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ABSTRACT 
This thesis investigates the application of Genetic Algorithms (GAs) in the field of reaction engineering, 
focusing on determining the effectiveness of GAs in solving ideal reactor chain configuration problems. 
Utilizing customized genetic operations, including selection, crossover, and mutation, alongside established 
optimization techniques such as NSGA-II, SLSQP, and DE. These algorithms are used to iteratively search for 
the optimal arrangement of reactor sequences, with the goal of minimizing residence time or maximizing 
product yield while minimizing the number of operational units. Two GAs were developed. The first presented 
in this thesis is for reactions involving one main reaction, the Single Reaction Genetic Algorithm (SRGA). The 
second GA is developed for applications within parallel reaction schemes, the Parallel Reaction Genetic 
Algorithm (PRGA). These GAs are optimized by utilizing hypothetical chemical reaction kinetics and 
complex, enhancing their ability to handle difficult cases. The optimization revealed that PRGA's framework 
performs faster than SRGA due to the employment of SLSQP instead of DE. It also revealed that both GAs 
profit more from gene chain growth mechanisms rather than gene mutation mechanisms. The optimization 
resulted in two robust GAs that both engineers and non-engineers can utilize to optimize ideal reactor setups 
efficiently.  
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DUTCH ABSTRACT 
Deze scriptie onderzoekt de toepassing van genetische algoritmen (GAs) op het gebied van reactortechniek, 
met een focus op het bepalen van de effectiviteit van GAs bij het oplossen van configuratieproblemen voor 
ideale reactorreeksen. Hierbij worden aangepaste genetische operatoren gebruikt, waaronder selectie, 
crossover en mutatie, samen met optimalisatietechnieken zoals NSGA-II, SLSQP en DE. Deze algoritmen 
worden ingezet om iteratief te zoeken naar de optimale rangschikking van reactorreeksen, met als doel het 
minimaliseren van de verblijftijd of het maximaliseren van de productopbrengst, terwijl het aantal operationele 
eenheden wordt geminimaliseerd. Er zijn twee GAs ontwikkeld. De eerste, gepresenteerd in deze scriptie, is 
bedoeld voor reacties met één hoofd reactie en wordt de Single Reaction Genetic Algorithm (SRGA) genoemd. 
De tweede GA is ontwikkeld voor toepassingen binnen parallelle reactieschema's, genaamd Parallel Reaction 
Genetic Algorithm (PRGA). Deze GAs zijn geoptimaliseerd door gebruik te maken van hypothetische 
chemische reactiekinetiek, waardoor het vermogen om moeilijke gevallen op te lossen verbeterd. Uit de 
optimalisatie bleek dat het PRGA-framework sneller presteert dan SRGA, dankzij het gebruik van SLSQP in 
plaats van DE. Bovendien werd duidelijk dat genketen groei mechanismen beter zijn voor de GAs dan gen 
mutatie mechanismen. De optimalisatie resulteerde in twee robuuste GAs die zowel ingenieurs als niet-
ingenieurs kunnen gebruiken om ideale reactorconfiguraties efficiënt te optimaliseren. 
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1 INTRODUCTION 
Process optimization in the chemical industry is important for enhancing efficiency and reducing costs while 
improving sustainability and lowering environmental impact [1]. This involves improving various operational 
processes, such as identifying the optimal reactor chain setup, to achieve better yields, minimize waste, and 
use resources more effectively. As the chemical sector is known for its intensive energy consumption and 
environmental footprint [2], optimization plays a crucial role in mitigating this while maintaining profitability. 
Optimizing processes can be a time-consuming task and presents significant challenges due to the multitude 
of parameters that must be considered. Each variable can greatly affect the efficiency, safety, and cost-
effectiveness of the operation. Additionally, these variables often interact in complex ways, meaning that 
changes to one can lead to cascading effects on others. For example, increasing the temperature may accelerate 
the reaction and enhance yield, but it can also raise the risk of producing unwanted byproducts or even create 
safety hazards such as explosions or fires [3, 4]. 

To handle the complexities of process optimization, chemical engineers increasingly rely on advanced 
modeling tools and newer methods like machine learning. These tools enable engineers to understand the 
interactions between various parameters and predict the behavior of a process [5]. Even with these 
sophisticated and innovative methods, achieving an ideal balance through traditional approaches often requires 
iterative testing and adjustments, which can be time-consuming and resource-intensive. However, a non-
conventional tool called Genetic Algorithms (GAs)  shows promise for streamlining this iterative process [6]. 
GAs are well-suited for dealing with complex, multi-dimensional, and nonlinear problems where traditional 
optimization methods show limitations [7]. It operates through mechanisms such as mutation, crossover, and 
selection, inspired by natural selection and genetics. This approach allows GAs to explore a vast solution space 
more efficiently than traditional methods without requiring gradient or derivative information, which can be 
difficult to obtain for complex chemical processes [6, 8]. 

GAs have been successfully applied across various domains within the chemical industry for optimization. For 
instance, researchers have used GAs to optimize autothermal ammonia synthesis reactors by adjusting key 
parameters such as reactor length and operating temperatures [9]. These parameters are crucial for the rate of 
ammonia production and energy efficiency. By exploring a wide range of potential configurations, GAs 
enabled researchers to identify the most effective settings to maximize output while minimizing energy 
consumption. This approach not only improves the profitability of the process but also reduces operational 
costs by ensuring the reactor operates under optimal conditions suited to the specific characteristics of the 
reaction.  

In addition, membrane-based separation processes benefitted from the optimization of variables such as 
membrane thickness, surface area, and operating pressures using GAs. These variables significantly influence 
the effectiveness of separation by determining how well substances are filtered. Ultimately improving product 
quality and extending the lifespan of the membranes. By balancing these variables, researchers have 
maximized separation efficiency while minimizing energy consumption [10].  

A different study of solid oxide fuel cells, GAs have been applied to optimize the performance of a cathode. 
The algorithm helped model the cell performance by varying cathode preparation temperatures, operating 
temperatures, and current densities. Determining the optimal conditions to maximize power output efficiently 
and being able to handle complex, non-linear relationships between multiple variables [11]. 
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In another study on the optimization of multiproduct batch chemical processes, GAs have streamlined the 
production parameters, effectively balancing cost reduction with increased output. The research utilized GAs 
to address a complex multiobjective optimization problem, integrating various performance measures such as 
cost, production time, and revenue maximization. This approach allowed for the exploration of a wide range 
of possible solutions, providing a clear overview of the best options available for optimizing batch plant 
operations [12]. 

GAs have also been successfully applied in the optimization of a large-scale industrial reactor for the 
hydrogenation of o-cresol to produce 2-methyl-cyclohexanol. This process, characterized by its complex, high-
dimensional non-linear model, posed significant challenges for conventional optimization methods. However, 
GAs allowed for effective navigation and optimization of this complexity, enabling the maximization of 2-
methyl-cyclohexanol production while maintaining adherence to environmental constraints. This application 
highlights again the versatility and effectiveness of GAs in tackling complex optimization problems in 
chemical engineering, proving them as robust tools for enhancing process efficiency and productivity [13]. 

While GAs are commonly used in chemical process optimization, there has been no research focusing on their 
application for reactor chain configuration. The use of such algorithms is advantageous because it can shorten 
the process design time and eliminate the bias often associated with human-driven design. Thus this thesis will 
focus on developing GAs for optimizing reactor setups in complex reaction kinetics, particularly autocatalytic 
reactions and reactions with parallel pathways. Autocatalytic reactions, where products catalyze further 
reactant conversion, complicate optimal setup configurations due to their accelerated reaction rates [14]. 
Reactions with parallel pathways pose additional challenges as multiple pathways compete for the same 
reactants, necessitating designs that favor desired products while minimizing byproducts [3, 15]. Optimizing 
these setups requires understanding the kinetic behavior of each pathway to improve product yields and reduce 
waste, thereby enhancing overall chemical process efficiency and sustainability [16]. These complex reactions 
are prevalent across various industries, including polymerization, pharmaceuticals, and petrochemicals [17-
20]. By leveraging the adaptability of GAs, this thesis aims to navigate through setups containing different 
reactor types, such as continuous stirred tank and plug flow reactors, with varying intermediate conversion 
grades or reactant concentrations. The thesis will cover a comprehensive literature review on reaction 
engineering and GAs, followed by the development and optimization of two GA-based tools for different 
scenarios. Concluding with an analysis and optimization of these tools' effectiveness and propose further 
research prospects. 
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2 LITERATURE STUDY 
Chemical reactors are essential to the chemical industry. The design and optimization of reactors is critical for 
enhancing efficiency, safety, and economic viability [21]. Ideal reactors, such as Continuous Stirred Tank 
Reactors (CSTR) and Plug Flow Reactors (PFR), are fundamental models for understanding reactor behavior 
and guiding the design of real-world reactor setups. The fundamental difference between CSTRs and PFRs 
lies in their flow and mixing patterns, which affect their performance and suitability for different reactions [3, 
4]. Understanding each reactor's performance equations aids in selecting the appropriate reactor type or setup 
for a given process. 

2.1 Continuous Stirred Tank Reactor 
A Continuous Stirred Tank reactor (CSTR) is an ideal reactor model where the contents are perfectly mixed, 
resulting in a uniform composition throughout the reactor [3, 4]. A stream of reactants is continuously fed into 
the reactor, and a product stream is continually removed, maintaining steady-state operation, schematic shown 
in Figure 1. The performance of a CSTR is determined by the balance between the rate of input, output, and 
reaction rate within the reactor. 

 
Figure 1: Schematic of a CSTR 

For example, for a first-order irreversible reaction A→B, the mass balance for species A in a CSTR is given 
by equation 1. 

𝐹!" =	𝐹! + 𝑉(−𝑟!) (1) 

Where FA0 represents the molar flow rate of A entering the reactor, FA represents the molar flow rate of A 
exiting the reactor, V the reactor volume, and −rA is A's rate of disappearance. Defining the residence time as 
the reactor volume divided by the flow rate, and knowing that the concentration equals the molar flow rate 
divided by the volumetric flow rate [3, 4, 22], the performance equation 2 can be derived from equation 1. 

τ =
V
Q = 	

𝐶!" − 𝐶!
−𝑟!

	 (2) 

Here, τ is the residence time, V the reactor volume, Q is the flowrate through the reactor, CA0 is the inlet 
concentration, and CA is the outlet concentration of A. From equation 2, it is possible to evaluate the 
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performance of CSTRs. The objective is to minimize τ, resulting in a reactor that is just large enough to meet 
the conversion requirements of the same flowrate, thereby reducing the investment cost. 

2.2 Plug Flow Reactor  
A Plug Flow reactor (PFR) is an ideal reactor where reactants flow through a tubular reactor without axial 
mixing, creating perfect fronts where the composition changes along the length of the reactor. Each front of 
the volume acts as a differential element of the total volume, shown in Figure 2. 

 
Figure 2: Schematic of a PFR 

For the same first-order irreversible reaction A→B, the mass balance for species A in a PFR is represented by 
equation 3. 

𝐹! =	 (𝐹! + 𝑑𝐹!) + 𝑑𝑉(−𝑟!)	 (3) 

Where FA represents the molar flow rate before the front, (FA + dFA) the molar flow rate after the front, and 
dV the differential volume of the front [3, 4]. After reconstructing the mass balance in terms of residence time 
τ and concentration CA, integrating it across the reactor volume results in performance equation 4. 

τ = 	−2
𝑑𝐶!
−𝑟!

#!

#!"
	 (4) 
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2.3 Levenspiel Plot 
The Levenspiel plot can be utilized to compare and visualize reactor performance effectively. The plot 
graphically illustrates the correlation between the inverse of a reagent's reaction rate and its conversion. Aiding 
in the determination of the required reactor residence time needed to achieve the desired conversion [3], an 
example is shown in Figure 3. 

 
Figure 3: Example Levenspiel plot 

Applying equation 4, on the Levenspiel plot reveals that a PFRs residence time is represented by the area under 
the curve from the initial to the final conversion level. By calculating this area and knowing the desired flow 
rate of the reactant, it is possible to determine the required reactor volume. This indicates that each segment 
along the length of the reactor contributes differently to the overall conversion, as illustrated by the area marked 
in red in Figure 4a. In contrast, applying equation 2 shows that the reaction rate remains constant throughout 
a CSTR due to complete mixing, which results in a uniform concentration throughout the reactor. This 
uniformity results in the reactor's performance being represented as a rectangle in the Levenspiel plot, as 
illustrated in Figure 4b. The rectangle's height corresponds to the inverse of the reaction rate at the outlet, while 
the width represents the total conversion achieved. This means that the reaction rate at the outlet determines 
the residence time in a CSTR. 

 
Figure 4: Graphical representation of the PFRs (a) and CSTRs (b) required residence time 
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2.4 Optimization with Levenspiel Plot 
Working with reaction schemes that involve only one product, the setup optimization is best carried out using 
Levenspiel plots. The goal here is to achieve a setup with the shortest residence time for the desirable 
conversion. This means that the graphical surface area taken in by the reactors should be minimized. For 
example, Figure 5 shows a Levenspiel plot of a certain autocatalytic reaction [3, 4], where the goal is to achieve 
a conversion of 90%. 

 
Figure 5: Example Levenspiel plot for an autocatalytic reaction 

For instance, if the need is to attain a conversion rate of 90% for A, only a limited number of setups may be 
considered optimal. The first setup shown in Figure 6a consists of only a PFR. When using a single reactor, a 
PFR will have the shortest residence time in this case. However, this is not the best setup overall. Upon closer 
inspection, a shorter residence time can be achieved by using two reactors, with the first one being a CSTR 
followed by a PFR, shown in Figure 6b. The total residence time is the combined contribution from both 
reactors. The decrease in residence time is possible due to the outlet reaction rate of the CSTR, which 
determines the height of its rectangle. By adjusting the outlet conversion of the first reactor to align with the 
highest reaction rate, indicated at the minimum on the plot, it is possible to reduce the overall graphical area 
[3]. 

 
Figure 6: Levenspiel plot representation of the first (a) and second setup (b) 
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2.5 Parallel Reactions 
Certain chemical reactions produce side products through parallel reaction pathways. A single reactant is 
transformed into different products simultaneously through distinct reaction pathways [3, 4, 23]. Following 
reaction is an example of this. 

 
 

Parallel reactions are characterized by different reaction rate constants, in the case of the example, kb, and kc. 
The selectivity towards each product depends significantly on these reaction rate constants. The reaction rate 
constants, in turn, have a temperature dependency described by Arrhenius' law shown in equation 5. 

𝑘	 = 	𝑘"	𝑒
$ %
&' (5) 

 
Where T is the reaction temperature, R is the ideal gas constant,  k0 is the frequency, and E is the activation 
energy of the reaction. This indicates that the reaction rate constants change depending on the temperature and 
that an optimal temperature can exist for specific reaction mechanisms [3, 24].    

2.6 Fraction Plot 
Using a Fraction plot, as shown in Figure 7, is more effective than a Levenspiel plot for reaction schemes that 
involve parallel reactions [3]. The Fraction plot illustrates the relation between the overall fractional yield 𝜱 
and the reactant concentration.  

 
Figure 7: Example Fraction plot 

The fraction of the product in the reactor is the ratio between the reaction rate of the desired product divided 
by the sum of its reactant's reaction. Known as the instantaneous fractional yield 𝝋 and is calculated according 
to equation 6 [3].  

𝜑	 = 	
𝑑𝐶(
−𝑑𝐶!

	 (6) 
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The instantaneous fractional yield is thus a function of Ca, the reactant concentration. In general, the 
concentration varies throughout the reactor, depending on the type of reactor used. To determine the amount 
of product formed, the overall fractional yield 𝜱 is calculated [3]. According to equation 7. 

Φ	 = 	
𝐶&#

𝐶!" − 𝐶!)
	= 	𝜑:*+,-./* (7) 

 
Here, CRf is the product concentration at the outlet, Ca0 the reactant's starting concentration, and CAf the outlet 
concentration. The overall fractional yield is the mean of the instantaneous fractional yields at every point 
within the reactor [3]. To properly average this for a PFR where Ca changes throughout the reactor, equation 
8 is used. 

Φ0 	= 	
1
∆𝐶!

	2 𝜑
#!#

#!"
𝑑𝐶, (8) 

 
For a CSTR where the reactant concentration equals CAf throughout the whole reactor, provided there is proper 
mixing. The overall fractional yield will equal the instantaneous fractional yield evaluated at CAf [3]. Once the 
overall fractional yield is calculated, the product outlet concentration can be calculated with equation 9. 
 

𝐶&) 	= 	Φ>𝐶!" − 𝐶!)? (9) 

It is possible to graphically represent the amount of product produced by a reactor using Fraction plots [3], as 
shown in Figure 8a. For a PFR, the total amount of product formed is determined by integrating the fraction 
curve from the initial to the final reactant concentration. The area under the curve reflects the amount of product 
produced, indicating that each segment along the reactor length contributes differently to overall production 
[3]. In contrast, for a CSTR shown in Figure 8b, the reactant concentration remains constant throughout the 
reactor due to complete mixing. This uniformity allows the production of the reactor to be represented as a 
rectangle on the fractional plot. The rectangle's height equals the instantaneous fractional yield evaluated at 
the outlet's concentration, and the width is the difference between the inlet and outlet concentration of the 
reactant [3]. This illustrates that the concentration of the product at the outlet determines the amount of product 
formed in a CSTR. 

 
Figure 8: Graphical comparison between the produced product in a PFR (a) and a CSTR (b) 
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2.7 Optimization with Fraction Plot 
Fraction plots optimize setups for parallel reaction schemes, maximizing a specific product's yield. Thus, 
maximizing the graphical surface area occupied by reactors is crucial [3]. Figure 9 illustrates a Fraction plot 
for a specific reaction scheme, intending to maximize the formation of product R. 
 

 
Figure 9: Example Fraction plot for certain reaction scheme 

The initial configuration shown in Figure 10a illustrates the Fraction plot for a single PFR. While a single PFR 
can produce a considerable amount of the desired product, it may not be the most efficient approach. A closer 
examination of the Fraction plot in Figure 9 reveals a peak, suggesting that incorporating a second reactor, 
specifically a CSTR, could enhance the process [3]. The proposed strategy involves starting the reaction in a 
CSTR shown in Figure 10b, where the outlet concentration matches the peak concentration observed in the 
Fraction plot. The reaction is then completed in a PFR afterward, ultimately increasing the overall yield of the 
desired product. Once the necessary concentration levels across both reactors have been established, their 
respective residence times can be calculated [3]. 

 
Figure 10: Fraction plot representation of the first (a) and second setup (b) 
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2.8 Genetic Algorithm 
A GA is a stochastic search and optimization technique inspired by natural selection and genetics principles 
[8, 25, 26]. This involves a series of genetic operations such as selection, crossover, and mutation, enabling 
these algorithms to search large and complex solution spaces effectively [27, 28]. Figure 11 shows a general 
structure for a GA. 

 
Figure 11: General structure for a genetic algorithm 

The process begins with the initialization phase, where a population of individuals is generated randomly or 
through predefined heuristic methods to ensure diversity between the individual candidates [29]. Each 
individual in this population is a potential solution to the problem. For this thesis, individuals are encoded as 
a string of different reactors with or without their respective conversions, thus mimicking a setup. 

Following the population creation, the breeding phase begins, here certain breeding operations like crossover 
and mutation are applied to selected pairs of individuals. Crossover is a genetic operator that imitates biological 
reproduction and recombination, allowing offspring to inherit beneficial traits from both parents, potentially 
resulting in a more fit individual, see Figure 12 [30]. In contrast, mutation introduces random genetic mutations 
to the offspring, maintaining genetic diversity. This randomness is essential to prevent premature convergence 
to local minima and ensures a thorough exploration of the solution space [31]. Further explanation regarding 
these operations is reported in section 3.1.5 of this thesis. 
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Figure 12: Schematic representation of the genetic breeding operations 

After the breeding phase, a predefined fitness function evaluates each individual's fitness. This function 
assesses how well each individual solves the target problem by assigning a fitness score based on efficiency, 
determining which individuals are most likely to reproduce [29, 32]. 

Once the population is evaluated, the selection process begins. This phase simulates natural selection, where 
individuals with higher fitness are likelier to be chosen for reproduction [33]. The selection process is 
competitive, where individuals face off, and the fitter one is chosen through tournament selection. 
Alternatively, the process might involve some element of randomness, where the likelihood of an individual 
being selected depends on chance [34]. 

The GA continues through these steps until a specific stopping point is reached, such as reaching a maximum 
number of generations or reaching a point where no significant improvements are seen in fitness levels. When 
the algorithm converges, the best solution in the final population is usually considered the optimal solution to 
the problem [29, 35]. 

2.9 Differential Evolution 
Differential Evolution (DE) is a population-based stochastic optimization GA widely used for solving 
complex, nonlinear, and multimodal optimization problems in continuous space. It includes steps such as 
mutation, crossover, and selection. Utilizing vectors to represent individuals, containing their direction and 
magnitude [36]. 

2.9.1 Initialization 
A population can be initialized randomly or through alternative heuristic methods, such as Latin Hypercube 
Sampling (LHS). For random initialization, individuals are generated within the search space defined by the 
parameter bounds, according to equation 10. 

𝑥1,3,4 = 	𝑅𝑎𝑛𝑑(0	; 1)>𝑏1,5,6 − 𝑏1,537? + 𝑏1,537	 (10) 

Here, g represents the generational number, j is an input parameter within the vector i, while bj,max and bj,min 
are the upper and lower bounds for j. Randj(0;1) is a function that produces a random number uniformly 
distributed between zero and one for each input parameter j. Once this process is completed for every 
individual, the entire parameter space should be fully covered, as seen in Figure 13 [37]. 
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Figure 13: DE population, after initialization for random sampling 

When using LHS, the resulting population will typically be more dispersed than a random initialized 
population. This approach divides the parameter space into slices, selecting one value from each slice. This 
process is described by equation 11 [38]. 
 

𝑥1,8 =	
1
𝐹8
∙ I
𝑝1,8 − 1 + 𝑅𝑎𝑛𝑑18(0; 1)

𝑁 L	 (11) 

 
In this equation, xj,k represents the value of the kth parameter in the jth vector. Fk is the distribution function of 
each parameter, describing its distribution. The variable pj,k is an integer that indicates which interval of the 
parameter the sample will occupy. Randj,k(0;1) is a random number generator that provides an offset within 
the specified interval, and N is the total number of vectors to be generated. An example population generated 
through LHS is shown in Figure 14. 

 
Figure 14: LHS population after initialization 

2.9.2 Mutation 
After initialization, DE mutates and recombines the population to form a new trial population [37]. The 
mutation involves adding a randomly sampled and scaled vector difference to a third vector, creating a mutant 
trial vector vi,g. This is done according to equation 12. 
 

𝒗3,4 = 𝑥*",4 + 𝐹>𝑥*9,4 − 𝑥*:,4?	 (12) 
 



 25 

Here, F is the scale factor, a positive real number that determines the rate of evolution, typically in the range 
of zero to one. The base vector xr0,g is chosen randomly or driven by certain policy. However, it must differ 
from xr1,g and xr2,g, which are also randomly selected from the individuals members [36].  

2.9.3 Crossover 

In addition to mutation, the DE algorithm also implements crossover strategies. Once the mutant trial vector 
is created, the crossover creates trial vectors out of parameter values from a randomly chosen target vector and 
the previously created mutant vector [37]. This is done according to the following probabilistic methodology: 
 
 if (randj (0;1) ≤ CXPB): 
    𝒖!,#,$ =	𝒗!,#,$	  
 
 else: 
    𝒖!,#,$ =	𝒙!,#,$	 				 
 
Here CXPB is the crossover probability, which is defined by the user. For a specific parameter j, if a randomly 
generated number is less than or equal to CXPB, the trial vector will inherit the parameter from the mutant 
vector. If the number exceeds CXPB, the trial vector will retain the parameter from the target vector.  

2.9.4 Selection 
After applying mutation and crossover, all new trial vectors are formed. The selection process for the next 
generation follows, which involves evaluating the fitness of each vector using a predefined function. If the trial 
vector outperforms its original target vector, it replaces the target vector in the following generation. 
Otherwise, the target vector will keep its position in the following generation [36, 37]. 

2.10 Pareto Chart 
The Pareto chart is an important tool in multi-objective optimization, representing the set of optimal solutions 
in which no objective can be improved without negatively impacting another. Widely used in engineering, to 
manage trade-offs between conflicting objectives [39, 40]. Each point on the Pareto front is a potential solution 
where improving one objective would cause at least one other objective to be degraded, an example is shown 
in Figure 15. 

 
Figure 15: Example Pareto Chart 
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The axes in a Pareto front chart correspond to different objectives, and the connected points represent optimal 
solutions, known as the  Pareto front. Solutions on the Pareto front are considered “non-dominated,” meaning 
no other solutions in the set outperform them across all objectives. For instance, in a bi-objective problem, a 
two-dimensional Pareto front is created, displaying the trade-off curve between the two objectives [41]. GAs, 
such as the Non-dominated Sorting Genetic Algorithm, often leverage Pareto Fronts to solve complex 
optimization problems by preserving solution diversity and guiding the search toward optimal trade-offs [42]. 

2.11 NSGA-II  
The Nondominated Sorting Genetic Algorithm-II (NSGA-II) is known for its elitism and ability to maintain 
diversity in the population [42]. A key feature distinguishing NSGA-II from other genetic algorithms is its use 
of non-dominated sorting and crowding distance operators during the selection phase. This approach is 
important in effectively maintaining population diversity while highlighting superior "Elite" solutions. These 
mechanisms ensure that NSGA-II can manage a variety of complex problem spaces by promoting a diverse 
set of optimal solutions and allowing thorough exploration of the search space in multi-objective optimization 
scenarios [42]. 

2.11.1 Non-Dominated Sorting 
Non-dominated sorting is a technique used to categorize the population into different layers or performance 
fronts based on the principle of Pareto dominance. A solution dominates another solution if it meets the 
following two criteria: 1) the solution performs no worse than another solution across all objectives, and 2) the 
solution is strictly better than the other solution in at least one objective [42]. 

Using this definition, the population is organized into a series of fronts. The first front is composed of solutions 
not dominated by any other member of the population, representing the set of optimal trade-offs among the 
objectives. The second front comprises solutions dominated solely by one or more solutions from the first. 
This process continues, with each subsequent front containing solutions dominated by those in the previous 
front. This structured approach allows for a clear understanding of solution quality regarding multi-objective 
optimization [42]. For an overview of the sorting algorithm, see Appendix A. 

2.11.2 Crowding Distance 
After sorting the solutions into fronts, the next step is to ensure diversity within each front through the crowding 
distance calculation. Crowding distance measures how dense the solutions are in the objective space around a 
particular solution, this is achieved through equation 13. 
 

𝑑3 =N
𝑓1(𝑖 + 1) − 𝑓1(𝑖 − 1)

𝑓15,6 − 𝑓1537

;

1<9

	 (13) 

 
Here M represents the number of objectives, fj(i+1) and fj(i−1) are the objective values of the neighboring 
solutions for objective j, fj 

max and fj 
min are the maximum and minimum values for objective j among all 

solutions in that front. Boundary solutions with no neighbors on one side are assigned a large crowding distance 
to ensure their selection during the selection procedure [42]. A visual representation of this is shown in Figure 
16. 
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Figure 16: Example of a Crowding-distance calculation 

2.11.3 Selection 
After calculating the crowding distances, the breeding pool for the next generation is structured to enhance 
both quality and diversity within the population using the following strategy. The process begins by 
incorporating all members from the first front F1, which contains the optimal non-dominated solutions for the 
current population [42]. If the number of selected individuals from the first front is less than the desired 
population size, the algorithm proceeds to include members from the subsequent front. This process continues, 
incorporating individuals from progressively more dominated fronts until the accumulated selection pool size 
reaches or closely approximates the desired population size. The addition of the last front F3, will exceed the 
population limit, which means that selection will become selective within that front. Specifically, individuals 
with larger crowding distances are prioritized. This method ensures that the chosen individuals are well-
distributed across the objective space. This selective procedure favors individuals who are spatially isolated 
from their peers, thereby maintaining a high level of diversity within the population [42]. This selection criteria 
ensures that the evolutionary process effectively explores the search space, which is crucial for uncovering 
optimal solutions across the multi-objective landscape. This methodology is made visual in Figure 17 [42]. 

 
Figure 17: Schematic of the selection process in NSGA-II 
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2.12 SLSQP 
Sequential Least Squares Programming (SLSQP) is an iterative method for solving non-linear optimization 
problems. Its objective is to find the optimal values for specific variables that minimize or maximize a target 
function while satisfying certain constraints [43]. The method approximates the original, complex problem 
with a simpler quadratic problem at each step. 
 
Starting from an initial point, either determined or guessed, SLSQP creates a local model of the objective 
function using a second-order approximation, being easier to calculate and optimize than the original function. 
Additionally, it linearizes the constraints around the current point, transforming originally non-linear 
constraints into linear ones locally. These approximations lead to the formation of a quadratic programming 
subproblem, which is simpler to solve. This subproblem identifies the direction and magnitude for shifting the 
current real solution [44]. 
 
After determining the direction, SLSQP performs a line search to find the appropriate distance to move along 
that path and carry out the repositioning. After updating the current point, the algorithm also updates its Hessian 
approximation by using information gathered from the differences in gradients before and after the update. 
This adjustment ensures that the method gradually develops a better understanding of the underlying shape of 
the objective function and constraints. The process is repeated in each iteration, the improved Hessian 
approximation forms a new quadratic subproblem, which is then solved again. The current solution is adjusted 
until the conditions are met [45]. 
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3 ALGORITHM DEVELOPMENT  
3.1 Single Reaction Genetic Algorithm  
The first algorithm developed in this work is a GA for single reactions (SRGA). This algorithm aims to 
optimize reactor setup configuration for reaction mechanisms where one reaction pathway is dominant, and 
the final reaction product is desired. A simple example of this is shown in the following reaction. 

 
The aim of the GA is to minimize the number of reactors used in the setup and reduce the overall residence 
time required to achieve the desired conversion. A shorter residence time enables the use of smaller, more cost-
effective reactors while reducing the number of reactors helps lower overall investment costs. SRGA follows 
the framework illustrated in Figure 18. 

 
Figure 18: Schematic overview of SRGA's Framework 
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3.1.1 Initialization 
The first step in developing SRGA is to define the shape and structure of each individual setup. In GAs, each 
individual is typically represented as a string of genes. For optimizing reactor configurations in this case, the 
genes will correspond to one of two types of reactors, namely CSTRs or PFRs, defined as strings that are 
recognizable by the other operations. Figure 19 shows an example gene sequence for a setup. 
 

 
Figure 19: Example gene sequence 

Each setup is also given the ability to contain its fitness values and corresponding fitness weights. The fitness 
value indicates a setup performance for the given problem and is assigned during evaluation. In case of SRGA, 
these are the total residence time and the reactor amount used. The fitness weights are used during selection to 
determine whether minimization or maximization occurs. By default, the GA is designed to maximize, 
therefore, multiplying the fitness by a negative number allows for minimization. Once this is done, a population 
of setups is initialized. The weight values used for SRGA are set to -0.5 since both fitness objectives 
complement each other when minimized. 

3.1.2 Assignment 
Once the population is initialized, each setup requires its reactors to be assigned a value for their conversion. 
DE is used here to determine the optimal conversions for the specified number of reactors, ensuring that each 
reactor is assigned the most efficient conversion and operates at maximum efficiency. This approach introduces 
a bi-layered optimization process, where DE fine-tunes reactor performance within each genetic algorithm 
iteration.  

3.1.3 Cleaning 
Before evaluating the setup, certain cleaning steps are performed. This is essential to avoid unnecessary 
computational tasks when evaluating the fitness of the setup. These actions are based on general principles of 
chemical reactor engineering [3, 4]. The cleaning process begins because a series of smaller PFRs in sequence 
will function identically to a single larger PFR. In this step, the extra PFRs are removed until only one remains. 
This concept is shown in Algorithm 1 and the result of this operation is visualized in Figure 20. 

 
Algorithm 1: First step in the cleaning process 

if reactor i, is not last and is a PFR:
if next reactor j, is a PFR:

remove reactor i
end

end
end

for reactor i, in setup:
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Figure 20: Removal operation of redundant serial PFRs 

Once the multiple PFRs are reduced to one, the next step is identifying CSTRs that behave like a PFR. If the 
conversion range that a CSTR covers becomes increasingly narrow, it will approach the behavior of a similarly 
sized PFR. Having these types of small CSTRs in a system is unproductive since it does not differ from a PFR 
in its functioning. Therefore, the algorithm removes them from the setup and extends the conversion 
capabilities of the previous reactor to compensate for the one being removed. This is done according to 
Algorithm 2. The conversion threshold for SRGA is set at 0.03. Such a threshold was empirically determined, 
such that it does not negatively affect the search in the SRGA. Figure 21 shows the results of this operation. 
After filtering out the CSTRs that mimic PFRs, an additional check for consecutive PFRs is performed. The 
removal of certain CSTRs can result in previously separated PFRs being adjacent to each other, making this 
step necessary. 

 
Algorithm 2: Second step in the cleaning process 

 
Figure 21: Recognition and removal of CSTR operating as a PFR 

 

remove reactor i
end

end
end

for reactor i, in setup:
if reactor i, is a CSTR:

if conversion difference between current and next reactor j, is smaller than 0.03:
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After filtering out the CSTRs that mimic PFRs, an additional check for consecutive PFRs is performed. The 
removal of certain CSTRs can result in previously separated PFRs being adjacent to each other, making this 
step necessary. Finally, a check for ultra-thin reactors is performed. During the reactor conversion assignment, 
two reactors may have conversion values that are close to each other, leading to the formation of one ultra-thin 
reactor. These ultra-thin reactors are generally not ideal for optimization and are, therefore, filtered out. The 
conversion threshold for this operation is set at 0.002, as the ultra-thin reactors were typically smaller than this 
value. This final procedure is carried out according to Algorithm 3. The results of this operation are shown in 
Figure 22. 

 
Algorithm 3: Final step in the cleaning process 

 
Figure 22: Removal of ultra-thin reactors 

3.1.4 Evaluation 
Once the setups are fully defined and cleaned, the next step is to define an evaluation function. This function 
will assess each setup's fitness by counting the number of reactors it includes and calculating the total residence 
time. Since a setup may contain different types of reactors, the evaluation function must account for these 
variations. It identifies each reactor type within the setup and applies the appropriate residence time 
calculations accordingly, as described in sections 2.1 and 2.2 of the literature study.  

3.1.5 Breeding 
During the breeding phase of SRGA, the parent population undergoes various genetic operations, like 
crossover and mutation to create the offspring population. Each of these operations is selected based on 
predefined probabilities. This approach maintains genetic diversity while improving solution space 
exploration. 

 

remove reactor i
end

end

for reactor i, in setup:
if conversion difference between current and next reactor j, is smaller than 0.002:



 33 

3.1.5.1 Probabilities 

The parent population generates a predetermined number of offspring.  The operator used to create each 
offspring, whether it be mutation or crossover, is determined by user-defined probabilities: the crossover 
probability (CXPB) and the mutation probability (MUTP). The probabilities must sum to one, exceeding this 
causes the GA to malfunction. This process is outlined in Algorithm 4.  

 
Algorithm 4: Operation selection for the offspring 

Here a random number generator produces a number between 0 and 1 that is uniformly distributed for each 
potential offspring. Depending on where this number falls, different genetic operations are executed. For 
SRGA to operate effectively. 

3.1.5.2 Crossover 

During this operation, two individual setups are selected from the population, and a crossover point is randomly 
chosen for each setup. The genetic material of these individuals is then combined to produce new offspring, 
potentially resulting in offspring that have better fitness than either parent alone. This step also facilitates the 
increase or decrease of reactors within a setup, making it crucial for exploring the solution space. An example 
of this operation is shown in Figure 23. 
 

 
Figure 23: Visualisation of the crossover procedure 

 

calculate chance between 0 and 1

else:

end

apply Crossover
if chance is smaller than CXPB:

for parent in population:

end

apply Mutation
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3.1.5.3 Mutation 

The mutation operation in SRGA consists of two main actions, each determined by a specific probability: 
MUTPFLIP and MUTADD.  MUTPFLIP involves switching one or more reactors within the existing 
sequence. If a reactor in the current sequence is a CSTR, there is a chance it will be switched to a PFR, and 
vice versa.  MUTADD is based on human genome insertion mutation by adding a new reactor of random type 
at the end of the sequence [46]. This operation allows SRGA to explore new operational setup configurations 
and potentially more effective sequences. The implementation is done according to Algorithm 5.  

 
Algorithm 5: Mutation operation for SRGA 

Both mutation strategies are important for diversifying the solution space and enhancing SRGAs evolving 
ability. The hypothesis here is that altering existing reactors while adding new reactors could help explore 
untested configurations, thereby increasing the chances of finding an optimal solution that could be missed by 
simple adjustments alone. Figure 24 illustrates this operation. 
 

 
Figure 24: Visualization of the mutation procedure 

calculate chance between 0 and 1

if reactor type is "CSTR":
set reactor type to "PFR"

else:
set reactor type to "CSTR"

end

end

calculate chance 2
if chance 2 is smaller than MUTADD:

calculate chance 3
if chance 3 is smaller than 0.5:

add "PFR" to end of setup
else:

add "CSTR" to end of setup
end

if chance is smaller than MUTFLIP:

for reactor in setup:

end

end
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3.1.6 Selection 
After the breeding phase, the newly generated offspring must be re-evaluated for their fitness, as the original 
fitness values do not correspond to the new configurations of the offspring. Once the re-evaluation is complete, 
the selection process begins. In the case of the SRGA, the selection follows the NSGA-II procedure outlined 
in previous section 2.11. This selection occurs from a combined pool of both the parent and offspring 
populations. 

3.2 Parallel Reaction Genetic Algorithm  
The second algorithm developed in this work is a GA for parallel reactions (PRGA). This algorithm is designed 
to optimize reactor setups for parallel reaction systems where only one of the products is desired. The following 
reaction is a simple example of this. 
 

 
 
PRGA aims to minimize the number of reactors in the setup while maximizing the yield of the desired product. 
Achieving higher product yields leads to more cost-effective reactors over time, while reducing the number of 
reactors lowers overall investment costs. Although PRGA shares some similarities with SRGA, key differences 
exist between the two, specifically, within the initialization, assignment, and breeding steps. 
 
However, two major distinctions between PRGA and SRGA are that PRGA monitors the output concentration 
of each reactor, whereas SRGA works with a conversion ratio for its fitness evaluation. This approach is 
essential for creating fraction plots and for calculating product formation, as explained in section 2.5. 
Additionally, PRGA includes an extra refinement layer that optimizes reactor concentrations according to the 
SLSQP method. 
 
In contrast, the cleaning, evaluation, and selection steps in PRGA are similar to those in SRGA, with a few 
minor distinctions. During the cleaning step, PRGA emphasizes the concentration of reactants, whereas SRGA 
focuses on the conversion. For the evaluation step, PRGA assesses the total formation of the desired product 
instead of calculating residence time, as SRGA does. The selection step remains unchanged in PRGA. 

3.2.1 Initialization and Assignment 
Each reactor is assigned an initial output concentration during initialization. The output concentration is 
considered a property of the reactor that evolves throughout the generations, rather than a simple assignment 
that is performed at each generation. The initial assignment for each reactor is done according to equation 14. 
 

𝐶! = 𝐶" −
𝐷 ∙ 𝑖
𝑇

(14) 

 
Where Ci is the output concentration of reactor i, C0 is the initial concentration, D is the difference between 
the initial and desired final concentration, and T is the number of reactors in the setup. 
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3.2.2 Breeding 
Unlike SRGA, reactor concentrations in PRGA are not predetermined at the beginning of each generation. As 
a result, breeding operations must account for the evolution of these reactor concentrations, in addition to 
factors already accounted for in SRGA such as the reactor and type. The operations are still based on the same 
probabilistic system employed in SRGA. 

3.2.2.1 Crossover 

The crossover procedure is mostly identical to the one used in SRGA. The key difference for PRGA is that the 
reactor output concentrations are internal properties of each reactor. Therefore, setups generated post-crossover 
may sometimes be unfeasible. The concentration at the end of each reactor should always be greater than or 
equal to that of the previous one. This issue is illustrated in Figure 25. 
 

 
Figure 25: Illustration on impossible setup after crossover 

The concentration profile observed is physically impossible. The concentration of the reactant cannot increase 
without altering the reaction balance or introducing an additional reactant input into a reactors. Neither of these 
scenarios applies in this thesis. To address this issue, a new term called "Energy" is introduced. In this context, 
the Energy of a reactor is defined as the absolute value of the difference between its output concentration and 
its input concentration. Algorithm 6 uses this term to normalize the concentrations of each reactor. This 
evaluates the feasibility of concentration profiles in reactor setups by comparing the total Energy increments 
to the concentration differences. It identifies infeasible setups and calculates the normalized output 
concentrations for those scenarios. This method is essential for steering the process towards optimal reactor 
concentrations. 
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Algorithm 6: Concentration normalization after crossover in PRGA            

3.2.2.2 Mutation 

In PRGA, mutation operates similarly to the process in SRGA. The first step, which involves switching 
reactors, is carried out in the same manner as in SRGA. However, the second step of adding reactors to the 
setup differs for PRGA. Instead of adding one single random reactor at the end of a setup, the mutation process 
in PRGA inserts a sequence of alternating reactors at a random position within the setup. The amount of added 
reactors is determined by a user-defined value called Dosage, an absolute value. Each reactor is assigned an 
output concentration alternating between the initial concentration and half of the initial concentration. After 
this, the concentrations are normalized according to previous Algorithm 6. This approach aims to enhance the 
likelihood of moving away from local minima and promoting the exploration of different setup configurations 
within the search space. It is executed according to Algorithm 7.  

calculate absolute Increments between each reactor
Energy is sum of Increments
Diff is difference between starting and target concentration

add setup to impossible list
end

end

Energy is sum of Increments
Fractions is division of Increments by Energy
for reactor in setup:

calculate cumulative Fraction
reactant converted is multiplication between Diff and cumulative Fraction
output concentration is subtraction of reactant converted from starting concentration
assign output concentration 

end
end

if Energy is larger than Diff:

for setup in offspring:

calculate absolute Increments between each reactor
for setup in impossible list:
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Algorithm 7: Insertion process for mutation in PRGA 
 
  

generate random number as chance 1

choose random insertion position:
generate random number as chance 2
if chance 2 is smaller than 0.5:

for number i in Dosage until i equals Dosage:
if i is an uneven number:

insert PFR with initial concentration
else:

insert CSTR with initial concentration divided by 2
end

end
else:

for number i in Dosage until i equals Dosage:
if i is an uneven number:

insert CSTR with initial concentration
else:

insert PFR with initial concentration divided by 2
end

end
end

end

if chance 1 is smaller than MUTADD:
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4 MATERIALS AND CASES 
For the development of the GAs, Python 3.10 was utilized, employing DEAP 1.4 and SciPy 1.13.1 libraries. 
The use of Google Colab provided a robust platform for executing the Python code, ensuring efficient 
implementation and testing of the GAs [46, 47]. To assist in the grammar and spelling of this thesis, the 
following tools were utilized: Grammarly and ChatGPT [52, 53]. 

This thesis employed mathematical models of hypothetical chemical reactions inspired by the literature for 
validation and optimization purposes [49, 50]. The cases were first solved manually, to identify the optimal 
setup. Following, the GA's developed in section 3 were used to generate the optimal reactor configuration. A 
summary of the employed cases is reported in Table 1. In the graphs, the areas marked in red and blue represent 
PFRs and CSTRs, respectively. 

Cases 1 and 2 were used for the optimization of SRGA. These cases represent hypothetical complex chemical 
reaction systems. The first case is a modification based on autocatalytic reactions [3]. The hypothesis here is 
that one of the reactants undergoes a reversible side reaction with itself to form a complex. As a result, the 
reaction rate is limited once the available reactant is used. The reactant is then recovered from the complex. 
The second case is a hypothetical representation of an oscillating biochemical reaction system, where one of 
the reactants undergoes a series of reactions in a closed circuit. Making its availability to react in the primary 
reaction periodical. For PRGA, cases 3 and 4 will be utilized, which are also hypothetical reaction schemes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 40 

Table 1: Summary of the Cases used for the optimization 
Case nr, mathematical equation and hypothetical reaction Optimal Levenspiel or Fraction plot 

Case 1: 
equation: 

−𝑟𝑎	 = 	−9.9𝑥! + 19.6𝑥" − 11.9𝑥# + 2.1𝑥	 + 0.2 
reaction: 

 
 

 

 
Case 2: 

equation: 
−𝑟𝑎	 = 	 (1 − 𝑥)$.$ ∙ sin4(1 − 𝑥) ∙ 165 + 2 

reaction: 

 
 

Case 3: 
equation: 
Φ =	−9.97(1 − 𝑥)! + 19.68(1 − 𝑥)" − 11.96(1 − 𝑥)# + 2.69(1 − 𝑥) 

 

𝑥 =	
𝐶&' − 𝐶&
𝐶&'
	

 

reaction: 

 

     

 
Case 4: 

equation: 
Φ	 = 	 (1 − 𝑥)$.$ ∙ sin4(1 − 𝑥) ∙ 255 + 2 

 

𝑥 =	
𝐶&' − 𝐶&
𝐶&'

 

reaction: 
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5 OPTIMIZATION 
To assess the performance of the GAs during optimization, a metric referred to as the Total Accuracy is 
utilized. This metric is calculated as the average of two accuracy measurements: one evaluating the number of 
reactors involved and the other assessing the residence time or the formation of the desired product, depending 
on the specific GA being tested. Including both measurements in the Total Accuracy provides a more 
comprehensive evaluation of the GAs performance. The results would suggest negligible differences if only 
one accuracy metric were used. However, by incorporating reactor accuracy, the metric effectively scales the 
differences between the two measurements, offering a more balanced and meaningful performance 
comparison. The Total Accuracy is calculated according to equation 15.  

𝑇𝑜𝑡𝑎𝑙	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 	
𝑟# − |𝑟# − 𝑟$|

𝑟#
+ 𝑝# − |𝑝# − 𝑝$|𝑝#
2 ∙ 100%	 (15) 

Here, rc and rt are the correct and resulting reactor amounts from the test. For SRGA, pc is the correct total 
residence time and pt is the resulting total residence time from the test. On the other hand, for PRGA, pc is the 
correct desired product amount, and pt is the resulting desired product amount.  

During the development of the GAs, it was observed that having more reactors in the initial setup than is 
required for the ideal configuration beneficial is for the performance of the GA. The reason for this lies in how 
the cleaning step operates in both algorithms, as it breaks down the initial configuration according to the 
predefined methodologies outlined in section 3.1.3. This results in an increased likelihood of quickly 
identifying the ideal setup. However, to optimize other parameters, the initial number of reactors was set to 
two to optimize other parameters as a worst-case scenario. 

The following parameters are optimized in both cases: population size, breeding balance between mutation 
and crossover, and internal mutation probabilities. This is done in a sequential manner, to prevent 
combinatorial explosion of the test size. These parameters were chosen as these are the main hyperparameters 
of the GAs 
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5.1 SRGA 
5.1.1 Population 
The parameters in Table 2 were used for all the population tests. To accurately assess the performance, each 
population value is tested 100 times, and the results are averaged. The first run for Case 1 revealed that a 
maximum Total Accuracy occurred at a population size of five, followed by a steady decrease, as shown in 
Figure 26a. A second run focused solely on the first three population values to verify the reproducibility of the 
initial results. This run confirmed that the maximum is reproducible. Finally, a third run with a finer population 
resolution was carried out to identify the exact population value at which this maximum occurs. It was found 
that the true maximum occurs at a population value of four. The tests were repeated for Case 2, as shown in 
Figure 26b, no maximum was observed. Instead, a stable plateau was reached around a population value of 
five. 

Table 2: SRGAs parameters for tests on the population size 
Parameter Value 
Starting pop reactor amount 2 
MUTP 0.3 
CXPB 0.7 
MutFlip 0.3 
MutAdd 1 
Generation amount 50 
Optimization weights, wn and wt -0.5 & -0.5 
Starting concentration Ca0 4 
Targeted Conversion  0.999 

 

 
Figure 26: SRGAs population test results for Case 1(a) and 2(b), Total Accuracy vs Population size 

The maximum observed in Case 1 is a non-common behavior in GA algorithms. Typically, an increase in 
population size would not result in a maximum followed by a decline in performance. However, the plateau-
like progression seen in Case 2 does align with the expected outcome [51]. Indicating that this phenomenon 
occurs only with lower complexity problems. Attempts were made to determine the cause of this phenomenon. 
However, this was unsuccessful.  
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Beyond a certain threshold, increasing the population size yields diminishing returns in performance and keeps 
significantly increasing the required computational time, as shown in Figure 27. Based on the results, a 
population size of five was determined to be the most optimal for further optimization of the other parameters. 
This size was selected to ensure that the GA operates in a stable, plateau-like region while maintaining an 
acceptable computing time. 

  
Figure 27: SRGAs population test results for both cases, Average calculation time vs Population size 

Analyzing the optimization problem from a reactor engineering perspective, the overall performance of SRGA 
is compared across both cases presented in Figure 26. Case 1 reaches a Total Accuracy of 97.5%, while Case 
2 stagnates at around 92.5%. SRGA is thus less successful for Case 2. This behavior can be explained by 
examining the Levenspiel plots of the reactions, shown in Figure 28. Case 2 exhibits more fluctuations in this 
plot, with minima closer to each other. Additionally, there is an overall steeper slope around the minima. Since 
the search resolution is the same for both cases, changes for a reactor will have a more significant impact on 
Case 2, leading to steeper local minima in the search space for the residence time. Thus lowering the chance 
of dislodgement, in the search for the true minimum. 

 
Figure 28: Levenspiel plot for Case 1(a) and Case 2(b) 
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5.1.2 Breeding balance 
The parameters shown in Table 3 were used for all breeding balance tests. Each mutation and crossover 
combination was tested 100 times, and the results were averaged. For Case 1, a linear regression analysis of 
the Total Accuracy revealed that a lower mutation probability and a higher crossover probability are more 
advantageous for the performance of the SRGA. This becomes even more pronounced as the complexity of 
the problem presented to the GA increases, as shown for Case 2 in Figure 29. 

Table 3: SRGAs parameters for tests on the breeding balance 
Parameter Value 
Starting pop reactor amount 2 
Population size 5 
MutFlip 0.3 
MutAdd 1 
Generation amount 50 
Optimization weights, wn and wt -0.5 & -0.5 
Starting concentration Ca0 4 
Targeted Conversion 0.999 

 

 
Figure 29: SRGAs breeding balance test results, Total Accuracy vs MUTP/CXPB for Case 1(a) and 2(b) 

This behavior stems from the differences in how the two breeding operations function. The improved 
performance when the crossover is used more frequently can be attributed to its ability to incorporate multiple 
reactors into a system in one iteration. This expansion of the reactor chain length increases the likelihood of 
achieving the optimal configuration. In contrast, mutation adds only one reactor for each operation, resulting 
in a lower chain growth rate overall. This effect becomes more significant as the complexity of the problem 
increases and more reactors are needed to achieve the optimal solution. 

The mutation and crossover probabilities will be set to MUTP=0.3 and CXPB=0.7, for the following test on 
the internal mutation probabilities. Although the results clearly indicate that the GA performs better when only 
crossover is used, especially in more complex scenarios. It may still be beneficial to explore the mutation 
operation in greater detail, as it could uncover configurations that improve the performance of the GA. This 
investigation is only possible if the mutation operation continues to be implemented. 
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5.1.3 Internal mutation probabilities 
Since the internal mutation probabilities, MutFlip and MutAdd, are independent parameters, a LHS of the 
search space was performed. Each combination was tested 100 times. The parameters listed in Table 4 were 
used for all tests related to the internal mutation probabilities. 

Table 4: SRGAs parameters for tests on the internal mutation probabilities 
Parameter Value 
Starting pop reactor amount 2 
Population size 5 
MUTP 0.3 
CXPB 0.7 
Generation amount 50 
Optimization weights, wn and wt -0.5 & -0.5 
Starting concentration Ca0 4 
Targeted Conversion 0.999 

The Latin hypercube scatterplot for Case 1 shows the Total Accuracy increasing with a higher MutFlip value. 
In contrast, MutAdd has a minimal impact on the Total Accuracy, as seen in Figure 30a. This becomes more 
evident as the problem's complexity increases, as seen in Case 2, illustrated in Figure 30b. For future use of 
SRGA, the Levenspiel plot should be evaluated in advance, and the MutAdd value should be set lower 
depending on the complexity. 

A higher MutFlip value increases the number of reactors switched in a setup, effectively increasing the GAs 
ability to explore a wider range of potential solutions. The limited influence of MutAdd is likely due to it being 
overshadowed by the Crossover operation. Adding one reactor when the optimal solution requires many more 
is insufficient and thus shows little to no effect. To confirm these observations, another test on the breeding 
lance will be conducted with MutFlip= 0.9 and MutAdd= 0.0. The results will be compared with those from 
the previous tests. 

 
Figure 30: SRGAs internal mutation probabilities test results, MutAdd vs Mutflip for Case 1(a) and 2(b) 
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5.1.4 Breeding balance confirmation 
The parameters shown in Table 5 were used for the second test on the breeding balance. Each combination is 
tested 100 times. The comparison between the first and second tests is shown in Figure 31. This result confirms 
that the effect of the mutation's addition during the breeding process is limited. It only becomes significant as 
the mutation probability approaches the upper end of its range. Another test with MutAdd set to 0 and MutFlip 
set to 0.3 confirmed the results from the previous test on internal mutational probabilities. For complex cases, 
a higher MutFlip is more beneficial. 

Table 5: SRGAs parameters for tests on the breeding balance confirmation 
Parameter Value 
Starting pop reactor amount 2 
Population size 5 
MutFlip 0.9 
MutAdd 0 
Generation amount 50 
Optimization weights, wn and wt -0.5 & -0.5 
Starting concentration Ca0 4 
Targeted Conversion 0.999 

 
Figure 31: SRGAs breeding balance comparison, Total Accuracy vs MUTP/CXPB for Case 1(a) and 2(b) 

When examining the optimization problem from a reactor engineering perspective, the Total Accuracy profile 
for the breeding balance of the SRGA can be compared in both cases, as illustrated in Figure 31. Case 2 shows 
a slight advantage due to the absence of additions caused by MutAdd. In contrast, Case 1 appears to experience 
a slight disadvantage. To further understand this, the reaction rate profiles shown in Figure 28 were analyzed 
again. In Case 2, as the reaction rate stabilizes towards the end, adding an additional reactor will not 
significantly affect the overall residence time. The change will result in only minor differences compared to 
the optimal state, which does not greatly impact the selection process of SRGA. In contrast, Case 1 differs due 
to the sudden deceleration of the reaction rate towards the end. Depending on the type of reactor used, there is 
a higher likelihood of selecting the correct final reactor. 
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5.2 PRGA 
For PRGA, the generation limit has been set to 10 for all tests, which is significantly lower than the previous 
limit of 50 for SRGA. This adjustment was made because, during development, it was observed that higher 
generation limits resulted in only minimal differences in the outcomes. The Total Accuracy was consistently 
close to 100% for each parameter value. Thus, this reduced generation limit was implemented to better 
understand each tested parameter's impact. 

5.2.1 Population 
The parameters shown in Table 6 were used for the population tests. For PRGA, each population size was 
tested 1000 times, being significantly more compared to the 100 tests conducted for SRGA. This increase in 
testing was made possible by the improved computational efficiency of PRGA. Figure 32 compares the 
computational time per generation of SRGA and PRGA across different population sizes. The comparison 
clearly shows that PRGA is significantly more efficient. Even when dealing with more complex cases, PRGA 
outperforms SRGA, demonstrating faster performance than all cases used for SRGA, including the least 
complex case, Case 1. This efficiency is primarily due to PRGAs approach, which does not rely on DE to 
optimize reactor output concentrations at each generation. Instead, these concentrations are treated as an 
intrinsic property of the setup and are determined through the breeding operations, after which they are refined 
by SLSQP. 

Table 6: PRGAs parameters for tests on the population size 
Parameter Value 
Starting pop reactor amount 2 
MUTP 0.3 
CXPB 0.7 
MutFlip 0.3 
MutAdd 1 
Generation limit 10 
Optimization weights, wn and wp -0.5 & 0.5 
Starting concentration Ca0 4 
Targeted Conversion 1 
Power Ca0 
Dosage  2 
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Figure 32: Comparison between SRGA and PRGA for computational efficiency 

Figure 33 shows the effect of population size on Total Accuracy for Cases 3 and 4. Initially, Total Accuracy 
increases sharply and then stabilizes around 25. For Case 3, this configuration approaches 100%. However, 
this setup is insufficient for more complex problems, as observed in Case 4, which is expected due to the 
relatively small generation limit of 10. A population size of 5 was chosen for the following optimization tests, 
although a larger size would likely yield better results. This choice was made for the same reason as the reduced 
generation limit. 

 
Figure 33: PRGAs population test results, Total Accuracy vs Population size for Case 1(a) and 2(b) 

 
 
 



 49 

5.2.2 Breeding balance 
The parameters in Table 7 were used for all breeding balance tests. Each mutation and crossover combination 
was tested 500 times. The results, shown in Figure 34, indicate that a higher MUTP positively impacts the 
performance of the GA. This trend holds true even in more complex scenarios, as seen in Case 4. The optimal 
range for MUTP seems to be from 0.6 to 0.9. 

Table 7: PRGAs parameters for tests on the breeding balance 
Parameter Value 
Starting pop reactor amount 2 
Population size 5 
MutFlip 0.3 
MutAdd 1 
Generation amount 10 
Optimization weights, wn and wp -0.5 & 0.5 
Starting concentration Ca0 4 
Targeted Conversion 1 
Power Ca0 
Dosage  2 

The mutation operation consists of two components: the random switching of reactors, determined by MutFlip, 
and the random insertion of reactors, determined by MutAdd. Either component can potentially increase the 
Total Accuracy. The switching component, promotes better exploration of the search space, thereby enhancing 
the chances of finding an optimal solution. While random insertion can speed up the process of reaching the 
optimal reactor amount. When comparing cases 3 and 4, it is notable that the increase in Total Accuracy for 
the initial MUTP values is greater in Case 3 than in Case 4. This can be seen on the left side of both plots in 
Figure 34. The difference is likely due to Case 3 requiring only four reactors for the optimal setup, allowing 
the GA to reach the optimal faster than Case 4, which requires eight reactors. Indicating that the latter 
component has a more pronounced impact. Further analysis of the internal mutation probabilities will provide 
additional insights into this behavior. 

 
Figure 34: PRGAs breeding balance test results, Total Accuracy vs MUTP/CXPB for Case 1(a) and 2(b) 
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5.2.3 Internal mutation probabilities 
To optimize the internal mutation probabilities of PRGA, a LHS analysis was performed, with each 
combination tested 500 times. Table 8 shows the parameter values used here, the results are shown in Figure 
35. The Latin hypercube scatterplot for Cases 3 and 4 confirmed the previous hypothesis. The random insertion 
component of the mutation operation appears to have a more significant positive impact compared to the 
switching component. Interestingly, for the more complex problem presented in Case 4, the random switching 
component, influenced by MutFlip, seems to negatively impact the Total Accuracy as its probability increases. 
Thus, having a different behavior to that seen in SRGA. 

Table 8: PRGAs parameters on tests for the internal mutation probabilities 
Parameter Value 
Starting pop reactor amount 2 
Population size 5 
MUTP 0.75 
CXPB 0.25 
Generation amount 10 
Optimization weights, wn and wp -0.5 & 0.5 
Starting concentration Ca0 4 
Targeted Conversion 1 
Power Ca0 
Dosage  2 

The observed behavior is likely a result of the high mutation probability equal to 0.75, which increases the 
likelihood of the switching mechanism occurring. This effect is further amplified by its own probability 
MutFlip, increasing the switching frequency even more. As a result, there is an increased chance of forming 
configurations where two PFRs are arranged in series. Due to the cleaning phase, such setups are always 
reduced to a single PFR, effectively stagnating the optimization process. This issue is expected to primarily 
affect more complex problems where a higher number of reactors is needed. In simpler cases, fewer reactors 
are optimal and can be identified more quickly, reducing the impact of this effect. 

 

 
Figure 35: PRGAs internal mutation probabilities test results,  MutAdd vs MutFlip for Case 1(a) and 2(b) 
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6 CONCLUSION 
This thesis has explored the application of GAs for the optimization of reactor configurations in chemical 
engineering, with a particular emphasis on addressing complex reaction kinetics with ideal reactors. 
Successfully demonstrating the capability of GAs to identify optimal reactor setups that enhance efficiency by 
reducing residence time and maximizing desired product yields in complex reaction systems. By developing 
and testing two new tools, based on GAs, SRGA and PRGA, this study has introduced effective methodologies 
for optimizing both single-reaction and parallel-reaction scenarios. Thus having high potential in optimizing 
the design process, significantly accelerating workflow, and eliminating human bias in the design. The source 
code for both developed GAs is made available on the following official KU-Leuven GitLab repository: 
https://gitlab.kuleuven.be/cipt/master-theses/automatic-optimization-of-reaction-engineering-processes-
iliyas-melnikov.git. 

Key results demonstrated that SRGA is well-suited for optimizing setups in single-product reactions, 
effectively balancing the trade-offs between reactor count and operational efficiency. Similarly, PRGA proved 
effective for parallel reaction systems, emphasizing the maximization of specific product concentrations while 
accounting for competing pathways. Both algorithms were optimized using hypothetical cases, with the 
performance metrics' Total Accuracy and computational efficiency validating their robustness and potential 
for real-world application. PRGA however, demonstrated greater efficiency compared to SRGA, as it solved 
cases of similar complexity significantly faster. This advantage stems from PRGA not relying on optimization 
with DE, as seen in the SRGA framework. Instead, PRGA employs more customized genetic operations with 
refinement through SLSQP to achieve optimal intermediate concentrations as generations progress. 

The study also highlighted the importance of parameter tuning, such as population size, breeding balance, and 
internal mutation probabilities in achieving optimal algorithm performance. Specifically, the findings indicated 
that a population size of five provided a balance between computational efficiency and solution quality. 
Mutation and crossover probabilities of 0.3 and 0.7, respectively, yielded the best performance for the SRGA. 
Additionally, higher MutFlip probabilities enhanced the exploration of solution spaces, whereas MutAdd 
probabilities had a less significant impact on SRGA. 

For PRGA, which has different breeding operations, different results were observed concerning breeding 
balance and internal mutation probabilities. The optimal mutation and crossover probabilities were found to 
be 0.75 and 0.25, respectively. While a higher MutFlip negatively impacts performance in more complex 
scenarios, a higher MutAdd consistently yields positive results for PRGA. 

This thesis contributes to the field of reaction engineering by providing a computational framework for 
optimizing reactor setups using GAs. The developed tools demonstrate significant potential for practical 
implementation and lay a foundation for future research to extend these methods to more complex, real-world 
scenarios. Possible future prospects include extending the application of these algorithms to non-ideal reactors, 
particularly for exothermic reactions where heat management plays a critical role. Another promising direction 
involves modeling real reactors based on residence time distributions derived from ideal reactor models, 
enabling more accurate performance predictions in industrial settings.  
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Appendix A: NSGA-II sorting algorithm 

 
 
 
 
 
 
 
  

initialize superiority tracking:
for setup in setups:

dominated_count = 0
dominating_setups = Empty list

end
end

initialize fronts:
current front= empty list
fronts = empty list
next front = empty list

end

for setup A in setups:
for setup B in setups except A:

if A dominates B:
dominated_count of B + 1
add B to dominating_setups of A

else:
dominated_count of A + 1
add A to dominating_setups of B

end
end
if dominated_count of A is 0:

add A to current_front
end

end

pareto count = 0 + amount in current front
while pareto_count is smaller than amount to select:

for setup A in current_front:
for setup B in dominating_setups of A:

dominated_count of B - 1
if dominated_count of B equals 0:

add B to next_front
pareto_count + 1

end
end

end
add current_front to fronts               
set next_front to current_front

end
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Appendix B: Individual seed results for cases regarding internal mutation 
probabilities 
 
Note: Using a predefined function in SciPy, seeds 42 and 404 were utilized to generate a comprehensive set of 
measurement points that thoroughly cover the entire search space. In Case 1, both seeds were employed 
because relying on a single seed was insufficient. In contrast, for Case 2, seed 42 alone was sufficient. 
 

  

  

  
 
 
 
 


