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From ageing clocks to human digital twins
in personalising healthcare through
biological age analysis
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Age is the most important risk factor for the majority human diseases, leading to the exploration of
innovative approaches, including the development of predictors to estimate biological age (BA). These
predictors offer promising insights into the ageing process and age-related diseases. With real-time,
multi-modal data streams and continuous patient monitoring, these BA can also inform the
construction of ‘human digital twins’, quantifying how age-related changes impact health trajectories.
This study highlights the significance of BA within a deeply phenotyped longitudinal cohort, using
omics-based approaches alongside gold-standard clinical risk predictors. BA and health traits
predictions were computed from 29 epigenetics, 4 clinical-biochemistry, 2 proteomics, and 3
metabolomics clocks. The study reveals that ageing is different between individuals but relatively
stable within individuals. We suggest that BA should be considered crucial biomarkers
complementing routine clinical tests. Regular updates of BApredictionswithin digital twin frameworks
can also help guiding individualised treatment plans.

Age is the most important shared risk factor for the majority of human
diseases. Hence, there are strong efforts towards attenuating ageing-related
disease risk via lifestyle, pharmacological, and clinical interventions to slow
or reverse ageing. ‘Chronological age’ (CA), defined by the time passed since
an individual’s birth, falls short of reflecting interindividual and environ-
mental differences acting upon a biological system during this period. A
critical prerequisite in the endeavour to improve healthy ageing is to
quantify an individual’s ‘wellness,’ which covers not only the absence of
sickness but also their resilience to future disease, general satisfaction with
their health, andhaving sufficient energy levels for activities that enrichone’s
life.While a variety of signals related to individual health andwell-being can
be collected, validating their contribution to clinically relevant outcomes
remains an open issue. The hallmarks of ageing include genomic instability,
telomere attrition, epigenetic alterations, loss of proteostasis, disabled
macroautophagy, deregulated nutrient-sensing,mitochondrial dysfunction,
cellular senescence, stem cell exhaustion, altered intercellular communica-
tion, chronic inflammation and dysbiosis1. Each hallmark contributes to the
ageing process. The major challenge is to dissect the interconnectedness
between these hallmarks and their relative contributions to ageing1.

To achieve significant progress in the wellness and longevity area to
improve human health span, we need to develop tools and methodologies

for standard collection, harmonisation, analysis, integration, and inter-
pretation of this information at the individual level. A variety of biological
age (BA) predictors have been proposed. They share the common approach
of using large cross-sectional ‘healthy’discoverypopulation cohortswith age
as a phenotype to construct a predictive model for an organism’s age and
subsequently validate it in a separate cohort. Integrating these BApredictors
with digital representations of individuals, often termed ‘human digital
twins,’ refers to creating a dynamic computational model that captures an
individual’s (near) real-time clinical, molecular, and lifestyle data. This
model is continuously updated as new data become available, enabling
healthcare providers and researchers to simulate potential interventions,
predict disease risk, and personalise treatment strategies.

Human digital twins can incorporate data from wearable devices (e.g.
heart rate,physical activity, and sleep trackers), electronichealth records and
multi-omics analyses (e.g. genomics, proteomics and epigenetics). By
bringing these data streams together, digital twins allow for continuous
modelling, simulation and prediction of health outcomes under various
interventions or environmental exposures2. For instance, a digital twin can
project how an individual’s BA will respond to a specific change in diet or
exercise, thereby guiding preventive or therapeutic strategies in a timely
manner.
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However, implementing human digital twins in real-world healthcare
settings poses several technical challenges. These include the need for secure
data integration across disparate platforms, the development of scalable
computational frameworks capable of handling high-volume longitudinal
data, and the establishment of standards for data interoperability and
privacy.Additionally,machine learning and systemsbiology approaches are
required to dynamically update and validate themodels as individuals’ data
profiles evolve over time.

A critical element that enhances the precision of human digital twins is
the incorporation of BApredictors. These predictors can act asquantitative
anchors for the digital twin’s ‘virtual health state,’ allowing clinicians to
track deviations from expected trajectories more accurately. By regularly
updating these predictors, clinicians and researchers candetect early signs of
accelerated or decelerated ageing and refine intervention strategies
accordingly, improving the predictive power of the twin. This synergy
between digital twin technology and validated and robust BA measures
stands to accelerate preventive medicine and decision-making, ultimately
improving health span and quality of life3.

Based on the type ofmolecular data employed, these BApredictors can
be classified into six categories: Telomere length (TL), epigenetic clocks,
transcriptomic predictors, proteomic predictors, metabolomics-based pre-
dictors, and composite biomarker predictors. Among these, epigenetic
clocks are considered to be the most accurate in predicting BA and other
health phenotypes4.

Telomeres are repetitive DNA sequences capping chromosomes
that shorten every time a cell divides; thus, TL is a conventionalmarker of
biological ageing across various biological domains5. TL has been asso-
ciated with BA, wellness and mortality risk of an individual4–6. Further-
more, TL has been proposed for some specific types of cancer6 and
cardiovascular mortality predictions7,8. However, TL is hard to measure
in clinical practice, and recent reports comparing TL with epigenetic
clocks on non-symptomatic (or healthy) individuals found TL to be less
informative4,9–11.

Epigenetic clocks are molecular tools based on 5mC methylation
changes to a person’s DNA over time. These modifications, which can be
influenced by various factors, including environmental exposures and life-
style choices, can change over time and, therefore, be used to predict a
person’s age. The ‘epigenetic clock’ premise is to link developmental and
maintenance processes to biological ageing, giving rise to a unified theory of
the life course of anorganism12. Epigenetic clocks are used in ageing research
to identify potential interventions that could delay or reverse age-related
changes and to understand the biological processes underlying ageing. They
are also employed to study the relationship between2 epigenetic changes and
various age-related diseases and conditions, such as cancer and cardiovas-
cular disease. Epigenetic clocks are not yet widely used in clinical practice
but show promise as a way to measure biological ageing and identify
interventions that may be able to improve health outcomes. There is a
rapidly growing number of epigenetic clock estimators built for distinct
purposes13,14, and their application potential, together with the other omics
clocks, has also been discussed15,16. Proteomics, metabolomics, andmultiple
clinical biomarker readouts are used to predict BA, specific disease risks or
phenotypes4,17.

Many of those predictors of age andfitness have already beenproposed
to be used in healthcare practice, and several companies have started to offer
direct-to-consumer products in this context18. Their product implementa-
tion in clinical practice requires rigorous validation and simple and clear
recommendations for both the healthcare practitioner and the individual.
Hence, despite the large consensus of their premise, there are significant
challenges to overcome to transfer scientific health and wellness tools into
clinical practice19.

In this study, we aim to demonstrate the value of epigenetic clocks,
proteomics, metabolomics, and multi-biomarker predictors in a unique
longitudinal pilot cohort20,21 where all required data types (clinical para-
meters, epigenomics, proteomics, metabolomics, along with deep pheno-
typing and metadata) are available across multiple time points in a 13-

month period. Aligned with the Physiome22 and EDITH23 projects we
recognise the significance of the multiscale modelling hierarchy that forms
system physiology and whole-body functions. Therefore, in alignment with
multi-scalemodels of physiology, we also aim to explore how incorporating
multi-omics-based ageing clocks into human digital twins can offer a
hierarchical understanding of an individual’s state—from cellular and
molecular processes to organ-level function and overall clinical risk. Our
objective is to assess the feasibility of operationalising the concept of biological
ageing in conjunction with human digital twins, ultimately enhancing our
ability to provide tailored and adaptive insights into individual health
trajectories.

Results
Study design and clocks overview
FromMarch2019 toMarch2020, the IAMFrontier study collectedmonthly
samples and data (via online questionnaires and wearable sensors) from 30
healthy (no diagnosed chronic diseases, no self-reported illnesses except
hypertension) and highly motivated individuals. An intake interview was
performed to check whether the volunteers fit the inclusion and exclusion
criteria (health, age, sex balance) and to assess their motivation to join and
stay within the study, as the study required monthly site visits for sample
collection, continuous wearing of sensors and weekly questionnaires. All
individuals were followed up with study doctor visits to inform them about
their health status (from the clinical grade biomarkers), as well as provided
with genetic counsellingwith certified personnel whennecessary. The study
design is illustrated in Fig. 1.

In this study, we first explore the global pattern of the values
resulting from a multitude of ageing clocks and examine their utility in
predicting personal wellness, health, and BA. These clocks were com-
puted for all the IAM Frontier individuals, utilising their clinical bio-
chemistry and physiological data (such as blood pressure, weight and
height), DNA methylation, metabolomics, and proteomics measure-
ments. Further, we investigate how these clocks predict outcomes across
different time points, leveraging the longitudinal nature of the IAM
Frontier study. Individuals with interesting findings are subjected to
further investigation to demonstrate the importance and the relevance
of the omics clocks as personal health assistants, capable of monitoring
and assisting the clinical examination and diagnosis.

Figure 2 shows the overviewof ageing clocks that can be estimated from
various omics measurements. We categorise these clocks according to their
utility inpredicting (1)BA, (2)blood counts, (3) health traits suchas smoking
status, alcohol consumption and body mass index (BMI) and (4) plasma
protein levels. By using DNAmethylation data, 13 clocks aim to predict age,
one clock to predict blood counts, 11 clocks to predict health traits, and seven
clocks to predict plasma protein levels. In addition, three clinical
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Fig. 1 | Study design of the IAM Frontier. Longitudinal comprehensive data were
collected over the course of the study including monthly physiological and clinical
biochemistry data (13 time points), bimonthly proteomics andmetabolomics data (7
time points), and 6-monthly DNA methylation and microbiome data (3 time
points). The study participants consist of 15 males and 15 females, with a (chron-
ological) age range of 45–59 years old.
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biochemistry clocks, threemetabolomics, and twoproteomics clocks canalso
be used for predicting BA from clinical biochemistry data, NMR metabo-
lomics, and Olink proteomics measurements. In this study, we focus on
investigating the ageing clocks that are particularly useful in predicting BA.

Ingeneral, in eachdata type, different ageing clocksuse adifferent set of
features. The features used in ageing clocks will further be referred to as
variables. Figure 2 shows that there are some variables that are shared and
utilised in more than one clock, as demonstrated by the edges between
clocks (see multiple linear regression (MLR)-Levine and Klemera and
Doubal method (KDM)). It is also possible that these variables are shared
across different data types, for example between the MLR-Levine and the
Metabo-MD, where albumin is utilised in both clocks. Albumin and several
other variables are present in the clinical biochemistry and metabolomics
data; they refer to the same clinical compounds but are measured by dif-
ferent technologies. Since our study focuses on ageing clocks that aim to
predict BA, it is also worth noting that there are several omics ageing clocks
that include CA in their algorithm, for example, GrimAge and KDM.
GrimAge also includes sex and plasma protein levels predicted from the
DNA methylation data in its calculation.

Epigenomic, metabolomic and proteomic data are high dimensional.
The IAM Frontier study collected the DNA methylation measurements of
more than 850,000 sites per sample using Illumina’s Infinium Methylatio-
nEPIC BeadChips as well as 1068 proteins and 249 metabolites were
measured in the metabolomics and proteomics data of IAM Frontier,
respectively. Large numbers of variables are used in ageing clocks working
with these data types. Although several epigenetic age clocks based on only a
few loci have been proposed24,25, they tend to be less accurate. The most
widely used epigenetic clocks and predictors incorporate between 7126 and
1030 CpGs27. In comparison, ageing clocks based on clinical biochemistry
data or other omics data (metabolomics, proteomics) require nine to 203
parameters28–31.

Global analysis of omics clocks and predictors
We implemented 26 BA clocks in this study, see Table 3 in ‘Methods’. Some
of the clocks were not further investigated due to showing unrealistic

predictions, unavailable model coefficients (e.g. the model intercept coef-
ficients are not published in the MetaboAge-MD clock), or unavailable
variables (e.g. due to differences in the omics technology, around 80%of the
requiredmetabolites used in theMetabonomics clockwere notmeasured in
the IAM Frontier dataset)25,29,32–38. Different sets of variables with different
sizes are involved in each clock. The included algorithms do not constitute
an exhaustive list but were selected in their applicability to the IAMFrontier
studywith high confidence due to data availability andmatching underlying
assumptions.

Although the study’s main objective is focused on BA prediction,
CA is still incorporated in some analyses.While CAmay not provide the
most robust description of human ageing, it offers the most convenient
way to calculate age and is perceived as a standard measure of ageing.
Stratification by CA group is also often done, for example in clinical
reference intervals39,40. For this reason, we believe it is valid to compare
the predictions of BA with the subjects’ CA; see the Pearson correlation
coefficients in Table 1. The majority of the clocks shown in Table 1 are
significantly correlated with CA; MethylDetectR and the Skin & Blood
clock give the highest correlation coefficients, R= 0.90 and R= 0.87,
respectively. This is not unexpected, as both clocks were developed to
predict CA. The kernel densities of the predicted BA as well as CA are
shown in Fig. 3. The predicted Skin & Blood clock age gives a similar
kernel density as the CA, both in the position as well as the shape. From
this perspective, we may suggest this clock as the best tool to measure
individuals’ chronological ageing. However, the correlation between CA
and predicted age among all measured biological clocks is the highest for
MethylDetectRAge, another CA predictor (Pearson’sR= 0.91), although
its predictions appear to be slightly shifted towards older ages in our
dataset. GrimAge, with R= 0.85, gives a position of the kernel similar to
the CA, but with a different shape. GrimAge aims to predict lifespan and
healthspan, and as a remark, it also incorporates CA in its calculation,
unlike the other clocks, which are solely based on DNA methylation
markers, other omics, or clinical measurements. The same remark also
applies to the KDM-Levine clock, with R= 0.76 and an identical position
of the kernel density as compared to the CA.
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Fig. 2 | The overview of published clinical and omics ageing clocks and predictors
discussed in this article. The predictors are grouped based on their purpose on
predicting age, health traits, and telomere length. Each node represents one predictor
connected to another. In the left-hand panel, the edges represent the ratio of shared
parameters, e.g. there are 26 shared parameters between the MetaboAge-vdA clock
and the MetaboAge-MD clock, hence the thickest edge. The size of each node
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shows all DNA methylation predictors discussed in this study. Edges indicate the
parameters used for each predictor. Due to the high number of DNA methylation
sites used by the predictors, nodes and edges are shown in standard sizes, with no
relation to the number of features used or shared.
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We performed different data exploration approaches to compare
the BA predictions of each individual who participated in the IAM
Frontier study. At each BA predictor, we observe smaller within-person
predictions at different time points (focusing on inter-individual
variability) than the between-person predictions at the same time
point (focusing on intra-individual variability). The small inter-
individual variabilities, which imply to large intra-class correlation
(ICC) values, reflected by high ICC values, indicate that predictions for
the same individual are more consistent over time than those observed
between peers. This pattern aligns with the characteristics of standard
clinical biomarkers measured longitudinally.

Our results show ICC values ranging from 0.70 to 0.94, while the
ratios of intra- to inter-individual variability (Var_ratio) span from 0.06
to 0.43, as illustrated in Fig. 4b. In contrast to ICC, a higher Var_ratio
suggests greater divergence in within-person predictions. Consistent
patterns were also observed in the unsupervised analyses (Fig. 4a), where
BA predictions from the same individual consistently clustered together,
reinforcing the notion that within-person predictions are more similar
than those between individuals. When we examine individual physical
condition, clocks with lower ICC, such as PCA-Levine and ProtAge-
Tanaka appear more sensitive to fluctuations in self-reported health
status, as measured through weekly questionnaires on physical com-
plaints. This is further supported by the pairwise correlation analysis
between health trends and the average BA predictions from each clock
(Supplementary Fig. 5b). While these clocks show less within-person
stability, they may be better suited for capturing short-term biological
changes associated with acute physiological changes. These findings
support an analytical approach that emphasises inter-individual dif-
ferences while also exploring the variability within individuals across
time. For instance, Fig. 4c presents age acceleration—defined as the
difference between predicted BA and CA—at time points two, eight, and
13, which are common across all omics and clinical data. Distinct pre-
dictions were evident across different clocks, with observable fluctua-
tions across time points.

Table 1 | Correlation between predicted age and
chronological age

Predictor Corr. coefficent p-value

MethylDetectRAge 0.90 2.0E-30*

Skin & blood clock 0.87 3.5E-26*

GrimAge 0.85 1.1E-23*

GrimAge2 0.84 2.7E-22*

Multi-tissue clock 0.81 1.6E-19*

KDM 0.76 2.2E-16*

ProtAge-MD 0.67 2.2E-16*

PhenoAge 0.66 3.8E-11*

Hannum clock 0.65 4.8E-11*

ProtAge-Tanaka 0.60 2.2E-16*

MetaClock 0.56 8.7E-08*

PCA-Levine 0.48 2.2E-16*

MLR-Levine 0.40 1.4E-15*

ClinAge-MD 0.37 1.2E-13*

EpiTOC 0.25 2.4E-02*

MiAge 0.20 7.6E-02

MetaboAge-vdA 0.18 8.6E-03*

mPoA 0.18 1.1E-01

DunedinPACE 0.15 1.7E-01

MetaboAge-MD 0.08 2.6E-01

EpiTOC2 0.04 7.4E-01

CausAge 0.69 1.8E-12*

DamAge 0.62 1.3E-09*

AdaptAge 0.49 3.6E-06*

*Significant correlations are displayed with an asterisk (at p < 0.05). GrimAge and KDM incorporate
chronological age in their calculation.

Fig. 3 | Density plots and correlations of BA predictions.MethylDetectRAge and Skin & blood clock have the highest correlations with the chronological age (CA) (left
panel); the Skin & blood clock predicted age gives the most similar kernel density as CA, both in position and shape (right panel).
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Within the same clock, we also observe that the between-
individual fluctuations are larger than the within-individual’. We
calculated the stability index (�Sk; for each clock category k) based on
these fluctuations,

�Sk ¼
1
N

XN

i¼1

eSi;witheSi ¼
1

meanðdi12; di13; . . . ; din�1;nÞ
ð1Þ

and di12; d
i
13; . . . ; d

i
n�1;n are the pairwise differences of BA from dif-

ferent time points at each subject i. For easier interpretations, we nor-
malised the score to 0–1 range with a larger index indicating less
fluctuations and hence, more stable predictions. The results reveal that
epigenetic clocks provide the most stable predictions, followed by

clinical data and proteomics. This suggests that the rate of change in
each layer affects the reliability of BA predictions over time. Therefore,
DNAmethylation data should be used in conjunction with more recent
clinical and proteomics data to produce stable BA predictions. The
individual stability index, calculated for each clock category, further
supports the finding that epigenetic clocks consistently yield more
stable within-individual predictions (see Supplementary Fig. 6).
Clinical and proteomic measures appear more sensitive to short-term
influences such as lifestyle, medication, and other external factors. The
age acceleration predictions of GrimAge, the Skin &Blood clock, KDM-
Levine, PCA-Levine, and ProtAge-Tanaka are close to zero, i.e. their
predicted BA values are close to the corresponding CAs. Referring to the
estimated kernel density in Fig. 3, the predicted values of these clocks
are similar to the CA with reference to the location.

c)

a)

b)

*same colours for same subjects at different months 

Fig. 4 | Longitudinal exploration of BA predictions in three different omics
modalities. a Unsupervised analysis of BA predictions (PCA and cluster analysis)
for all subjects in three shared time points, b ICC and Var_ratio of each BA clocks;
large ICC and small Var_ratio indicate high within-person similarity, c Age accel-
eration of all IAM Frontier participants in different clocks; epigenetics clocks with

�SE ¼ 0:164: multi-tissue clock (pink), skin & blood clock (yellow), henoAge (green),
GrimAge2 (orange), MethylDetectR (steel blue, top), CausAge(light blue, bottom)
and Hannum clock (black). Clinical clocks with �SC ¼ 0:118: MLR-Levine clock
(brown), PCA-Levine clock (light pink), and KDM clock (blue). Proteomics clocks
with �SP ¼ 0:116: ProtAge-Tanaka (grey) and ProtAge-MD (tosca).
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Individual analysis of omics clocks and predictors
We continue the analyses by investigating the BA and health traits pre-
dictions in all IAM Frontier participants. Due to the small sample nature of
the IAM Frontier study, we are able to examine the individual predictions
resulting from all clocks. Figure 5a shows the ordered heatmaps of the
predicted BAs as well as the health trait predictions in all individuals at time

points two, eight, and 13. Thesewere selected because the results of all clocks
are available at these time points. TheMAD thresholds were computed and
were used to give the colour annotations. Therefore, only deviating pre-
dictions appear coloured in the figure. We can observe distinct patterns for
ID06, ID08 and ID27, detailed below. In Fig. 5c, we show the clinical
laboratory profiles of these individuals.

Fig. 5 | Individual analysis of BA predictions in all
available time points. a Reduced ordered heatmap
based on MAD thresholds. b Age acceleration of
ID06, ID08, and ID27. Prediction values that are
significantly different from the rest of the cohort are
marked with full circles. c Clinical and blood cell
profiles of ID06, ID08, and ID27. Measurements
that are outside the cohort reference intervals are
marked with full circles. The blood cell counts are
shown in percentages.
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ID06 shows very high smoking predictions. ID06 is a current smoker,
indeed, and hence has a higher risk of developing cardiovascular diseases
(CVD) anddiabetes (Supplementary Fig. 3 ofCVDanddiabetes disease risk
scores). From the individual plots in Fig. 5b, we also observe that the BA
predictions of ID06 increase over time for some of the ageing clocks, such as
in the Skin & Blood clock and PhenoAge. This individual was also biolo-
gically older at all time points according to the KDM and ProtAge-Tanaka
clocks. However, the clinical laboratory profiles of ID06 show an increasing
trend of the lipid measurements, in line with this individual’s increased risk
of CVD and diabetes. Interestingly, ID06’s B-cell percentages are higher
than the normal range, and the CD4 T-cell and lymphocyte counts are low.
This could show that this individual might also have problems with anti-
bodies and the immune system. In the questionnaires, ID06 did not report
major health burdens except that this individual felt having low energy,
tense muscles, and constant fatigue, with the latter two commonly reported
among the study participants.

ID08appears as theonly individualwithpredicted shortened telomeres
across both measured time points based on the DNAmTL clock, as seen in
Fig. 5b. This result may indicate premature ageing. In addition, in almost all
the applied epigenetic clocks, this individual was also predicted to be epi-
genetically older at the second time point compared to the first (see Fig. 5b).
The lipid (cholesterol) profiles of ID08 (see Fig. 5c) showan alarming status;
the measurements are out-of-normal range at almost all time points. Other
clinical parameters are still within the normal limits, although the percen-
tages of CD8 T-cell and lymphocyte are high compared to the peers. Based
on theweekly questionnaires, during the course of this study, this individual
experienced constant fatigue, diarrhoea, numbness, indigestion, sleeping
problems, stuffy nose, and blurry vision, see Supplementary Fig. 5a.
Although ID08 does not appear to report all of these health burdens at a
significantly higher level than the other study participants, together with the
rapid epigenetic ageing and high lipid profiles observed, theymight provide
additional support to the premature ageing condition predicted by the
DNAmTL clock.

ID27 appears to be different in our analyses in many ways, although
most of the epigenetic, proteomic and clinical ageing clocks predict this
individual to be in a healthy state—healthier and biologically younger than
the peers. However, ID27 shows very strong outlier BA predictions corre-
sponding to theHannum clock as well as very different smoking and health
trait predictions. It is the only subject with a completely distinct Hannum
age acceleration compared to the peers at all time points, epigenetically
younger at the second time point as compared to the first across all clocks,
and with conflicting smoking predictions (this individual was not a current
smoker). TheBApredictions of the clinical andproteomics clocks also show
a general decreasing trend over time, where ID27 was biologically younger
than chronologically, according to some of those clocks. In addition, from
the DNAmethylation and proteomics analyses, this subject is discovered to
be far outside the main cluster in the corresponding PCA plots (Supple-
mentary Fig. 4a, b).When looking atDNAmethylation predicted blood cell
composition, we observe a strongly increased proportion of B cell (Sup-
plementary Fig. 7). Thefinding is confirmedby actual blood counts showing
the same abnormalities, clearly indicating a haematological problem. This
explains why ID27’s age predictions appear as extreme outliers according to
Hannum’s clock, as it is sensitive to blood composition changes, and may
also explain the conflicting and unexpected outlier predictions obtained for
several health traits such as smoking and alcohol intake, among others.
Throughout the study period, ID27 reported constant medium backpain, a
slight headache and blurry vision.

Discussion
Age stands as the principal risk determinant for ailments, impairments, and
diseases. The pursuit of mitigating age-related illnesses and extending the
healthful years of life has led to the innovative idea of directly targeting the
ageing process to restore physiological functionality. Achieving this ambi-
tious goal requires the precise assessment of BA and the pace of ageing at the
molecular level. Building on the latest breakthroughs in high-throughput

omics technologies, a novel suite of tools has emerged for the quantitative
analysis of biological ageing. By leveraging data from various domains—
such as epigenomics, proteomics, and metabolomics—and employing
machine learning techniques, ‘biological ageing clocks’ have been con-
structed. These clocks have proven their ability to pinpoint potential bio-
markers of biological ageing, offeringunprecedented insights into the ageing
process and laying the groundwork for anchoring digital twin models to
health trajectories.

A recent review paints today’s landscape of BA prediction algorithms
using omics technologies41. These methods are claimed to better represent
the biological state of an organism than the CA. Ageing clocks for BA are
also starting to appear as commercial products, serving as awindow into the
personal health status. In this manuscript, we use a unique deep-
phenotyping dataset that allows us to perform and analyse multiple BA
predictors using different data types side by side. The longitudinal nature of
the data enables us to study the individuals’ fluctuations between time
points, exploring their changes in BA predictions over time. We optimise
our analyses using the extensive set of technical replicates generated to
estimate technical variation in our dataset and design our analyses corre-
spondingly (see ‘Methods’ and Supplementary Material Section 1).

The BA analyses in the IAM Frontier data shows that BA predictions
can fluctuate over time; both an increase and a decrease might happen
depending on the biological conditions rather than monotonically
increase by time, as in CA. Repeated measurements over time are highly
valuable, as outliers can also be caused by normal biological fluctuations.
The stability index, which quantifies the consistency of BA predictions
across different time points, also indicates that ageing likely manifests at
different rates across various omics layers. As represented within the
multi-dimensionalmodelling of digital twins, ageing is amulti-dimensional
—or multilayer—process. In the physiome hierarchical framework, organs
are mapped from cells to functional tissue units (FTUs) and then to the
organ level (a similar approach is taken in EDITH and other digital twin
frameworks)22,42. Extending this multi-level structure into BA enables real-
time simulation of age-related changes across various biological scales. In
the context of ageing, BA predictions can serve as quantifiable indicators for
analysing deviations in ageing at the cellular or even FTU levels, thereby
refining the digital twin’s ability to capture early signs of physiological decline.
Understanding stability is crucial for determining the appropriate periodi-
city of data collection in each omics layer to ensure accurate, multi-scale
integration into digital twin models.

In our individual analysis, most BA predictions were ‘stable’, that is,
within the expected range of variability across the available time points.
However, there were individuals whose predictions do change more than
expectedover time, andwhere this is the case, they areoften consistent across
multiple BApredictors and time points. A comprehensive exploration of the
BA prediction differences between individuals of our study leads to three
individuals with distinct BA predictions as compared to their peers.

The BA predictions of ID06, ID08, and ID27 provide a compelling
illustration of how multi-omics data can not only support standard
laboratory findings but also pinpoint subtle physiological deviations well
before overt clinical symptoms emerge. In a digital twin context, these
detailed omics layers and BA predictors could be integrated into a com-
putational model that flags abnormal trajectories in real time, prompting
earlier diagnostic follow-up. For example, ID08’s consistently short telo-
meres and abnormal lipid profiles could trigger predictive simulations
about cardiovascular risks, while ID27’s epigenetic deviations could
inform more targeted immunological assessments. These instances
highlight the promise of digital twinmodels to capture and interpret diverse
biomarker changes as they unfold.

These strong alterations may be what impacted some of the reported
epigenetic health trait predictions. Of note, according to the developers of
those health trait predictors, they should currently only be used at a
population level and are not yet supposed to provide reliable predictions at
the individual level. Training data from larger-scale cohorts, including dis-
eased individuals, will be required to refine these additional health trait

https://doi.org/10.1038/s41746-025-01911-9 Article

npj Digital Medicine |           (2025) 8:537 7

www.nature.com/npjdigitalmed


predictors and enable their clinical use43. Irrespectively, the clearly abnormal
epigenetic measurements and predictions of ID27 would undoubtedly also
have led to further clinical tests if detected in a wellness- or preventative
healthcare setting, revealing the ongoing but previously undetected patho-
logical process.

Our findings demonstrate the value and potential of epigenetic pre-
dictors and BA estimators, particularly for risk assessment and early detec-
tion. Several newer versions of these epigenetic predictors, introduced and
integrated in this study, are at least onparwith their earliermodels, while still
offering valuable new benefits. Our integrative analysis with self-reported
health complaints further shows important distinctions between clock types.
Clinical and proteomics-based clocks, while exhibited slightly lower overall
stability (with the lowest ICC of 0.76), more accurately captured short-term
fluctuations in health status and physical complaints compared to epigenetic
clocks. A greater number of health complaints showed significant associa-
tions with changes in these clocks’ BA predictions, suggesting they may be
particularly sensitive to acute, short-term physiological states. In contrast,
epigenetic clocks appeared considerably more stable within individuals but
were less reflective of week-to-week physical variations, possibly reflecting
more stable, long-term biological aging processes.

Taken together, these BA clocks can finally reveal unexpected devia-
tions and inform about the probability of having or developing a disease, for
example shown here by individual ID27. Moreover, they can serve as the
cornerstone in anchoring the implementation of human digital twins that
model and simulate biological processes in real-time.

Recent advancements demonstrate the growing potential of digital
twins in capturing the complex dynamics of human ageing44. Incorporating
BA clocks into digital twins demands the creation of ‘biological-age-
sensitive’ modelling paradigms in which normal age-related changes are
distinguished fromgenuine disease progression.As illustrated by our cohort
findings, clocks derived from epigenetics, proteomics, or metabolomics can
parameterise tissue- and organ-level simulations, improving model fidelity.
By regularly updating theseBA-basedparameters, digital twins can track the
natural ageing continuumwhile highlighting deviations that may signal the
onset of pathology. Hence, considering that BA clocks have the potential to
reflect the age/health status of the tissue or organ from the perspective of the
modality (methylation, proteomics), they have the potential to parameterise
the tissue or organ level models better.

In the future, when epigenetics and multi-omics data of patients are
routinely captured, researchers and clinicians could integrate these data into
the digital twin’s analytics pipeline, calibrating BA models using validated
clinical outcomes, and finally performing iterative updates as new bio-
marker measurements become available. This would us to optimise per-
sonalised medical treatments, and refine preventive healthcare strategies.
However, several challenges remain before the seamless deployment of
biological-age-sensitive humandigital twins in clinical practice, including (i)
data standardisation and interoperability across disparate omics platforms,
(ii) ensuring model accuracy and generalisability given high-dimensional
datasets, (iii) managing the computational burden of real-time or near-real-
time updates, and (iv) establishing robust data privacy, security, and reg-
ulatory frameworks. Addressing these technical and ethical hurdles will be
essential for enabling BA-driven digital twins to evolve from conceptual
prototypes into mainstream clinical tools.

Currently, the extensive and complex preprocessing procedures
required to obtain high quality results from omics data are still hindering
many of the corresponding predictors from developing their full clinical
potential, particularly at the individual level. However, with the field
growing and maturing, we argue that BA predictions should be considered
as crucial biomarkers that can anchor digital twin models and well-
complement routine medical tests and CA.

Omics data have already begun to enter clinical practice45, making
omics-based BA predictions feasible. However, despite their high-dimen-
sionality, omics datasets often suffer from limited sample sizes. In this IAM
Frontier study, for instance, the small sample size (n = 30) presents chal-
lenges for generalising the results and reduces statistical power. To enhance

the reliability of the analyses, severalmeasureswere implemented, including
the use of the median absolute deviation (MAD) to identify and mitigate
outliers. This approach ismore robust and less influencedby extremevalues.
Additionally, downstream analyses were not solely reliant on aggregate
results, which can be skewed by outliers, but also incorporated subject-level
analyses. This ensures that potential biological findings are not overlooked
or diluted, as can happen in population-level analyses. By adopting this dual
approach, we mitigate some of the risks associated with small sample sizes
and improve the robustness of the conclusions.

Once omics technologies have been fully incorporated into themedical
routine,BApredictionswill likely become standardmeasurements regularly
discussed between patients andmedical professionals. A novel personalised
value to identify the ‘normal’ BA for an individual could also be estimated,
together with common clinical measures, to provide precise individual
interpretations46,47. In line with the clinical trial frameworks, epigenetic age
measurements are also being implemented more frequently in studies
investigating interventions for age-related diseases48. In oncology practices,
consistent findings have been observed that individuals with accelerated
epigenetic ageing often display a higher risk of developing various cancers,
suggesting that regular BAmonitoring may help identify high-risk patients
for targeted screening49,50. In industry, this momentum is also already
apparent for startups and biotech companies that offer epigenetic-based BA
testing panels (https://gero.ai/, https://www.elysiumhealth.com/, https://
glycanage.com/), demonstrating commercial readiness and patient demand
for these emerging biomarkers. Despite this promise, the field remains in its
early stages. Nevertheless, through continued large-scale validation, align-
ment with healthcare policies, and education of both clinicians and patients
—BA predictions are poised to become essential tools for preventive and
precision-oriented medical care.

Further multi-scale longitudinal studies—including broader and more
diverse populations, as well as external factors such as environment, lifestyle
and real-time physiological metrics—will undoubtedly strengthen the vali-
dation of BA predictions at the personal level. In a digital twin context, such
datasets would refine the capacity to model complex interactions and gen-
erate highly individualised forecasts. By integrating epigenomic, proteomic,
and metabolomic data into machine-learning-enhanced simulations, future
digital twins could differentiate natural ageing processes fromdisease-driven
changes with greater precision. Ultimately, these innovations hold the
potential to accelerate risk stratification, guide interventions, and transform
how clinicians and patients collaborate on preventive and precision-oriented
healthcare. Such studies would allow for simulations in complex scenarios
where multiple variables interact, providing insights into the intricate
dynamics that influence health and ageing. As the field of biological ageing
advances, the construction of BAusing ageing clocks employing diverse data
sources suchas epigenomics, proteomics, andmetabolomics couldbeproven
effective in uncovering novel biomarkers of biological ageing. Future
endeavours to weave multi-omics into ageing clocks are poised to not only
broaden our grasp of the molecular signatures that characterise ageing but
also enhance the predictive powers of these models. The involvement of
machine learning in harnessing diverse datasets—both molecular and
environmental—would also advance themodels andmore accurately reflect
how individuals respond to interventions or health risks. Moreover, as
demonstrated by this study, where individual lifestyle factors were shown to
influence ageing, incorporating these and potentially other external factors
will be crucial. The continued expansion of this integrative approach is
expected to yield more precise and actionable insights, solidifying the role of
ageing clocks as indispensable tools.Ultimately, thiswill lead to robustmulti-
scale modelling of human digital twins, further advancing the evolving
landscape of personalised medicine and ageing research.

In summary, the convergence of BA clocks with human digital twin
methodologies offers a powerful new paradigm for personalised healthcare.
Through the dynamic integration of molecular and clinical data, digital
twins can highlight early biomarkers of ageing and disease, optimise treat-
ment strategies, and ultimately extend healthspan. Our findings underscore
the feasibility of this approach and pave the way for future research into
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scalable, interoperable, and privacy-conscious platforms that will bring BA-
driven digital twin models closer to routine clinical practice.

Methods
Study design and participants
The IAM Frontier study is a unique longitudinal cohort study that ran for
13 months in 30 healthy individuals, consisting of 15 male and 15 female
participants21. The 13-month study duration was chosen to cover the sea-
sonal fluctuations that might occur over a 1-year period. The study speci-
fically targeted the employees of the research organisation VITOwithin the
age range of 45–59. A major reason for the selection of this group of
employees was that as they are part of a research organisation, they are
expected to bemore open to research-grade technologies and interventions.
The age range was selected because the highest prevalence of onset of
chronic diseases occurs from the age of 45–6551. Individuals were selected
based on the following inclusion criteria: not suffering from a chronic dis-
ease, diagnosed and currently followed-up by a medical specialist: asthma,
chronic bronchitis, chronic obstructive pulmonary disease, emphysema,
myocardial infarction, coronary heart disease (angina pectoris), other ser-
ious heart diseases, stroke (cerebral haemorrhage, cerebral thrombosis),
diabetes, cancer (malignant tumour, also including leukaemia and lym-
phoma). At monthly visits, a range of samples (whole blood, plasma, urine,
stool) were collected and sent to accredited laboratories and comprehensive
multi-omics and clinical biochemistry datawere assessed. Self-administered
questionnaires on, for example, health conditions and physical activity were
also completed by the participants. In this article, we analysed data from the
IAM Frontier study, which included DNA methylation data, clinical bio-
chemistry, proteomics, metabolomics and physical examinations data.

Sample collection
The sampling of the IAM Frontier study took place between March 2019
and March 2020 and included the collection of human biospecimen and
digital data. During the 13 months of the study, the participants donated
blood, urine and stool samples at monthly visits. These samples were col-
lected after overnight fasting for at least 8 h. Theurine andblood samples (in
EDTA-, citrate-, and serum-vacutainers) were transported to the clinical
laboratory at room temperaturewithin 6 h after collection. Peripheral blood
mononuclear cells (PBMC) were isolated from EDTA-blood samples, and
PBMC pellets were stored at −80 °C till the DNA extraction. At monthly
visits, clinical tests and health examinations such as blood pressure, body
height, weight, and abdominal circumference measurements were per-
formed by accredited labs and appointed doctors. At bi-monthly visits,
plasma samples were taken, and omics (proteomics and metabolomics)
measurements were assessed. At months 1, 6 and 13, the PBMC samples
were used tomeasure DNAmethylation. Atmonth 13, only 20 participants
were able to donate samples due to the start of the COVID-19 pandemic.
Table 2 presents an overviewof the sample collection.All sampleshave been
collected in accordancewith the applicableBelgian regulations regarding the
use of human body material for scientific research (Belgian Law on use of
humanbodymaterial, 2008) and theBelgianRoyalDecree onbiobanks (Het
Koninklijk Besluit betreffende de biobanken. Belgisch Staatsblad 05.02.2018.
Brussels (2018)). All participants signed an informed consent and the study
was approved by the ethical committee of the Antwerp University Hospital

(RegN°: B300201938600). The research was conducted in compliance with
the Declaration of Helsinki and all relevant ethical guidelines.

DNAmethylation assay
The DNAmethylation assay was carried out using Diagenode Epigenomic
Services (Vienna, Austria, Cat No. G02090000). PBMC samples were sent
for DNA methylation profiling using the Illumina Infinium Methylatio-
nEPICarrayBeadChip (850 K)platform to analyse themethylation status of
more than 850,000 CpGs per sample. Thismicroarray covers∼96%of CpG
Islands and 99% of annotated RefSeq genes. We performed the DNA
methylationdata pre-processing and the correspondingdetails canbe found
in Supplementary Document Section 1.

Analysis of epigenetic clocks and predictors
Weapplied34different epigenetic age andhealth trait predictors (see Fig. 2).
The Skin&BloodClock52,Multi-tissueClock53,HannumAge26,DNAmTL38,
PhenoAge54,GrimAge27,GrimAgeDNAmPACKYRSandGrimAgeprotein
levels (DNAmADM, B2M, CystatinC, GDF15, Leptin, PAI1, TIMP1) were
obtained by Steve Horvath’s DNAMethylation Age Calculator available on
http://dnamage.genetics.ucla.edu/. We also included the new version of
GrimaAge, GrimAge255. The MethylDetectR predictions (Age, Alcohol,
BMI,HDL, BodyFat,Waist:Hip Ratio and Smoking)43 were calculatedusing
the code available at https://zenodo.org/record/4646300. The methylation
Pace of Age (mPoA)25 was estimated using the code available at https://
github.com/danbelsky/DunedinPoAm38. The refined version of mPoA,
DunedinPACE56 was also estimated. TheMetaClock34 code was received by
e-mail from the author Morgan E Levine. EpiTOC scores were calculated
using the code available in the corresponding publication35. EpiTOC236

scoreswere calculatedusing the code available fromhttps://doi.org/10.5281/
zenodo.2632938, and MiAge37 scores were calculated using the code avail-
able from http://www.columbia.edu/~sw2206/softwares.htm. Alcohol
predictions57 were generated using the dnamlci R package available from
https://github.com/yousefi138/dnamalci. Elliot’s smoking score58, Zhang’s
smoking score59 and EpiSmokEr’s smoking status60 were obtained using the
R package EpiSmokEr available at https://github.com/sailalithabollepalli/
EpiSmokEr. Causality clocks61 includingCausAge, DamAge, andAdaptAge
were estimated using the biolearn Python library available from https://
github.com/bio-learn/biolearn/.

GrimAge, HannumAge, MethylDetectRAge, mPoA, as well as the
smoking, alcohol and health trait predictors, were originally developed for
whole bloodmeasurements but have been shown towork well with PBMCs
in our study and others62–65. Table 3 shows the list of clocks implemented in
this study, including clocks predicted from clinical, metabolomics, and
proteomics data (see the next section).

We also predictedblood counts usingminfi66 and theReinius reference
dataset67, as well as IDOL using the Salas reference dataset68 with the code
available from https://github.com/immunomethylomics/FlowSorted.
Blood.EPIC.

The correlation between predicted and CA was calculated using
Pearson’s correlation.We excluded technical replicates from the calculation
of correlation coefficients.

For the longitudinal analyses of epigenetic predictions, we used
the 16 technical replicates available from our study to estimate

Table 2 | Data collection of the IAM Frontier study

Data Measurement technique Timepoints –month Type of sample Total samples Remarks

DNA methylation Illumina Infinium MethylationEPIC
BeadChips

2-8-13 PBMC 96 20 samples at month 13, 16
technical replicates

Clinical and
physiological

Clinical biochemistry, blood cell counts,
health examination

1-2-3-4-5-6-7-8-9-10-
11-12-13

Whole blood, serum
PB, fasting urine

380 20 samples at month 13

Metabolomics NMR - MS 1-3-5-7-9-11-13 Plasma 200

Proteomics LC-MSMS -PEA 1-3-5-7-9-11-13 Plasma 200

Microbiome Illumina MiSeq 1-6-13 Stool 20 16 samples at month 13
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technical variation. Two technical replicates were generated within
each of the three DNA methylation time points, and ten additional
technical replicates of the two previous time points were generated at
the third time point, providing detailed insight into technical variation
influencing the predictions. We used the maximum absolute differ-
ence observed between technical replicates as a threshold to define
potential biological differences across time points after also adding the
chronological time that passed between time points. For example, the
maximum absolute differences observed for the Skin & Blood Clock
across technical replicates was 2.56 years (the reportedmedian error in
blood is 2.5 years52), and the threshold we used represents the max-
imum differences observed among technical replicates plus the
chronological time that passed between the time points which are
maximum 343 days (0.94 years).

For the global analyses of ourdataset and the identificationof biological
outliers of interest based on our cohort, we introduced a mean absolute
deviation (MAD) threshold of ±2*MAD and ±3*MADacross all biological

replicates. In particular, ŷij ± 2MAD and ŷij ± 3MAD, where ŷij is the indi-
vidual BA prediction of subject i at time point j. The MAD thresholds
correspond to the 95th and 99th standard normal percentiles and are
selected for their robustness in describing data with a relatively small time
series as in the IAM Frontier study.

Analysis of clinical, metabolomics, and proteomics clocks
The monthly clinical and bi-monthly metabolomics as well as proteomics
data were used for predicting longitudinal BA using several published cal-
culators. We applied the MLR model and principal component analysis
(PCA) developed by Levine et al.28—they will be referred to as MLR-Levine
and PCA-Levine—to the clinical data that consist of samples from 12 to 13
time points per individual. The model prediction involves both clinical and
physiological measurements, including total cholesterol level, glycated
haemoglobin, C-reactive protein, systolic blood pressure, forced expiratory
volume (FEV) and cytomegalovirus (CMV). In the IAMFrontier data, FEV
and CMV were not measured, but we imputed the values with the

Table 3 | List of applied clinical and omics ageing clocks

Clock Reference Data type Remarks
‡MLR-Levine28 Levine, ME. 2013. Gerontol A Biol Sci

Med Sci.
Clinical Predicts chronological/ biological age

‡PCA-Levine28 Predicts chronological/ biological age
‡KDM31 Klemera, P. and Doubal, S. 2006. Mech

Ageing Dev.
‡ProtAge-Tanaka30 Tanaka, T., et al. 2018. Aging Cell. Proteomics Predicts chronological/ biological age
‡ProtAge-MD29 Macdonald-Dunlop, E., et al.

2022. Aging.
Predicts chronological/ biological age

ClinAge-MD29 Macdonald-Dunlop, E., et al.
2022. Aging.

Clinical Overestimated BA (median BA 750 years),
not shown

MetaboAge-MD29 Macdonald-Dunlop, E., et al.
2022. Aging.

Metabolomics Overestimated BA (median BA 600 years),
not shown

MetaboAge-vdA32 van den Akker, EB., et al. 2020. Circ
Genom Precis Med.

Underestimated BA (median BA –5000
years), not shown

Metabonomics33 Hertel, J., et al. 2016. Journal of
Proteome Research.

Missing variables (only 22% vars. are
available), not shown

‡Skin & blood clock52 Horvath, S., et al. 2018. Aging. DNA methylation Predicts chronological age
‡MethylDetectRAge43 Hillary, R. and Marioni, R. Wellcome

Open Res.
Predicts chronological age

‡Multi-tissue clock53 Horvath, S. 2013. Genome Bioloy. Predicts chronological/biological age
‡Hannum clock26 Hannum, G., et al. 2013. Molecular Cell. Predicts chronological/biological age

mPoA25 Belsky, D., et al. 2020. eLife. Predicts the pace of ageing

DunedinPACE56 Belsky, D., et al. 2022. eLife. Predicts the pace of ageing
‡PhenoAge54 Levine, M., et al. 2018. Aging. Predicts health- and lifespan
‡GrimAge27 Lu, A., et al. 2019. Aging. Predicts health- and lifespan
‡GrimAge255 Lu, A., et al. 2022. Aging. Predicts health- and lifespan

Metaclock34 Liu, Z., et al. 2020. Aging Cell. Predicts mortality

EpiTOC35 Yang, Z., et al. 2016. Genome Biology. Predicts mitotic age

EpiTOC236 Teschendorff, A.E. 2020. Genome
Medicine

Predicts mitotic age

MiAge37 Youn, A., and Wang, S. 2018.
Epigenetics.

Predicts mitotic age

DNAmTL38 Lu, A., et al. 2019. Aging. DNA methylation Predicts telomere length
‡CausAge61 Ying, K, et al. 2024. Nature Aging. Predicts chronological/ biological age

DamAge61 Ying, K, et al. 2024. Nature Aging. Predicts chronological/ biological age

AdaptAge61 Ying, K, et al. 2024. Nature Aging. Predicts chronological/ biological age

GOLD BioAge71 Hao, et al. 2025. Adv. Sci. Clinical Predicts morbidity & mortality

GOLD ProtAge71 Metabolomics Predicts morbidity & mortality

GOLD MetAge71 Proteomics Predicts morbidity & mortality
‡Rows with double dagger symbol (‡) refer to clocks that are further investigated.
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correspondingmedian from the original study69. The same clinical variables
as in the PCA-Levine model were further used to predict the BA using the
KDM31. Unlike the MLR-Levine and the PCA-Levine, KDM also incor-
poratesCA in their estimationprocedure. Similarly,we also computedother
BA predictions based on similar clinical biochemistry variables developed
by McDonald-Dunlop et al.29.

The proteomics and NMRmetabolomics data consist of samples from
six to seven time points per individual, where the samples were sent to the
laboratory in fourdifferent batches. For theproteomicsdata, batch correction
normalisationwas done prior to the analysis to reduce the technical variation
between batches/plates70. We performed PCA andmultidimensional scaling
analyses for the metabolomics data, where we did not observe any batch
effects, so the raw metabolite abundances were used. In both datasets, there
are twenty subjects with technical replicates spread across different time
points. We performed a procedure for selecting the samples (between the
originals and the replicates) by computing cosine similarity coefficients for all
samples. The samples with the closest similarity to the rest of the individuals’
measurements were selected. Further, we predicted the BA using other
published proteomics and metabolomics clocks: ProtAge-MD (from
McDonald-Dunlop et al.14),MetaboAge-MD,ProtAge-Tanaka,MetaboAge-
vdA, and Metabonomics29,30,32,33. Recently, the GOLD BioAge model was
proposed as a Gompertz-based BA estimator using clinical and omics data71.
We reference it here to highlight ongoing developments in this area.

Software tools and programming language
The network (Fig. 2) was created in Gephi version 0.9.572 and Cytoscape
version 3.8.273. All data analyses were conducted in the R statistical envir-
onment version 4.1.3.

Data availability
Due to participants’ privacy, the data is available upon request to the I AM
Frontier Project Data Access Committee for further research (DataAcces-
s.IAF@vito.be). The sensitive nature of the data does not allow it to be
deposited into public repositories. We welcome collaboration with other
research groups focused on personalised prevention, offering data sharing
opportunities to advance research and improve healthcare outcomes.

Code availability
The codes are available upon request from the corresponding authors.
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