
Faculteit Industriële
Ingenieurswetenschappen
master in de industriële wetenschappen: elektronica-
ICT
Masterthesis

Hybrid IGZO-Si 3T0C DRAM for Energy-Efficient Near-Memory MAC and Bitwise
computing

Mohammed Murad Khalil Albayyouk
Scriptie ingediend tot het behalen van de graad van master in de industriële wetenschappen: elektronica-ICT

2024
2025

PROMOTOR :

Prof. dr. ing. Kris MYNY

Gezamenlijke opleiding UHasselt en KU Leuven

Faculteit Industriële
Ingenieurswetenschappen
master in de industriële wetenschappen: elektronica-
ICT
Masterthesis

Hybrid IGZO-Si 3T0C DRAM for Energy-Efficient Near-Memory MAC and Bitwise
computing

Mohammed Murad Khalil Albayyouk
Scriptie ingediend tot het behalen van de graad van master in de industriële wetenschappen: elektronica-ICT

PROMOTOR :

Prof. dr. ing. Kris MYNY

Preface

This thesis, Hybrid IGZO-Si 3T0C DRAM for Energy-Efficient Near-Memory MAC and Bitwise

computing, represents the culmination of my work over the past year. It explores a novel approach

to integrating computation near DRAM arrays, aiming to reduce energy consumption.

I am grateful to my supervisors, Prof. Dr. Ing. Kris Myny, Ing. Djihad Narcereddine, Ing.

Yari Nowicki, Ing. Sven Baerten and Ing. Jelle Biesmans. for their clear guidance and practical

advice. Their expertise helped me refine both the experimental design and the overall scope of

this project.

To my parents, thank you for your steady support and for always encouraging me to pursue

my interests. Your confidence in my abilities provided the foundation I needed to tackle the

challenges along the way.

I hope that the results presented here will offer useful insights for future developments in low-

power memory architectures and inspire further research in energy-aware computing.

Contents

Preface 1

List of tables 5

List of figures 7

List of Abbreviations 9

Abstract 11

Abstract in English 13

1 Introduction 15

1.1 Context . 15

1.2 Problem Statement . 16

1.3 Objectives . 16

1.4 Methodology . 16

1.5 Outline of the Thesis . 17

2 IMC, NMC and Emerging DRAM Technologies: A Literature Survey 19

2.1 Von Neumann Architecture: Principles and Limitations 19

2.2 IMC and NMC: Digital and Analog Approaches 19

2.3 Emerging Transistor Materials and Technologies 20

2.3.1 Amorphous Silicon (a-Si) . 20

2.3.2 Indium Gallium Zinc Oxide (IGZO) . 20

2.3.3 Low-Temperature Polycrystalline Silicon (LTPS) 21

2.4 Architecture of a Standard 3T0C DRAM Cell . 21

2.4.1 Cell Topology and Storage Mechanism . 21

2.4.2 Write Operation . 21

2.4.3 Read Operation . 22

2.4.4 DRAM array architecture . 22

2.5 RRAM- and MRAM-based Compute-In-Memory Architectures 24

2.5.1 RRAM-based IMC Architectures . 24

2.5.2 MRAM-based IMC Architectures . 24

2.6 System-Level Integration with RISC-V and SoCs 25

2.7 Summary . 25

3

3 Comparative Analysis of DRAM Cells 27

3.1 Overview of Design Variants . 27

3.2 Analog 3-T IGZO Cell . 27

3.2.1 2T0C IGZO Cell . 27

3.2.2 Proposed 3T0C Full IGZO Cell . 31

3.3 Digital 4-T IGZO DRAM Cell . 35

3.4 Comparison of Variants . 37

4 System Architecture of a Hybrid 3T0C Memory Array 39

4.1 Introduction . 39

4.2 Architecture Overview . 39

4.2.1 Silicon Sense Amplifier . 41

4.2.2 Silicon Logic Units . 41

4.2.3 Silicon DRAM Controller . 43

4.3 Performance Results . 46

4.4 Comparison with State of the Art . 46

5 Broader Economic, Societal, and Sustainability Implications 49

5.1 Economic Aspects . 49

5.2 Societal Implications . 49

5.3 Sustainability Implications . 49

6 Conclusion and Future Work 51

Bibliography 57

A Appendix - VHDL Implementations of the Multiply–Accumulate and Bitwise

Functional Units 59

B Appendix - VHDL Implementations of the DRAM controller Functional Unit 63

List of Tables

3.1 Truth table for OR/NOR operation. 37

3.2 Truth table for AND/NAND operation. 38

4.1 Transistor dimensions used in the SA . 42

4.2 Throughput and energy efficiency for various operations (in MOPS) 46

4.3 Comparison to the state of Art . 47

List of Figures

2.1 Processor vs. memory relative performance over the years 20

2.2 3T0C DRAM . 22

2.3 DRAM array architecture . 23

3.1 2T0C DRAM . 28

3.2 2 × 3 array of Full IGZO 2T0C DRAM cells . 28

3.3 Writing a 2 x 3 matrix of 2T0C DRAM’s . 29

3.4 A failed read of a 2T0C DRAM . 30

3.5 Reading from a 2 x 3 matrix of a 2T1C DRAM: only two cells are connected . . . 31

3.6 Reading from a 2 x 3 matrix of a 2T1C DRAM: 28 cells of logical one are connected

to the same bitline . 32

3.7 Writing and reading two Full IGZO 3T0C DRAM cells from one row 33

3.8 Monte Carlo simulation of bitline discharge curves under process variation. 34

3.9 Monte Carlo simulation of bitline discharge curves for the Si-cascode cell under

process variation. 35

3.10 Transient disturbance of the storage node due to parasitic coupling when using

the Si cascode transistor. 36

3.11 Schematic overview of an n-row by m-column array of 4T0C full-IGZO DRAM

cells with WWL, ANDL, and ORL wordlines . 37

4.1 A block diagram of the complete system architecture. 40

4.2 The used Strong arm latch SA . 41

4.3 A cycle of enabling and precharging the SA . 42

4.4 The MAC operation flow . 44

List of Abbreviations

CPU Central Processing Unit

DRAM Dynamic Random-Access Memory

IMC In-memory Computing

NMC Near-memory Computing

IGZO Indium–gallium–zinc–oxide

SA Sense Amplifier

3T0C Three-transistor, Zero-capacitor

MAC Multiply–Accumulate

PDK Process Design Kit

WWL Write Word Line

WBL Write Bit Line

RWL Read Word Line

RBL Read Bit Line

a-Si:H Hydrogenated Amorphous Silicon

LTPS Low-Temperature Polycrystalline Silicon

TFT Thin-Film Transistor

RRAM Resistive RAM

CIM Compute-In-Memory

1T1R One-Transistor–One-Resistor

ADC Analog-to-Digital Converter

DAC Digital-to-Analog Converter

MRAM Magnetoresistive RAM

MTJ Magnetic Tunnel Junction

RISC-V Reduced Instruction Set Computing-V

SoC System on Chip

SN Storage Node

WE Write-Enable

RE Read-Enable

ANDL AND Word Line

ORL OR Word Line

VDD Supply Voltage

Vth Threshold Voltage

FSM Finite-State Machine

PE n Precharge Enable (active low)

MOPS Millions of operations per second

GOPS/W Giga operations per second per Watt

Abstract

Data-intensive systems require low-power memory solutions, since conventional silicon DRAM

incurs high refresh energy and conventional indium–gallium–zinc–oxide (IGZO) DRAM exhibits

insufficient speed. This master’s thesis investigates a hybrid IGZO–silicon 3T0C cell architecture

for near-memory computing, aiming to design and validate a memory cell composed of an IGZO

write transistor, an IGZO storage transistor, and a Si cascode transistor, as well as to assess its

integration into a 32×32 array with full peripheral circuitry.

The decoder, sense amplifier, and controller were implemented in Si. Simulations were carried

out using the Pragmatic IGZO PDK and the X-Fab 180 nm Si PDK, evaluating array write/read

timings and retention, and characterizing peripheral circuit functionality and energy consump-

tion.

Simulation results indicate a write access time of 55 ns with a total energy consumption of

131 pJ, while a complete READ operation takes 50 ns and consumes 116 pJ, of which 108

pJ is expended by the DRAM controller, with an estimated retention time exceeding 400 s.

MAC operations deliver 290.9 MOPS at an energy efficiency of 111.1 GOPS/W, and bitwise

operations achieve 11.76 MOPS at 4.31 GOPS/W. Row refresh consumes 131 pJ every 400 s

(versus 64 ms in conventional Si), yielding an energy reduction of 818.6 nJ per refresh interval.

Overall, the proposed architecture minimizes power consumption while maximizing throughput,

demonstrating a scalable in-memory computing solution.

Abstract in Dutch

Data-intensieve systemen vereisen energiezuinig geheugen, aangezien conventioneel silicium-DRAM

een hoog vernieuwingsenergieverbruik kent en IGZO-DRAM onvoldoende snel is. Deze master-

proef onderzoekt een hybride IGZO–Si 3T0C-geheugencel voor near-memory computing. Die cel

bestaat uit een IGZO-schrijftransistor, een IGZO-opslagtransistor en een Si-cascode-transistor,

en is gëıntegreerd in een 32×32-array met alle perifere circuits.

De decoder, de sense-amplifier en de controller zijn in silicium (Si) gerealiseerd. Simulaties met

het IGZO-PDK van Pragmatic en het X-Fab 180 nm Si-PDK hebben de schrijf- en leestijd, de

retentie, de functionaliteit en het energieverbruik van de perifere circuits geëvalueerd.

Simulatie-resultaten tonen een schrijftoegangstijd van 55 ns met een totale energie-consumptie

van 131 pJ, terwijl een volledige lees-operatie 50 ns in beslag neemt en 116 pJ verbruikt, waarvan

108 pJ door de DRAM-controller, met een geschatte retentietijd van meer dan 400 s. MAC-

operaties (multiply-accumulate) behalen een doorvoersnelheid van 290,9 MOPS bij een energie-

efficiëntie van 111,1 GOPS/W, terwijl bitwise-operaties 11,76 MOPS bereiken bij 4,31 GOPS/W.

Rijverversing vergt 131 pJ per 400 s (ten opzichte van 64 ms bij conventioneel silicium), wat

neerkomt op een energiereductie van een 818,6 nJ per verversinterval. De voorgestelde architec-

tuur minimaliseert het energieverbruik en maximaliseert de doorvoer, waarmee een schaalbare

in-memory computing-oplossing wordt aangetoond.

Chapter 1

Introduction

The ever-widening gap between processor speeds and memory access times, called the ’memory

wall’, has become the main bottleneck in modern computing [1]. As data-intensive applications in

machine learning, scientific simulation, and real-time analytics proliferate, the energy and latency

costs of shuttling operands over the Central Processing Unit (CPU)-memory bus dominate both

performance and power consumption [1]. In-memory computing (IMC) co-locates logic within

the memory array, eliminating off-chip transfers and harnessing the high parallelism inherent in

dense memory fabrics [2].

A hybrid Dynamic Random-Access Memory (DRAM) architecture is investigated that com-

bines emerging oxide-semiconductor storage elements with conventional silicon logic to deliver

low-leakage, high-throughput DRAM operations. Indium–gallium–zinc–oxide (IGZO) storage

transistors exhibit ultra-low off-state leakage, dramatically extending data retention and reduc-

ing refresh energy. Silicon-based decoders, controllers, and sense amplifiers optimized for speed

sustain high operational throughput despite IGZO’s lower carrier mobility.

1.1 Context

Conventional DRAM cells remain separated from the CPU by a narrow, high-latency bus: each

compute operation requires both a read and a write, amplifying energy and delay [3]. Digital IMC

puts compute logic after the sense amplifier, while Near-memory computing (NMC) embeds it on

the module buffer or logic die. However, both yield limited energy and latency gains because the

logic stays outside the cell array and each read still triggers the sense amplifier (SA) [4]. Analog

IMC approaches exploit charge-domain computation in multi-level cells for energy efficiency, but

face severe design complexity, limited speed and sensitivity to process variations [4].

Thin-film transistor technologies based on IGZO offer orders-of-magnitude lower leakage com-

pared to crystalline silicon, enabling dramatically extended retention and reduced refresh rates [5].

However, IGZO’s lower mobility constrains its suitability for high-speed decoding and sensing

functions, which remain the domain of silicon logic [6].

1.2 Problem Statement

No existing DRAM-compute proposal simultaneously achieves both minimal static power, through

reduced leakage and infrequent refresh, and high operation speed via fast decode and sensing.

Digital IMC suffers from limited energy-efficiency and latency gains [4]; analog IMC sacrifices

speed and robustness [4]; IGZO-only designs lack the throughput required for high-rate logic [6];

silicon-only schemes optimize speed at the cost of leakage and refresh energy [4].

The central problem addressed here is:

• How can a DRAM macro be designed to exploit IGZO’s ultra-low leakage for storage while

retaining silicon’s high-speed logic for decoding and sensing?

• Which cell topology, peripheral circuitry and activation schemes enable robust, low-energy

operations entirely near the memory array without external data movement?

1.3 Objectives

The overall goal is a hybrid IGZO–Si three-transistor, zero-capacitor (3T0C) DRAM architec-

ture capable of Near-DRAM bitwise and multiply–accumulate (MAC) operations with both low

refresh power and high throughput. Specific objectives consist of:

1. Architectural Design: Definition and circuit realization of a 3T0C cell array combining

IGZO storage transistors with silicon cascode devices, row decoder, DRAM controller,

MAC-unit, Bitwise Logic Unit and strong-arm latch sense amplifiers.

2. Energy-Retention Characterization: Cadence-based simulations quantifying extended

retention times and reduced refresh energy using the IGZO Process Design Kit (PDK)

provided by Pragmatic and the Si PDK provided by XFab.

3. Performance Evaluation: Determination of the latency and throughput of bitwise and

multiply–accumulate operations under representative workloads, demonstrating speed par-

ity with silicon-only NMC despite IGZO’s lower mobility.

1.4 Methodology

Three main phases structure the research:

• Literature Survey and Gap Analysis: Review of state-of-the-art DRAM topologies,

emerging materials and IGZO device characteristics to identify design trade-offs.

• Circuit and Array Design: Implementation in Cadence Virtuoso of the hybrid 3T0C

cell, writing the DRAM controller, row/column decoder, and bitwise logic unit in VHDL,

synthesizing them using Cadence Genus synthesis tool and the standard-cell library pro-

vided by Xfab, importing the resulting netlists into Virtuoso, and designing the 3T0C

memory cell and sense amplifier at the transistor level within Virtuoso.

• Simulation and Characterization: Device-level and macro-level simulations to extract

leakage, retention, refresh energy, sense-amp offset, and operation latency.

16

1.5 Outline of the Thesis

The remainder of this document is organized as follows:

• Chapter 2 reviews literature on IMC, NMC, DRAM cell topologies and emerging transistor

materials, identifying the hybrid IGZO–Si opportunity.

• Chapter 3 introduces three DRAM cell topologies, compares their pros and cons, and

concludes that the hybrid 3T0C cell offers the best trade-off.

• Chapter 4 presents the complete architecture of a memory array comprising hybrid 3T0C

cells, silicon decoders, silicon sense amplifiers, and a silicon DRAM controller, and evaluates

its performance against the state of the art.

• Chapter 5 concludes with a summary of key findings and outlines possible directions for

future research.

17

18

Chapter 2

IMC, NMC and Emerging DRAM

Technologies: A Literature Survey

2.1 Von Neumann Architecture: Principles and Limita-

tions

The Von Neumann architecture uses a single shared memory to store both instructions and

data, which the CPU fetches over a common bus. The CPU comprises a control unit and an

arithmetic–logic unit (ALU), with internal registers for temporary storage. Because the same

bus is used for instruction fetch and data transfer, instruction and data accesses cannot occur

simultaneously, creating the so-called Von Neumann bottleneck. Modern processors mitigate this

with multi-level cache hierarchies, split instruction/data caches, prefetching, pipelining, and out-

of-order execution, but the fundamental gap between processor speed and memory access remains

severe [1]. As observed by [7], CPU performance has advanced faster than DRAM performance,

causing idle cycles while awaiting data, the memory wall problem. As shown in Figure 2.1,

processor performance has grown exponentially since 1980, whereas memory performance has

only increased marginally.

Despite advances in interconnects and memory controllers, the memory wall persists for data-

intensive applications such as scientific simulation, real-time analytics, and machine learning,

where off-chip DRAM bandwidth and latency dominate system throughput.

2.2 IMC and NMC: Digital and Analog Approaches

IMC addresses the memory wall by performing computations within or adjacent to the memory

array, thereby minimizing data transfer and exploiting the array’s intrinsic parallelism.

Digital IMC approaches place the compute logic directly after the sense amplifier, while NMC

schemes integrate it on the Dual In-line Memory Module (DDIM) buffer or the logic die of 3D

DRAM; however, both yield only modest energy-efficiency and latency improvements because

the logic remains outside the cell array and each access still triggers the SA [8], [4].

Analog IMC techniques leverage charge- or current-domain summation in memory crossbars to

execute matrix-vector multiplications in a single step, achieving high energy efficiency but facing

Figure 2.1: Processor vs. memory relative performance over the years [7, p. 80].

precision limits, process variation sensitivity, and Analog-to-Digital Converter (ADC)/Digital-

to-Analog Converter (DAC) overhead [2]. Hybrid schemes combine analog computation with

digital correction to balance efficiency and accuracy.

NMC lies between conventional IMC and standard architectures by placing lightweight processing

elements in very close proximity to memory banks, often within the logic layer of 3D-stacked

DRAM or on the same package, to reduce data movement overhead without the full area and

retention penalties of in-array logic. Although NMC can deliver significant throughput and

energy-efficiency gains, it still relies on explicit data transfers over short distances and introduces

challenges in bandwidth contention, thermal management, and programming model support [9].

2.3 Emerging Transistor Materials and Technologies

This section reviews three thin-film semiconductor technologies relevant for memory arrays and

peripheral circuits: amorphous silicon (a-Si), IGZO, and low-temperature polycrystalline silicon

(LTPS).

2.3.1 Amorphous Silicon (a-Si)

Hydrogenated amorphous silicon (a-Si:H) can be deposited at 300 ◦C and is widely used in display

backplanes [10], [11]. It exhibits low electron mobility (0.5–1 cm2/(V·s)) and an on/off current

ratio on the order of 106 due to its high defect density [11], [12], and supports only n-type Thin-

Film Transistors (TFTs), precluding CMOS logic integration [13]. a-Si:H TFTs are suitable for

low-speed, large-area electronics such as pixel drivers and simple dynamic memories.

2.3.2 Indium Gallium Zinc Oxide (IGZO)

Amorphous IGZO combines low-temperature processing (below 250 ◦C), moderate electron mo-

bilities (10–20 cm2/(V·s)), and ultralow off-currents, thanks to a wide bandgap of about 3.1 eV [14], [6].

20

IGZO decouples mobility from structural order, enabling long retention in capacitor-less DRAM

cells (retention > 400 s) and reduced refresh energy [5]. Because IGZO TFTs are n-type only,

peripheral CMOS logic must rely on silicon or LTPS. Their back-end-of-line compatibility makes

IGZO prime for monolithic 3D memory integration [14].

2.3.3 Low-Temperature Polycrystalline Silicon (LTPS)

Low-temperature polycrystalline silicon (LTPS) is created by laser annealing amorphous silicon

into poly-Si at approximately 500 ◦C via XeCl excimer laser annealing processes [15]. LTPS TFTs

yield carrier mobilities of 50–100 cm2/(V·s) and on/off current ratios around 107 [16]. Unlike

a-Si, LTPS supports full CMOS logic integration and is used in high-resolution display drivers

and system-on-glass applications [17]. However, its process complexity, cost, and substrate-size

constraints limit large-area scalability. LTPS excels in high-speed peripheral circuits (decoders,

sense amplifiers) above dense memory arrays.

2.4 Architecture of a Standard 3T0C DRAM Cell

2.4.1 Cell Topology and Storage Mechanism

In the 3T0C DRAM cell architecture (Figure 2.2), data are retained solely by the intrinsic

parasitic capacitance of a dedicated storage transistor, thereby obviating the need for a separate

capacitor [18]. The memory cell comprises three transistors:

1. Storage transistor M1: Its own parasitic capacitance serves as the charge-storage ele-

ment that represents the stored logic state.

2. Write access transistor M2: When the write-word-line (WWL) is asserted, this device

connects the storage node to the write-bit-line (WBL), allowing charge to be deposited or

removed.

3. Cascode (read) transistor M3: Activated by the read-word-line (RWL), it couples the

storage node to the read-bit-line (RBL) while concurrently isolating the storage node from

voltage disturbances during read operations. This isolation ensures non-destructive sensing

of the stored charge.

Because the effective capacitance of the storage node is inherently smaller than that of a discrete

capacitor in a conventional 1T1C cell, the retention time is reduced and refresh cycles must occur

more frequently to maintain data integrity.

2.4.2 Write Operation

During the write operation of a 3T0C cell, the controller asserts the WWL and drives the WBL

to the appropriate logic level (high for a “1,” low for a “0”). Under these conditions, the write

transistor M2 becomes conductive, enabling the parasitic capacitance of the storage transistor

M1 to be charged or discharged to reflect the intended logic state. Once the write cycle is

complete, the WWL is deasserted, thereby isolating the parasitic capacitance and preserving its

newly established charge.

21

Figure 2.2: 3T0C DRAM

2.4.3 Read Operation

During the read operation of a 3T0C cell, the controller asserts the RWL, thereby activating

the cascode transistor M3 and coupling the drain of the storage transistor M1 to a precharged

RBL, which is typically biased at half the supply voltage. Depending on the charge stored on the

parasitic capacitance of M1, the RBL either discharges (if the stored logic value is “1”) or remains

at its precharged level (if the stored value is “0,” since M1 remains non-conductive). A sense

amplifier subsequently monitors the RBL voltage and converts its deviation (or lack thereof)

into a definitive logic output. Under ideal conditions, this sensing process does not perturb the

potential at the storage node; however, in poorly optimized designs, parasitic coupling between

the RWL and the M1 drain, and between the M1 drain and the storage node, can induce unwanted

disturbances in the stored charge.

2.4.4 DRAM array architecture

The system-level organization of a 3T0C DRAM array follows a hierarchical, modular design that

balances access parallelism, density, and ease of integration with a host controller (Figure 2.3).

At the highest level, the memory array is partitioned into multiple banks, each of which can be

independently activated, read, written, or refreshed. By interleaving accesses across banks, the

controller can hide the intrinsic latency of individual row-activation and precharge operations,

thereby improving overall throughput.

Within each bank, the storage region is further divided into a grid of subarrays, each of which

houses a two-dimensional matrix of 3T0C cells. A global row decoder accepts a row address and

routes it to the target subarray’s local row decoder. Upon activation, the selected local decoder

asserts the corresponding RWL or WWL across the entire row, enabling either the cascode

transistor M3 (for reads) or the write transistor M2 (for writes) in every cell of that row.

22

Figure 2.3: DRAM array architecture

Once a row is activated, the tiny voltage differential on each storage node is captured by its

sense amplifiers, which serve a dual role as both read amplifiers and the bank’s precharged row

buffer. Following amplification, a column decoder and an associated multiplexer network select

one or more bitlines from the row buffer according to the low-order column address. This column

MUX collapses the wide row-buffer payload down to the fixed width of the external I/O bus,

minimizing pin count and I/O logic complexity.

The time from request arrival to output signal in a read operation, often referred to as the ran-

dom cycle time, is a critical performance metric because it directly determines the maximum

sustainable bandwidth of the memory. Similarly, the write access time measured from the as-

sertion of the WWL to the stable storage-node-voltage is key to understanding the peak write

rate.

In their 2kb 3T0C eDRAM macro fabricated in a 0.18 µm Si CMOS process, Giterman et al.

[19] report:

• A write-access time of 1.3 ns.

• An error-free read random-cycle time of 25 ns.

In their capacitor-less 2T0C DRAM cell comprising a-ITGZO TFTs, Ryu et al. [20] report:

• A write–access time of approximately 9.1 µs.

• An error-free read random-cycle time of approximately 9.1 µs.

23

2.5 RRAM- and MRAM-based Compute-In-Memory Ar-

chitectures

2.5.1 RRAM-based IMC Architectures

Resistive RAM (RRAM) devices have become a workhorse for analog IMC due to their simple

1T1R (one-transistor–one-resistor) or 2T1R cell structures, high density, and ability to store

multi-bit weights. In a typical RRAM IMC crossbar, each cell’s conductance represents a matrix

weight, and by applying analog voltages to wordlines while summing currents on bitlines, large-

scale vector–matrix multiplications can be performed in one cycle [21], [22].

Dense RRAM IMC Macros Liu et al. fabricated a 28 nm, 576 kbit RRAM IMC macro that

leverages a hybrid on-chip programming scheme to achieve an area efficiency of 2.82 TOPS/mm2

and an energy efficiency of 35.6 TOPS/W [21]. This macro performs 128×128 analog MACs in

parallel and uses a custom hybrid ADC for both weight programming and inference, reducing

programming energy by 85 % compared to prior designs.

Ye et al. demonstrated a 28 nm hybrid 2T1R RRAM IMC core for energy-efficient AI edge

inference, achieving sub-20 ns read/write times per cell and > 50 TOPS/W for 6-bit–precision

MAC operations at 10 MHz clock [22]. Their design uses a weighted hybrid 2T1R cell array with

redundant subarray mapping to mitigate device non-idealities.

Scalability and Precision Earlier RRAM IMC works include Xue et al., who reported a 22

nm, 4 Mb RRAM IMC macro capable of 8-bit MAC with 11.91–195.7 TOPS/W (depending on

precision mode) [23]. Yoon et al. (2022) demonstrated a 40 nm, 64 kb RRAM IMC macro with

read-disturb tolerance and an energy efficiency of 56.67 TOPS/W for 4-bit MACs [24]. These

designs confirm that RRAM IMC scales from tens of kilobits to multiple megabits while retaining

> 10 TOPS/W energy efficiency, albeit at the cost of additional ADC/DAC overhead for high

bit-width operations.

2.5.2 MRAM-based IMC Architectures

Magnetoresistive RAM (MRAM) offers non-volatility, near–SRAM-level speed, and endurance

> 10 12 cycles, making it an attractive platform for IMC [25]. In traditional MRAM cells, each

bit is a 1T1MTJ (one-transistor, one-magnetic tunnel junction) whose resistance toggles between

a low (parallel) or high (antiparallel) state.

Analog MRAM Crossbar (Resistance-Sum) Jung et al. introduced the first 64×64

MRAM-based IMC prototype, which overcomes MRAM’s inherently low resistance ratio by using

a resistance-sum readout rather than conventional current-sum [25]. Their 28 nm prototype in-

tegrates read-out electronics and performs a two-layer perceptron for MNIST digit classification

with 93.2 % accuracy (software baseline: 95.2 %). The array achieves 5 MHz analog com-

pute rate (limited by ADC integration time), 20 ns per analog MAC, and < 2 pJ/MAC inferred

energy (excluding ADC), demonstrating that MRAM can perform in-situ multiply–accumulate

operations with minimal additional circuitry.

24

Digital MRAM CAM/Bitwise Operations Deaville et al. presented a 22 nm, 128 kb

MRAM row/column-parallel in-memory computing macro with memory-resistance boosting and

multi-column ADC readout [26]. This design supports fully parallel matrix-vector multiplication

in a 128 kb array, achieving robust performance through active compensation for MRAM non-

idealities while retaining energy efficiency in the low pJ/bit range.

2.6 System-Level Integration with RISC-V and SoCs

To exploit IMC accelerators within conventional processing environments, recent works integrate

RRAM/MRAM IMC blocks alongside RISC-V cores or embed them into full System on Chip

(SoC) designs.

RISC-V + RRAM IMC Caon et al. proposed two NMC architectures, NM-Caesar and

NM-Carus, that tightly couple RRAM IMC tiles with a 32-bit RISC-V core via an on-chip inter-

connect [27]. In post-layout 28 nm simulations, NM-Caesar achieves a 23.2× system-level energy

efficiency improvement and 25.8× speedup over a baseline RV32IMC CPU for 8-bit matrix mul-

tiply workloads, peaking at 306.7 GOPS/W. NM-Carus trades some area for flexibility, allowing

dynamic reconfiguration of RRAM IMC array shapes under software control.

SRAM-IMC + RISC-V SoC Guo and Chang introduced “CIMR-V,” an end-to-end SRAM-

based IMC accelerator with a RISC-V core that supports layer fusion, convolution/pooling

pipelines, and custom IMC instructions for full AI model inference [28]. Fabricated in 28 nm,

CIMR-V attains 3707.8 TOPS/W energy efficiency (8-bit MACs at 50 MHz) and 26.21 TOPS

peak throughput, reducing keyword-spotting latency by 85.1 % versus a non-IMC approach.

Hybrid 3D-Stack SoC with Multiple Memory Technologies Yan et al. presented “Eq-

CIM,” a monolithic 3D IGZO-RRAM-SRAM integrated architecture that assigns each memory

technology a specific role, IGZO for temporal activation storage, RRAM for high-density weight

storage, and SRAM for accurate IMC [29]. By co-designing the 3D interconnect and peripheral

circuits, their prototype achieves 5.05× area efficiency and 2.45× energy efficiency gains over

single-type IMC architectures.

2.7 Summary

This chapter presented the classical Von Neumann architecture and the memory wall challenge,

motivating in-memory and near-memory computing paradigms. Digital and analog IMC ap-

proaches were surveyed, 3T0C DRAM cell topology was detailed, and a new comparison of

RRAM- and MRAM-based IMC architectures—including dense crossbar MAC implementations,

digital bitwise operations, and system-level integrations with RISC-V cores and hybrid 3D-stack

SoCs—was added. Emerging thin-film transistor materials (a-Si, IGZO, LTPS) and their roles

in monolithic 3D integration were reviewed. These insights set the stage for the hybrid IGZO–Si

3T0C DRAM architecture developed in this thesis.

25

26

Chapter 3

Comparative Analysis of DRAM Cells

3.1 Overview of Design Variants

To explore the trade-offs between leakage, cell area, operational speed, and logic flexibility, four

DRAM cell microarchitectures have been implemented and evaluated in Cadence. All variants

exploit the storage capability of indium–gallium–zinc–oxide (IGZO) transistors but differ in cell

topology and the degree of peripheral assistance required:

• Analog 3-T IGZO Cell: A fully IGZO-based, 3-transistor cell.

• Hybrid 2-T IGZO + Si Cascode transistor: A 2-transistor IGZO cell augmented by

a silicon (Si) cascode transistor to enhance speed and discharge isolation.

• Digital 4-T IGZO Cell: A fully IGZO-based, purely digital 4T0C design supporting

OR/AND logic.

Each variant is evaluated in terms of cell area, static leakage current, read latency, supported

logic operations, and required refresh interval. Sections 3.2 through 3.3 describe the topology

and operation of each cell, and Section 3.4 presents a quantitative comparison.

3.2 Analog 3-T IGZO Cell

In an initial attempt to realize a fully functional DRAM cell capable of performing bitwise

operations by activating two rows simultaneously, a two-transistor–zero-capacitor (2T0C) IGZO

cell was investigated. However, this topology exhibits several limitations in its read operations,

as well as in its ability to perform in-memory bitwise functions. Based on the shortcomings

identified, a three-transistor–zero-capacitor (3T0C) architecture is proposed to overcome these

challenges.

3.2.1 2T0C IGZO Cell

Topology

Figure 3.1 depicts the schematic of the full-IGZO 2T0C DRAM cell [30]. It comprises two thin-

film transistors: a write transistor (L = 1 µm and W = 4 µm), whose gate is connected to

the write word line (WWL) and whose drain is tied to the write bit line (WBL), and a storage

transistor (L = 1 µm and W = 6 µm), whose gate serves as the storage node (SN). The logic

state is held on the intrinsic gate capacitance of the storage transistor.

Figure 3.1: 2T0C DRAM

Limitations in Read/Write and Bitwise Operations

Figure 3.2 illustrates six 2T0C cells arranged in a 2 × 3 array, the read bitline was modeled with

a capacitance of 250 fF. Simulations were carried out on this configuration to evaluate write and

read operations and to assess the feasibility of performing in-memory bitwise operations.

Figure 3.2: 2 × 3 array of Full IGZO 2T0C DRAM cells

Writing Writing to the cell proceeds analogously to conventional 1T1C DRAM. To store a

logical value, the targeted row’s WWL is asserted to 1.8V, enabling conduction between the

WBL and the SN. The data bit on WBL (1.8 V for logic ’1’ and 0 V for logic ’0’) is transferred

to the SN capacitance over a pulse duration of approximately 50 ns. Upon deassertion of WWL

(driven back to −0.8V), capacitive coupling between the gate and source of the write transistor

28

causes the SN potential to shift: a stored ’1’ initially at 1.4V equilibrates to 1.27V and a stored

’0’ equilibrates form 0V near −0.81V.

Writes are performed on the schematic in Figure 3.2 one row at a time: the first row’s WWL is

asserted, then deasserted, followed by the second row. Figure 3.3 shows the simulation results of

the writing operation of the cells from Figure 3.2.

Figure 3.3: Writing a 2 x 3 matrix of 2T0C DRAM’s

Reading and Bitwise operations For performing bit-wise operations between two bits from

the same columns from Figure 3.2, all bit lines are precharged to VDD/2. The read word line

(RWL) is then driven low (i.e. 0 V enabled, 1.8 V disabled), thereby turning on all storage

transistors in the two rows simultaneously. Depending on the stored bits in each column, the

discharge rate of the bit line varies:

• 0 + 0: no discharge,

• 1 + 0: nominal discharge,

29

• 1 + 1: accelerated discharge.

The objective was to terminate the bitline discharge by deactivating the rows at the exact point

when the sense amplifier can reliably distinguish among the three cases.

However, capacitive coupling between the source and gate of the storage transistor induces a

large voltage shift on the storage node, which effectively erases the “1” state and prevents any

significant discharge even when a high voltage is stored. This phenomenon is observed under

dual-row activation as well as single-row activation.

Figure 3.4 illustrates the failed read when both rows are enabled.

Figure 3.4: A failed read of a 2T0C DRAM

Introduction of Storage Capacitor To mitigate the coupling effect, a discrete capacitor is

added at the storage node, resulting in a 2T1C cell. While this preserves the gate voltage during

read operations, the bitline discharge profile still depends on the number of cells storing a logical

‘1’ connected to the same bit line. Once the voltage on the bitline drops to the point where

Vg−Vbitline > Vth, the floating bit line can act as a source for the read transistors of all connected

‘1’ cells, inadvertently turning them on and partially recharging the line. Figures 3.5 and 3.6

illustrate the discharge behaviour with zero neighbouring ‘1’ cells and with 28 neighbouring ‘1’

cells, respectively.

These limitations motivate the design of a 3T0C IGZO cell, which is introduced in the next

30

Figure 3.5: Reading from a 2 x 3 matrix of a 2T1C DRAM: only two cells are connected

subsection.

3.2.2 Proposed 3T0C Full IGZO Cell

Cell Topology

Figure 2.2 illustrates the schematic of the proposed 3T0C full IGZO DRAM cell, comprising

three transistors. The write transistor M2 (L = 1 µm and W = 4 µm) has its gate connected to

the WWL and its drain to the WBL. The storage transistor M1 (L = 1 µm and W = 6 µm) is

arranged with its gate tied to the source of M2 and its source referenced to ground; the parasitic

capacitance of M1 serves as the storage node. A cascode transistor M3 (L = 1 µm and W = 6 µm)

provides the third element: its gate is driven by RWL, and its drain connects to the read bit line

(RBL). By isolating M1 from the bit line, the cascode device overcomes the principal limitation

of the conventional 2T0C DRAM cell, ensuring that bitline discharge no longer depends on the

number of cells storing a logical ‘1’ within the same column.

Write Operation

In the write phase, the memory controller asserts a write-enable (WE) signal, which swings from

0V to 1.8V at its logic-high level. This WE pulse is level-shifted to a negative gate voltage

of −0.8V on the WWL via a dedicated shifter circuit. Initially, with the WBL held at 0V to

31

Figure 3.6: Reading from a 2 x 3 matrix of a 2T1C DRAM: 28 cells of logical one are connected
to the same bitline

clear any previous state, After a latency of 5 ns, The controller drives the WBL to the desired

data level—either 1.8V for logic “1” or 0V for logic “0”—and holds this potential for 50 ns to

transfer charge onto the parasitic capacitance of transistor M1. At the conclusion of the write

interval, the WE signal is deasserted, returning the WWL to −0.8V and isolating the storage

node. During this transition, capacitive coupling between the gate of M2 and the storage node

of M1 induces a slight perturbation of the stored voltage: a written “1,” nominally held at 1.5V,

shifts downward to approximately 0.964V, whereas a written “0,” nominally at 0V, shifts to

about −1.2V.

Read Operation

During a read cycle, the controller asserts a read-enable (RE) signal, also from 0V to 1.8V,

which is level-shifted to −0.8V on the RWL to activate the cascode transistor M3. The RBL

is precharged to VDD/2. If the storage node holds a logic “1,” transistor M1 conducts and pulls

the RBL toward ground; if the storage node is at “0,” M1 remains off and the RBL remains

at VDD/2. A sense amplifier detects this voltage deviation and resolves it into a full-swing logic

output. Although an ideal design ensures non-destructive sensing, parasitic capacitances between

the RWL and the M1 drain, and between the M1 drain and the storage node, can transiently

disturb the stored voltage. Upon deassertion of the RWL, these perturbations are reversed,

32

Figure 3.7: Writing and reading two Full IGZO 3T0C DRAM cells from one row

thereby restoring the storage node to its original pre-read potential; however, variations in the

RWL signal can introduce deviations from this ideal restoration.

Figure 3.7 illustrates the simulation results obtained when two cells in the same row are written

sequentially and then read continuously.

Bitline Sensing

To detect the discharge of the bitline, a strong-arm latch sense amplifier was employed (see

chapter 4). The most critical parameter of this amplifier is its input-referred offset voltage,

which for the current design is 17mV. Consequently, to guarantee reliable sensing, the voltage

differential between a discharged and a non-discharged bitline must exceed twice the offset, i.e.

34mV.

A Monte Carlo analysis was performed to characterize the bitline discharge curves under process

variation. After a discharge interval of td = 18ns, the voltage difference ∆V between discharged

and non-discharged bitlines reaches 34mV. At this point, the discharge phase can be terminated

and the sense amplifier can be enabled. Figure 3.8 presents the simulation results of the Monte

Carlo discharge curves.

Replacement of IGZO Cascode Transistor with Silicon Transistor

In order to improve mobility and reduce process-induced variation, the IGZO cascode transistor

M3 was replaced by a silicon (Si) transistor. Due to the higher electron mobility of crystalline

Si, the device dimensions can be minimized (L = 180 nm, W = 220 nm) without degrading

the bitline discharge speed. Furthermore, Si exhibits a lower Pelgrom’s constant than IGZO,

resulting in reduced variability of the discharge curves under process variation.

A Monte Carlo analysis was performed to compare the Si-cascode cell against the full-IGZO

baseline (Figure 3.9). After a discharge time of td = 10 ns, the minimum voltage differential ∆V

between discharged and non-discharged bitlines is 38.7mV, which exceeds the 34mV threshold

required by the strong-arm latch sense amplifier. This corresponds to an 8 ns improvement in

33

Figure 3.8: Monte Carlo simulation of bitline discharge curves under process variation.

sensing speed compared to the IGZO-only design.

The smaller gate-to-source capacitance of the Si transistor also minimizes parasitic coupling into

the storage node, as evidenced in Figure 3.10. When the storage node is at logic “0,” the read

operation induces virtually no perturbation; when it is at logic “1,” only a negligible transient

deviation occurs.

From a layout perspective, the Si transistor is fabricated in a bottom layer, with the IGZO

transistors MW (write), MS (storage) and MC (cascode/read) stacked above. A full-IGZO cell

thus comprises three devices with channel length L = 1µm and widths

WW = 4µm, WS = WC = 6µm.

By removing the IGZO cascode transistor, the IGZO-plane footprint per cell shrinks by ap-

proximately 38%, at the expense of adding one Si transistor beneath each cell. The trade-off

is favorable: read latency is improved by 8 ns and storage-node stability is enhanced, beyond

the Si cascode transistor, additional circuit blocks per bit cell can be integrated to perform

vector–matrix multiplication or other digital computations, depending on the design of the pe-

ripheral logic.

Capability of Performing Bitwise Operations

The bit-wise operation in the 3T0C cell was intended to follow the same procedure as in the

2T0C array: all bit lines are precharged to VDD/2, and the RWL is driven high (1.8 V enabled,

-800mV disabled) to activate two cells in a column simultaneously. In principle, the different

combinations of stored bits should yield distinct discharge rates:

34

Figure 3.9: Monte Carlo simulation of bitline discharge curves for the Si-cascode cell under
process variation.

• 0 + 0: no discharge,

• 1 + 0: nominal discharge,

• 1 + 1: accelerated discharge.

However, in the IGZO and the hybrid 3T0C topology the discharge curves for the 0+1 and 1+1

cases overlap continuously, making it impossible to distinguish them at any sensing time. While

enlarging the storage transistors could increase the difference in discharge rates, a rough estimate

indicates that a size increase of at least 20× would be required, resulting in a prohibitive area

overhead.

3.3 Digital 4-T IGZO DRAM Cell

Topology

Figure 3.11 illustrates the schematic of an n-row by m-column array of 4T0C full-IGZO DRAM

cells. Each column terminates in a silicon-based sense amplifier (SA). Two cells from different

rows but sharing the same bitline are highlighted. Each row is driven by three wordlines: the

WWL, the AND wordline (ANDL), and the OR wordline (ORL). The cell comprises four IGZO

transistors: a write transistor, a storage transistor, an AND transistor, and an OR transistor.

The SN is the parasitic capacitance of the read transistor.

35

Figure 3.10: Transient disturbance of the storage node due to parasitic coupling when using the
Si cascode transistor.

Transistor Sizing

All IGZO transistors use L = 1µm. The write device has W = 4µm to limit area and leakage

(off-bias at −800 mV). The storage, OR and AND (cascode) transistors each use W = 6µm,

balancing low on-resistance for fast BL discharge with modest area overhead.

In addition to its standard read and write capabilities, the cell can perform the logical OR, AND,

NOR, and NAND operations.

Write Operation

The write operation in a 4T0C cell is identical to that of a 3T0C cell; no modifications are

required. Due to time constraints, the parasitic coupling within the cell was not investigated.

Instead, the focus was solely on the ideal digital interpretation of the logic function.

Read Operation

Similarly, the read operation also follows the exact same procedure as in a 3T0C design. The only

additional requirement is that the ORL line must be held permanently off (−800 mV) during

reading to ensure that the ORL transistor remains turned off. This guarantees that the sensing

path is correctly established without interference from the ORL device.

OR Operation

For an OR computation, ANDL is asserted to (1.8V), and ORL is driven by the input operand.

Discharge of BL occurs if either the stored SN or the input operand is high. Table 3.1 summarizes

the resulting outputs, where X = OR(A,B) and Y = X.

AND Operation

During an AND computation, ORL is held low (−0.8V) and ANDL receives the input operand.

BL discharges only if both SN and the input operand are high. Table 3.2 presents the outputs,

36

Figure 3.11: Schematic overview of an n-row by m-column array of 4T0C full-IGZO DRAM cells
with WWL, ANDL, and ORL wordlines

Table 3.1: Truth table for OR/NOR operation.
A (SN) B (ORL) X = A ∨B Y = ¬X

0 0 0 1
0 1 1 0
1 0 1 0
1 1 1 0

where X = AND(A,B) and Y = X.

3.4 Comparison of Variants

Area

No layout was performed, so absolute area values cannot be provided; however, the relative

cell footprint can be ranked. The 4T0C variant, comprising four transistors per cell, exhibits

the largest area. This is due to the presence of three word lines per row and a relatively large

minimum spacing between adjacent lines, which forces the cells to occupy more matrix area.

The 3T0C full-IGZO topology, with three transistors per cell and only two word lines per row,

occupies less area than the 4T0C variant, resulting in a more compact layout. Finally, the 3T0C

hybrid design attains the smallest cell footprint: it replaces the IGZO cascode transistor (600

nm L × 2 µm W) with a silicon cascode device (180 nm L × 280 nm W) fabricated above

the IGZO layer and connected via a vertical via. This configuration is expected to reduce the

IGZO-layer area by approximately 38%, albeit at the expense of additional silicon area below the

37

Table 3.2: Truth table for AND/NAND operation.
A (SN) B (ANDL) X = A ∧B Y = ¬X

0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0

cell array. Moreover, alongside the silicon cascode transistor, there is ample room to integrate

additional circuitry per bit cell, such as blocks for vector–matrix multiplication or other digital

computations, without impacting the reduced IGZO footprint.

Write Speed

The write speed is determined by the series combination of the SN capacitance (i.e., the gate

capacitance of the storage transistor) and the on-resistance of the write transistor. Since all three

variants employ identical write sequences, the same write-transistor dimensions, and the same

SN capacitance, their write speeds are expected to be equivalent.

Read Speed

The read speed depends on the bitline capacitance, the on-resistance of the read transistor, and

the on-resistance of the cascode transistor. The 4T0C and 3T0C full-IGZO cells share identical

read and cascode transistors, and therefore exhibit the same read latency. In the 3T0C hybrid

cell, the IGZO cascode device is replaced by a higher-mobility silicon transistor, which reduces

the cascode on-resistance and thereby shortens the read time by approximately 8 ns compared

to the 4T0C and full-IGZO 3T0C configurations.

Energy Consumption

Dynamic energy per operation scales with the supply voltage and the operating current. Because

all variants use the same supply rails, current levels, and transistor dimensions during both read

and write operations, their energy consumptions are expected to be essentially identical.

Retention

Retention time is governed by leakage through the write transistor. As all three cell topologies

employ the same IGZO write transistor, their static leakage currents are the same, and thus their

retention characteristics are equivalent. The retention time is expected to be > 400 s.

Because the 3T0C hybrid cell achieves both the smallest IGZO area and the fastest read speed,

this variant will be adopted for the implementation of the full IMC-DRAM matrix architecture

in the next chapter.

38

Chapter 4

System Architecture of a Hybrid 3T0C

Memory Array

4.1 Introduction

This chapter presents the system architecture of a 32×32 hybrid 3T0C memory array and eval-

uates its performance against state-of-the-art designs. Section 4.2 provides a high-level architec-

tural overview, including the system block diagram and detailed descriptions of the key silicon

sub-blocks: the silicon sense amplifier and the silicon DRAM controller. Section 4.3 describes

the evaluation methodology and reports latency, throughput, and energy-per-access metrics.

Section 4.4 compares the hybrid 3T0C array with published designs via a benchmark table of

key metrics and discusses relative strengths and weaknesses. This organization ensures a clear

presentation of both design details and a rigorous assessment of performance trade-offs.

4.2 Architecture Overview

The proposed architecture features a 32 × 32 array of hybrid 3T0C DRAM cells, interfaced

to two parallel rows of sense amplifiers. Each row of the array is served by two independent

word-line paths, RWL and WWL, enabling row-by-row activation for read and write operations,

respectively. Similarly, each column provides separate bit-line paths, RBL and WBL, to transfer

data during the active interval of a selected row. The mechanisms for reading and writing follow

the procedures detailed in Chapter 3.

Flanking the memory array are two silicon-implemented logic units. The first is a bitwise logic

block: upon receipt of two row addresses and an operation code, the DRAM controller simultane-

ously loads the contents of the two addressed rows into the corresponding sense-amplifier latches,

then enables the bitwise unit to perform the specified logical operation and present the result at

its output. The second is a multiply-accumulate (MAC) unit, designed to execute dot-product

operations between one row of the array—interpreted as up to eight signed 4-bit integers (32

bits total)—and an external input vector whose length is assumed to be less than or equal to

the number of elements in the addressed row. Further details on both logic units are provided

in Section 4.2.2. Figure 4.1 illustrates a block diagram of the complete system architecture.

Figure 4.1: A block diagram of the complete system architecture.

40

Figure 4.2: The used Strong arm latch SA

4.2.1 Silicon Sense Amplifier

To achieve an optimal sense amplifier (SA) for the DRAM memory architecture, high speed, low

power consumption, minimal offset, and small area were pursued. A strong-arm latch SA was

selected due to its favorable trade-offs: it operates purely dynamically without static current

draw, resulting in low energy consumption, and occupies a compact layout. In the present

design, the input-referred offset has been minimized to 17mV, and the reference voltage VREF

is independent of the intrinsic transistor dimensions of the SA. A minimum VREF of 600mV is

required. Figure 4.2 illustrates the SA schematic, while the detailed operation and function of

each transistor are described in [31]. The transistor dimensions corresponding to the schematic

in Figure 4.2 are listed in Table 4.1.

Figure 4.3 depicts a complete sensing cycle. Upon activation, the SA resolves the small volt-

age difference between VREF and VIN into complementary digital outputs. The sensing phase

requires 2.5 ns, followed by a reset (precharge) phase of 1 ns to prepare the SA for the subsequent

operation. Each complete sense–precharge cycle consumes 139 fJ of energy.

4.2.2 Silicon Logic Units

Due to limited development time, two digital logic units were described in VHDL and subse-

quently synthesized into standard cells using the Genus synthesis tool with a library provided by

XFAB. These blocks serve as proof of concept; further optimization of the designs is required.

Both units are combined into a single VHDL entity; the complete entity declaration is provided

41

Table 4.1: Transistor dimensions used in the SA

Transistor(s) L (nm) W (µm)

M0 360 1.44
M1–M4 360 1.54
M5–M6 360 1.68
M7–M8 360 0.96
M9–M10 360 2.16
M10–M11 360 0.96

Figure 4.3: A cycle of enabling and precharging the SA

in Appendix A.

Bitwise Logic Unit

The Bitwise Logic Unit accepts four inputs:

1. A 32-bit vector from the first SA row.

2. A 32-bit vector from the second SA row.

3. A 3-bit operand specifying the bitwise operation to be performed.

4. A 1-bit enable signal indicating whether the SA inputs should be forwarded to the logic

unit. This enable prevents dynamic evaluation during a normal array read.

When a bitwise operation is requested, the DRAM controller stores the two target rows into the

SA rows and asserts the enable signal to activate the Bitwise Logic Unit. The unit then performs

the specified bitwise operation on the two 32-bit inputs and produces a 32-bit result.

42

MAC Logic Block

The Multiply–Accumulate (MAC) Logic Block performs a dot-product operation between two

input vectors whose maximum length matches the width of a memory-array row. The intended

application is matrix–vector multiplication, where matrix weights (stored as signed 4-bit integers)

are organized in consecutive array rows. Since each row can contain up to eight 4-bit values

(32 bits total), each row represents one set of eight weights. The input vector is streamed in as

a column vector.

For each MAC operation, the DRAM controller:

1. Loads a selected array row into the first SA row.

2. Provides an 8-bit enable mask, where each bit corresponds to one 4-bit element index. If

the vector length is shorter than eight, only the required number of elements are precharged

and read, reducing energy consumption. When the inputs are connected to the MAC, they

pass through this mask so that only the elements up to the specified length propagate; any

remaining positions are replaced by zero.

3. Triggers the MAC block, which multiplies each enabled 4-bit weight by the corresponding

input element and accumulates the products into a signed result.

This process repeats for each matrix row until all weight rows have been processed. Figure 4.4

illustrates the MAC operation flow. This architecture can be extended to larger arrays, where

row widths exceed eight elements, without additional modifications to the MAC logic (besides

scaling).

4.2.3 Silicon DRAM Controller

Architecture

The silicon DRAM controller is implemented as a finite-state machine (FSM) that orchestrates all

memory operations—read, write, bitwise, copy, and multiply-accumulate—on the hybrid 3T0C

array. The controller interfaces to a 5 ns clock (clk), a synchronous active-high reset (rst), a

4-bit operation code (operation), two 5-bit row addresses (addr 1 and addr 2), and a 32-bit

data input (data in). For MAC-specific operations, additional inputs specify the number of rows

(num rows) and the number of columns (num column) involved in the dot-product. On the output

side, the controller drives the read enable (RE), write enable (WE), and a 32-bit precharge enable

bus (PE n, active low) to the memory array, as well as selecting signals for sense-amplifier enables

(SA 0 E, SA 1 E), bitwise logic enable (enable bw rw), and MAC enable (enable mac). The 32-

bit data out bus from the DRAM controller is connected to one input of a two-to-one multiplexer

(MUX 0). The second input of MUX 0 is driven by the 32-bit output of the array—that is, the

data latched by the sense amplifiers. The mux 0 sel signal determines which source (controller

or array) is forwarded to the array input during write or copy operations. Specifically, during a

normal write, the controller’s data out is routed through MUX 0 to the bit lines. During a copy,

the data residing in the sense amplifiers (the array’s output) is selected by MUX 0 and written

back into the destination row.

Upon deassertion of reset, all internal registers initialize to zero and the FSM enters the IDLE

state with busy asserted. In IDLE, the controller samples the operation code and loads addr 1,

43

Figure 4.4: The MAC operation flow

44

addr 2, data in, num rows, and num column into internal registers. Depending on the code, the

FSM transitions to one of the following states: WRITE START, READ START, READ, bitwise, copy,

or MAC. During this transition, busy is deasserted to acknowledge that a new transaction has

begun.

Writing

In the WRITE sequence, the FSM transitions to WRITE START, where WE is asserted and addr 1

is placed onto the address bus. The state then advances to WRITE DATA: after a two-cycle delay,

data in is driven onto data out, and WE remains asserted until the tenth cycle of the timer. At

that point, WE is deasserted, data out is cleared, and the FSM finally returns to IDLE.

Reading

In a READ or READ NOT operation, the FSM first drives PE n low for one cycle to precharge all bit

lines, then releases PE n high. Immediately thereafter, RE is asserted and addr 1 is placed on the

address bus. Two cycles later, RE is deasserted to stop bit-line discharge. On the following clock

edge, SA 0 E is enabled to latch the amplified sensed voltage. In the next cycle, mux 1 sel is set

to the appropriate operation code (identity for READ, inverted for READ NOT), and after two more

cycles the FSM returns to IDLE.

Bitwise operations

The bitwise state performs two sequential reads using the mechanism described above. First,

the data from row addr 1 is latched into the first sense-amplifier row. Next, the data from

row addr 2 is latched into the second sense-amplifier row. Finally, mux 1 sel is set to the 3-bit

bitwise operation code, enable bw rw is asserted for one cycle to execute the specified logic, and

the FSM returns to IDLE.

Copy operation

The copy operation begins by reading the source row, latching the sensed data into the first

sense-amplifier row. Next, mux 0 sel is set to ‘1’, thereby connecting the array input to the

array output (i.e., the latched SA row). A standard write sequence is then performed to the

destination row: WE is asserted with addr 2 on the address bus, and after the fixed write latency

WE is deasserted. Finally, the FSM returns to IDLE.

Vector–Matrix Multiplication

The MAC state is designed to perform matrix–vector multiplication: the weight matrix is stored in

the 32×32 array so that each row of the matrix occupies one row of cells in the DRAM, and the

input vector is supplied to the MAC unit. During each MAC microsequence, one row of weights

(up to num column signed 4-bit values) is read from the array and a dot product is computed

with the corresponding input vector elements. To minimize dynamic energy, only the bit lines

corresponding to active columns are precharged: PE n is driven low for those bits and remains

high for inactive bits. Next, RE is asserted to read the selected row into SA 0 E. On the following

clock cycle, mux 1 sel is set to the MAC operation code and enable mac is asserted with a

45

mask reflecting the number of active columns. The MAC unit then multiplies each 4-bit weight

by the corresponding input element and accumulates the partial sums internally. Once that

microsequence completes, SA 0 E and enable mac are deasserted. If row counter < num rows

− 1, the counter increments and the next row is processed; otherwise, the FSM deasserts busy

and returns to IDLE.

The result of a read, bitwise, or MAC operation appears on data out after the corresponding

mux 1 sel selection. A final busy assertion ensures that no new command is accepted until the

current operation completes, thus preserving data integrity and synchronizing with host logic.

The DRAM controller is implemented as a single VHDL entity; its full entity declaration can be

found in Appendix B.

4.3 Performance Results

Throughout all states, the 5-bit timer register enforces precise multi-cycle timing for each control

signal. With a 5 ns clock period, the READ sequence spans ten clock cycles (from asserting PE n

to latching the sense-amplifier output), for a total of 10 × 5 ns = 50 ns. A complete READ

operation consumes 116 pJ, of which 108 pJ is expended by the DRAM controller; the remaining

8 pJ covers the sense amplifier, decoders, and bit-line precharge overhead. The WRITE sequence

requires eleven cycles (one for WRITE START plus ten in WRITE DATA), totaling 11× 5 ns = 55 ns.

A full WRITE operation uses 131 pJ, almost entirely consumed by the DRAM controller (no sense

amplifiers, MAC, or bitwise units are activated during this period).

A bitwise operation takes 85 ns and consumes 232 pJ in total; 223 pJ of that energy is drawn

by the DRAM controller itself. Each dot-product (MAC) operation takes 55 ns and costs 144 pJ,

where 108 pJ is spent by the controller and the remaining 36 pJ covers the MAC logic, sense

amplifier, and decoder activity.

Table 4.2 presents the throughput in millions of operations per second (MOPS) and the corre-

sponding energy efficiency (MOPS/W) for each NMC memory operation.

Table 4.2: Throughput and energy efficiency for various operations (in MOPS)

Operation MOPS GOPS/W
BITWISE 11.76 4.310
MAC 290.9 111.1

4.4 Comparison with State of the Art

As shown in Table 4.3, the write and read latencies, along with their corresponding energy

consumptions, are compared between this work and the studies by [19] and [20].

The row-refresh operation requires 131 pJ of energy and occupies 55 ns, and it is performed once

every 400 s. By comparison, a refresh in a pure silicon implementation requires 64 ms [20]. As

a result, each refresh interval achieves an energy saving of approximately 818.6 nJ.

46

Table 4.3: Comparison to the state of Art
Metric Giterman et al. [19] Ryu et al. [20] This work

Write access
time

1.3 ns 9.1µs 55 ns

Write Energy N/A N/A 131 pJ
Read time 25 ns 9.1µs 50 ns

Read Energy N/A N/A 116 pJ
Retention < 0.8ms > 1000 s > 400 s

Discussion: Strengths and Weaknesses

By integrating IGZO storage and write transistors, the bitcell’s retention time is now expected to

exceed > 400 s. Compared to a silicon-only implementation, this represents an improvement by a

factor of approximately 6451, which translates into significant energy savings—a major strength

of the proposed design. Additionally, the inclusion of a silicon cascode transistor above the two

IGZO transistors accelerates the read process by roughly 8 ns and reduces capacitive coupling,

since its gate-to-source capacitance is minimized through the adoption of minimum-sized devices.

This cascode configuration also mitigates discharge variations and, by enabling a more compact

IGZO layer, reduces its IGZO footprint by approximately 38%.

One drawback of introducing a silicon transistor is the additional silicon area required below the

IGZO layer. To address this, peripheral logic circuits—including the DRAM controller, sense

amplifier, and decoders—are manufactured in 180 nm silicon technology and placed adjacent to

the array on the silicon layer (below the reduced-area IGZO layer). Implementing these functions

in silicon accelerates both read and write operations: in a purely IGZO architecture, access times

can reach up to 9.1µs, whereas a silicon-only design achieves 1.3 ns for writes and 25 ns for reads.

In our hybrid architecture, the total access times are 55 ns for writes and 50 ns for reads.

When comparing the throughput and energy efficiency of the proposed design with those re-

ported in Sections 2.4 and 2.5, it is evident that our implementation achieves on the order of

GOPS/W, whereas state-of-the-art accelerators attain TOPS/W and higher raw performance.

This discrepancy can be attributed to three primary factors:

1. Technology node and peripheral overheads. The multiplier–accumulator (MAC)

array and DRAM controller in our design consume up to 85 % of the total energy, and are

implemented in a 180 nm process, compared with 28 nm or smaller technologies used by

leading designs.

2. High-level synthesis inefficiencies. Both the DRAM controller and MAC units were de-

scribed in VHDL and synthesized with Cadence Genus, resulting in suboptimal area–power

trade-offs; a bespoke RTL implementation could yield significant energy reductions.

3. Lack of in-memory compute. Whereas state-of-the-art architectures perform vec-

tor–matrix multiplications directly within the memory array—activating the sensing ampli-

fiers once for the entire operation—our system must read and process each row sequentially,

incurring additional data-transfer energy.

To close the energy-efficiency gap, the logic and memory peripherals will be migrated to a more

advanced technology node, reducing both dynamic and leakage power. In addition, by adding

47

supplementary blocks per cell adjacent to the silicon–cascode transistor, the design can integrate

dedicated vector–matrix multiplication units or other digital compute modules directly at the

bit-cell level, without enlarging the reduced IGZO footprint. This approach is expected to further

enhance overall throughput and energy efficiency.

This heterogeneous approach also enables efficient compute-near-memory: By placing digital

logic blocks in close proximity to the array, read operations can be performed and subsequent

logic operations carried out near the memory without incurring a high refresh rate—only a single

refresh is required every 400 s. In essence, data can be written once and subsequently accessed

and processed rapidly and energy-efficiently right next to the memory array.

48

Chapter 5

Broader Economic, Societal, and

Sustainability Implications

5.1 Economic Aspects

Although the dual-layer IGZO–Si 3T0C DRAM incurs higher fabrication cost, its ultra-long

retention (∼ 400 s vs. ∼ 64 ms) reduces overall energy consumption dramatically. In large AI-

centric data centers, where memory can represent 40–50% of hardware cost and 30–40% of power

draw, eliminating most refresh cycles yields substantial savings in energy and cooling, thereby

reducing total cost of ownership despite a higher per-chip price [32], [33]. Furthermore, in-memory

bitwise and MAC operations cut data-movement overhead, improving performance-per-watt and

further enhancing economic value.

5.2 Societal Implications

By lowering the energy barrier for AI workloads, IGZO–Si DRAM can help democratize compute-

intensive analytics, narrowing today’s “AI divide” [34]. Edge-deployed AI for healthcare diag-

nostics or personalized education becomes more feasible in resource-constrained settings when

memory power and cooling demands are minimized. This aligns with the “Green AI” movement:

reducing carbon footprint in training and inference makes ethical, sustainable AI more accessible

[34], [33].

5.3 Sustainability Implications

Operationally, the design’s drastic energy reduction contributes directly to lower data-center

emissions (data centers now consume 1–2% of global electricity and rising) [33]. However,

the IGZO layer relies on indium—a scarce byproduct of zinc mining with limited recycling

(≈ 10 − 15%), posing material-supply and end-of-life challenges [35]. Mitigating this requires

improved indium recovery and circular-economy strategies. On the positive side, reduced power

dissipation lowers average device temperature, potentially doubling module lifetime for every

10 ◦C reduction in operating temperature [36], and IGZO endurance tests exceed 1011 cycles

without degradation [37]. Together, these factors suggest that IGZO–Si DRAM can deliver a net

sustainability win, if coupled with responsible material sourcing and recycling.

50

Chapter 6

Conclusion and Future Work

Conclusion

In this work, we have presented a hybrid IGZO–Si 3T0C DRAM architecture that leverages the

ultra-low leakage of indium–gallium–zinc–oxide (IGZO) storage transistors together with high-

speed silicon peripherals. By combining an IGZO write transistor, an IGZO storage transistor,

and a minimum-sized silicon cascode transistor (L = 180 nm, W = 220 nm), we achieve a bitcell

retention time exceeding 400 s, which is approximately 6451× longer than a comparable silicon-

only 3T0C DRAM cell. This dramatic increase in retention directly translates into substantial

energy savings, since refresh operations can be performed only once every 400 s instead of every

64ms (in pure silicon).

The silicon cascode device also accelerates read access: swapping an IGZO cascode for the

minimum-sized Si transistor reduces read latency by roughly 8 ns (from 58 ns in the IGZO-only

cell to 50 ns). Moreover, the smaller gate-to-source capacitance of the silicon device mitigates

parasitic coupling into the storage node, thereby preserving data integrity and reducing discharge

variability under process variation. From a layout standpoint, integrating the Si cascode below

the two IGZO transistors reduces the IGZO layer’s area by approximately 38%, at the cost of

additional footprint in the silicon plane.

Peripheral logic—including the DRAM controller, the strong-arm latch sense amplifiers, decoders,

and compute units—was implemented in 180 nm silicon. This heterogeneous approach yields

access times of 55 ns for writes and 50 ns for reads, with energy per access of 131 pJ (write) and

116 pJ (read). By comparison, a purely IGZO 2T0C cell exhibits 9.1µs for both read and write,

while a silicon-only 3T0C cell achieves 1.3 ns (write) and 25 ns (read). Thus, our hybrid design

strikes a balance: retaining most of IGZO’s static-power advantages without sacrificing a large

throughput.

We also demonstrated near-memory computing capabilities by embedding two digital logic blocks

adjacent to the array. A 32-bit bitwise unit performs Boolean operations on two entire rows within

85 ns and 232 pJ, and a multiply–accumulate (MAC) unit implements an 8-element dot product

in 55 ns and 144 pJ. Because only one refresh is needed every 400 s, data can be written once

and subsequently accessed or computed upon with minimal energy overhead—enabling efficient

compute-near-memory (CNM) operation.

In summary, this thesis demonstrates that a hybrid IGZO–Si 3T0C DRAM cell can:

• Extend retention to> 400 s, reducing refresh energy by more than three orders of magnitude

compared to silicon.

• Achieve 50ns/55ns read/write access times, competitive with purely silicon designs.

• Realize bitwise and MAC operations near the memory array.

• Reduce IGZO layer area by ≈ 38% through 3D stacking of the Si cascode below the IGZO

cell.

These results confirm that the hybrid IGZO–Si 3T0C architecture is a promising approach for

low-power, high-throughput in-memory computing.

Future Work

While the benefits of the hybrid IGZO–Si 3T0C DRAM architecture are clear, several avenues

remain to strengthen and extend this research:

1. Array Scaling and Layout Optimization.

• Large-scale arrays: Evaluate the performance, yield, and variability when scaling

beyond 32×32 to kilobit or megabit arrays. Assess the impact of increased interconnect

capacitance, IR drop, and bitline parasitics on read/write latency and energy.

• 3D integration: Explore fabricating a monolithic 3D stack where multiple IGZO lay-

ers are vertically integrated with silicon logic. Investigate TSV (through-silicon via)

or BEOL (back-end-of-line) technologies to reduce inter-layer routing overhead and

latency.

• Layout cell libraries: Develop a detailed standard-cell library for the IGZO–Si hy-

brid cell, including optimized placement of the Si cascode via local interconnects and

minimized metal layers.

2. Advanced Sense Amplifier and Peripheral Design.

• Low-offset, low-power sensing: Further reduce the input-referred offset of the strong-

arm latch SA (currently 17mV) via careful transistor sizing or offset-cancellation

techniques. Lower offset would allow shorter discharge times, improving read latency

below 50 ns.

• Adaptive biasing: Implement adaptive bias circuits that adjust sense-amp precharge

levels or thresholds based on temperature and process corners to optimize both speed

and energy.

• Column-level parallelism: Design multi-bank/multi-bank column architectures that

permit simultaneous activation of multiple columns, boosting aggregate throughput

for bulk reads or CNM tasks.

3. Enhanced Near-Memory Compute (CNM) Architectures.

52

• Custom logic primitives: Explore adding lightweight analog compute primitives—such

as bitline-level charge summation or majority gates—within the IGZO array to accel-

erate common bitwise or approximate computing kernels.

• Per-bit logic blocks adjacent to Si cascode: Implement a small logic block per bit next

to the Si cascode transistor (e.g., a pull-up or pull-down network driven by the cell

value). This would enable analog matrix-vector multiplication across the entire array

in a single operation.

• Programmable logic: Design a small reconfigurable array (e.g., a coarse-grained recon-

figurable fabric) in silicon atop or beside the memory array to support a wider range

of CNM tasks (e.g., filtering, encryption) with minimal data movement.

• Compiler and ISA support: Develop compiler-driven instruction extensions for a host

CPU to offload CNM tasks (e.g., bitwise CNN layers) automatically to the hybrid

IGZO–Si memory macro, abstracting the low-level control signals.

4. Application-Level Evaluation.

• Workload benchmarks: Simulate end-to-end performance and energy on target ap-

plications (e.g., sparse matrix–vector multiplication, bitwise neural networks, graph

analytics) to quantify system-level gains over conventional DRAM + CPU baselines.

• Co-design with accelerators: Investigate coupling the hybrid DRAMmacro with emerg-

ing accelerators (e.g., RISC-V cores, domain-specific ASICs) in a system-on-chip (SoC)

to measure holistic area, power, and throughput trade-offs.

• Security and data retention: Examine how the ultra-long retention and analog-like

storage node might enable new threat models or side-channel vulnerabilities, and

propose mitigation strategies (e.g., row scrambling, refresh randomization).

5. Alternative Device Materials and Architectures.

• Emerging TFT semiconductors: Study alternative oxide semiconductors (e.g., IGTO,

ZnO) or 2D materials (e.g., MoS2) for the storage transistor to further increase reten-

tion or reduce write energy.

• Multilevel storage: Investigate multilevel storage using analog programming of the

IGZO storage node for high-density in-memory computing, trading off retention mar-

gin for increased bit density.

By pursuing these directions, the hybrid IGZO–Si 3T0C DRAM can evolve from a proof-of-

concept macro to a robust, manufacturable technology for next-generation, energy-efficient in-

memory computing systems.

53

54

Bibliography

[1] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications of the obvious,” ACM

SIGARCH Comput. Archit. News, vol. 23, pp. 20–24, Mar. 1995.

[2] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, “PRIME: A

Novel Processing-in-Memory Architecture for Neural Network Computation in ReRAM-

Based Main Memory,” ACM SIGARCH Comput. Archit. News, vol. 44, pp. 27–39, Jun

2016.

[3] V. Seshadri and O. Mutlu, “The Processing Using Memory Paradigm: In-DRAM Bulk Copy,

Initialization, Bitwise AND and OR,” CoRR, vol. abs/1610.09603, Oct 2016.

[4] S. Kim and H.-J. Yoo, “An overview of computing-in-memory circuits with dram and nvm,”

IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 71, pp. 1626–1631, Mar.

2024.

[5] A. Belmonte and H. Oh, “Capacitor-less, long-retention (>400 s) dram cell paving the way

towards low-power and high-density monolithic 3d dram,” in 2020 IEEE International Elec-

tron Devices Meeting (IEDM), pp. 4.2.1–4.2.4, 2020.

[6] T. Kamiya, K. Nomura, and H. Hosono, “Present Status of Amorphous In–Ga–Zn–O Thin-

Film Transistors,” Science and Technology of Advanced Materials, vol. 11, p. 044305, Apr

2010.

[7] J. L. Hennessy, D. A. Patterson, and A. C. Arpaci-Dusseau, Computer Architecture: A

Quantitative Approach. San Francisco, CA: Morgan Kaufmann, 6 ed., 2019.

[8] M. He, C. Song, I. Kim, C. Jeong, S. Kim, I. Park, M. Thottethodi, and T. N. Vijaykumar,

“Newton: A dram-maker’s accelerator-in-memory (aim) architecture for machine learning,”

in Proceedings of the 53rd IEEE/ACM International Symposium on Microarchitecture (MI-

CRO), pp. 372–385, 2020.

[9] G. Singh, L. Chelini, S. Corda, A. J. Awan, S. Stuijk, R. Jordans, H. Corporaal, and A.-

J. Boonstra, “Near-memory computing: Past, present, and future,” Microprocessors and

Microsystems, vol. 71, p. 102868, Nov. 2019.

[10] K. H. Cherenack, A. Z. Kattamis, B. Hekmatshoar, J. C. Sturm, and S. Wagner,

“Amorphous-Silicon Thin-Film Transistors Fabricated at 300 ◦C on a Free-Standing Foil

Substrate of Clear Plastic,” IEEE Electron Device Lett., vol. 28, pp. 1004–1006, Nov 2007.

[11] M. J. Mirshojaeian Hosseini and R. A. Nawrocki, “A review of the progress of thin-film

transistors and their technologies for flexible electronics,” Micromachines, vol. 12, no. 6,

p. 655, 2021.

55

[12] J. B. Choi, D. C. Yun, Y. I. Park, and J. H. Kim, “Properties of hydrogenated amor-

phous silicon thin-film transistors fabricated at 150 ◦C,” Journal of Non-Crystalline Solids,

vol. 266–269, pp. 1315–1319, May 2000.

[13] S. M. Venugopal, Flexible Active Matrix Displays and Integrated Amorphous Silicon Source

Drivers. PhD thesis, Arizona State University, 2007.

[14] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature

fabrication of transparent flexible thin-film transistors using amorphous oxide semiconduc-

tors,” Nature, vol. 432, no. 7016, pp. 488–492, 2004.

[15] T. Sameshima, S. Usui, and M. Sekiya, “Xecl excimer laser annealing used to fabricate

poly-si tfts,” in MRS Online Proceedings Library, vol. 71, pp. 435–440, 1986.

[16] K. Sera, H. Hosoya, O. Sugiura, and M. Matsumura, “High-performance tfts fabricated by

xecl excimer laser annealing of hydrogenated amorphous-silicon film,” IEEE Transactions

on Electron Devices, vol. 36, no. 12, pp. 2868–2872, 1989.

[17] S. Uchikoga, “Low-temperature polycrystalline silicon thin-film transistor technologies for

system-on-glass displays,” MRS Bulletin, vol. 27, no. 11, pp. 881–886, 2002.

[18] F.-C. Hsu, R. J. Huang, C.-H. Chang, R.-P. Tsay, J.-H. Chang, and I.-W. Huang, “New 1T1C

and 3T0C Cells in the 3D X-DRAM Family: Advancing 3D NAND-like DRAM Technology

Using IGZO,” white paper, NEO Semiconductor, May 2025.

[19] R. Giterman, A. Teman, P. Meinerzhagen, L. Atias, A. P. Burg, and A. Fish, “Single-supply

3t gain-cell for low-voltage low-power applications,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 24, no. 1, pp. 358–362, 2016.

[20] S. Ryu, M. Kang, K. Cho, and S. Kim, “Capacitorless Two-Transistor Dynamic Random-

Access Memory Cells Comprising Amorphous Indium–Tin–Gallium–Zinc Oxide Thin-

Film Transistors for the Multiply–Accumulate Operation,” Adv. Mater. Technol., vol. 9,

p. 2302209, Aug 2024.

[21] S. Liu, S. Wei, P. Yao, D. Wu, L. Jie, S. Pan, J. Tang, B. Gao, H. Qian, and H. Wu, “A

28 nm 576 kbit rram-based computing-in-memory macro featuring hybrid programming with

area efficiency of 2.82 tops/mm2,” Journal of Semiconductors, vol. 46, no. 6, 2025.

[22] W. Ye, C. Dou, L. Wang, Z. Zhou, J. An, W. Li, H. Gao, X. Xu, J. Yue, J. Yang, J. Liu,

D. Shang, J. Tian, Q. Liu, and M. Liu, “A 28 nm Hybrid 2T1R RRAM Computing-in-

Memory Macro for Energy-efficient AI Edge Inference,” in Proceedings of the 2022 IEEE

Asian Solid-State Circuits Conference (A-SSCC), Nov. 2022.

[23] C.-X. Xue, J.-M. Hung, H.-Y. Kao, Y.-H. Huang, S.-P. Huang, F.-C. Chang, P.-C. Chen,

T.-W. Liu, C.-J. Jhang, C.-I. Su, W.-S. Khwa, C.-C. Lo, R.-S. Liu, C.-C. Hsieh, K.-T. Tang,

Y.-D. Chih, and T.-Y. Chang, “A 22 nm 4 mb 8 b-precision reram computing-in-memory

macro with 11.91 – 195.7 tops/w for tiny ai edge devices,” in 2021 IEEE International

Solid-State Circuits Conference (ISSCC), pp. 246–247, Feb 2021.

[24] J.-H. Yoon, M. Chang, W.-S. Khwa, Y.-D. Chih, M.-F. Chang, and A. Raychowdhury,

“A 40 nm, 64 kb, 56.67 tops/w voltage-sensing computing-in-memory/digital rram macro

56

supporting iterative write with verification and online read-disturb detection,” IEEE Journal

of Solid-State Circuits, vol. 57, pp. 68–79, Jan 2022.

[25] S. Jung, D. Ham, S. J. Kim, and et al., “A crossbar array of magnetoresistive memory

devices for in-memory computing,” Nature, vol. 602, pp. 582–588, Feb 2022.

[26] P. Deaville, B. Zhang, and N. Verma, “A 22 nm 128 kb mram row/column-parallel in-

memory computing macro with memory-resistance boosting and multi-column adc readout,”

in 2022 IEEE Symposium on VLSI Technology and Circuits, pp. 268–269, Jun 2022.

[27] M. Caon, C. Choné, P. D. Schiavone, A. Levisse, G. Masera, M. Martina, and D. Atienza,

“Scalable and RISC-V Programmable Near-Memory Computing Architectures for Edge

Nodes,” IEEE Transactions on Emerging Topics in Computing, vol. 13, pp. 1–15, Jan 2025.

[28] Y.-C. Guo, T.-S. Chang, C.-S. Lin, B.-C. Chiou, C.-M. Lai, S.-S. Sheu, W.-C. Lo, and S.-C.

Chang, “CIMR-V: An End-to-End SRAM-based CIM Accelerator with RISC-V for AI Edge

Device,” in Proceedings of the 2024 IEEE International Symposium on Circuits and Systems

(ISCAS), May 2024.

[29] S. Yan, Z. Cong, Z. Wang, Z. Dai, Z. Guo, Z. Qian, X. Li, X. Zheng, C. Chen, N. Lu,

C. Dou, G. Yang, X. Xu, D. Geng, J. Yue, L. Wang, L. Li, and M. Liu, “A monolithic 3d

igzo-rram-sram-integrated architecture for robust and efficient compute-in-memory enabling

equivalent-ideal device metrics,” Science China Information Sciences, vol. 68, pp. 122404:1–

122404:16, Feb 2025.

[30] L. Zheng, Z. Wang, Z. Lin, and M. Si, “The Impact of Parasitic Capacitance on the Memory

Characteristics of 2T0C DRAM and New Writing Strategy,” IEEE Electron Device Letters,

vol. 44, Aug 2023.

[31] B. Razavi, “The strongarm latch: A circuit for all seasons,” IEEE Solid-State Circuits

Magazine, vol. 7, pp. 12–17, June 2015.

[32] D. Patel, “Ai server cost analysis – memory is the biggest loser.” SemiAnalysis (online),

2023. Accessed 2025-06-09.

[33] S. Chen, “Data centers will use twice as much energy by 2030—driven by ai.” Scientific

American, Apr. 10, 2025. Accessed 2025-06-09.

[34] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy considerations for deep

learning in nlp,” Proc. 57th Annual Meeting of the ACL, pp. 3645–3650, 2019.

[35] H. U. Sverdrup, O. Van Allen, and H. V. Haraldsson, “Modeling indium extraction, supply,

price, use and recycling 1930–2200 using the world7 model,” Natural Resources Research,

vol. 32, pp. 2285–2313, 2023.

[36] R. Wilcoxon, “Does a 10 ◦c increase in temperature really reduce the life of electronics by

half?.” Electronics Cooling Magazine, Aug. 2017. Accessed 2025-06-09.

[37] A. Belmonte, B. Govoreanu, S. Sutar, K. Barla, and et al., “Tailoring igzo–tft architecture

for capacitorless dram, demonstrating > 103 s retention and > 1011 cycles endurance,” in

2021 IEEE International Electron Devices Meeting (IEDM), pp. 10.6.1–10.6.4, 2021.

58

Appendix A

Appendix - VHDL Implementations of

the Multiply–Accumulate and Bitwise

Functional Units

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

entity MAC is

 Port (

 Data_SA_0 : in std_logic_vector(31 downto 0);

 Data_N_SA_0 : in std_logic_vector(31 downto 0);

 Data_SA_1 : in std_logic_vector(31 downto 0);

 Data_N_SA_1 : in std_logic_vector(31 downto 0);

 Data_vector : in std_logic_vector(31 downto 0);

 sel : in std_logic_vector(2 downto 0);

 enable : in std_logic;

 enable_mac : in std_logic_vector(7 downto 0);

 Data_Out : out std_logic_vector(31 downto 0)

);

end MAC;

architecture Behavioral of MAC is

begin

 process(Data_SA_0,Data_N_SA_0 , Data_SA_1 , Data_N_SA_1, Data_vector,

sel, enable , enable_mac)

 variable sum : signed(7 downto 0);

 variable a : signed(3 downto 0);

 variable b : signed(3 downto 0);

 variable prod : signed(7 downto 0);

 begin

 if enable = '1' then

 case sel is

 when "000" => Data_Out <= Data_SA_0 xor Data_SA_1;

 when "001" => Data_Out <= Data_SA_0 xnor Data_SA_1;

 when "010" => Data_Out <= Data_SA_0;

 when "011" => Data_Out <= Data_N_SA_0;

 when "100" => Data_Out <= Data_SA_0 or Data_SA_1;

 when "101" => Data_Out <= Data_SA_0 nor Data_SA_1;

 when "110" => Data_Out <= Data_SA_0 nand Data_SA_1;

 when "111" => Data_Out <= Data_SA_0 and Data_SA_1;

 when others => Data_Out <= (others => '0');

 end case;

 elsif enable_mac /= "00000000" then

 -- Multiply-and-Accumulate over 8 signed 4-bit elements

 sum := (others => '0');

 for i in 0 to 7 loop

 if enable_mac(i) = '1' then

 a := signed(Data_SA_0((i*4)+3 downto i*4));

 b := signed(Data_vector((i*4)+3 downto i*4));

 prod := a * b;

 sum := sum + prod;

 end if;

 end loop;

 -- Extend sum (8 bits) to 32 bits

 Data_Out <= std_logic_vector(resize(sum, 32));

 else

 Data_Out <= (others => '0');

 end if;

 end process;

end Behavioral;

62

Appendix B

Appendix - VHDL Implementations of

the DRAM controller Functional Unit

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

entity dram_controller_MAC_bitwise is

 Port (

 clk : in std_logic; -- 5 ns clock

 rst : in std_logic; -- synchronous

reset, active high

 operation : in std_logic_vector(3 downto 0);

 -- 0000: IDLE

 -- 0001: WRITE

 -- 0010: READ

 -- 0011: READ_NOT

 -- 0100: OR

 -- 0101: NOR

 -- 0110: NAND

 -- 0111: AND

 -- 1000: XOR

 -- 1001: NXOR

 -- 1101: copy

 -- 1011: MAC

 data_in : in std_logic_vector(31 downto 0);

 addr_1 : in std_logic_vector(4 downto 0);

 addr_2 : in std_logic_vector(4 downto 0);

 -- MAC specific signals

 num_rows : in std_logic_vector(4 downto 0);

 num_column : in std_logic_vector(4 downto 0);

 enable_bw_rw : out std_logic;

 enable_mac : out std_logic_vector(7 downto 0);

 -- control outputs

 RE : out std_logic;

 WE : out std_logic;

 PE_n : out std_logic_vector(31 downto 0);

-- precharge enable, active low

 data_out : out std_logic_vector(31 downto 0);

 mux_0_sel : out std_logic; -- select bitwise

output mux

 mux_1_sel : out std_logic_vector(3 downto 0);

 SA_0_E : out std_logic;

 SA_1_E : out std_logic;

 addr_bus : out std_logic_vector(4 downto 0);

 busy : out std_logic

);

end dram_controller_MAC_bitwise;

architecture Behavioral of dram_controller_MAC_bitwise is

 type state_type is (

 IDLE,

 WRITE_START, WRITE_DATA,

 READ_START, READ,

 COPY,

 bitwise,

 MAC

);

 signal state : state_type;

 signal timer : unsigned(4 downto 0);

 signal RE_reg : std_logic;

 signal WE_reg : std_logic;

 signal PE_n_reg : std_logic_vector(31 downto 0);

-- precharge enable, active low

 signal data_out_reg : std_logic_vector(31 downto 0);

 signal mux_0_sel_reg : std_logic; -- select bitwise

output mux

 signal mux_1_sel_reg : std_logic_vector(3 downto 0);

 signal SA_0_E_reg : std_logic;

 signal SA_1_E_reg : std_logic;

 signal addr_bus_reg : std_logic_vector(4 downto 0);

 signal enable_bw_rw_reg : std_logic;

 signal enable_mac_reg : std_logic_vector(7 downto 0);

 signal operation_reg : std_logic_vector(3 downto 0);

 signal num_rows_reg : std_logic_vector(4 downto 0);

 signal num_column_reg : std_logic_vector(4 downto 0);

 signal data_in_reg : std_logic_vector(31 downto 0);

 signal addr_1_reg : std_logic_vector(4 downto 0);

 signal addr_2_reg : std_logic_vector(4 downto 0);

 signal row_counter : unsigned(4 downto 0);

 signal mac_stage : integer range 0 to 1; -- 0 = start next

read, 1 = in read-microsequence

begin

 -- FSM

 process(clk)

 begin

 if rising_edge(clk) then

 if rst = '1' then

 state <= IDLE;

 timer <= (others => '0');

 RE_reg <= '0';

 WE_reg <= '0';

 PE_n_reg <= (others => '1');

 data_out_reg <= (others => '0');

 mux_0_sel_reg <= '0';

 mux_1_sel_reg <= (others => '0');

 SA_0_E_reg <= '0';

 SA_1_E_reg <= '0';

 addr_bus_reg <= (others => '0');

 operation_reg <= (others => '0');

 data_in_reg <= (others => '0');

 addr_1_reg <= (others => '0');

 addr_2_reg <= (others => '0');

 enable_bw_rw_reg <= '0';

 enable_mac_reg <= (others => '0');

 row_counter <= (others => '0');

 mac_stage <= 0;

 busy <= '1';

 else

 case state is

 when IDLE =>

 -- default outputs

 timer <= (others => '0');

 RE_reg <= '0';

 WE_reg <= '0';

 PE_n_reg <= (others => '1');

 data_out_reg <= (others => '0');

 mux_0_sel_reg <= '0';

 mux_1_sel_reg <= (others => '0');

 SA_0_E_reg <= '0';

 SA_1_E_reg <= '0';

 addr_bus_reg <= (others => '0');

 -- start new transaction

 operation_reg <= operation;

 num_rows_reg <= num_rows;

 num_column_reg <= num_column;

 enable_bw_rw_reg <= '0';

 enable_mac_reg <= (others => '0');

 data_in_reg <= data_in;

 addr_1_reg <= addr_1;

 addr_2_reg <= addr_2;

 row_counter <= (others => '0');

 mac_stage <= 0;

 case operation is

 when "0000" =>

 state <= IDLE;

 when "0001" =>

 state <= WRITE_START;

 when "0010" =>

 state <= READ_START;

 when "0011" =>

 state <= READ_START;

 when "0100" =>

 state <= bitwise;

 when "0101" =>

 state <= bitwise;

 when "0110" =>

 state <= bitwise;

 when "0111" =>

 state <= bitwise;

 when "1000" =>

 state <= bitwise;

 when "1001" =>

 state <= bitwise;

 when "1101" =>

 state <= copy;

 when "1011" =>

 state <= MAC;

 when others =>

 state <= IDLE; -- fallback

 end case;

 busy <= '0';

 -- WRITE sequence

 when WRITE_START => -- time 0

 WE_reg <= '1';

 addr_bus_reg <= addr_1_reg;

 timer <= to_unsigned(1,5);

 state <= WRITE_DATA;

 busy <= '1';

 when WRITE_DATA => -- time 4 ns

 if timer = to_unsigned(2,5) then

 data_out_reg <= data_in_reg;

 end if;

 if timer = to_unsigned(10,5) then

 WE_reg <= '0';

 data_out_reg <= (others=>'0');

 state <= IDLE;

 else

 timer <= timer + 1;

 end if;

 busy <= '1';

 -- READ & READ_NOT sequence

 when READ_START =>

 PE_n_reg <= (others => '0');

 timer <= to_unsigned(1,5);

 state <= READ;

 busy <= '1';

 when READ =>

 if timer = to_unsigned(2,5) then

 PE_n_reg <= (others => '1');

 elsif timer = to_unsigned(3 ,5) then

 RE_reg <= '1'; addr_bus_reg <= addr_1_reg;

 elsif timer = to_unsigned(5,5) then

 RE_reg <= '0';

 elsif timer = to_unsigned(6,5) then

 SA_0_E_reg <= '1';

 elsif timer = to_unsigned(7,5) then

 mux_1_sel_reg <= operation_reg;

 enable_bw_rw_reg <= '1';

 elsif timer = to_unsigned(9,5) then

 state <= IDLE;

 end if;

 timer <= timer + 1;

 busy <= '1';

 -- BITWISE OPERATION

 when bitwise =>

 -- latch first row

 if timer = to_unsigned(0,5) then

 PE_n_reg <= (others => '0');

 elsif timer = to_unsigned(2,5) then

 PE_n_reg <= (others => '1');

 elsif timer = to_unsigned(3 ,5) then

 RE_reg <= '1'; addr_bus_reg <= addr_1_reg;

 elsif timer = to_unsigned(5,5) then

 RE_reg <= '0';

 elsif timer = to_unsigned(6,5) then

 SA_0_E_reg <= '1';

 -- latch second row

 elsif timer = to_unsigned(7,5) then

 PE_n_reg <= (others => '0');

 elsif timer = to_unsigned(9,5) then

 PE_n_reg <= (others => '1');

 elsif timer = to_unsigned(10,5) then

 RE_reg <= '1'; addr_bus_reg <= addr_2_reg;

 elsif timer = to_unsigned(12,5) then

 RE_reg <= '0';

 elsif timer = to_unsigned(13,5) then

 SA_1_E_reg <= '1';

 -- bitwise calculation

 elsif timer = to_unsigned(14,5) then

 mux_1_sel_reg <= operation_reg;

 enable_bw_rw_reg <= '1';

 elsif timer = to_unsigned(16,5) then

 state <= IDLE;

 end if;

 timer <= timer + 1;

 busy <= '1';

 -- COPY OPERATION

 when copy =>

 if timer = to_unsigned(0,5) then

 PE_n_reg <= (others => '0');

 elsif timer = to_unsigned(2,5) then

 PE_n_reg <= (others => '1');

 elsif timer = to_unsigned(3 ,5) then

 RE_reg <= '1'; addr_bus_reg <= addr_1_reg;

 elsif timer = to_unsigned(5,5) then

 RE_reg <= '0';

 elsif timer = to_unsigned(6,5) then

 SA_0_E_reg <= '1';

 elsif timer = to_unsigned(7,5) then

 mux_1_sel_reg <= "0010";

 enable_bw_rw_reg <= '1';

 elsif timer = to_unsigned(8,5) then

 WE_reg <= '1';

 addr_bus_reg <= addr_2_reg;

 elsif timer = to_unsigned(10,5) then

 mux_0_sel_reg <= '1';

 elsif timer = to_unsigned(18,5) then

 WE_reg <= '0';

 data_out_reg <= (others=>'0');

 state <= IDLE;

 end if;

 timer <= timer + 1;

 busy <= '1';

 -- MAC operation ->

 when MAC =>

 case mac_stage is

 -- begin van een nieuwe read-microsequence

 when 0 =>

 -- bereken en zet het adres van deze

iteratie

 addr_bus_reg <=

std_logic_vector(unsigned(addr_1_reg) + row_counter);

 timer <= to_unsigned(0,5);

 mac_stage <= 1;

 when 1 =>

 if timer = to_unsigned(0,5) then

 for i in 0 to 31 loop

 if i <

to_integer(unsigned(num_column_reg)) * 4 then

 PE_n_reg(i) <= '0';

 else

 PE_n_reg(i) <= '1';

 end if;

 end loop;

 elsif timer = to_unsigned(2,5) then

 PE_n_reg <= (others => '1');

 elsif timer = to_unsigned(3,5) then

 RE_reg <= '1';

 elsif timer = to_unsigned(5,5) then

 RE_reg <= '0';

 elsif timer = to_unsigned(6,5) then

 SA_0_E_reg <= '1';

 elsif timer = to_unsigned(7,5) then

 mux_1_sel_reg <=

operation_reg;

 enable_mac_reg <=

std_logic_vector(

 to_unsigned(

(2**to_integer(unsigned(num_column_reg))) - 1,

 8

)

);

 elsif timer = to_unsigned(9,5) then -

- verbeter dit als de multiplyer meer tijd nodig heeft

 -- microsequence klaar: kies of

we nog een rij moeten doen

 SA_0_E_reg <= '0';

 enable_mac_reg <= (others =>

'0');

 if row_counter <

unsigned(num_rows_reg) -1 then

 row_counter <= row_counter +

1;

 mac_stage <= 0; --

start volgende rij

 else

 state <= IDLE; --

alles gelezen, klaar

 end if;

 end if;

 timer <= timer + 1;

 busy <= '1';

 end case;

 when others => state <= IDLE;

 end case;

 end if;

 end if;

 end process;

 RE <= RE_reg;

 WE <= WE_reg;

 PE_n <= PE_n_reg;

 data_out <= data_out_reg;

 mux_0_sel <= mux_0_sel_reg;

 mux_1_sel <= mux_1_sel_reg;

 SA_0_E <=SA_0_E_reg;

 SA_1_E <= SA_1_E_reg;

 addr_bus <= addr_bus_reg;

 enable_mac <= enable_mac_reg;

 enable_bw_rw <= enable_bw_rw_reg;

end Behavioral;

