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Abstract: Whenever inference for variance components is required, the choice
between one-sided and two-sided tests is crucial. This choice is usually driven
by whether or not negative variance components are permitted. For two-sided
tests, classical inferential procedures can be followed, based on likelihood ratios,
score statistics, or Wald statistics. For one-sided tests, however, one-sided test
statistics need to be developed, and their null distribution derived. While this has
received considerable attention in the context of the likelihood ratio test, there
appears to be much confusion about the related problem for the score test.
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1 Introduction

The linear mixed-effects model (Laird and Ware 1982, Verbeke and Molen-
berghs 2000) is a commonly used tool for variance component models and
for longitudinal data. Let Yi denote the ni-dimensional vector of measure-
ments available for subject i = 1, . . . , N . A general linear mixed model then
assumes that Yi satisfies

Yi = Xiβ + Zibi + εi, (1)

in which β is a vector of population-averaged regression coefficients called
fixed effects, and where bi is a vector of subject-specific regression co-
efficients. The bi describe how the evolution of the ith subject deviates
from the average evolution in the population. The matrices Xi and Zi are
(ni×p) and (ni×q) matrices of known covariates. The random effects bi and
residual components εi are assumed to be independent with distributions
N(0, D), and N(0,Σi), respectively. Inference for linear mixed models is
usually based on maximum likelihood or REML under the marginal model.
Thus, we can adopt two different views on the linear mixed model. The
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fully hierarchical model is specified by

Yi|bi ∼ Nni(Xiβ + Zibi,Σi),
bi ∼ N(0, D), (2)

while the marginal model is given by

Yi ∼ Nni(Xiβ, Vi = ZiDZ
′
i + Σi). (3)

Even though they are often treated as equivalent, there are important differ-
ences between both views. Obviously, (2) requires the covariance matrices
Σi and D to be positive definite, while in (3) it is sufficient for the resulting
matrix Vi to be positive definite. Different hierarchical models can produce
the same marginal model and some marginal models are not implied by
any hierarchical model.
The simplest example to illustrate differences between the marginal and
hierarchical views is found by restricting the random effects in (1) to a
random intercept, producing the marginal model:

Y i ∼ N(Xiβ, τ
2Jni + σ2Ini) (4)

where Jni equals the ni × ni matrix containing only ones. In the marginal
view, negative values for τ2 are perfectly acceptable (Nelder 1954, Verbeke
and Molenberghs 2000, Sec. 5.6.2), since this merely corresponds to nega-
tive within-cluster correlation ρ = τ2/(τ2 + σ2). In the hierarchical view,
it is clearly imperative to restrict τ2 to nonnegative values.

2 Inference for Variance Components

While each of the two views are possible, there are important differences
regarding statistical inference for variance components. The first, uncon-
strained case, is classical regarding inference for the variance component
τ2 since the usual two-sided alternative H0 : τ2 = 0 versus HA2 : τ2 �= 0
is then used. Wald, likelihood ratio, and score tests are then asymptot-
ically equivalent, and the asymptotic null distribution is well known to
be χ2

1. In the constrained case, one typically needs one-sided tests of the
null-hypothesis

H0 : τ2 = 0 versus HA1 : τ2 > 0. (5)

As the null-hypothesis is now on the boundary of the parameter space,
classical inference no longer holds, appropriate tailored test statistics need
to be developed, and the corresponding (asymptotic) null distributions de-
rived. We will briefly review the likelihood-ratio case and then turn to score
tests in the next section.
Suppressing dependence on the other parameters, let (τ2) denote the log-
likelihood, as a function of the random-intercepts variance τ2. Further, let
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FIGURE 1. Graphical representation of two different situations, when developing
one-sided tests for the variance τ 2 of the random intercepts bi in model.

τ̂2 denote the maximum likelihood estimate of τ2 under the unconstrained
parameterization. We first consider the likelihood ratio test, with statistic:

TLR = 2 ln
[
maxH1A (τ2)
maxH0 (τ2)

]
.

Two cases, graphically represented in Figure 1, can now be distinguished.
Under Case A, τ̂2 is positive, and the likelihood ratio test statistic is identi-
cal to the one that would be obtained under the unconstrained parameter
space for τ2. Hence, conditionally on τ̂2 ≥ 0, TLR has asymptotic null
distribution equal to the classical χ2

1. Under Case B, (τ2) is maximized
at τ2 = 0 under H1A as well as under H0, yielding TLR = 0. Both cases
are equally probable to occur, under the null. Hence, the asymptotic null
distribution of TLR is easily seen to follow a 0.5P (χ2

1 > c) + 0.5P (χ2
0 > c)

null distribution. This was one of Stram and Lee’s (1994) special cases.
Note that, whenever τ̂2 ≥ 0, the observed likelihood ratio test statistic is
equal to the one under the unconstrained model, but the p-value is half
the size of the one obtained from the classical χ2

1 approximation to the null
distribution.
In general, inference under the unconstrained model for the variance com-
ponents in D can be based on the classical chi-squared approximation to
the null distribution for the likelihood ratio test statistic. Under the con-
strained model, Stram and Lee (1994) have shown that the asymptotic null
distribution for the likelihood ratio test statistic for testing a null hypoth-
esis which allows for k correlated random effects versus an alternative of
k+ 1 correlated random effects (with positive semi-definite covariance ma-
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trix Dk+1), is a mixture of a χ2
k and a χ2

k+1, with equal probability 1/2. For
more general settings, e.g., comparing models with k and k + k′ (k′ > 1)
random effects, the null distribution is a mixture of χ2 random variables
(Shapiro 1988), the weights of which can only be calculated analytically in
a number of special cases. Shapiro’s (1988) results provide a few important
special cases, not studied by Stram and Lee (1994). For example, if the
null hypothesis allows for k uncorrelated random effects (with a diagonal
covariance matrix Dk) versus the alternative of k+k′ uncorrelated random
effects (with diagonal covariance matrix Dk+k′), the null distribution is a
mixture of the form

k′∑
m=0

2−k
′
(
k′

m

)
χ2
m.

Shapiro (1988) shows that, for a broad number of cases, determining the
mixture’s weights is a complex and perhaps numerical task.

3 The Score Test

Verbeke and Molenberghs (2003), using results by Silvapulle and Silvapulle
(1995), have shown that similar results are obtained when a score test is
used instead of a likelihood ratio test. The use of score tests for testing vari-
ance components under a constrained parameterization requires replacing
the classical score test statistic by an appropriate one-sided version. This
is where the general theory of Silvapulle and Silvapulle (1995) on one-
sided score tests proves very useful. They consider models parameterized
through a vector θ = (λ′,ψ′)′, where testing a general hypothesis of the
form H0 : ψ = 0 versus HA : ψ ∈ C is of interest. Silvapulle and Silvapulle
(1995) allow C to be a closed and convex cone in Euclidean space, with
vertex at the origin. The advantage of such a general definition is that one-
sided, two-sided, and combinations of one-sided and two-sided hypotheses
are included.
Adopt the following notation. Let SN (θ) and Hθ) be the score vector and
Hessian matrix of the log-likelihood function. Further, decompose SN as
SN = (S′

Nλ,S
′
Nψ)′, let Hλλ(θ), Hλψ(θ) and Hψψ(θ) be the corresponding

blocks in H(θ), and define θH = (λ′,0′)′. θH can be estimated by θ̂H =
(λ̂

′
,0′)′, in which λ̂ is the maximum likelihood estimate of λ, under H0.

Finally, let ZN be equal to ZN = N−1/2SNψ(θ̂H). A one-sided score
statistic can now be defined as

TS := Z ′
NH

−1
ψψ(θ̂H)ZN − inf

{
(ZN − b)′H−1

ψψ(θ̂H)(ZN − b)|b ∈ C
}
. (6)

Note that the score statistic, heuristically defined in the case of the random-
intercepts model is a special case of (6). Indeed, when τ̂2 is positive, the
score at zero is positive, and therefore in C, such that the infimum in (6)
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becomes zero. For τ̂2 negative, the score at zero is negative as well and the
infimum in (6) is attained for b = 0, resulting in TS = 0.
It follows from Silvapulle and Silvapulle (1995) that, under suitable regu-
larity conditions, for N → ∞, the likelihood ratio and score test statistics
satisfy TLR = TS + op(1). This indicates that the equivalence of the score
and likelihood ratio tests not only holds in the two-sided but also in the
one-sided cases. Moreover, what is known about the null distribution in
the case of the likelihood ratio test, immediately carries over to the score
test case. This result corrects the common belief that, even when variance
components are on the boundary of the parameter space, the score test
deserved no special treatment. Verbeke and Molenberghs (2003) provide
an empirical illustration. In practice, calculation of (6) requires some ex-
tra programming work and, even though it is not insurmountable, in most
situations one may therefore be inclined to resort to likelihood ratio testing.
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