrick classification, ranging from skin type 1 (pale white skin) to type 6 (dark brown or black skin).26

bHair density of the forearm was graded into four categories by comparing the forearm of the participant to a set of previously described set of photographs, ranging from nil to dense.27

‘Indication CR’ refers to the primary reason for enrolling in the cardiac rehabilitation programme at the time of the study, while ‘Medical history’ includes all relevant cardiovascular 
conditions present in the patient’s medical background.
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Figure 4 Percentage of accurate training time (MAPE <10%) per participant, per assessment moment, and split for arm movement intensity. MAPE, 
mean absolute percentage error. High accuracy is defined as MAPE <10% for ≥70% of training time (everything above the black threshold dotted line). 
Low accuracy is defined as MAPE <10% for <70% of training time (everything below the black threshold dotted line). Following exercises are classified 
as intensive arm movements: arm bike, rowing machine. Following exercises are classified as non-intensive arm movements: strength training (including 
leg press, chest press, low row, vertical traction, recumbent bike), cross-trainer, stairmaster, bike, walking/running on treadmill.

Figure 5 Percentage of accurate training time (MAPE <10%) by exercise type for baseline assessment (n = 30). MAPE: mean absolute percentage 
error. Results are ranked from the lowest to the highest accuracy.
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when considering PPG-based HR monitoring with consumer-grade 
devices.

Study strengths and limitations
This study provided valuable insights into the factors influencing the ac
curacy of wrist-worn PPG-based HR monitors, but some limitations 
should be acknowledged when interpreting the findings. Despite the 
relatively small sample sizes in Parts 1 and 2, and the subgroup under
going optimization in Part 3, the combination led to valuable insights. 
Larger studies may further validate and extend these observations, par
ticularly regarding potential predictors of baseline accuracy and respon
siveness to optimization strategies.

While the measurement order in Part 1 was not randomized, fatigue 
effects were unlikely as intense movements occurred last, following 
low-intensity tasks, with sufficient rest before repeating the protocol. 
Similarly, in Part 2, the fixed order (walking, running, cycling, rowing) 
was unlikely to bias results, as all participants were well-trained and re
ceived adequate recovery time between activities.

Our study focused on a single PPG device, the Fitbit Inspire 2, which 
may limit the generalizability of our findings to other devices with differ
ent algorithms and sensor technologies. Also, the Fitbit device operates 
as a proprietary system, meaning that the exact algorithm used for HR 
estimation remains unknown. While the device possibly incorporates 
accelerometer data to mitigate motion artefacts, we cannot determine 
the extent of its influence on HR accuracy.

Moreover, commercially available wrist-worn devices such as Fitbit 
do not provide access to raw PPG waveform signals or continuous ac
celerometer data. This prevents independent evaluation of both signal 
quality and motion-induced errors based on accelerometery. HR data 
were received in 5-s intervals during the recorded activities in this study, 
but under other conditions, sampling rates may vary (e.g. every 10, 15 or 
20 s) and it remains unclear whether these variations occur dynamically, 
for example, to conserve battery power or in response to motion. We 
fully acknowledge that alternative approaches, as demonstrated in re
cent studies by Reiss et al.34 and Meier et al.34,35 allow comprehensive 
access to raw PPG waveforms and IMU data using specialized research- 
grade equipment or custom-built sensors. These studies provide highly 
valuable contributions to algorithm development and technical signal 
processing optimization. However, our present study aimed to evaluate 
the clinical feasibility and optimization options of currently available 
commercial PPG devices as used by patients and clinicians in real-world 
ambulatory settings, where raw signal access is not provided. Our find
ings therefore directly inform the practical clinical implementation con
text, complementing technical signal processing studies.

While this ‘black box’ nature introduces uncertainty, we selected the 
Fitbit device due to its ability to provide continuous 24-h HR data ex
port via the Fitbit Web API, an essential requirement for our overarch
ing research objective of assessing continuous HR-based PA intensity in 
patients with cardiac disease. Nevertheless, our findings highlight the 
need for greater transparency from device manufacturers to enable 
more rigorous validation of PPG-based HR monitoring in clinical and re
search settings.

Certain factors known to influence PPG signal quality were not sys
tematically measured. For example, although wristband tightness was 
standardized subjectively by trained investigators, it was not objectively 
measured using pressure sensors. The device was secured using a 
standard wristband with discrete adjustment holes rather than an elas
tic strap. Although this may have introduced some variability, it is unlike
ly to have systematically biased our findings, especially given that in Part 
3, tightening the strap with gauze did not significantly improve accuracy. 
Additionally, factors such as grip pressure during cycling and rowing, 
arm movement patterns during walking and running, and environmental 
variables (e.g. ambient light and temperature) were not quantified. 
While these variables were controlled as much as possible across 

sessions, e.g. measurements were conducted in a climate-controlled 
hospital exercise room with stable temperature and humidity, individ
ual physiological responses such as sweating and microvascular circula
tion could still contribute to variability in PPG accuracy. Since such 
individual differences also influence PPG performance in real-world 
conditions, this highlights the importance of assessing baseline accuracy 
before clinical implementation. Finally, the controlled exercise proto
cols used in Parts 2 and 3 may not fully capture the variability and com
plexity of real-world activities. Future studies could explore the impact 
of such real-world conditions to complement our findings.

Conclusions
This study shows that the accuracy of PPG-based HR monitoring is in
fluenced by both sensor placement and activity type, but more import
antly, that there are compatible and incompatible patients for 
PPG-monitoring. Positioning the sensor higher on the wrist enhances 
accuracy and is a must for accurate PPG-based HR monitoring. 
Activities involving intensive arm movements substantially impair per
formance. In initially incompatible patients, interventions such as sensor 
cleaning, fixation, and/or volar positioning can lead to improvement in 
approximately half of cases, but this is not feasible on a daily basis. 
Therefore, assessing baseline accuracy is a prerequisite before relying 
on these devices for activity guidance.

Future studies may further validate these findings in larger and more 
diverse patient populations. Additionally, they could explore whether 
specific patient characteristics can reliably predict PPG compatibility, 
potentially allowing targeted preselection for PPG-based monitoring, 
complemented by an objective baseline compatibility check using a ref
erence device before clinical application. Long-term real-world studies 
are also needed to assess performance and influencing factors during 
free-living conditions and daily-life activities, to optimize PPG-based 
ambulatory activity guidance in patients with cardiac disease.

Supplementary material
Supplementary material is available at European Heart Journal – Digital 
Health.

Consent
This study was conducted in accordance with ethical principles for 
medical research involving human subjects. Ethical approval for Part 3 
was obtained from the Ethics Committee of Antwerp University 
Hospital (UZA) and University of Antwerp (UAntwerp), and all parti
cipants provided informed consent prior to participation.

Author contributions
All authors contributed to the conceptualisation of the study. The in
vestigation was conducted by Paulien Vermunicht, Christophe Buyck, 
Sebastiaan Naessens, Wendy Hens and Caro Verberckt. Paulien 
Vermunicht performed the formal analysis and prepared the original 
draft of the manuscript. All authors contributed to the review and edit
ing of the final version.

Funding
This study was supported by “Fonds Wetenschappelijk Onderzoek - 
Vlaanderen” (G084023N).

Conflict of interest: none declared.

PPG-based HR monitoring in patients with cardiac disease                                                                                                                                  11
D

ow
nloaded from

 https://academ
ic.oup.com

/ehjdh/advance-article/doi/10.1093/ehjdh/ztaf084/8211204 by H
asselt U

niversity user on 02 Septem
ber 2025



Data availability
Raw data supporting the conclusions of this article will be made avail
able by the authors upon request.

Lead author biography
Paulien Vermunicht graduated as a 
Biomedical Scientist from the 
University of Antwerp, Belgium. She is 
currently pursuing a PhD under the 
supervision of Prof Dr Hein 
Heidbuchel and Prof Lien Desteghe, af
filiated with the University of Antwerp 
and Antwerp University Hospital. Her 
research focuses on digital health inno
vations for patients with cardiovascular 
diseases, specifically the use of wearable 
heart rate monitors and algorithms to 
enhance the monitoring and manage

ment of PA in this patient population.

References
1. Zhang Y, Weaver RG, Armstrong B, Burkart S, Zhang S, Beets MW, et al. Validity of 

wrist-worn photoplethysmography devices to measure heart rate: a systematic review 
and meta-analysis. J Sports Sci 2020;38:2021–2034.

2. Scardulla F, Cosoli G, Spinsante S, Poli A, Iadarola G, Pernice R, et al. 
Photoplethysmograhic sensors, potential and limitations: is it time for regulation? A 
comprehensive review. Measurement 2023;218:113150.

3. Cleven L, Krell-Roesch J, Nigg CR, Woll A. The association between physical activity 
with incident obesity, coronary heart disease, diabetes and hypertension in adults: a sys
tematic review of longitudinal studies published after 2012. Bmc Public Health 2020;20: 
726–726.

4. Dempsey PC, Rowlands AV, Strain T, Zaccardi F, Dawkins N, Razieh C, et al. Physical 
activity volume, intensity, and incident cardiovascular disease. Eur Heart J 2022;43: 
4789–4800.

5. Nelson BW, Allen NB. Accuracy of consumer wearable heart rate measurement during 
an ecologically valid 24-hour period: intraindividual validation study. JMIR Mhealth 
Uhealth 2019;7:e10828.

6. Al-Kaisey AM, Koshy AN, Ha FJ, Spencer R, Toner L, Sajeev JK, et al. Accuracy of wrist- 
worn heart rate monitors for rate control assessment in atrial fibrillation. Int J Cardiol 
2020;300:161–164.

7. Quinn R, Leader N, Lebovic G, Chow C-M, Dorian P. Accuracy of wearable heart rate 
monitors during exercise in Sinus rhythm and atrial fibrillation. J Am Coll Cardiol 2024;83: 
1177–1179.

8. Ibrahim NS, Rampal S, Lee WL, Pek EW, Suhaimi A. Evaluation of wrist-worn photo
plethysmography trackers with an electrocardiogram in patients with ischemic heart 
disease: a validation study. Cardiovasc Eng Technol 2024;15:12–21.

9. Muggeridge DJ, Hickson K, Davies AV, Giggins OM, Megson IL, Gorely T, et al. 
Measurement of heart rate using the polar OH1 and fitbit charge 3 wearable devices 
in healthy adults during light, moderate, vigorous, and sprint-based exercise: validation 
study. JMIR Mhealth Uhealth 2021;9:e25313.

10. Fine J, Branan KL, Rodriguez AJ, Boonya-ananta T, Ajmal, Ramella-Roman JC, et al. 
Sources of inaccuracy in photoplethysmography for continuous cardiovascular moni
toring. Biosensors (Basel) 2021;11:126

11. Gillinov S, Etiwy M, Wang R, Blackburn G, Phelan D, Gillinov A, et al. Variable accuracy 
of wearable heart rate monitors during aerobic exercise. Med Sci Sports Exerc 2017;49: 
1697–1703.

12. Hermand E, Cassirame J, Ennequin G, Hue O. Validation of a photoplethysmographic 
heart rate monitor: polar OH1. Int J Sports Med 2019;40:462–467.

13. Horton JF, Stergiou P, Fung TS, Katz L. Comparison of polar M600 optical heart rate and 
ECG heart rate during exercise. Med Sci Sports Exerc 2017;49:2600–2607.

14. Maeda Y, Sekine M, Tamura T. Relationship between measurement site and motion ar
tifacts in wearable reflected photoplethysmography. J Med Syst 2011;35:969–976.

15. Matsui Y. ‘Introduction to Kienböck’s Disease’; Chapter: ‘Wrist Anatomy and Vascularity’. 
Singapore: Springer; 2023.

16. Fitbit. Fitbit Inspire 2 User Manual, Version 1.0. 2020. https://www.fitbit.com/content/ 
assets/help/manuals/manual_inspire_2_en_US.pdf.

17. Bretonneau Q, Peruque-Gayou E, Wolfs E, Bosquet L. Parameters influencing the ac
curacy of a wrist photoplethysmography heart-rate monitor (polar unite) during exer
cise. Int J Sports Physiol Perform 2023;18:440–443.

18. Sartor F, Papini G, Cox LGE, Cleland J. Methodological shortcomings of wrist-worn 
heart rate monitors validations. J Med Internet Res 2018;20:e10108.

19. Blok S, Piek MA, Tulevski II, Somsen GA, Winter MM. The accuracy of heartbeat detec
tion using photoplethysmography technology in cardiac patients. J Electrocardiol 2021; 
67:148–157.

20. Vermunicht P, Makayed K, Meysman P, Laukens K, Knaepen L, Vervoort Y,  et al. 
Validation of polar H10 chest strap and fitbit inspire 2 tracker for measuring continuous 
heart rate in cardiac patients: impact of artefact removal algorithm. Europace 2023;25: 
euad122.550–euad122.550.

21. Schaffarczyk M, Rogers B, Reer R, Gronwald T. Validity of the polar H10 sensor for 
heart rate variability analysis during resting state and incremental exercise in recreation
al men and women. Sensors (Basel) 2022;22:6536.

22. Merrigan JJ, Stovall JH, Stone JD, Stephenson M, Finomore VS, Hagen JA, et al. Validation 
of garmin and polar devices for continuous heart rate monitoring during common train
ing movements in tactical populations. Meas Phys Educ Exerc 2023;27:234–247.

23. Etiwy M, Akhrass Z, Gillinov L, Alashi A, Wang R, Blackburn G, et al. Accuracy of wear
able heart rate monitors in cardiac rehabilitation. Cardiovasc Diagn The 2019;9:262–271.

24. Chow HW, Yang CC. Accuracy of optical heart rate sensing technology in wearable fit
ness trackers for young and older adults: validation and comparison study. JMIR Mhealth 
Uhealth 2020;8:e14707.

25. Association for the Advancement of Medical Instrumentation and American National 
Standards Institute. Cardiac Monitors, Heart Rate Meters, and Alarms. Volume 2.2. 
Arlington, VA: AAMI; 1995.

26. Fitzpatrick TB. The validity and practicality of sun-reactive skin type-I through type-vi. 
Arch Dermatol 1988;124:869–871.

27. von Schuckmann LA, Hughes MC, Green AC, van der Pols JC. Forearm hair density and 
risk of keratinocyte cancers in Australian adults. Arch Dermatol Res 2016;308:617–624.

28. Tautan AM, Young A, Wentink E, Wieringa F. Characterization and reduction of motion 
artifacts in photoplethysmographic signals from a wrist-worn device. Ieee Eng Med Bio 
2015;2015:6146–6149.

29. Boudreaux BD, Hebert EP, Hollander DB, Williams BM, Cormier CL, Naquin MR, et al. 
Validity of wearable activity monitors during cycling and resistance exercise. Med Sci 
Sports Exerc 2018;50:624–633.

30. Rainmaker DC. Polar A360 In-Depth Review. 2015. https://www.dcrainmaker.com/ 
2015/12/polar-a360-depth-review.html.

31. Spierer DK, Rosen Z, Litman LL, Fujii K. Validation of photoplethysmography as a meth
od to detect heart rate during rest and exercise. J Med Eng Technol 2015;39:264–271.

32. Vander AJ, Sherman JH, Luciano DS. Human Physiology. 3d ed. ed. New York: 
McGraw-Hill; 1980.

33. Pasadyn SR, Soudan M, Gillinov M, Houghtaling P, Phelan D, Gillinov N, et al. Accuracy of 
commercially available heart rate monitors in athletes: a prospective study. Cardiovasc 
Diagn The 2019;9:379–385.

34. Reiss A, Indlekofer I, Schmidt P, Van Laerhoven K. Deep PPG: large-scale heart rate es
timation with convolutional neural networks. Sensors (Basel) 2019;19:20190712.

35. Meier M, Demirel BU, Holz C. WildPPG: A Real-World PPG Dataset of Long 
Continuous Recordings. arXiv preprint arXiv:241217540, https://doi.org/10.48550/ 
arXiv.2412.17540, 16 December 2024, preprint: not peer reviewed.

12                                                                                                                                                                                         P. Vermunicht et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/ehjdh/advance-article/doi/10.1093/ehjdh/ztaf084/8211204 by H
asselt U

niversity user on 02 Septem
ber 2025


