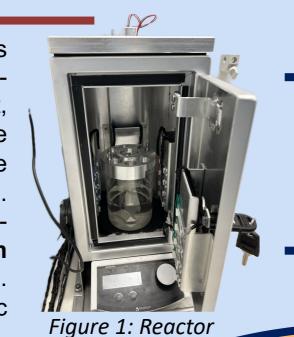
Master's Thesis Engineering Technology

Optimizing the functionalization of polypropylene using a photocatalytic UV reactor for enhanced compatibilization in various polymer blends

Wout Moons


Master of Chemical Engineering Technology

INTRO

Polymer blends and composites are an increasingly important area within the plastics industry due to their wide range of potential applications. However, a key challenge is the **lack of interfacial compatibility** between different polymers, which often leads to phase separation and suboptimal material properties. One effective solution is the use of a **compatibilizer**, an additive that **reduces interfacial tension** between immiscible polymers, promoting better dispersion and enhanced material performance [1]. This research explores the functionalization and application of polypropylene grafted with maleic anhydride (**PP-g-MA**) using a **photocatalytic UV reactor** under mild conditions, to develop an efficient compatibilizer for polymer blends and composites that preserves the molecular weight of polypropylene.

Compatibilizer functionalization

For the functionalization process, **maleic anhydride** (MA) was **grafted** onto polypropylene (PP). PP was combined with N-hydroxyphthalimide (NHPI), iron oxide (Fe_2O_3) as a photocatalyst, MA, and a stabilizer, all dissolved in ortho-dichlorobenzene as the solvent. Upon exposure to **UV light** in the reactor (Figure 1), the iron oxide was photoactivated, generating electron-hole pairs. These promoted the conversion of **NHPI** into the phthalimide-Noxyl (PINO) radical. The **PINO** radicals **abstracted hydrogen atoms** from the polymer backbone, creating polymer radicals. These reactive polymer radicals then reacted with maleic anhydride (MA), forming the compatibilizer depicted in Figure 2 [2].

Functionalization Confirmation

To evaluate the **success of the functionalization**, both Fourier transform infrared (**FTIR**) spectroscopy and **acid-base titration** were employed. FTIR analysis was used to detect carbonyl peaks around **1750** cm⁻¹, characteristic of the **carbonyl groups** in maleic anhydride. To obtain a more accurate quantitative assessment, acid-base titration was performed to determine the grafting percentage. As shown in Table 1, **longer reaction times** and **higher MA content** both led to increased incorporation of MA.

Table 1: Grafting percentage for various reaction settings

Reaction time (h)	Added MA (mg)	Grafting (wt%)
1	720	1.71
2	720	1.26
4	720	3.54
20	720	4.45
20	500	2.55
20	1000	6.40

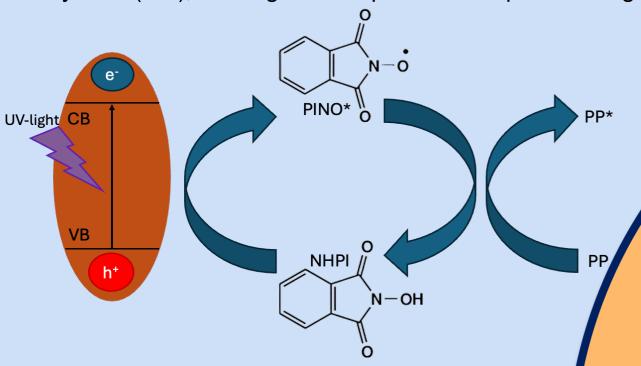


Figure 2: Reaction mechanism

CONCLUSION

It can be concluded that both an **extended reaction time** and a **higher concentration of maleic anhydride** result in a greater grafting degree on polypropylene. This improved functionalization enhances the effectiveness of the compatibilizer in polymer blends. Molecular weight also plays a role. A 1:20 BHT:NHPI ratio seems optimal to minimize the reduction in molecular weight. Blends containing compatibilizers with **higher grafting percentages** and **high molecular weight** demonstrate **better phase dispersion and interfacial adhesion**, which in turn lead to significantly improved mechanical properties of the final material.

+ Compatibilizer

0

Application in Polymer Blends

Finally, a series of compatibilizers were evaluated in **polymer blends** composed of 75 wt% polypropylene, 20 wt% polycaprolactone (PCL), and 5 wt% compatibilizer. The blend morphology was initially examined using **Scanning Electron Microscopy** (Figure 5-6). The results indicate that when a **more grafted compatibilizer** was used, the PCL phase became more dispersed and **better integrated** within the PP matrix. This effect was further enhanced by **increasing the compatibilizer content**, resulting in a nearly homogeneous morphology with minimal phase separation. Lastly, bending tests were performed to measure the mechanical performance of the blends

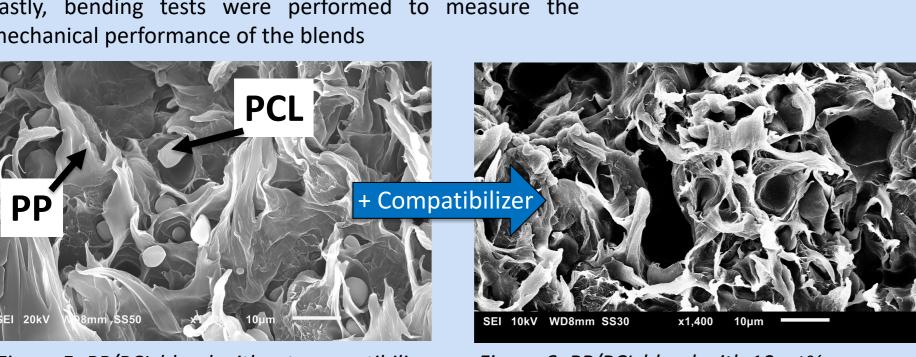
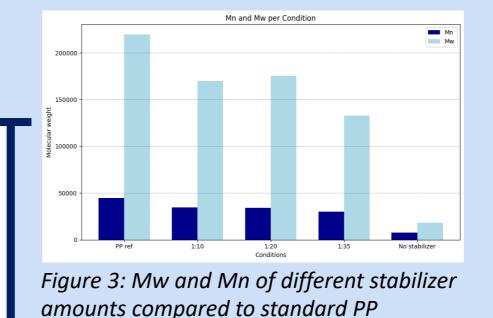



Figure 5: PP/PCL blend without compatibilizer Figure 6: PP/PCL blend with 10 wt% compatibilizer

Effect on Material Properties

To assess changes in the material after functionalization, several analytical techniques were employed. Gel permeation chromatography (GPC) was used to observe **changes** in number average molecular weight (Mn) and weight average molecular weight (Mw). The results (Figure 3) indicate a **decrease in molecular weight** after functionalization, which can be mitigated by increasing the amount of stabilizer.

Additionally, **rheological measurements** were conducted to evaluate changes in **flow behavior**. These measurements reveal that the storage modulus (Figure 4) shows a distinct **upturn at lower angular frequencies**, with the effect becoming more pronounced as the degree of functionalization increases.

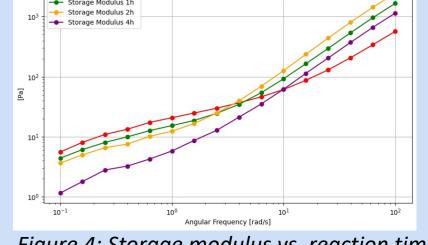


Figure 4: Storage modulus vs. reaction time for various compatibilizers

Supervisors / Co-supervisors / Advisors: Prof. dr. Anton Ginzburg, ing. Jules Henrotte

[1] L. A. Utracki, "Compatibilization of polymer blends," 2002, Canadian Society for Chemical Engineering. doi: 10.1002/cjce.5450800601.
[2] C. Zhang, Z. Huang, J. Lu, N. Luo, and F. Wang, "Generation and Confinement of Long-Lived N-Oxyl Radical and Its Photocatalysis," J Am Chem Soc, vol. 140, no. 6, pp. 2032–2035, Feb. 2018, doi: 10.1021/JACS.7B12928/SUPPL_FILE/JA7B12928_SI_002.PDF.

