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Abstract 
 

Designing optimal reactor configurations for exothermic reactions is complex and requires balancing 

multiple, often conflicting objectives. Traditional methods can be time-consuming and may not 

efficiently explore the wide space of possible configurations, especially when criteria like reactor 

volume, intercooling needs, and process complexity must be considered. 

This thesis develops a two-stage genetic algorithm for optimizing adiabatic reactor configurations. The 

goal is to maximize the efficiency of the reactor configuration, while minimizing total reactor volume, 

intercooling demand, and the number of adiabatic steps, ensuring a total conversion of 0.95. 

First, a multi-objective NSGA-II algorithm is used to determine the optimal sequence of adiabatic steps. 

In the second stage, a single-objective algorithm selects the most suitable reactor type or combination 

for each step. The method was applied to four case studies with varying weightings of the objectives. 

Results show that the algorithm adapts its strategy to shifting priorities: emphasizing reactor volume 

reduction leads to more adiabatic steps, prioritizing intercooling favors higher inlet temperatures, and 

minimizing complexity results in fewer steps but larger reactors. The algorithm efficiently generates 

balanced configurations in about 10 minutes per weight combination, which is much faster than manual 

methods that can take a full day and may still miss the optimum, making it a valuable tool for automated 

modelling and decision-making in chemical engineering. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Dutch Abstract 
 

Het ontwerpen van optimale reactorconfiguraties voor exotherme reacties is complex en vereist het 

balanceren van vaak conflicterende doelstellingen. Traditionele methoden zijn tijdrovend en verkennen 

de grote ruimte aan configuraties vaak niet efficiënt, zeker wanneer criteria zoals reactorvolume, 

tussenkoeling en procescomplexiteit samen overwogen moeten worden. 

Deze thesis ontwikkelt een tweetraps genetisch algoritme voor het optimaliseren van adiabatische 

reactorconfiguraties. Het doel is de efficiëntie van de configuratie te maximaliseren, terwijl het totale 

reactorvolume, de tussenkoeling en het aantal adiabatische stappen geminimaliseerd worden, met als 

einddoel een totale conversie van 0,95. 

Allereerst bepaalt een multi-objectief NSGA-II-algoritme de optimale volgorde van adiabatische 

stappen. In de tweede fase selecteert een single-objectief algoritme het meest geschikte reactortype per 

stap. De methode werd getest op vier casestudies met verschillende doelstellingsgewichten. Resultaten 

tonen dat het algoritme zich aanpast aan prioriteiten: focus op volumevermindering leidt tot meer 

stappen, minder tussenkoeling bevordert hogere starttemperaturen, en minder adiabatische stappen 

resulteren in grotere reactors. Het algoritme levert efficiënte configuraties op in circa 10 minuten per 

gewichtscombinatie wat veel sneller is dan handmatige methoden, die een dag kunnen duren en vaak 

suboptimaal blijven. Dit maakt het project tot een handige tool voor geautomatiseerd modelleren en 

besluitvorming in de chemische procestechniek. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

1. Introduction 
 

Chemical reactors are central to numerous industrial processes, driving the conversion of raw materials 

into valuable products such as fuels, polymers, pharmaceuticals, and chemical intermediates. The 

performance and efficiency of these processes are strongly dependent on the reactor design and 

operating conditions. Within chemical process technology, the plug flow reactor (PFR) and the 

continuously stirred tank reactor (CSTR) are two commonly used ideal reactor types. However, their 

design is a complex task that often depends on simplifying assumptions and practical, experience-based 

intuitions. 

Industrial processes often use non-isothermal reactors, in which temperature variations influence the 

reaction kinetics and product distribution [1, 2]. Depending on the nature of the chemical reaction, it 

can be endothermic or exothermic. In an endothermic process, heat from the environment is absorbed 

by the reaction mixture, while in an exothermic process energy is released [1, 2]. The way in which heat 

is managed within the process largely determines the temperature gradients and subsequently the 

conversion and selectivity of the reaction. 

Reactors can be designed as adiabatic or non-adiabatic systems. In an adiabatic system, no heat is 

exchanged with the surroundings, meaning that the temperature of the reaction mixture changes solely 

due to the heat generated or consumed by the reaction [1, 2]. In an exothermic adiabatic system, the 

temperature of the reaction mixture rises as the conversion increases, while in an endothermic adiabatic 

system, the temperature gradually decreases [1, 2]. However, in a non-adiabatic reactor an active heat 

exchange is applied, for example by means of a heat exchanger [1, 2]. 

Traditional methods for designing reactor configurations are time-consuming and often suboptimal, as 

they rely on iterative calculations and the experience of the designer. This causes a problem as today's 

industry increasingly demands automated and optimized processes to minimize both costs and energy 

consumption. It is therefore necessary to develop a more efficient method that speeds up the design 

process and yields better configurations. 

In recent years, computational optimization methods have become increasingly popular for solving 

complex engineering problems involving multiple objectives and nonlinear relationships. Among them, 

genetic algorithms (GAs) stand out as powerful and flexible tools, especially well-suited for exploring 

large and multi-dimensional design spaces [3, 4]. Inspired by natural selection, GAs evolve a population 

of candidate solutions over successive generations through selection, crossover, and mutation [3, 4, 5]. 

Each individual in the population represents a potential solution, which in this case is a specific reactor 

configuration [3, 4]. These individuals are evaluated using a fitness function that reflects key objectives, 

such as maximizing conversion, minimizing reactor volume, limiting intercooling, and reducing the 

number of reactors, translating the problem into a multi-objective one [3, 4, 5]. The best-performing 

individuals are selected to generate new offspring, gradually improving the population [4]. 

To effectively manage the multi-objective nature of the problem, this thesis uses NSGA-II (Non-

dominated Sorting Genetic Algorithm II), an advanced GA designed for multi-objective optimization 

[6, 7]. NSGA-II sorts individuals based on Pareto dominance and uses a crowding distance metric to 

maintain diversity across the solution space [6, 7]. This allows the algorithm to generate a diverse Pareto 

front of optimal reactor configurations that balance trade-offs between competing objectives [6, 7]. 
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In the context of reactor design, GAs provide an effective way to explore a wide range of possible 

reactor configurations. These may vary in the number of reactors, the amount of heat exchange between 

the reactors, their individual starting and final temperatures, and the type of reactor used (e.g., PFR, 

CSTR, Hybrid or PFR with recycle). Each of these factors influences conversion, energy usage, and 

overall efficiency. 

This thesis focuses on the development of a computational methodology that applies a genetic algorithm 

to automate the design of adiabatic reactor configurations for exothermic reactions. The central goal is 

to minimize the surface area under the Levenspiel plot. This is a graphical representation of the inverse 

reaction rate versus conversion which directly correlates with the required reactor volume [1, 8]. 

Additionally, the algorithm considers multiple objectives such as minimizing intercooling energy and 

the number of adiabatic steps, while ensuring that the final conversion reaches a desired target. This 

goal leads to the research question of this thesis: “How can a genetic algorithm be developed to 

determine an optimal adiabatic reactor configuration for a specific exothermic chemical reaction?”. 

This report presents the implementation of a two-step algorithm, using standard genetic algorithms, to 

obtain the optimal reactor configuration discussed. It begins in Chapter 2 with the theoretical 

background, where the fundamental concepts related to chemical reaction kinetics, ideal reactor models 

(PFRs and CSTRs) and the Levenspiel plot are introduced. This chapter also explains the working 

principles of genetic algorithms, with a focus on the Non-dominated Sorting Genetic Algorithm II 

(NSGA-II), which is used in this research for multi-objective optimization. 

Building on this foundation, Chapter 3 outlines the methodology used to implement the optimization 

approach. It describes the calculation of reaction kinetics, the implementation of the genetic algorithms, 

and the evaluation method used to assess the performance of the designed two-step algorithm. 

Chapter 4 provides the simulation results and evaluates the performance of the developed algorithm. 

The optimized reactor configurations are analyzed and compared based on various objective weight 

combinations of surface area, intercooling requirements, and the number of adiabatic steps. Particular 

attention is given to how these different weight combinations affect the resulting configurations, with a 

focus on conversion, required total reactor volume, intercooling needs, and the number of reactor units. 

The goal is to assess whether the algorithm provides a logically optimal adiabatic configuration for each 

combination of weights. 

Finally, Chapter 5 concludes the work. It also discusses the constraints of the current model and suggests 

possible directions for future research. 
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2. Literature study 
 

This chapter provides the theoretical background required to understand and implement the 

optimization approach used in this thesis. First, the kinetic data of chemical reactions is presented, 

which serves as essential input for evaluating reactor performance and guiding the optimization process 

(Section 2.1). Next, different ideal reactor types are introduced, with a focus on how these impact 

conversion and reaction rate (Section 2.2). The concept of the Levenspiel plot is then explained as a 

graphical tool to evaluate reactor volume requirements based on reaction kinetics (Section 2.3). 

Following this, the operation of the genetic algorithm used to optimize reactor configurations is 

described in detail (Section 2.4). To assess trade-offs between competing objectives, the Pareto diagram 

is introduced (Section 2.5). Finally, the specific algorithm applied in this research, NSGA-II, is 

explained, highlighting how it enables multi-objective optimization (Section 2.6). 

 

2.1 Kinetic data of chemical reactions 

 

Chemical reactions can be categorized as either reversible or irreversible, depending on whether the 

products can be converted back into the reactants. In reversible reactions, both the forward and reverse 

reactions can occur [1, 9]. Under limiting conditions, these reactions reach an equilibrium, where the 

rates of the forward and reverse reactions are equal, and the concentrations of the reactants and products 

remain constant [1, 9]. The Water-Gas Shift Reaction (WGSR) serves as a typical example of a 

reversible reaction, as shown below [10]. 

CO + H2O ⇌ CO2 + H2 

In the WGSR, carbon monoxide and water react to produce carbon dioxide and hydrogen, but the 

reverse reaction also takes place under suitable conditions. In contrast, irreversible reactions proceed 

predominantly in one direction, converting reactants fully into products without a backward reaction 

[9]. A well-known example is the combustion of methane as is shown below [11]. 

CH4 + 2 O2 → CO2 + 2 H2O 

Here, the products are so stable that the reverse reaction is practically impossible. In any chemical 

reaction, the extent to which products are formed is limited by the reactant that is present in the lowest 

stoichiometric proportion relative to the balanced reaction equation [1, 12]. This substance is known as 

the limiting reactant. When this reactant is fully consumed, the reaction cannot continue, even if other 

reactants remain in excess. 

Reactions also differ in their thermal characteristics. A reaction is called exothermic if it releases heat 

into the surroundings (i.e., the reaction enthalpy ΔHr is negative) [1, 2]. Conversely, in an endothermic 

reaction, heat is absorbed (i.e., ΔHr > 0) [1, 2]. These thermal properties affect how temperature 

influences the equilibrium position of a reversible reaction. 

Le Chatelier’s Principle states that if the temperature of an equilibrium system is altered, the system 

will adjust itself to oppose the change [13]. For example, in an exothermic reaction, increasing the 

temperature shifts the equilibrium toward the reactants, reducing conversion. In contrast, for an 

endothermic reaction, higher temperatures favor the forward reaction, increasing product formation. 
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These effects can be quantified using thermodynamic principles. The equilibrium constant K at 298 

Kelvin (K298) can be derived from the standard Gibbs free energy at this temperature (ΔG0
298) as is 

shown in Equation 1 [1, 2].  

                                                       𝐾298 = 𝑒
−𝛥𝐺°298

𝑅⋅𝑇                                            (1)       

Here, R is the gas constant and T represents the temperature in Kelvin. To evaluate how K changes with 

temperature, the van 't Hoff equation is used, shown in Equation 2 [1, 2]. 

                                              𝐾 = 𝐾298 ⋅ 𝑒
−𝛥𝐻𝑟

𝑅
 ⋅ ( 

1

𝑇
 − 

1

298
 )
                 (2) 

Once the equilibrium constant at every temperature is known, the equilibrium conversion XA,e of the 

limiting reactant A can be calculated using Equation 3 [1, 2]. 

         𝑋𝐴𝑒 =
𝐾

𝐾+1
                               (3)  

This expression is derived under the assumption of an elementary, reversible reaction of the type A⇌B 

[1]. 

These considerations occur under thermodynamic conditions, which assume that the system has 

sufficient time to reach equilibrium, effectively on an infinite time scale. However, in practical reactor 

design, kinetic factors often play a more decisive role. While thermodynamics determines the final 

equilibrium state of a reaction, indicating whether a reaction is favorable, kinetics describes the rate at 

which the reaction proceeds. Even a thermodynamically favorable reaction may proceed very slowly if 

the kinetics are limiting. Thus, a reaction may theoretically reach equilibrium, but in practice, this may 

only happen over impractically long timescales if the reaction rate is too low [1, 2]. 

The equilibrium line, as illustrated in Figure 1, represents the maximum achievable conversion at a 

given temperature. At any point along the equilibrium line, the forward and reverse reaction rates are 

equal, indicating that the system has reached dynamic equilibrium and no further increase in conversion 

is possible under those conditions [1, 13]. 

 

 

Figure 1: Equilibrium line for a reversible exothermic reaction 

While thermodynamics shows the maximum conversion that can be reached at a given equilibrium, 

kinetics provides insight into how fast this conversion occurs. The rate at which equilibrium is achieved, 

and the pathway the reaction takes to reach this equilibrium, are determined by the kinetic properties of 

the reaction. The following section discusses the kinetics of chemical reactions, focusing on the factors 

that influence the rate of the reaction. 
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The kinetics of chemical reactions studies the rate at which reactions occur and the factors that influence 

this rate. A reaction can be described using an equation, where reactant and product concentrations vary 

over time. The rate is affected by several factors, such as pressure, temperature, reactant concentration, 

and the application of catalysts [1, 14]. The rate of a reaction is often described by a rate equation, 

which depends on the reaction pathway and mechanisms. A simple reaction can take the form A + B 

→ C, where the reaction rate can be formulated as −𝑟𝐴 = 𝑘 ⋅ [𝐴]𝑚 ⋅ [𝐵]𝑛 [1, 14]. In this formula, k 

denotes the rate constant, while m and n represent the reaction orders. The rate constant k varies with 

temperature and is described by the Arrhenius equation, as shown in Equation 4 [1, 2, 15]. 

                             𝑘 = 𝐴 ⋅ 𝑒−
𝐸𝑎
𝑅⋅𝑇                            (4) 

In this equation, A represents the frequency factor, Ea denotes the activation energy, R is the gas 

constant, and T corresponds to the temperature in Kelvin [1, 2, 15]. When the frequency factor and 

activation energy for a given reaction are known, the reaction rate (-rA) can be expressed as a function 

of temperature and conversion using Equation 5 [1]. 

      −𝑟𝐴 = 𝑘1 ⋅ 𝐶𝐴,0 ⋅ (1 − 𝑋𝐴) − 𝑘2 ⋅ 𝐶𝐴,0 ⋅ 𝑋𝐴                         (5) 

Here, k₁ and k₂ present the rate constants for the forward and reverse reactions, respectively, CA,0 

represents the initial concentration of the limiting component, and XA represents the conversion. An 

example of the equilibrium line with reaction rate lines for a reversible exothermic reaction is shown in 

Figure 2. 

 

 

Figure 2: Equilibrium line with reaction rates for a reversible exothermic reaction 

 

2.2 Reactor design and configuration 

 

Chemical reactors are typically categorized into two idealized types: the plug flow reactor (PFR) and 

the stirred tank reactor (CSTR). These models approximate real reactor behavior, helping to predict 

conversion, selectivity, and energy efficiency [1, 16, 17]. The selection of a reactor is influenced by 

factors like reaction kinetics, process conditions, and heat and mass transfer requirements. 

In a PFR, the flow is segregated, meaning that reactants move through the reactor as "plugs" with 

minimal mixing, leading to concentration gradients [16, 17]. In contrast, a CSTR features continuous 

mixing, ensuring uniform concentration and temperature throughout the reactor [17]. This difference in 

mixing behavior affects the reaction rate and reactor performance. When reactors are placed in series, 

such as a series of PFRs or a combination of PFRs and CSTRs, the performance and temperature control 

can be further optimized to achieve higher conversion and efficiency [1]. 
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2.2.1 Plug flow reactor and continuous stirred tank reactor 

 

A PFR is a tubular reactor where reactants flow continuously through the tube without mixing along 

the direction of flow [16]. This means that the concentration and temperature of the reactants change 

differentially along the reactor length, as each segment of the flow experiences a different amount of 

time for the reaction to occur [16]. 

To mathematically model this, the reactor is approximated as a series of infinitesimally small sections, 

where each section behaves as a small volume where a differential reaction takes place [16, 17]. This 

approximation allows the conversion to increase stepwise along the reactor's length, providing a simple 

but effective method for analyzing the reaction kinetics and performance within the PFR [1, 16, 17]. 

Figure 3 shows a schematic representation of the PFR. 

 

Figure 3: Schematic representation of a PFR [18] 

A CSTR is an idealized reactor where the contents are continuously stirred, ensuring that the 

concentration and temperature are uniform throughout the reactor [1, 17]. In a CSTR, the reactants are 

continuously mixed with the reaction mixture, which results in a uniform concentration of reactants 

throughout the reactor [1, 17]. The outlet concentration of the reactants is assumed to be the same as 

the concentration within the reactor, which simplifies the analysis of the reaction [1, 17]. CSTRs are 

particularly useful for liquid-phase reactions or processes where maintaining a constant reactant 

concentration is beneficial [19]. However, because the reactants are well-mixed, their concentration 

within a CSTR is uniform and corresponds to the outlet concentration, which is relatively low compared 

to the higher average concentration in a PFR operating at the same conversion. The lower concentration 

in a CSTR results in a slower reaction rate because reaction rates are often dependent on the 

concentration of the reactants [1, 17]. Figure 4 shows a schematic representation of the CSTR.  

 

Figure 4: Schematic representation of a CSTR [20] 
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A variation of the PFR is the PFR with recycle, where a portion of the effluent reaction products is 

returned to the reactor inlet, as shown in Figure 5. The recycle stream reduces the segregation that is 

characteristic of a standard PFR [21]. By reintroducing part of the effluent back into the reactor, the 

recycle stream promotes more uniform mixing and can decrease the concentration gradient, making the 

reactor behave more similarly to a CSTR [21]. The extent to which this behavior resembles that of a 

CSTR depends on the recycle value, which is defined as the ratio between the amount of flow that goes 

into the recycle stream and the amount that continues as product [21]. Higher recycle values lead to 

more uniform conditions and a closer approximation to a CSTR. 

In practical terms, "recycle" refers to the process of returning a portion of the reactor effluent, either the 

unreacted reactants or products, back into the reactor inlet [21]. A key advantage of a PFR with recycle 

is that it can result in a smaller required reactor volume compared to a traditional PFR [1]. This occurs 

because the recycle stream helps to homogenize the concentration and temperature profiles within the 

reactor, effectively reducing the concentration gradient along the reactor's length [1]. 

 

Figure 5: PFR with recycle [21] 

 

 

2.2.2 Adiabatic and non-adiabatic reactors 

 

Chemical reactors can be classified as either adiabatic or non-adiabatic. Adiabatic reactors do not 

transfer or remove heat to their surroundings [1, 2]. In exothermic reactions occurring in an adiabatic 

reactor, the reactor temperature increases as the conversion increases, while in endothermic reactions, 

the temperature decreases as the reaction progresses [1, 2]. Non-adiabatic reactors are cooled or heated 

to maintain the temperature within desired range [1, 2]. This can be useful to prevent excessive 

temperatures in exothermic reactions or to keep an endothermic reaction going. 

In exothermic reactions occurring in an adiabatic reactor, the temperature within a reactor can increase 

significantly, which can lead to unwanted side reactions or a shift in the chemical equilibrium [1, 13]. 

One strategy to control this is to use intercooling between successive reactors in the series. In a series 

of adiabatic reactors, a heat exchanger can be placed after each reactor to reduce the temperature before 

the flow enters the next reactor. This helps to maintain the reaction within a favorable temperature range 

and achieve a higher conversion [1]. 
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2.2.3 Adiabatic line in XA vs. T diagram 

 

This thesis focusses on the reactor modelling of exothermic adiabatic systems. When designing an 

adiabatic reactor configuration for exothermic reactions, understanding the correlation between 

conversion and temperature is important. As discussed in Paragraph 2.2, for adiabatic reactors, the 

temperature evolution as a function of conversion is influenced by the heat produced or consumed by 

the reaction. The adiabatic line, which represents the temperature change as a function of conversion in 

an adiabatic reactor, can be approximated as a straight line under certain assumptions [1]. These 

assumptions include a first-order reaction, constant specific heat capacity (cp), and constant heat of 

reaction independent of temperature and conversion [1]. This line can be determined using Equation 6 

[1]. 

                                                   𝑋𝐴(𝑇) =  𝑋𝐴,𝑠𝑡𝑎𝑟𝑡 +
𝐶𝑝

𝛥𝐻𝑟
⋅ (𝑇 − 𝑇0)                                         (6)   

As discussed in Paragraph 2.1, the equilibrium line represents the temperature at which the reaction 

reaches equilibrium for a given conversion. Beyond this line, the reaction cannot proceed further 

without external measures such as pressure increase or heat removal. To achieve maximum conversion, 

it is necessary to ensure that the temperature in the reactor does not exceed the equilibrium temperature, 

as this would limit further reaction progress. 

One strategy to overcome this limitation is intercooling between reactors [1]. In multi-reactor 

configurations, intercooling between adiabatic reactors reduces the temperature of the reaction mixture, 

thereby limiting temperature build-up and allowing for increased conversion in the following reactor 

[1]. Figure 6 shows a block flow diagram of an adiabatic reactor configuration with two reactors and 

intercooling for an exothermic reaction. 

This strategy of intercooling works well in exothermic reactions, where the temperature increase is a 

challenge. In contrast, for endothermic reactions, the temperature decreases as conversion increases, 

and intercooling is not required to the same extent. Instead, the reactor design may focus on maintaining 

a temperature that supports the forward reaction, typically requiring heat input to sustain the reaction 

rate [1]. 

 

 

Figure 6: Block flow diagram of reactors in series with intercooling. Adapted from [1, p. 433]. 
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Figure 7 shows an example of an adiabatic configuration with four adiabatic steps and intercoolers for 

an exothermic reaction. The final conversion XA of this configuration is 0.85 at a temperature of 67°C. 

The adiabatic lines, with a slope of 
𝐶𝑝

𝛥𝐻𝑟
, are calculated using Equation 6. 

 

 

Figure 7: Example of an exothermic adiabatic configuration with intercooling 

 

As shown in Figure 7, the adiabatic steps typically terminate before reaching the equilibrium line. This 

is an engineering decision, as the reaction rate becomes very low near the equilibrium line and 

eventually reaches zero, making further conversion inefficient within a single reactor [1]. Continuing 

the reaction under such conditions would require a disproportionately large reactor volume for only a 

small gain in conversion. 

Therefore, to design an efficient reactor system, the adiabatic step is deliberately stopped at a point 

before the equilibrium is reached which is often based on a target minimum reaction rate, a maximum 

allowable reactor volume or a percentage of the maximum conversion. This strategy allows the system 

to bypass the low-rate region near equilibrium and achieve higher overall conversion using multiple 

adiabatic stages. 

 

2.3 Levenspiel Plot 

 

This section outlines the calculation of reactor volume for a PFR and a CSTR using the adiabatic lines 

in the XA vs. T diagram. It begins with an explanation of the Levenspiel Plot, which plots the inverse 

reaction rate as a function of conversion [8]. Next, the reactor volumes for different reactor types are 

determined. Additionally, the required heat exchange between each reactor is calculated. Finally, 

strategies for optimizing the reactor configuration to minimize the total reactor volume are discussed. 

 

2.3.1 Constructing inverse reaction rate vs. conversion chart 

 

The Levenspiel plot is a graphical tool used to determine the required volume of chemical reactors, 

especially PFRs. In this plot, the inverse of the reaction rate, 
1

−𝑟𝐴
, is plotted against the conversion, XA 

[8]. The surface area under the curve corresponds to the reactor volume required to reach a desired 

conversion under steady-state conditions [1, 8]. 
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In the isothermal case, where the temperature is uniform across the entire reactor, the reaction rate 

depends only on the conversion [22]. The rate can be determined directly using the kinetic expression 

at that fixed temperature. Plotting 
1

−𝑟𝐴
 versus XA then gives a smooth curve, and the area under this curve 

represents the required reactor volume. 

However, in adiabatic reactors, the temperature increases or decreases with conversion depending on 

the reaction enthalpy. This change in temperature affects the reaction rate, since it becomes a function 

of both conversion and temperature [1]. In such cases, determining the rate at each conversion point 

requires additional attention. 

The reaction rate in adiabatic systems can be estimated using analytical calculation. This involves 

computing the rate using a kinetic expression, such as Equation 5 in Section 2.1, which explicitly defines 

−rA(T, XA). By calculating the rate at several points along the adiabatic path, a precise Levenspiel curve 

can be constructed as is shown in Figure 8. 

 

 

Figure 8: Levenspiel Plot for four adiabatic steps 

 

2.3.2 Calculation of reactor volume 

 

The calculation of the reactor volume depends on the type of reactor. Below, the methods for 

determining the reactor volume of a PFR and a CSTR are described. 

Volume of a PFR 

The reactor volume of a PFR can be determined using a Levenspiel plot. The fundamental equation for 

a PFR is derived from the differential molar balance, as shown in Equation 7 [23]. 

                                                               𝑑𝑉 =
𝐹𝐴0⋅𝑑𝑋𝐴

−𝑟𝐴
                                                  (7) 

In this equation, V represents the reactor volume, FA0 denotes the molar flow of component A, and −rA 

is the reaction rate. By integrating Equation 7 over the conversion range, Equation 8 is obtained [23]. 

                                                           
𝑉

𝐹𝐴0
= ∫

1

−𝑟𝐴

𝑋𝐴𝑓

𝑋𝐴0
 𝑑𝑋𝐴                               (8)  

This integral represents the area under the curve in the Levenspiel plot, as shown in Figure 9. A larger 

area corresponds to a larger reactor volume, as the reactant must remain in the reactor longer to achieve 

the desired conversion. 
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Figure 9: Levenspiel Plot for four adiabatic PFRs 

 

 

Volume of a CSTR 

The reactor volume of a CSTR can also be calculated using a Levenspiel plot. For a CSTR, the steady-

state molar balance is given by Equation 9 [24]. 

                                𝑉 =
𝐹𝐴0⋅(𝑋𝐴𝑓−𝑋𝐴0)

−𝑟𝐴
                                             (9)  

Here, V represents the reactor volume, Fa0 denotes the molar flow of component A and −rA is the 

reaction rate at the outlet conversion XAf. Since a CSTR is perfectly mixed, the composition of the outlet 

stream is identical to that of the reactor contents [24]. This means that the reaction rate remains constant 

within the reactor and depends solely on the outlet concentration [24]. In a Levenspiel plot, a CSTR is 

represented as a rectangle with a width of 𝑋𝐴𝑓 − 𝑋𝐴0 and a height of 
1

−𝑟𝐴
. Figure 10 provides an example 

of the area corresponding to a CSTR in the Levenspiel plot. 

 

 

Figure 10: Surface area for four CSTRs 
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2.3.3 Determining the amount of intermediate heat exchange 

 

To prevent an exothermic reaction from stopping due to reaching the equilibrium line, intermediate 

cooling is applied between each reactor as is discussed in Section 2.2.3. The amount of heat exchanged 

can be determined using Equation 10 [1]. 

                                                                   𝑄 = 𝑛̇ ⋅ 𝑐𝑝̅ ⋅ 𝛥𝑇                               (10) 

In this equation, Q represents the amount of heat removed (J/s), 𝑛̇ denotes the molar flow rate of the 

reaction mixture (mol/s), 𝑐𝑝̅ represents the molar heat capacity (J/mol⋅K), and ΔT is the temperature 

difference (K) of the reaction mixture before and after cooling. 

 

2.3.4 Optimizing the total reactor volume 

 

This section discusses two methods to reduce the area in the Levenspiel plot and, consequently, the total 

reactor volume. These methods are introducing a recycle loop for a PFR and combining a CSTR with a 

PFR for a single adiabatic step. 

 

PFR with a recycle loop 

In certain cases, the required reactor volume of a PFR can be significantly reduced by implementing a 

recycle loop [1, 21]. As is explained in Section 2.2.1, the recycle loop helps to moderate the 

concentration and temperature profiles within the reactor, making the system behave more like a CSTR. 

This can enhance conversion efficiency and reduce the overall reactor size. 

To determine the required reactor volume and the recycle ratio, a graphical method based on the 

Levenspiel plot can be used, as shown in Figure 11. This method is especially convenient for first-order 

reactions, where the 
1

−𝑟𝐴
 vs XA curve allows a straightforward graphical construction to determine 

optimal recycle conditions [1, 21]. In these cases, the recycle behavior can be graphically approximated 

by finding a horizontal line on the plot such that the area above the adiabatic curve and below this line 

(green-shaded area) is equal to the area below the adiabatic curve and above this line (purple-shaded 

area) [1]. 

The point at which the horizontal line first intersects the adiabatic curve from the left corresponds to 

the conversion of the mixed feed entering the reactor, denoted as XA,recycle [1, 21]. This is not a location 

inside the reactor where the recycle starts, but rather the effective conversion of the inlet stream resulting 

from mixing the fresh feed (XA = 0) with the recycled outlet stream. The final conversion at the reactor 

outlet is also denoted as XA. 

The recycle ratio R, which defines the amount of material being recycled relative to the amount exiting 

as product, can then be calculated using Equation 11 [1]. 

                    𝑅 =
𝑋𝐴,𝑟𝑒𝑐𝑦𝑐𝑙𝑒

𝑋𝐴−𝑋𝐴,𝑟𝑒𝑐𝑦𝑐𝑙𝑒
                                               (11)  

In this equation, R represents the recycle ratio, XA, recycle is the conversion at the beginning of the reactor 

where the feed stream and the recycle stream are mixed, and XA is the final conversion of the reactor. 
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Figure 11: Surface area for one PFR with recycle 

The reactor volume for a PFR with a recycle loop can be determined using the Levenspiel plot by 

calculating the area under the curve. The reaction rate throughout the reactor corresponds to the height 

of the horizontal line that intersects the adiabatic curve, as shown in Figure 11 [1]. 

The reactor volume V is then calculated by multiplying this constant height by the total span of 

conversion as shown in Equation 12 [1]. 

                                                          
𝑉

𝐹𝐴0
=

1

−𝑟𝐴
⋅ (𝑋𝐴 − 𝑋𝐴0)                                          (12) 

In Figure 11, this area is represented as the sum of the red and green areas, which together form a 

rectangle under the horizontal line from XA,0 to XA [1]. This graphical method gives a straightforward 

way to estimate the reactor volume once the recycle ratio has been established. 

 

Combination of CSTR and PFR 

To maximize production efficiency and minimize the total reactor volume, it is important to reduce the 

area under the curve in the Levenspiel plot. 

An effective strategy to achieve this is by combining CSTRs and PFRs as illustrated in Figure 12. This 

configuration takes advantage of the strengths of each reactor type at different points along the reaction 

pathway. Starting with a CSTR allows the process to immediately operate at a high reaction rate by 

jumping to a higher conversion [1]. This avoids the inefficiency of a PFR operating at low conversion, 

where the reaction rate is low and the required volume is large. Once a higher conversion is reached, 

the process continues in a PFR, which is more efficient at handling decreasing reaction rates as 

conversion increases [1]. In this way, the combination of a CSTR followed by a PFR aligns the reactor 

operation more closely with the kinetics of the reaction, reducing the total area under the curve in the 

Levenspiel plot, and thus minimizing total reactor volume and associated costs. 

 

Figure 12: Surface area for combination CSTR and PFR for one adiabatic step 
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2.4 Genetic algorithm 

 

Genetic algorithms (GA) are a family of heuristic optimization techniques inspired by natural evolution 

[25, 26, 27]. They are used to find solutions for complex problems where traditional methods may not 

always be effective. The algorithm generates a population of potential solutions and iteratively 

improving them using mechanisms such as selection, crossover, and mutation, as illustrated in Figure 

13. In this research, two genetic algorithms are applied sequentially: a multi-objective genetic algorithm 

to optimize the adiabatic step configuration, followed by a single-objective genetic algorithm that 

selects the most suitable reactor configuration based on the optimal result from the first algorithm. 

 

 

Figure 13: Basic structure of a genetic optimization algorithm [27] 

 

Initialization phase 

In the initialization phase, an initial population of possible solutions is randomly generated [27, 28]. 

Each solution is referred to as an individual, which is composed of one or more chromosomes. These 

chromosomes represent the decision variables of the problem and are typically encoded as strings of 

binary values or real numbers, depending on the application [27, 28]. The population size is chosen 

based on the complexity of the optimization problem and the available computational resources. 

Once the initial population has been generated, each individual is evaluated using a fitness function that 

quantifies how well it solves the optimization problem [27, 28]. The evolutionary process begins with 

crossover and mutation mechanisms, which generate new individuals by recombining the genetic 

material of two parent solutions and applying small random modifications to maintain diversity [27, 

28]. 

Crossover strategies 

In this research, crossover is implemented using blend crossover (cxBlend) and two-point crossover 

(cxTwoPoint). Blend crossover is used in the multi-objective optimization part of the study, while two-

point crossover is applied in the single-objective optimization part. 

Blend crossover generates offspring by sampling new solutions from an extended range between two 

parent individuals [29, 30]. Say P1 and P2 the parent individuals, a child is created by selecting, for each 

gene, a value from a continuous interval that spans beyond the direct space between the two parents 

[29, 30]. This interval is illustrated in Figure 14 and consists of three regions: an exploitation zone, 

covering the direct range between the two parents and two exploration zones on either side, whose width 

is controlled by a blending parameter α [29, 30]. 
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Figure 14: Blend crossover (cxBlend) [30] 

As shown in Figure 14, this results in a relaxed exploitation interval, promoting both refinement and 

variability in the generated offspring [30]. This approach allows the algorithm to investigate a wider 

range of potential solutions while still focusing around the most promising areas discovered so far [30]. 

In the single-objective optimization algorithm, two-point crossover is used instead. In this method, two 

crossover points are randomly selected along the chromosome (individual), and the segments between 

these points are exchanged between two parent individuals [3, 4]. This operation creates two offspring 

that inherit parts from both parents, potentially combining their strengths. Two-point crossover is 

especially effective when dealing with ordered data structures, such as the sequence of reactor types in 

this research, and helps preserve useful substructures while still introducing variation [3, 4]. 

Parent selection for crossover also differs between the two algorithms. In the multi-objective 

optimization, NSGA-II is used, which applies an elitist selection strategy: high-performing individuals 

have a higher probability of being selected to reproduce [6, 7]. In contrast, in the single-objective 

optimization, tournament selection is employed. During tournament selection, individuals are randomly 

drawn from the population, and the fittest individual within this group is chosen to serve as a parent [6, 

7,  28]. These two selection strategies are further discussed later in this section. 

 

Mutation strategies 

Mutation is a key genetic operator used to preserve diversity within the population and to prevent early 

convergence to local optima, as illustrated in Figure 15 [31, 32].  

 

Figure 15: Mutation prevents getting stuck in a local minimum [31] 

In this study, each chromosome represents a possible reactor configuration and is encoded as a real-

valued vector or an ordered list, depending on the optimization phase. In the multi-objective 

optimization phase, each gene within the chromosome corresponds to the starting temperature of an 

individual adiabatic step in a sequential adiabatic system. These temperature values are normalized to 

lie within the range [0, 1], and are later scaled to the actual temperature bounds, for example from 0 to 

100 degrees Celsius, during evaluation. Although other reactor design choices such as the number of 

reactors can also be optimization variables, this section focuses specifically on the optimization of 

starting temperatures, which serve as an important role in controlling the temperature trajectory and 

conversion behavior in adiabatic systems. 
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In the multi-objective optimization, gaussian mutation is applied to introduce variation into the 

population and avoid premature convergence. In the case of real-valued encoding, Gaussian mutation 

is employed: a single gene (i.e., a starting temperature value) is randomly selected from the 

chromosome, and a random perturbation is applied to it [31, 32]. This perturbation is drawn from a 

standard normal distribution, denoted as r2 ∼ N (0,1). The current value of the gene, referred to as 

current, is then updated by adding r2, as shown in Equation 13 [32]. 

                                     𝑛𝑒𝑤 𝑣𝑎𝑙𝑢𝑒 = max (0, min(1, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 +  𝑟2))                                   (13) 

This step ensures that the mutated gene remains within the valid normalized range [0, 1], thereby 

respecting the predefined physical limits of the temperature domain. If the mutation causes the value to 

exceed 1 or drop below 0, it is set to the nearest bound [32]. 

In the single-objective optimization phase, the chromosome structure changes. Each individual encodes 

a sequence of reactor types (such as CSTRs, PFRs, or PFRs with recycle) rather than real-valued 

temperatures. Therefore, a different mutation method is used: mutation by shuffling indexes 

(mutShuffleIndexes). In this approach, the order of reactor types within the chromosome is randomly 

shuffled, either partially or entirely. This method is particularly effective for maintaining the diversity 

of combinatorial solutions, as it allows the algorithm to explore new reactor type sequences while 

preserving the overall set of available reactor types. 

 

Fitness value 

Next, a fitness value is calculated for each individual, indicating how well the solution performs relative 

to the optimized goal. The fitness function is problem-dependent and can, for example, evaluate the 

cost, efficiency, or route length [25, 26, 27]. Since evolutionary algorithms are inherently minimization 

algorithms, the optimization function should be formulated accordingly [27]. This means that higher 

performance should correspond to lower fitness values. This inversion is necessary because most 

evolutionary algorithms, including DEAP, are formulated as minimization problems [27]. For example, 

maximizing efficiency can be reformulated as minimizing the negative efficiency. Individuals with 

lower fitness values are therefore considered better and have a higher chance of being selected for the 

next generation [27]. 

 

Selection phase 

Based on their fitness values, individuals are selected to generate offspring for the next generation [25, 

26, 27]. Several selection strategies exist, including fitness-proportionate selection, tournament 

selection, and elitism [25, 26, 27]. In this study, different selection strategies are applied depending on 

the optimization phase. 

In the multi-objective optimization, selection is performed using the Non-dominated Sorting Genetic 

Algorithm II (NSGA-II) [6, 7]. NSGA-II ranks individuals based on Pareto dominance and applies 

crowding distance to maintain diversity within the population. It combines elitism, preserving the best 

solutions across generations, with diversity preservation, ensuring a balanced exploration of the solution 

space [6, 7]. A more detailed explanation of the NSGA-II procedure is provided in Sections 2.5 and 2.6. 

In the single-objective optimization, selection is performed using tournament selection. In this method, 

a random subset of individuals is selected from the population, and the best individual within this subset, 

the one with the lowest fitness value, is chosen as a parent [6, 7, 28]. This strategy encourages strong 

individuals to be selected while maintaining sufficient diversity to prevent premature convergence. 
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Termination phase 

The algorithm terminates when a predefined stopping criterion is met [27]. This can include reaching a 

maximum number of generations, observing minimal improvement in fitness values over predefined 

number of iterations, or achieving a solution that satisfies a specific threshold or accuracy requirement 

[3]. 

2.5 Pareto-chart 

 

The adiabatic configuration problem addressed in this thesis is a multi-objective optimization problem 

as discussed in Chapter 1, where multiple conflicting goals such as minimizing reactor volume, 

intercooling energy and the number of adiabatic steps must be optimized simultaneously [33, 34]. 

Unlike single-objective optimization, which targets a single optimal outcome, multi-objective 

optimization strives to find a range of trade-off solutions that balance conflicting objectives [34]. 

Genetic algorithms are highly effective for this task as they can investigate large and complex search 

spaces while maintaining population diversity [33, 34]. 

A Pareto chart is commonly used to visualize the outcome of such optimizations [33, 34]. It highlights 

the Pareto front which consists of non-dominated solutions for which no other solution performs better 

in all objectives simultaneously [33, 34]. These solutions represent optimal tradeoffs where improving 

one objective necessarily worsens another. For example, when minimizing cost and maximizing 

efficiency, a non-dominated solution has no alternative that is both cheaper and more efficient. 

Solutions that perform worse in all objectives are dominated and are excluded from the final selection. 

As shown in Figure 16, the Pareto chart also illustrates feasible and infeasible regions. Feasible solutions 

satisfy all constraints and may contribute to the Pareto front [33]. Infeasible solutions violate at least 

one constraint and are discarded [33]. The goal is to evolve and retain high quality feasible non 

dominated solutions that enable informed decision making based on tradeoffs between objectives [33]. 

 

 

Figure 16: Pareto front for multi-objective optimization [33] 
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2.6 NSGA-II 

 

NSGA-II (Non-dominated Sorting Genetic Algorithm II) is an evolutionary algorithm designed to solve 

multi-objective optimization problems by balancing convergence and diversity in the solution space 

[35, 36]. It preserves a population of candidate solutions that progressively evolve across generations 

by means of selection, crossover, and mutation [35, 36]. 

 

2.6.1 Non-dominated Sorting 

 

A core step in NSGA II is non-dominated sorting, where solutions are ranked according to Pareto 

dominance [35, 36]. A Solution A is deemed superior to another solution B if it meets or exceeds B’s 

performance across all objectives and strictly outperforms in at least one objective [35, 36]. Based on 

this rule, the algorithm assigns all non-dominated solutions, meaning solutions that are not dominated 

by any other in the population, to the first rank, also called Pareto front 1 [35, 36]. These solutions 

represent the best trade-offs currently found, as no other solutions perform better in all objectives at 

once. After identifying this front, the algorithm temporarily removes these solutions and repeats the 

process on the remaining ones to form Pareto front 2, and so on, as shown in Figure 17 [36]. An example 

of this is minimizing both cost and emissions in an industrial process. A solution that costs 80 euro and 

emits 45 kilograms of CO₂ dominates another that costs 95 euro and emits 55 kilograms of CO₂. 

However, a solution that costs 70 euro but emits 65 kilograms of CO₂ is non-dominated relative to one 

that costs 90 euro and emits 35 kilograms of CO₂, since neither performs better in both objectives. 

 

Figure 17: Non-dominated sorting of NSGAII [36] 

 

2.6.2 Crowding Distance 

 

To ensure diversity within a front, NSGA-II calculates a crowding distance for each solution. This is a 

measure of how isolated a solution is from its neighbors in the objective space [36, 37]. For each 

objective, the solutions are sorted, and boundary solutions receive an infinite crowding distance to 

always be retained [36, 37]. A distance is attributed to interior solutions by comparing the normalized 

difference in objective values with their nearest neighbors as is shown in Figure 18 [36, 37]. For 

instance, consider three solutions located on the same Pareto front with comparable costs but differing 

emission levels of 20 kg, 30 kg, and 50 kg. The intermediate solution (30 kg) resides in a more densely 

populated region of the objective space and consequently has a lower crowding distance. NSGA-II 

prioritizes the boundary solutions (20 kg and 50 kg) to preserve diversity across the front by favoring 

individuals that are more isolated. 
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Figure 18: Determining crowding distance [36] 

 

2.6.3 Selection 

 

Selection in NSGA-II combines non-dominated sorting and crowding distance sorting as illustrated in 

Figure 19. When constructing the next generation, solutions from lower-rank (better) fronts are chosen 

first [37, 38, 39]. When a front contains more solutions than can be accommodated in the next 

generation, selection is based on crowding distance, favoring individuals located in less densely 

populated regions of the objective space to preserve solution diversity [37, 38, 39]. This strategy ensures 

that NSGA-II preserves the best trade-off solutions while maintaining a wide spread across the Pareto 

front [38, 39]. Over successive generations, the population converges towards the true Pareto front with 

improved diversity [38, 39]. 

 

 

Figure 19: Selection process of NSGAII [39] 
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3. Case description and reactor optimization methodology 
 

This chapter presents the methodology employed throughout this thesis. The chapter begins with the 

formulation of the reaction kinetics that forms the basis of the simulation framework (Section 3.1). 

Subsequently, Sections 3.2 and 3.3 outline how two standard genetic algorithms were implemented and 

adapted for the optimization of reactor configurations. The first algorithm is a multi-objective 

optimization algorithm designed to determine the optimal sequence of adiabatic steps by simultaneously 

minimizing the surface area under the Levenspiel plot, the amount of intercooling, and the total number 

of adiabatic steps (Section 3.2). Building upon the results of the first, the second algorithm is a single-

objective optimization algorithm that selects the most suitable reactor types (CSTR, PFR, Hybrid and 

PFR with recycle) to minimize the overall reactor volume required for the desired conversion (Section 

3.3). Then the method to assess the performance of the two-step algorithm is described (Section 3.4). 

Finally, the materials used in this thesis are introduced (Section 3.5). 

 

3.1. Calculation of reaction Kinetics 

 

In this thesis, four different case studies were analyzed. Two of these are based on examples from the 

work of Levenspiel [1, pp. 218 and 437], the third is the WGSR and the fourth concerns a hypothetical 

reaction system designed to test the flexibility of the algorithm. As an example, this section describes 

the calculated reaction kinetics of the WGSR. The other cases are further explained in Appendix I. 

The equilibrium curve is established using the standard enthalpies of formation and standard Gibbs free 

energies of the reactants and products. The reaction equation for the WGSR is presented in the following 

expression [10]. 

𝐶𝑂(𝑔) + 𝐻2𝑂(𝑔) ⇌  𝐶𝑂2(𝑔) + 𝐻2(𝑔) 

To calculate ΔH°, the sum of the standard enthalpies of formation of the reactants is subtracted from 

that of the products, as shown below [40]. 

𝛥𝐻∘ = −393.5 (𝐶𝑂2) + 0 (𝐻2) − [(−110.5) (𝐶𝑂) + (−241.8) (𝐻2𝑂)] =  −41.2 𝑘𝐽/𝑚𝑜𝑙 

Similarly, ΔG° is determined using the standard Gibbs energies of formation [40]. 

𝛥𝐺∘ = −394.4 (𝐶𝑂2) + 0 (𝐻2) − [(−137.2) (𝐶𝑂) + (−228.6) (𝐻2𝑂)] =  −28.6 𝑘𝐽/𝑚𝑜𝑙 

Using the calculated values for ΔH° and ΔG°, the equilibrium constant at 298 K and its temperature 

dependence, can be determined. This constant is obtained using Equation 1 (Section 2.1), as 

demonstrated in the equation below. 

𝐾298 = 𝑒
−(−28600)
8.314⋅298 = 103111 

Based on this equilibrium constant at 298 K, the temperature dependence of the equilibrium constant 

can be derived using the van ’t Hoff equation (Equation 2, Section 2.1), enabling construction of the 

equilibrium curve as a function of temperature and conversion. 

𝐾 = 103111 ⋅ 𝑒
−(−41200)

𝑅
 ⋅ (

1
𝑇

−
1

298
)

= 𝑒
41200

𝑅⋅𝑇
−5,09
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The discussion so far has focused on the thermodynamic aspects of the WGSR. From this point on, the 

kinetic behavior of the reaction is addressed. From literature, the values for the activation energy Ea,1 

(i.e., the minimum energy required for the forward reaction to proceed) and the pre-exponential factor 

ln(k₀) of the Arrhenius equation (Equation 4, Section 2.1) were obtained [41]. Substituting these values 

into the Arrhenius equation yields the following expression for the temperature-dependent rate constant 

of the forward reaction of WGSR. 

𝑘1 = 𝑒12.60−
47400

𝑅⋅𝑇  

Using the expressions for the equilibrium constant and the forward reaction rate constant, the 

temperature-dependent rate constant of the reverse reaction k2 can be derived. This is calculated using 

Equation 3 (Section 2.1), as is illustrated beneath. 

𝑘2 =  
𝑒12.60−

47400
𝑅⋅𝑇

𝑒
41200

𝑅⋅𝑇
−5.09

= 𝑒17.69−
10656.7

𝑇  

In order to account for the effect of volumetric changes during the reaction, the expansion factor ε was 

evaluated. This dimensionless parameter is defined as the relative change in the number of moles of gas 

per mole of reactant gas. The total number of moles of gas remains constant (2 mol of gas reactants and 

2 mol of gas products), resulting in the following equation. 

𝜀 =
𝛥𝑛

𝑛𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠
=

2 − 2

2
= 0 

The volumetric flow rate is assumed constant throughout the reactor. Although the reaction is 

exothermic and adiabatic, and thus the temperature increases, the effect of temperature-induced 

expansion is neglected for simplicity. In reality, this would lead to a moderate increase in flow rate 

under constant pressure. 

To plot the reaction rates in the conversion versus temperature diagram, the conversion can be 

calculated as a function of temperature at various reaction rates. The equation below shows how the 

conversion is determined. 

𝑋𝐴 =
𝑘1 ⋅ 𝐶𝐴0 − 𝑟𝐴

𝑘1 ⋅ 𝐶𝐴0 + 𝑘2 ⋅ 𝐶𝐴0
 

Using the derived kinetic expressions for the water-gas shift reaction, the XA vs. T-diagram was 

subsequently constructed, as presented in Figure 20. 

 

Figure 20: Equilibrium line and reaction rates for WGSR 
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3.2. Identification of the optimal adiabatic step temperatures 

 

This section describes the multi-objective optimization implementing the NSGA-II algorithm for 

identifying the optimal inlet temperatures of each adiabatic step, using the reaction kinetics for each 

case study determined in Section 3.1. The goal is to minimize three key performance objectives, namely 

the total surface area under the adiabatic curve in the Levenspiel plot as discussed in Sections 2.3.1 and 

2.3.2, the total amount of heat exchange required for intermediate cooling between the adiabatic steps 

using Equation 10, and the number of adiabatic stages in the configuration, while simultaneously 

achieving the desired conversion of 0.95. The objective weights that are used to evaluate the 

performance of the algorithm in this thesis are further explained in Section 3.4. 

The algorithm iteratively explores configurations for different adiabatic step counts, ranging from one 

up to a predefined maximum (10 steps). For each configuration, a population of candidate solutions is 

generated and evaluated. The DEAP 1.4.2 framework is used to handle evolutionary operations, 

including crossover, mutation, and selection based on the NSGA-II principles. A Pareto front is 

maintained for each configuration, capturing the non-dominated solutions. Across all configurations, 

the best overall solution is selected based on the combined score of the objectives. 

 

3.2.1. Initialization 

 

Each temperature value, or gene, is randomly initialized using a uniform distribution within a predefined 

temperature range that ensures physical and chemical feasibility. The lower bound is fixed at 20 °C, 

representing the minimum practical operating temperature for most industrial setups. The upper bound 

is fixed at a specific temperature, determined based on the equilibrium line for each case study. This 

temperature corresponds to a point on the equilibrium curve where the achievable conversion remains 

below 0.2. As a result, excessively high inlet temperatures that would otherwise result in very low 

conversions are avoided. 

Once the bounds are defined, the DEAP framework is used to construct the genetic representation of 

the individuals. A custom generator function samples random starting temperatures for each adiabatic 

step using a uniform distribution within the defined bounds. This ensures a wide initial diversity in the 

population and avoids bias toward any specific configuration. 

Each individual has a multi-objective fitness to evaluate several criteria at once. In this study, the three 

fitness objectives are the total area under the 
1

−𝑟𝐴
 vs. XA curve which indicates reactor size, the amount 

of heat exchange required between adiabatic steps and the total number of adiabatic steps used in the 

configuration. 

These objectives are inherently to be minimized. Since DEAP’s default evolutionary algorithm is based 

on maximization, negative fitness weights are applied to convert the problem into a minimization task. 

Specifically, the FitnessMulti class is defined with three negative weights, -1.0 for each objective, to 

ensure proper ranking during the selection phase. 

After defining the individual structure and fitness criteria, the population is initialized. A predefined 

number of individuals are generated, each with a random but valid set of starting temperatures. In this 

study, a population size of 100 individuals is used, and the algorithm is evolved over 150 generations. 

These values were selected to ensure sufficient exploration of the solution space while preserving an 

acceptable computational cost. The values can be adjusted depending on the desired trade-off between 

optimization quality and computation time. 
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3.2.2. Evaluation 

 

The evaluation process of the optimization algorithm is based on a multi-objective assessment of each 

individual solution, representing a list of initial temperatures for each adiabatic step, e.g., [T1, T2, ..., 

Tn]. This evaluation aims to optimize the three primary objectives discussed in Section 3.2.1. 

The evaluation begins by computing the conversion achieved by each adiabatic step using a 

mathematical function. This function estimates how far a step can progress along its adiabatic trajectory 

before it reaches the thermodynamic equilibrium. This final temperature of each adiabatic step is 

adjusted by multiplying the total temperature rise of the step by a predefined factor of 0.96, ensuring 

the reaction stops before reaching equilibrium and avoids the low-rate region where further conversion 

would require excessive reactor volume, as discussed in Section 2.2.3. If the conversion for an adiabatic 

step is too small, the trajectory is extended until the minimum conversion (predefined as 0.05) is 

reached. 

Once the final temperatures and conversions of all steps are calculated, a function is used to reconstruct 

each adiabatic path as a series of tuples (XA, -rA, 1/-rA), where the reaction rate is determined using 

Arrhenius kinetics (Equation 4, Section 2.1). 

Using the calculated reaction rates of the adiabatic steps, the surface area under the 1/-rA vs. XA curve 

for each step is determined using the trapezoidal rule, and the total area is summed across all steps. This 

value is used as a proxy for total reactor volume. 

Next, another function determines the thermal energy required to bring the feed or reactor effluent to 

the next adiabatic step’s start temperature. The first cooling or heating duty is computed from the initial 

feed temperature (defined as 20 °C) to the starting temperature of the first adiabatic step, and subsequent 

intercooling values are calculated between the following stages. The amount of heat exchange is 

determined using Equation 10 of Section 2.3.3. 

In addition to these physical objectives, a penalty term is introduced into the fitness value of the surface 

area objective if the final conversion differs from the target conversion defined as 0.95. The penalty is 

proportional to the deviation ∣XA,final − 0.95∣ × 104. Furthermore, if any adiabatic step achieves a 

conversion step smaller than 0.05, an additional penalty of 1000 is added per violation to discourage 

underperforming stages. 

Finally, the three objectives are scaled to ensure a fair comparison during optimization. This prevents 

any single objective from disproportionately influencing the selection process due to differences in 

magnitude or units. Specifically, fixed scaling factors are used to bring the values of these objectives 

into a comparable numerical range without affecting the shape of the Pareto front. The number of 

adiabatic steps is multiplied by a factor of 5, while the surface area and intercooling duty objectives are 

scaled differently depending on the case. These scaling factors are determined in Section 4.1. By 

bringing all objectives onto a similar scale, the algorithm can more effectively balance trade-offs and 

ensure that no single objective dominates the selection process due to its unit size or numerical range. 

The three objectives are then passed to the NSGA-II algorithm for Pareto-based multi-objective 

optimization. For each configuration, ranging from 1 up to a predefined maximum of 10 adiabatic steps, 

the algorithm evolves a population over 150 generations to identify optimal trade-offs between the three 

objectives. 
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3.2.3. Breeding 

 

The breeding process in the NSGA-II algorithm determines how new candidate solutions (offspring) 

are generated from existing individuals (parents). It makes use of genetic operators such as crossover 

and mutation to introduce diversity and explore the search space as discussed in Section 2.4. In each 

generation, a new set of individuals is created through recombination and variation, after which they 

are evaluated and selected based on their fitness. 

 

Probabilities 

To maintain a balance between exploration and exploitation during the genetic search, the algorithm 

applies a crossover probability of 0.5 and a mutation probability of 0.3. This means that 50% of the 

population will undergo crossover to produce offspring, while 30% will be subjected to mutation. These 

values help ensure sufficient diversity while preserving high-performing traits. 

 

Crossover 

The algorithm uses a blend crossover method (cxBlend) with an alpha parameter set to 0.3. This 

crossover technique generates offspring by combining the genes (inlet temperatures) of two parent 

individuals. For each gene, a value is randomly selected from an extended range defined by the 

minimum and maximum values of the corresponding genes in the parents, widened by a proportion 

determined by alpha [29, 30]. An alpha of 0.3 means that the sampling range extends 30% beyond both 

ends of the interval between the parent values. This encourages exploration of the space between and 

slightly beyond the parent values, promoting diversity in the offspring population. 

 

Mutation 

Mutation is implemented via the Gaussian mutation operator (mutGaussian). Each gene in an individual 

has a 30% probability (indpb = 0.3) of undergoing mutation by adding Gaussian noise, characterized 

by a mean (mu) of 50 and a standard deviation (sigma) of 20. This introduces controlled randomness to 

the solution, allowing the algorithm to explore new regions and escape potential local optima as 

discussed in Section 2.4. 

 

3.2.4. Selection 

 

The selection of individuals is performed using the selNSGA2 function from the DEAP library, which 

implements the NSGA-II algorithm. This method ranks individuals using non-dominated sorting and 

applies a crowding distance metric to preserve diversity within each Pareto front, described in Section 

2.6. 

A (μ + λ)-strategy is employed in each generation, where the parent population (μ) and the offspring 

population (λ) both consist of 100 individuals. This means that in every generation, 100 new individuals 

are created through crossover and mutation, and these are combined with the 100 existing parents to 

form a temporary pool of 200 candidates. Based on their Pareto rank and crowding distance, the top 

100 individuals from the pool are chosen to form the next generation. 

This elitist strategy guarantees that the best-performing solutions are retained while maintaining 

diversity, allowing the algorithm to efficiently explore trade-offs between total surface area, cooling 

requirements, and adiabatic step count. 
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3.3. Identification of the optimal reactor type for each adiabatic step 

 

In this section, the methodology of the second algorithm, which is employed to determine the optimal 

reactor configuration based on the best solution from the NSGA-II (focused on the adiabatic step 

configuration) discussed in Section 3.2, is outlined. This single-objective algorithm builds upon the 

results of the first NSGA-II and aims to select the most suitable reactor types, such as CSTR, PFR (or 

a combination of CSTR and PFR) or PFR with recycle, for each adiabatic step. The objective of the 

second algorithm is to minimize the overall reactor volume required to reach the desired conversion. 

This algorithm operates with a single fitness function, which evaluates each reactor configuration based 

on the total surface area under the Levenspiel Plot. The procedure for calculating the surface area for 

each type of reactor is discussed in Sections 2.3.2 and 2.3.4. Through evolutionary operators, the 

population of potential reactor configurations is iteratively improved, with the goal of finding the 

optimal reactor configuration that minimizes total surface area.  

 

3.3.1. Initialization 

 

The initialization step of the algorithm begins with the creation of a population of individuals, where 

each individual represents a possible configuration of reactor types assigned to a sequence of adiabatic 

reactor segments. To represent these configurations, each individual is encoded as a list of reactor 

options such as "PFR", "CSTR", "CSTR-PFR", or "PFR-recycle". These options are discussed in 

Section 2.3. 

The DEAP library is used to set up the GA framework. A custom fitness class is defined to minimize 

the total surface area, the single objective of the optimization. The individual class inherits from 

Python’s list structure, allowing it to store reactor configurations while also holding the associated 

fitness values. 

The toolbox is then registered with functions to generate reactor type attributes (randomly selecting one 

of the four reactor options), create individuals (lists of reactor options), and build the population by 

repeating this process for a number of individuals (predefined as 50). This setup ensures that the GA 

can evolve and optimize the reactor configuration to minimize the total reactor volume. 

The size of the initial population is set to 50, ensuring a diverse starting point for the evolutionary 

process. Each individual is initialized with a sequence of randomly assigned reactor options, matching 

the number of adiabatic reactor segments under consideration. This randomized initialization allows the 

algorithm to explore a wide variety of reactor combinations in the early generations, facilitating a good 

search for optimal configurations through subsequent evolutionary operations (crossover and mutation). 

 

3.3.2. Evaluation 

 

The evaluation process assesses the quality of reactor configurations generated by the genetic algorithm 

by calculating the total surface area under the Levenspiel plot for each proposed configuration. This 

includes different reactor options such as CSTR, PFR, CSTR-PFR combinations, and PFR with recycle, 

with the calculation method for each reactor option described in Section 2.3. The total surface area is 

used as a fitness value to evaluate each reactor configuration, with smaller surface areas indicating more 

efficient designs that require less reactor volume to reach the target conversion of 0.95. This fitness 

measure guides the selection process in the genetic algorithm, allowing it to favor and refine the most 

efficient configurations through successive generations. 
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3.3.3. Breeding 

 

The breeding process starts by selecting two parent individuals from the population using a tournament 

selection method. During this process, a random subset of individuals is selected, and the best among 

them is chosen as a parent. The algorithm then generates offspring by employing crossover and mutation 

mechanisms to the selected parents. 

 

Probabilities 

The algorithm defines two probabilities to guide the genetic operations: the crossover probability (cxpb) 

and the mutation probability (mutpb). The crossover is assigned to 0.5, meaning there is a 50% chance 

for a crossover to occur. This operation promotes exploration by combining different parent 

configurations, enabling the discovery of new solutions. On the other hand, the mutation probability is 

defined as 0.2, indicating a 20% chance that an individual will undergo mutation. Together, these 

probabilities help balance exploration and exploitation within the algorithm, allowing it to efficiently 

explore the solution space while fine-tuning existing solutions. 

 

Crossover 

The crossover mechanism entails exchanging parts of two parent individuals to produce offspring. The 

algorithm applies two-point crossover (denoted as cxTwoPoint), where two crossover points are 

randomly chosen, and the portions between them are swapped between the parents [3, 4]. This creates 

two offspring that inherit traits from both parents, potentially combining their strengths [3, 4]. 

 

Mutation 

The mutation process introduces minor random variations into an individual to maintain diversity within 

the population and reduce the risk of the algorithm becoming trapped in local optima. The mutation 

used in this algorithm is mutation by shuffling indexes (denoted as mutShuffleIndexes), where the order 

of reactor types in an individual is randomly shuffled. This change can help explore new configurations 

by slightly altering the existing solutions. 

 

3.3.4. Selection 

 

In the algorithm, selection determines which individuals will be passed on to the following generation. 

The selection process used in this algorithm is based on tournament selection. This mechanism 

randomly selects a small group of individuals from the population, and the individual with the best 

fitness is selected to reproduce [6, 7]. The tournament size, that refers to the number of individuals 

considered in each selection event, is set to three. This means that three individuals are randomly 

selected for each tournament, and the individual with the best fitness value, i.e., the individual that 

minimizes the total reactor surface area, is chosen to be part of the next generation. This mechanism is 

repeated until the desired number of individuals is chosen. 
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3.4 Performance evaluation of the two-step algorithm 

 

To evaluate the performance of the two-step genetic algorithm, fifty-two simulations were conducted 

with systematic variation in the relative importance of the three optimization objectives described in 

Section 3.2.1. The precise calculation methods for these objectives are detailed in Section 3.2.2. Various 

combinations of weights are applied to the fitness values to test the algorithm’s ability to generate 

meaningful and balanced reactor configurations under different design priorities. The evaluation starts 

with similar weights for all objectives as discussed in Section 3.2.2, after which each individual 

objective is increased in importance by a multiplication factor of 5, 10, 25, and 50, while keeping the 

others constant. This approach allows for assessing how the algorithm responds to shifting priorities 

and whether it adapts by generating a correspondingly logical and optimal adiabatic reactor 

configuration. For each combination, the resulting designs are examined with respect to conversion, 

reactor volume, intercooling needs, and the total number of adiabatic stages. The results provide insight 

into how changes in objective weighting influence the final reactor configuration. 

 

3.5. Materials and cases 

 

The computational framework for this research was developed using Python 3.10, with Google Colab 

as the primary environment, supported by a range of open-source libraries tailored for optimization and 

data visualization. The core of the optimization routine is built using DEAP 1.4.2 (Distributed 

Evolutionary Algorithms in Python), which provides tools for implementing evolutionary algorithms, 

including the multi-objective NSGA-II used in this thesis [42]. Numerical calculations were performed 

using NumPy and SciPy, enabling the integration of reaction rates, data interpolation, and equation 

solving. Matplotlib was employed for visualizing results, while Pandas was used to manage structured 

data and track population evolution during optimization. 

For language support, ChatGPT and Grammarly are used to refine grammar, improve clarity, and 

enhance overall readability [43, 44]. While these tools assisted in improving the language and clarity of 

the text, all technical content, analysis, and conclusions are entirely my own. 

To test and validate the developed compartmental optimization algorithm, four case studies were 

investigated. The first case, based on an example from Levenspiel, features a reversible, first-order, 

exothermic reaction A ⇌ R. This case served as an initial test for the algorithm, demonstrating the basic 

principles of compartmentalization and temperature optimization. The second case, also derived from 

Levenspiel, involves a similar reaction but with increased temperature sensitivity due to a higher 

activation energy. The third case study focuses on the industrially relevant water-gas shift reaction, and 

the final case is a hypothetical system designed to challenge the algorithm with an even higher activation 

energy than the other three cases. The two Levenspiel cases and hypothetical case are further explained 

in Appendix A. 

Table 1 provides a summary of the four evaluated cases, including the expressions for both the forward 

and reverse reaction rate constants. Additionally, the optimal reactor configuration identified for each 

case is presented, focusing on scenarios with similar objective weights. The scaling factors applied to 

the three objectives in these scenarios are discussed in Section 4.1. 
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Table 1: Cases with optimal reactor configurations based on similar objective weights 

Cases with rate expressions Optimal reactor configuration 

 

Case 1 (Levenspiel) 

 

𝑘1 = 𝑒17.34−
48900

𝑅⋅𝑇  

 

𝑘2 = 𝑒42.04−
124200

𝑅⋅𝑇  

 

Cp = 40 J/mol⋅K 

 

𝛥Hr = 18000 J/mol 

 

 

 

 

Case 2 (Levenspiel) 

 

𝑘1 = 𝑒7−
83700

𝑅⋅𝑇  

 

𝑘2 = 𝑒18−
167400

𝑅⋅𝑇  

 

Cp = 50 J/mol⋅K 

 

𝛥Hr = 80000 J/mol 

 

 

 

 

Case 3 (WGSR) 

 

𝑘1 = 𝑒12.60−
47400

𝑅⋅𝑇  

 

𝑘2 = 𝑒17.69−
10656.7

𝑇  

 

Cp = 34.3 J/mol⋅K 

 

𝛥Hr = 41200 J/mol 

 

 

 

 

Case 4 (Hypothetical) 

 

𝑘1 = 𝑒17.73−
83000

𝑅⋅𝑇  

 

𝑘2 = 𝑒41.51−
202600

𝑅⋅𝑇  

 

Cp = 30 J/mol⋅K 

 

𝛥Hr = 15000 J/mol 
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4. Optimization Results Based on Weight Variations 
 

This chapter presents the results from the simulations conducted using the two-step genetic algorithm 

discussed in Sections 3.2 and 3.3. The focus was on evaluating the performance of the algorithm while 

varying the weights of the fitness values for the three objectives described in Section 3.4. The algorithm 

was constrained to search for optimal configurations with up to 10 adiabatic steps, selecting the most 

suitable number between 1 and 10 for each case. In all simulations, the desired conversion was set to 

0.95, and the algorithm aimed to achieve this target as efficiently as possible. By testing different weight 

combinations, the goal was to assess whether the algorithm adapts appropriately by generating adiabatic 

reactor configurations that align with the given design priorities such as minimizing reactor volume, 

reducing intercooling requirements, or limiting the number of adiabatic steps for each set of weights 

and case study. Additionally, the chapter discusses how variations in weights influenced the final reactor 

configurations. 

 

4.1 Similar weight for all objectives 

 

Before varying the weights of the fitness values for each objective, an initial optimal adiabatic reactor 

configuration was determined using fitness values that lie within the same order of magnitude. To 

achieve this, scaling factors were applied to bring the objectives to a comparable range. These initial 

scaling factors were obtained through a trial-and-error approach, in which the fitness values of the 

individual objectives were iteratively adjusted and evaluated until they were approximately of equal 

magnitude. The final scaling factors are listed in Table 2. 

Table 2: Initial scaling factors for the three objectives (x = multiply, ÷ = divide) 

Objective 
Scaling factor 

Case 1 Case 2 Case 3 Case 4 

Surface area No factor ÷ 2 x 90 x 2 

Required intercooling ÷ 100 ÷ 500 ÷ 300 ÷ 50 

Number of stages x 5 x 5 x 5 x 5 

 

Using the scaling factors from Table 2, the two-step algorithm generated optimal reactor configurations 

for the different case studies. The calculated fitness values for the best configurations of the four cases 

are shown in Table 3. 

Table 3: Fitness values for the three objectives using the initial scaling factors 

Objective 
Fitness value 

Case 1 Case 2 Case 3 Case 4 

Surface area 22.31 19.98 24.57 39.14 

Required intercooling [J/s] 43.91 30.61 26.52 40.54 

Number of stages 30.00 30.00 30.00 30.00 
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Figure 21: Optimal configurations for cases 1 to 4 (top to bottom) using initial scaling factors 

Figure 21 shows the conversion versus temperature profiles and the corresponding Levenspiel plots for 

the optimal adiabatic reactor configurations of each case, based on the initial scaling factors. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 summarizes the objective values for the optimal configurations generated by the algorithm for 

each case study. 

Table 4: Objective values for each case using the initial scaling factors 

 Case 1 Case 2 Case 3 Case 4 

Surface area 22.31 39.96 0.273 19.47 

Required intercooling [J/s] 4391.3 15304.2 7956.3 1957.1 

Number of stages 6 6 6 6 

 

As shown in Figure 21 and Table 4, the algorithm consistently identified an optimal configuration 

consisting of six adiabatic steps for each case. This outcome indicates that, under balanced objective 

weighting, a six-step configuration represents an effective compromise between the three objectives. 

This result is both reasonable and expected. Segmenting the conversion trajectory into six steps allows 

the system to remain closer to the optimal temperature range for the reaction, thereby enhancing the 

average reaction rate and reducing the total reactor volume. At the same time, it avoids excessive 
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Figure 22: Optimal results based on a 5× scaling factor for surface area 

segmentation, which would increase the number of intercooling units and add unnecessary design 

complexity due to more adiabatic steps. Therefore, the selection of six steps reflects a balanced design 

strategy where no single objective dominates the optimization. 

 

4.2 Optimization preference toward Levenspiel plot area 

 

To research the influence of the surface area objective on the optimal reactor configuration, the weight 

associated with the fitness value for surface area was systematically increased while keeping the weights 

of the other two objectives constant. The scaling factor for each case used in Section 4.1 was increased 

with a multiplication factor of 5, 10, 25, and 50 relative to the other objectives. This approach evaluates 

how strongly prioritizing reactor volume reduction affects optimal configurations. 

Figure 22 shows the optimal adiabatic reactor configurations obtained for each case when the surface 

area objective is scaled 5 times higher than the other two objectives. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



46 
 

Figure 23: Optimal results based on a 10× scaling factor for surface area 

Figure 23 shows the optimal configurations generated for all cases when the surface area objective is 

scaled 10 times higher than the other two objectives. 
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Figure 24:  Optimal results based on a 25× scaling factor for surface area 

Figure 24 illustrates the optimal configurations based on a surface area objective with 25 times the 

weight of the other objectives. 
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Figure 25: Optimal results based on a 50× scaling factor for surface area 

Figure 25 shows the extreme case where the surface area objective is scaled 50 times higher than the 

others. 
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Figure 26: Influence of surface area objective weight on the optimal reactor configuration (a = surface area 
objective, b = intercooling objective, c = number of adiabatic steps objective) 

a 

b 

c 

Figure 26 shows the effect of the multiplication factor for the surface area objective on the optimal 

reactor configurations for each case. The surface area values for Case 3 were multiplied by 100 to bring 

them into the same range as those of the other cases, and to improve the readability of Figure 26a. In 

Figure 26b, the values for heat exchange were normalized based on the values at the initial scaling 

factors described in Section 4.1. 

 

  

 

 

 

 

 

 

 

 

As shown in Figures 21 to 26, increasing the weight of the surface area objective leads to optimal 

configurations with a greater number of adiabatic steps. When the multiplication factor is raised to five, 

the number of steps increases from six to eight for all case studies. This suggests that the algorithm 

reduces reactor volume by dividing the conversion into smaller increments, thereby enabling improved 

reaction rates. 

As the scaling factor increases further to ten, twenty-five, and fifty times the initial value, the trend 

continues. Cases one and four reach the maximum of ten steps at a scaling factor of twenty-five, while 

cases two and three stabilize at nine steps at this scaling factor. This may be due to differences in 

reaction kinetics that limit the benefit of an additional step. When the surface area weight is increased 

by a factor of fifty, all cases converge to a configuration with ten adiabatic steps (Figure 26c). This 

shows that a higher surface area weighting results in more segmented configurations and a steady 

decrease in total surface area (Figure 26a), indicating effective reactor volume minimization by the 

algorithm. Interestingly, despite the increasing number of adiabatic steps, the total amount of 
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Figure 27: Optimal results based on a 5× scaling factor for intercooling 

intercooling required remains nearly constant across all cases (Figure 26b). This suggests that the 

algorithm distributes the cooling load more evenly across the added steps, rather than increasing the 

overall energy demand for cooling. 

4.3 Optimization preference toward intercooling requirements 

 

To investigate the influence of the intercooling requirement objective on the resulting reactor 

configuration, the weight assigned to the fitness value for intercooling was systematically increased 

while keeping the weights of the surface area and step-count objectives constant. As with the previous 

analysis, the scaling factor was increased by multiplication factors of 5, 10, 25, and 50 compared to the 

baseline values used in Section 4.1. 

Figure 27 illustrates the optimal reactor configurations for each case when the intercooling objective is 

given 5 times the weight of the other objectives. 
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Figure 28: Optimal results based on a 10× scaling factor for intercooling 

Figure 28 presents the optimal configurations for all cases when the intercooling objective weight is 

increased 10 times the weight of the other objectives. 
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Figure 29: Optimal results based on a 25× scaling factor for intercooling 

Figure 29 shows the optimal configurations when the intercooling objective is given 25 times the weight 

of the other objectives. 
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Figure 30: Optimal results based on a 50× scaling factor for intercooling 

Figure 30 illustrates the optimal configuration for each case when the intercooling objective is increased 

50 times the weight of the other objectives. 
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Figure 31: Influence of the multiplication factor for the intercooling objectives on the optimal configuration (a = 
surface area objective, b = intercooling objective, c = number of adiabatic steps objective) 

a 

b 

c 

The influence of the objective weight for the intercooling demand on the optimal reactor configuration 

is illustrated in Figure 31 below. In this Figure, the same scaling and normalization were applied as in 

Figures 26a and 26b. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results in Figures 27 to 31 show that increasing the weighting of the intercooling objective slightly 

affects the overall structure of the optimal reactor configurations. While the number of adiabatic steps 

does not follow a consistent trend across all scaling factors, a slight tendency toward higher step counts 

can be observed at elevated scaling factor values. This suggests that the algorithm may favour more 

segmented configurations when intercooling minimization becomes increasingly dominant. One 

possible explanation is that dividing the conversion over more adiabatic steps allows each individual 

step to achieve a lower conversion increment. This, in turn, permits the first step to start at a higher inlet 

temperature and begin closer to the equilibrium line. As a result, the total cooling demand can be slightly 

lowered when the number of steps increases. 

It is notable that the total required intercooling remains nearly constant across all scaling factors as 

shown in Figure 31.b. This outcome can be attributed to the modelling assumptions, where the total 

heat released is directly linked to the fixed overall conversion target of 0.95 and a constant heat of 

reaction. Because the enthalpy change is assumed to be independent of temperature or conversion, 

reaching the target conversion always results in approximately the same total heat release. Dividing the 

reaction into more steps has limited influence on the overall amount of heat that must be removed.  
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Figure 32: Optimal results based on a 5× scaling factor for number of steps 

As the importance of minimizing intercooling increases, the algorithm tends to select a higher starting 

temperature to reduce the initial cooling of the feed, thereby slightly lowering the total cooling load. 

 

4.4 Optimization preference toward number of adiabatic steps 

 

To evaluate the impact of minimizing the number of adiabatic steps on the final reactor configuration, 

the weight of the fitness value associated with the step-count objective was gradually increased, while 

the weights for surface area and intercooling remained constant. The scaling factor for the step-count 

objective was raised by multiplication factors of 5, 10, 25, and 50 relative to the baseline values used 

in Section 4.1. This analysis examines how a stronger preference for reactor designs with fewer units 

affects the resulting optimal configurations. 

Figure 32 presents the optimal reactor configuration for each case when the number of adiabatic steps 

objective is given 5 times the weight of the other objectives. 
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Figure 33: Optimal results based on a 10× scaling factor for number of steps 

Figure 33 shows the optimal configurations when the number of adiabatic steps objective is given 10 

times the weight of the other objectives. 
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Figure 34: Optimal results based on a 25× scaling factor for number of steps 

Figure 34 presents the optimal reactor configurations for each case when the number of adiabatic steps 

objective is given 25 times the weight of the other objectives. 
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Figure 35: Optimal results based on a 50× scaling factor for number of steps 

 

Figure 35 shows the optimal reactor configurations for each case when the number of adiabatic steps 

objective is given 50 times the weight of the other objectives. 
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Figure 36: Effects of number of adiabatic steps objective weights on the optimal reactor configurations (a = 
surface area objective, b = intercooling objective, c = number of adiabatic steps objective) 

a 

b 

c 

Figure 36 illustrates the influence of objective weighting for the number of adiabatic steps on the 

optimal reactor configuration for each case. In this Figure, the same scaling and normalization were 

applied as in Figures 26a and 26b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figures 32 and 36 illustrate that at a fivefold increase, the optimal configuration still consists of six 

adiabatic steps for all cases. This indicates that the algorithm continues to prioritize minimizing surface 

area and intercooling requirements, and that reducing the number of steps offers no overall benefit at 

this moderate weighting. 

When the weight is increased tenfold as shown in Figures 33 and 36, the algorithm shifts to a five-step 

configuration for every case except Case 2. This suggests that the pressure to reduce the number of 

reactors has begun to influence the optimization, even if it results in slightly higher surface area. The 

new configuration reflects a different trade-off point, where fewer reactors are preferred despite some 

loss in efficiency. 

As presented in Figures 34 and 36, further increasing the weight to 25 times still results in five steps for 

three cases, while Case 4 shifts to a four-step configuration. This indicates that for the first three cases, 

reducing the number of steps to four would lead to a noticeable drop in performance in terms of surface 

area or cooling requirements. In contrast, for Case 4, the trade-off becomes favourable enough to justify 

a more compact design. At this point, the algorithm starts to prioritize minimizing the number of steps 

more strongly, but only when the associated performance penalty remains acceptable. 
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At the highest weighting factor (fiftyfold in Figures 35 and 36), the algorithm returns a four-step 

configuration for three cases, while Case 2 still maintains five steps. This marks a clear shift in priority: 

minimizing the number of steps has become the dominant driver, even though it leads to larger reactors. 
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5. Conclusions 
 

This thesis presents the development of a two-stage optimization algorithm based on standard genetic 

algorithms, aimed at automating the modelling and design of chemical reactor systems. The work 

addresses the challenge of optimizing complex reactor networks under multiple, conflicting objectives. 

Traditional reactor design methods rely heavily on manual tuning, which is time-consuming and may 

not effectively balance trade-offs between reactor volume, cooling requirements, and operational 

complexity. 

The motivation behind this research is to provide a two-stage algorithm for multi-objective optimization 

that automatically identifies optimal reactor configurations aligned with specific process goals. The first 

stage employs a multi-objective genetic algorithm to determine the optimal number and sequence of 

adiabatic reaction steps needed to achieve a fixed target conversion of 0.95, balancing reactor volume, 

intercooling demands, and the number of steps to optimize efficiency and complexity. The second stage 

refines this configuration by selecting the optimal reactor types or combinations for each step using 

single-objective optimization, further minimizing reactor volume. 

Compared to manual design approaches, the two-stage algorithm efficiently generates balanced reactor 

configurations in approximately 10 minutes per objective weight combination, dramatically reducing 

design time compared to traditional methods that can take an entire day and may still miss the true 

optimum. 

The algorithm’s performance was demonstrated through systematic variation of objective weights 

across multiple case studies, showing how shifting priorities influence the optimal configuration. 

Prioritizing reactor volume resulted in designs with more, smaller adiabatic steps. Focusing on 

intercooling emphasized optimizing initial step temperatures rather than step count. Emphasizing 

simplicity led to more compact configurations with fewer but larger steps. 

These findings confirm that the proposed methodology effectively produces logically balanced reactor 

configurations tailored to user-defined priorities, offering process engineers a helpful tool for navigating 

complex design trade-offs. This work advances automated reactor design and lays the groundwork for 

future extensions to non-adiabatic conditions, endothermic reactions, parallel and series reactions, and 

the integration of economic objectives. 
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Appendix A: Reaction kinetics for the Levenspiel cases and hypothetical case 

 

The reaction kinetics data for the two Levenspiel cases were obtained from the literature [1, pp. 218 

and 437]. These cases are both elementary aqueous exothermic reactions described as A⇌R. The 

corresponding Arrhenius parameters for both cases are presented in Table 5. In addition to the 

Levenspiel cases and the WGSR, a hypothetical first order aqueous exothermic reaction was introduced 

as a fourth case to further test the performance of the two-step algorithm. For this synthetic case, higher 

activation energies were deliberately chosen to create a more challenging scenario. The Arrhenius 

parameters for this hypothetical reaction are also listed in Table 5. 

 

Table 5: Arrhenius parameters of the two Levenspiel cases and hypothetical case 

Cases Arrhenius equation 

Levenspiel case 1  

Forward rate constant 𝑘1 = 𝑒17.34−
48900

𝑅⋅𝑇  

Backward rate constant 𝑘2 = 𝑒42.04−
124200

𝑅⋅𝑇  

Levenspiel case 2  

Forward rate constant 𝑘1 = 𝑒7−
83700

𝑅⋅𝑇  

Backward rate constant 𝑘2 = 𝑒18−
167400

𝑅⋅𝑇  

Hypothetical case  

Forward rate constant 𝑘1 = 𝑒17.73−
83000

𝑅⋅𝑇  

Backward rate constant 𝑘2 = 𝑒41.51−
202600

𝑅⋅𝑇  

 

 

 

 

 

 


