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Abstract 

This thesis aims to improve the initial setup phase in warehouse environments by reducing time 

and cost required utilizing a camera-mounted crane system. Stereo vision with infrared (IR) 

capabilities was chosen due to its ability to capture detailed structural features cost-effectively and 

without external lighting. After evaluating several cameras, the OAK-D Pro W was selected for its 

depth range, accuracy, superior wide field of view, and integrated IR functionality. A test setup was 

developed to replicate warehouse racking in a controlled environment, enabling reliable validation 

of the system. This included laser-cut aluminum faceplates and L-shaped support beams mounted 

on aluminum profiles to simulate actual racking structures. To achieve precise and consistent 

vertical camera movement, a motorized sled was created using a threaded rod, stepper motor, and 

an Arduino Uno for automated control and position tracking. Template-matching algorithms were 

implemented to compare detected positions with theoretical values, generating an offset table to 

enable accurate and efficient crane movements. Additionally, the system can automatically adjust 

its coordinates for the different racking positions during the initial setup phase to account for any 

deformations, reducing the setup time required from days and weeks to hours. 

  



 

 

  



 

 

Abstract in Nederlands 

Deze thesis heeft als doel het verbeteren van de initiële installatie in magazijnomgevingen door de 

benodigde tijd en kosten te verminderen met behulp van een camerasysteem op een kraan voor 

nauwkeurige identificatie van stellingen.  Stereo vision met infrarood (IR)-mogelijkheden werd 

gekozen vanwege de kosteneffectieve manier om gedetailleerde structurele kenmerken vast te 

leggen zonder externe verlichting. Na evaluatie van verschillende camera's werd de OAK-D Pro W 

geselecteerd vanwege zijn dieptebereik, nauwkeurigheid, brede gezichtsveld en geïntegreerde IR-

functionaliteit. Een testsopstelling werd ontwikkeld om magazijnstellingen in een gecontroleerde 

omgeving te simuleren, wat betrouwbare validatie van het systeem mogelijk maakte. Dit omvatte 

laser-gesneden aluminium frontplaten en L-vormige steunen gemonteerd op aluminium profielen 

om echte stellingen na te bootsen. Voor precieze en consistente verticale camerabewegingen werd 

een gemotoriseerde slede gemaakt met een draadstang, een stappenmotor en een Arduino Uno voor 

geautomatiseerde controle en positietracking. Template-matching-algoritmes werden 

geïmplementeerd om gedetecteerde posities te vergelijken met theoretische waarden, wat 

resulteerde in een offsettabel voor nauwkeurige en efficiënte kraanbewegingen. Daarnaast kan het 

systeem tijdens de opstart fase de coördinaten automatisch aanpassen aan de verschillende 

stellingposities om rekening te houden met eventuele vervormingen, waardoor de installatietijd van 

dagen en weken tot enkele uren wordt teruggebracht. 
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1. Introduction 

1.1. Context 

This master thesis is conducted in collaboration with PEC, a company based in Leuven that 

specializes in the production and quality assurance of battery cells. PEC delivers comprehensive, 

turn-key solutions for clients seeking automated battery cell filling and quality control systems. 

Their services cater to both small- and large-scale production needs, ensuring flexibility and 

efficiency. One critical component in this process is the stacking crane Fig. 1, which works in 

tandem with a racking system to store and transport pallets filled with battery cells during the 

various stages of production and testing. 

The racking solutions PEC employs are comprised of large, industrial storage racks, which can vary 

in size but typically stand around 12 meters high and 50 meters in length. These racks hold pallets 

that contain the battery cells, and to support the pallets securely, each pick location is equipped 

with two L-shaped support beams on either side as illustrated in Fig. 2. To guarantee that each 

support beam is properly secured and can safely hold the weight of the pallet, a safety nut seen 

circled in red is installed on each beam. 

 

 

 

 

Fig. 1 Top view of crane and racking [9] 
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These storage racks are housed in temperature-controlled rooms, an essential feature for the battery 

testing cycle. Maintaining a stable environment ensures that the battery cells remain in optimal 

condition throughout the testing process. From these temperature-controlled storage locations, 

pallets are transported to various machines that conduct thorough quality assessments on the battery 

cells. 

Facilitating the movement of these pallets is the stacking crane, which is strategically positioned 

between two racks. Mounted on the crane is a pallet handler, designed to pick up and deposit pallets. 

This is accomplished by extending a pallet holder beneath the stored pallet, lifting it off the support 

beams, retracting it safely out of the rack and into the pallet holder. The same operation can be 

performed in reverse to place pallets back onto the support beams in the rack or into the testing 

machine. This ensures seamless and automated transportation throughout the production and 

testing cycle.  

1.2. Problem Statement 

It is crucial that the crane knows its exact position at all times. This is done with the help of two 

lasers paired with corresponding reflectors. A sensor, next to each laser, measures the time delay 

between light leaving the laser and reaching the sensor, this time value can then be translated to 

distance. By mounting two lasers on the crane, one to track movement in the X-axis and another 

for the Y-axis, and positioning stationary reflectors along these axes, the system provides accurate 

real-time position feedback of the crane. This data is integrated into the programmable logic 

controller (PLC), allowing the crane to operate automatically. The positional information is used to 

map out the pick locations in the PLC, so the crane knows exactly where to retrieve and deposit 

pallets. 

Fig. 2 L-shaped support beams in purple and safety nut 
circles in red 
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Before this automated process can start, the pick locations must be accurately set in the PLC. This 

is typically done during the system's startup phase where a technician has to manually move the 

crane to each pick location and record the X and Y coordinates for every position into the PLC. 

Given the size of these storage racks, this is a very time-consuming task. Depending on the number 

of positions, it can take several days or even weeks to complete the setup. Additionally, there’s a 

risk of errors during installation. These errors can lead to incorrect tolerances, which may cause 

stress on the racking system and potentially lead to it bending. In some cases, these inaccuracies 

might be small enough to not affect the operation, but in other cases, they can cause entire rows of 

the rack to become unusable. This significantly reduces the system’s overall efficiency, as fewer 

storage positions are available, reducing the capacity of the entire machine. These shortcomings of 

the current system have a major effect on the efficiency during both set up and run time operations. 

1.3. Objectives 

The current system's inefficiencies result in significant time delays and financial costs, emphasizing 

the need for improvements. Addressing these challenges efficiently is critical, and the goal of this 

master’s thesis is to develop a robust solution by the end of 2024. 

The proposed system will be designed to automatically detect the exact position of the support 

beams and compare these positions to predefined reference points in order to set each point’s offset 

in the PLC. It will calculate any deviations in the X, Y, and Z (depth) axes, with a tolerance of no 

more than 5 mm to ensure accurate operation. This level of precision is crucial for ensuring the 

system operates reliably and safely, particularly when dealing with automated storage and retrieval. 

In addition to verifying the position of the support beams, the system will measure their alignment, 

checking whether they are parallel or positioned at an angle. This is a critical pass/fail test to confirm 

that the pallets can be securely stored on the beams. The tolerance for this angle measurement 

should be no greater than 5 degrees. Another key feature will be the detection of the safety plug, 

ensuring it is securely installed. These checks will occur during system startup and must be 

performed on the fly while the crane is moving at a minimum speed of 0.25 m/s. Furthermore, the 

system will need to operate effectively in pitch-black conditions. 

The solution needs to be fully autonomous, eliminating the need for manual interventions. It will 

communicate directly with the PLC via Ethernet/IP, allowing it to retrieve precise positional data 

from the existing system infrastructure. Once the system is operational, it will also conduct periodic 

checks during low-load periods to detect if pallets are stored correctly and ensure the safety plug is 

still securely in place. These continuous verifications will help maintain operational safety and 

efficiency, ensuring that any issues are detected early, and the system runs smoothly over time. 
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1.4. Materials and Methods 

To develop the intended automated system, the first and most critical decision is selecting the 

appropriate camera. Especially on the following key requirements where the camera needs not only 

to detect the support beams but also to perform accurate depth measurements. There are two main 

camera types that can meet these requirements: a stereo vision camera or a time-of-flight (ToF) 

camera. 

A time-of-flight camera offers better low-light performance and higher accuracy for depth 

measurements. These advantages, however, typically come with a higher cost. Stereo vision cameras 

on the other hand are a more affordable option. While it may not provide the same level of depth 

accuracy as a ToF camera, it is sufficiently accurate for this specific application. Additionally, many 

stereo vision cameras come equipped with an infrared (IR) sender and receiver, enabling them to 

function in low-light or even completely dark environments. If the chosen stereo vision camera 

lacks IR capabilities, an external light source, such as a light bar, would be necessary to ensure proper 

functionality in dark settings. Furthermore, considering the current setup's limitations, the camera 

should have a depth range between 0.4 m and 4 m, along with a horizontal or vertical field of view 

greater than 110 degrees to cover the entire area effectively. 

A key aspect of the system is its ability to correctly recognize the L-shaped support beams, which 

may vary slightly in shape or color. The most reliable way to achieve this, is through pattern 

recognition, a vision-based data analysis technique that uses machine learning algorithms to identify 

patterns in images. The algorithm can be trained on a set of example images to detect specific parts 

of the support beam. Once the support beam is recognized, the system can calculate the X and Y 

coordinates and compare them to reference positions to determine any offsets. The same image data 

can also be used to measure depth, ensuring the beams are correctly positioned and not bent or 

misaligned. 

To ensure smooth automated operation, a system-on-module (SOM) is utilized that manages the 

image processing and the communication with the PLC. This communication will be handled over 

Ethernet/IP, as the PLC holds the crane’s positional data and will require support beam position 

offset information from the SOM and camera to ensure accurate operation in the future. 
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2. Source Study 

2.1. Context 

In recent years, stereo vision technology has gained considerable attention for its ability to provide 

depth perception and object recognition in complex industrial settings. This source study explores 

the application of a stereo vision camera mounted on a crane, with the objective of accurately 

identifying racking structures in a warehouse environment. The study addresses several technical 

aspects of which are crucial to the effective implementation of stereo vision, including the basic 

principles of stereo vision technology, comparison with other depth-sensing technologies such as 

time-of-flight (ToF) cameras, and the specific challenges of recognizing metal racking patterns in 

variable lighting conditions. 

Additionally, the study will investigate the role of pattern recognition algorithms in distinguishing 

racking from other warehouse features. This includes analyzing existing methods for metal object 

detection and exploring if any precedents exist for similar implementations in industrial automation. 

By consolidating these insights, this study aims to provide a comprehensive foundation for 

implementing stereo vision in a crane-based racking identification system, highlighting both 

potential benefits and practical challenges. 

2.2. Stereo Vision 

Stereo vision cameras are depth-sensing devices designed to replicate human binocular vision, 

enabling them to measure distances and generate detailed 3D representations of their surroundings. 

This technology captures images from two horizontally separated cameras, commonly referred to as 

the left and right cameras, each providing a slightly different perspective of the same scene. These 

subtle differences, or disparities, between the two images allow for depth calculation through 

triangulation. By applying algorithms that correlate these images and map the disparities, stereo 

vision systems create accurate depth maps. These maps are essential for applications that require 

precise 3D perception, such as robotics, autonomous vehicles, and industrial automation. In these 

settings, high accuracy in depth mapping is critical for object recognition, navigation, and 

interaction with complex environments [1]. 

Achieving accuracy in stereo vision systems relies heavily on proper camera calibration. Calibration 

determines both the intrinsic parameters of each camera, such as focal length and lens distortion, 

and the extrinsic parameters, which specify the relative position and orientation between the 

cameras. Even small calibration inaccuracies can lead to significant errors in depth estimation. A 

widely adopted approach to calibration involves observing a known pattern, such as a checkerboard, 

from multiple perspectives, allowing for precise parameter estimation. These objects can be both 

coplanar and non-coplanar as shown in Fig. 3, but it is vital to the calibration process that these 

objects are accurately measured beforehand for example with a CMM (Coordinate Measuring 

Machine). This calibration step is essential to stereo vision, as accurate parameter estimation is 

critical for obtaining reliable depth calculations and ensuring the system’s effectiveness across a 

variety of applications [2]. 



20 

 

Following calibration, the next critical step in stereo vision is disparity mapping, which estimates 

depth by analyzing pixel differences between left and right images. Two common methods for this 

are block matching and semi-global matching. Block matching divides the image into small blocks 

and searches for corresponding blocks between the two images to determine disparity. It’s 

computationally efficient, making it fast, but it can struggle in low-texture regions where distinct 

features are sparse, which then lead to inaccuracies. On the other hand, semi-global matching takes 

a broader approach by comparing pixel disparities across multiple directions in the image, improving 

accuracy in complex scenes, though it requires more processing power. This method is often more 

effective in scenes with detailed structures and varying lighting. Recently, neural network-based 

disparity mapping has advanced stereo vision further, offering improved depth estimation by 

handling intricate patterns and variable lighting conditions effectively [3]. 

Stereo vision cameras offer distinct advantages over alternative depth-sensing technologies, such as 

time-of-flight (ToF) sensors and LiDAR (Light Detecting and Ranging). One significant benefit is 

that stereo vision relies on ambient light and does not require an external light source, enabling it 

to capture high-resolution 3D data in a cost-effective way. This characteristic makes stereo vision 

ideal for applications where capturing fine structural details is essential, such as in warehouse 

environments for identifying racking structures. Additionally, stereo vision systems typically 

consume less power than active systems like LiDAR, making them more suitable for mobile or 

portable applications where energy efficiency is prioritized. 

However, stereo vision technology does face limitations. Performance can be affected in low-light 

or low-texture environments. In low-light conditions, stereo vision systems may struggle to capture 

high-quality images, compromising depth accuracy. This limitation can be mitigated by integrating 

infrared (IR) illumination to enhance visibility, although reflective surfaces, such as metal, may 

cause IR glare, further complicating the process. Similarly, in low-texture areas like plain walls or 

reflective surfaces, stereo matching algorithms may have difficulty identifying distinct features 

necessary for disparity calculation, leading to potential depth estimation errors. 

In recent years, there have been significant advancements in systems that combine both stereo 

vision and ToF cameras, leveraging the strengths of each. By integrating stereo vision’s ability to 

capture fine details with ToF's precise depth measurements in low-light and texture-challenged 

settings, these hybrid systems achieve more robust and versatile depth sensing, enhancing accuracy 

and reliability across a wider range of environments. These challenges remain active areas of 

research, with ongoing efforts focused on refining stereo matching algorithms and incorporating 

additional sensory inputs to improve performance in demanding conditions [4]. 

Fig. 3 Coplanar and non-coplanar objects [2] 
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In conclusion, stereo vision cameras represent a versatile and efficient solution for 3D depth sensing, 

with applications spanning numerous industries. Despite some limitations under specific lighting 

and surface conditions, continuous advancements in algorithmic development and integration with 

supplementary sensory technologies are steadily expanding the capabilities of stereo vision systems, 

making them increasingly effective for industrial and mobile applications. 

2.3. IR Glare 

Infrared (IR) glare on metal surfaces, like steel and aluminum, is a common issue that affects depth 

sensing and object recognition in stereo vision systems. When IR light reflects off these shiny, 

smooth surfaces, it often creates intense, localized bright spots in the camera’s field of view. This 

glare can obscure important details, causing parts of the metal object to appear washed out or even 

invisible in the depth map. This is particularly problematic in industrial environments, where metal 

surfaces are frequently encountered, and accurate depth data is essential [5]. 

To combat IR glare, several approaches can be taken. One effective method is to use polarization 

filters on the camera lenses. These filters reduce glare by blocking certain light waves, which helps 

to minimize the reflection from shiny metal surfaces. Another approach is to adjust the angle or 

intensity of the IR light source, as reflections can often be reduced by changing the way light 

interacts with the surface. Additionally, advanced software algorithms, including those that detect 

and exclude overexposed pixels, can further help mitigate glare. Some systems may even use 

multiple sensors, such as combining stereo vision with LiDAR or depth sensors that are less sensitive 

to IR reflections. By carefully managing IR illumination and incorporating filtering or algorithmic 

solutions, stereo vision systems can achieve more reliable performance when dealing with reflective 

metals like steel and aluminum. 

2.4. Pattern Recognition 

Pattern recognition is a process used by computer vision systems to identify specific shapes, textures, 

or structures within images. It works by detecting patterns in visual data, analyzing, and matching 

them to predefined templates or learned examples depicted in Fig. 4. In stereo vision and depth-

sensing applications, pattern recognition enables cameras to locate and classify objects or structures 

based on their visual characteristics. In the context of detecting racking points in a warehouse, 

pattern recognition is especially useful because it allows the system to focus on specific features, 

such as the geometric layout, edges, and key points of the racking. 

 

Fig. 4 Procedure of Pattern Recognition through Machine Learning [6] 
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In general, pattern recognition involves several main steps: preprocessing, feature extraction, and 

classification. Preprocessing cleans and prepares the raw images, typically by enhancing contrast, 

reducing noise, and sometimes adjusting for lighting conditions. This step is crucial for ensuring 

that the features in the image are clear and distinguishable. For example, if the camera is used in a 

dimly lit warehouse, preprocessing might involve brightening the image to make the rack edges and 

points more visible [6]. 

Feature extraction is the next step, where the system identifies and highlights the most relevant 

parts of the image. Features are aspects of the image that the system can analyze, such as edges, 

corners, textures, or shapes. In this scenario, the stereo vision system would identify key structural 

elements of the racking, such as the joints, beams, or support points, which are usually visually 

distinct and repetitive in racking structures. This allows the system to focus on the unique and 

consistent shapes or lines that define the racking layout. By recognizing these consistent features, 

the system can locate specific points on the racking more reliably. 

Once these features are identified, the system uses classification to determine whether a specific set 

of features matches the characteristics of the racking. This is done by using pattern recognition 

algorithms like template matching, which directly compares the features in the live image to 

predefined models of the racking layout. Alternatively, machine learning approaches such as neural 

networks can be used, where the system is trained on many images of racking in various positions 

and lighting conditions to learn what a racking pattern should look like. Once trained, the system 

can recognize the racking points even if some elements are partially obscured or where lighting 

conditions change [7]. 

Pattern recognition is particularly suited to the task of detecting racking points because it can work 

with the regular, structured patterns found in industrial racks. These racks often follow predictable 

layouts, with consistent dimensions and repeated shapes, which make them easier to recognize than 

irregular objects. By identifying specific points or reference structures, the stereo vision system can 

calculate precise positions for each rack segment. This is essential for applications where the camera 

needs to navigate around or interact with the racks, such as when mounted on a crane that positions 

items in a warehouse. 

In summary, pattern recognition offers a robust approach to detect racking points, as it enables the 

system to focus on and accurately identify key structural features within a controlled environment. 

By using techniques such as feature extraction, classification, and adapting to various lighting and 

structural conditions, the system can reliably detect and position itself relative to the racking, 

helping improve accuracy and efficiency in warehouse operations. 
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2.5. Conclusion 

This source study examined the use of stereo vision technology for a crane-mounted system 

designed to identify racking structures in warehouses. Stereo vision was highlighted as an effective 

and cost-efficient method for generating high-resolution 3D depth maps, relying on ambient light 

rather than external sources. These qualities make it suitable for detecting fine structural details, 

which are essential in warehouse operations. However, challenges such as poor performance in low-

light and low-texture environments remain as significant obstacles. 

Key techniques for improving depth estimation, such as block matching and semi-global matching, 

were discussed, along with recent advances in machine learning-based disparity mapping, which 

improve the accuracy in complex scenes. The study also explored hybrid systems that combine 

stereo vision with time-of-flight (ToF) sensors, which address each technology’s weaknesses and 

enhance overall performance in varied conditions. 

Addressing reflective surfaces, particularly metals like steel and aluminum, are identified as another 

challenge due to IR glare. Solutions such as polarization filters, optimized IR lighting, and advanced 

software algorithms were reviewed to mitigate this issue. Additionally, pattern recognition 

techniques were found to be highly effective in identifying and classifying racking structures. Using 

methods like feature extraction, template matching, and machine learning, makes that these systems 

can reliably identify key points on racking, even in complex or changing conditions. 

In summary, stereo vision offers a promising solution for racking identification, with ongoing 

advancements in technology and software continuing to address its limitations. By combining stereo 

vision with other sensors and enhancing algorithms, these systems can achieve reliable and accurate 

performance, making them increasingly valuable for industrial automation. 



24 

 

  



 

 

25 

 

3. System Design and Development 

3.1. Camera Selection 

The first step in designing the stereo vision-based racking identification system was the careful 

selection of an appropriate camera. Several factors were critical in evaluating potential options, 

including the depth range and accuracy of stereo vision measurements, the field of view (FOV), and 

the availability of infrared (IR) capabilities for operation in pitch-black conditions. The evaluation 

process focused on comparing the performance and specifications of several leading stereo vision 

cameras: Oak-D Pro W, Orbbec Gemini, Intel RealSense D435, and ZED 2i. 

The Oak-D Pro W emerged as the preferred choice due to its superior overall performance across 

all key parameters as shown in Table 1. It offers a robust depth range with high accuracy, which is 

essential for reliably identifying racking structures at various distances in a warehouse environment. 

The Oak-D Pro W also provides a wide field of view, which is necessary given the close proximity 

of the camera to the warehouse racking. Furthermore, it includes integrated IR illumination, 

allowing it to operate effectively in complete darkness, an essential feature for this specific use case. 

 

In comparison, the Orbbec Gemini and Intel RealSense D435, while competent in terms of depth 

measurement, delivers a lower overall image quality. Both models also have narrower fields of view 

than the Oak-D Pro W, limiting their suitability for scanning wide racking areas efficiently. These 

limitations would have required more complex system configurations or additional cameras to 

achieve the same level of coverage. Additionally, their IR capabilities are not as advanced or 

integrated as those of the Oak-D Pro W. 

The ZED 2i, another strong contender, stand out for its high-quality depth mapping and advanced 

stereo vision features. However, it lacks IR capabilities, making it unsuitable for the warehouse 

environment, where lighting conditions are often minimal or completely absent. While the ZED 2i 

might be effective in well-lit scenarios, its inability to function reliably in darkness disqualifies it 

for this specific application. 

Ultimately, the Oak-D Pro W was selected as the camera for this system because it offers the best 

combination of depth accuracy, field of view, and integrated IR capabilities. This decision ensures 

reliable and precise performance in the demanding conditions of warehouse operations while 

maintaining cost-effectiveness and operational simplicity. 

Table 1 Camera Comparison 
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3.2. Software Tools 

Given the selection of the OAK-D Pro W camera, it was determined that OpenCV would be the 

most appropriate software framework for implementing the stereo vision system. This decision was 

largely driven by the seamless integration of DepthAI, the OAK-D-specific software development 

kit (SDK), into OpenCV. DepthAI enhances OpenCV by providing built-in support for the OAK-D 

Pro W's unique features, such as its stereo depth estimations. By leveraging DepthAI, the 

development process could directly access and manipulate the camera’s depth maps without 

requiring extensive customization, saving time and reducing the complexity of implementation. 

In addition to the integration benefits, Python was chosen as the programming language for this 

project due to its compatibility with OpenCV and DepthAI, as well as its ease of use. Python offers 

a wide range of libraries and tools for image processing, machine learning, and computer vision 

tasks, making it an ideal choice for this application. While other programming languages, such as 

C++ or Java, might offer faster execution speeds, Python's processing speed was sufficient for the 

requirements of this system. The use case did not demand extremely high real-time processing rates, 

as the stereo vision system's role primarily involved capturing and analyzing static racking 

structures. Python’s readability and simplicity also makes it easier to develop and debug the system, 

which is particularly advantageous in iterative development cycles. 

Moreover, Python's widespread adoption in the computer vision and AI communities ensures strong 

community support and extensive documentation, facilitating the resolution of potential challenges 

during implementation. The combination of OpenCV, DepthAI, and Python created a robust, 

flexible, and accessible framework that aligned with the project’s goals of accuracy, efficiency, and 

scalability. This choice also positioned the system for future enhancements, as Python’s 

compatibility with modern machine learning frameworks, such as TensorFlow or PyTorch, could 

enable more advanced pattern recognition or feature extraction functionalities down the line. 
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4. Test Setup 

4.1. Experimental Design 

To ensure the system's performance could be thoroughly tested, it was important to first build a test 

setup. This setup provides a controlled environment where the code and system functionality can 

be evaluated under conditions similar to the actual racking found in the field. By replicating the 

real-world scenario as closely as possible, the test setup helps identify and resolve any issues early 

in the development process, ensuring the system is ready for deployment. 

Although the detailed design and construction of the test setup will be covered in later chapters, it’s 

worth mentioning that this approach was chosen to create a reliable and repeatable testing 

environment. Having a dedicated test setup not only aids in the current project but also lays the 

groundwork for future development and experimentation. It can serve as a platform for testing other 

systems or algorithms that might be developed later for similar applications, making it a valuable 

resource beyond this specific use case. 

4.2. Racking   

4.2.1. Initial 3D modeling 

Due to the lack of sufficient racking material a replica test setup had to be created. The first step in 

creating this test setup involved designing the face plate, a critical component that accurately 

mimics the racking structure found in real-world warehouse environments. Fortunately, a small 

section of the racking was available as a physical template, which provided a precise reference for 

creating the 3D model Fig. 5. Using CAD software, the dimensions and structural features of the 

racking were measured and replicated to closely match the original design. 

Fig. 5 Piece of Racking 
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Accuracy in the 3D model was paramount because the template matching algorithms that would be 

employed later depend on the model for effective calibration. Any inaccuracies could compromise 

the depth estimation and pattern recognition results in the stereo vision system. As part of the design 

process, mounting holes were incorporated into the face plate to allow secure attachment to the 

aluminum profile frame used in the test setup. The resulting 3D model shown in Fig. 6 served as the 

foundation for the subsequent stages of fabrication and testing, enabling a controlled and accurate 

environment to evaluate the stereo vision system’s performance. 

 

 

 

 

 

 

 

 

Fig. 6 3D Model of Racking Face Plate 
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4.2.2. Prototype Using 3D Printing 

After the 3D model of the racking faceplate was completed, it was fabricated using a 3D printer to 

create a physical prototype. This prototype seen in Fig. 7 served as the basis for initial testing, 

particularly to evaluate template matching parameters and the performance of the stereo vision 

system. The printed model was mounted onto an aluminum profile frame, providing a stable setup 

for testing. 

 

While the printed faceplate was valuable for preliminary testing, several limitations became 

apparent during its use. The most significant issue was the small size of the 3D-printed piece. Due 

to the limited dimensions, it was not possible to replicate multiple positions along the racking, 

which restricted the camera's ability to simulate movement up and down the structure, a critical 

aspect of the final application. 

Moreover, the precision of the 3D printing process introduced additional challenges. The model was 

not entirely straight, and small imperfections, such as layer inconsistencies and surface roughness, 

were present. These inaccuracies could affect the reliability of template matching algorithms, as the 

parameters are highly sensitive to the structural and visual features of the target. 

Another significant difference was the material of the 3D-printed model compared to the actual 

racking. The model was made from black ABS plastic, whereas the real racking is metallic. This 

discrepancy introduced variations in surface texture and reflectivity. The black plastic surface 

lacked the reflection characteristics of metal, which would impact tests involving IR illumination. 

Specifically, the plastic material does not produce the same glare or reflective properties that the 

metal racking would exhibit under IR lighting conditions. As a result, this 3D model could not fully 

Fig. 7 3D Printed Face Plate 
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replicate real-world performance, particularly in assessing how the camera and software handle IR 

glare, and the pattern recognition accuracy. 

Despite these limitations, the 3D-printed prototype provided an essential first step in the 

development process. It allowed for the initial validation of template matching algorithms and 

identified areas where improvements were needed for subsequent testing phases. This iterative 

approach ensured that the setup could be refined for greater accuracy and realism in future stages 

of the project. 

4.2.3. Final Test Assembly 

To address the limitations of the 3D-printed prototype and create a more accurate test environment, 

the 3D model of the racking faceplate was refined and fabricated using laser cutting. This process 

allows for the production of larger, more precise faceplates from 1.5mm thick aluminum sheets. 

These faceplates Fig. 8, measuring 1 meter in length, provide sufficient coverage to simulate at least 

2-3 positions of the racking, significantly enhancing the testing environment's realism. 

The aluminum faceplates are mounted onto a robust aluminum profile structure, designed to 

replicate the dimensions and alignment of the actual racking. This structure ensures that the 

faceplates are securely positioned and stable during testing. Additionally, unused L-shaped support 

beams from the racking are sourced from stock and integrated into the test setup seen in Fig. 9. This 

step is crucial for mimicking the physical characteristics and structural layout of the real racking as 

closely as possible. 

 

Fig. 8 Aluminium Face Plate 
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Careful attention is paid to the alignment and leveling of all components. The faceplates and support 

beams are measured and adjusted to ensure precise positioning, simulating the angles and spacing 

found in the actual warehouse environment. As these angles and spacings can be manually adjusted 

this provides the test setup the ability to replicate any possible deviations found in a warehouse 

environment.  

The use of aluminum for the faceplates also addresses previous limitations regarding material 

properties. Unlike the 3D-printed plastic model, the metallic surface of the aluminum faceplates 

exhibits reflectivity similar to the actual racking. This allows for more realistic testing of the 

camera's infrared (IR) capabilities, including its handling of IR glare. As a result, the test setup 

provides a more accurate representation of the challenges that the stereo vision system would 

encounter in the field. 

In conclusion, the final test setup is a significant improvement over the initial prototype. By 

combining precise laser-cut aluminum faceplates, authentic support beams, and a carefully leveled 

structure, the setup closely mirrors the physical and visual characteristics of the real racking. While 

some restrictions inherent to workshop conditions remain, this test environment is an excellent 

platform for thorough testing and refining of the stereo vision system and its associated algorithms. 

It provides a reliable and repeatable setting for addressing key challenges and ensuring the system's 

effectiveness in its intended application. 

Fig. 9 Final Test Setup 
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4.3. Camera  

4.3.1. Vertical Sled 

To accurately simulate the vertical motion of a robotic crane used in warehouse racking, a 

specialized test setup is designed and constructed for the stereo vision camera. Manually moving the 

camera up and down proved to be inconsistent and unstable, making it unsuitable for precise testing. 

To resolve this, a mechanism was developed to achieve controlled, repeatable vertical movement. 

The first step was designing a sled to securely mount the camera Fig. 10. Using 3D modeling 

software, a sled was created to fit the camera and allow smooth vertical movement. The sled features 

a hex-shaped cavity designed to hold a hex nut securely in place. Through this nut, a 1-meter 

threaded rod is inserted. By rotating the threaded rod, the sled can travel up and down its length 

with precision. 

The threaded rod is mounted to an aluminum profile to maintain its position and stability. This same 

aluminum profile serves to guide the sled and prevent lateral movement. To further enhance the 

smooth operation of the system, a bearing is installed at the bottom of the rod. This reduces friction 

and allows the rod to rotate freely. A drill was initially used to rotate the threaded rod, driving the 

sled up and down. While functional, this method introduced vibrations that impacted the stability 

of the setup. To counteract this, two screws Fig. 11 were added to the sled, threading into the 

aluminum profile slots. These screws minimize wobbling, significantly improving the sled’s stability 

during motion. 

Fig. 10 Camera Mounting Sled 
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Although the drill provided an initial proof of concept, it lacked precision and control over speed. 

To achieve consistent and smooth movement, a stepper motor is integrated into the system. The 

motor is controlled by an Arduino, allowing for precise rotation of the threaded rod at a constant 

speed. This not only reduces vibrations but also provides the ability to record and utilize positional 

data during testing. The integration of the stepper motor marks a significant improvement in the 

system, enabling accurate and repeatable vertical movement of the camera. 

This robust and stable test setup shown in Fig. 12 closely replicates the controlled motion of a robotic 

crane. It ensures that the stereo vision camera can be reliably positioned at various heights for 

thorough testing of its capabilities in identifying racking structures. Additionally, the setup is 

modular and reusable, making it a valuable tool for future projects involving similar testing 

requirements. This combination of mechanical design and automated control provides a professional 

and effective solution for camera movement in the testing phase. 

 

 

Fig. 11 Stability Screws 

Fig. 12 Final Camera Test Setup 
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4.3.2. Stepper Motor 

To facilitate the vertical movement of the camera sled in the test setup, a stepper motor system was 

implemented, providing precise control over the sled’s position. The motor is tasked with rotating 

a threaded rod that moves the sled up and down. This approach ensures consistent and repeatable 

movements, which are essential for accurate testing and calibration of the stereo vision system. 

A Nema 17 stepper motor Fig. 13 is chosen for this application, paired with a DRV8825 stepper 

motor driver. The Nema 17 is a widely used, reliable stepper motor that offers a good balance 

between performance and cost, making it suitable for mid-range applications like this one. Its 

common use and availability through a known supplier of PEC, were additional advantages, 

ensuring easy procurement and compatibility with existing components. The DRV8825 driver is 

selected due to its compatibility with the Nema 17 and its straightforward integration with 

microcontrollers such as the Arduino UNO. Together, these components form a robust and versatile 

system that can also be repurposed for other projects in the future. 

 

Fig. 13 Stepper Motor 

An Arduino UNO was used to control the stepper motor and driver seen in Fig. 14 was used to 

simulate the PLC laser combination. The UNO was selected for its ease of use and widespread 

availability, making it ideal for projects requiring straightforward control mechanisms. The 

simplicity of the required coding further supported this choice, as the Arduino platform is well-

suited for implementing basic motor control functions without the need for advanced programming 

expertise. 
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Fig. 14 Arduino UNO and DRV8825 

The Arduino code is designed to allow control over the motor’s speed, direction, and operation 

through serial commands. Using a connected laptop, commands can be sent via the Arduino serial 

interface to start or stop the motor, adjust its rotation speed, or change its direction. This setup 

provides a user-friendly method for operating the motor and allows fine adjustments to the sled's 

position during testing. By enabling these controls, the system ensures that the camera can be 

precisely positioned at various heights for template matching and depth measurement validation. 

Additionally, the inclusion of a stepper motor in the setup reduces the inconsistencies and vibrations 

associated with manual movement of the sled. The motorized system’s reliability and adaptability 

ensures that the camera can be accurately positioned for testing while maintaining a scalable design 

for potential future uses. 
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5. Offset and Alignment Analysis 

5.1. Jupyter Notebook 

To implement the code for the project, Jupyter Notebook was chosen as the development 

environment. Python was the programming language of choice due to its versatility, user-friendly 

syntax, and excellent integration with Depth AI, and the software library tailored for the OAK-D 

Pro camera. Jupyter Notebook provided a well-organized interface, ideal for testing individual code 

sections independently. This modularity makes it easier to debug and validate components before 

integrating them into the larger system, ensuring a smoother development process and better 

manageability throughout the project. 

 

5.2. Evaluating Best Template Matching Method 

The first code that was developed aimed to test and compare multiple template-matching methods 

available in OpenCV to determine the most effective approach for the system. Template matching 

is a crucial step in aligning the camera's observations with predefined templates to ensure accurate 

measurements and recognition of racking structures. 

The program works by loading a reference image (the "template") and a test image, both in grayscale. 

Several OpenCV methods, such as TM_CCOEFF, TM_CCOEFF_NORMED, TM_CCORR, 

TM_CCORR_NORMED, TM_SQDIFF, and TM_SQDIFF_NORMED, are applied to measure how 

well the template matches different regions of the test image. Each method calculates a score 

indicating the level of similarity, with some methods emphasizing correlations and others focusing 

on differences. 

For each method, the program determines the best match location by identifying the maximum or 

minimum value from the resulting similarity map, depending on the method used Fig. 15. A 

bounding box is drawn around the detected region to visually inspect the match. By iterating 

through all the available methods, the program provides insights into which algorithm performs 

best for the specific use case, considering factors like accuracy, robustness, and computational 

efficiency. 

 

Fig. 15 Best Template Matching Code 
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This testing process was essential in selecting the most suitable template-matching approach for the 

system, ensuring reliable and consistent performance in identifying features in the warehouse 

racking environment. The flexibility of OpenCV allowed for easy experimentation and visualization 

of the results, facilitating a well-informed decision, in the end TM_SQDIFF_NORMED gave the 

most consistent results for this application given out of the 20 tests run it only incorrectly identified 

the bracket ones while the others made 5 or more incorrect detections. 

 

5.3. Camera Pipeline 

The camera pipeline is established using the DepthAI framework to enable effective integration of 

the cameras and facilitate the necessary image processing tasks for stereo vision. At the core of the 

system is the dai.Pipeline, which coordinates the camera streams and processing stages, ensuring 

efficient capture and management of video and depth data. This pipeline is specifically designed to 

work with the OAK-D camera, which features both color and mono cameras essential for stereo 

vision. The pipeline is constructed to accommodate both the color camera for visual feedback and 

the left and right mono cameras, which are key for depth perception in stereo vision. 

The setup of the pipeline begins with configuring the color camera (CAM_A) to capture video at 

720p resolution. This camera serves as the main source of visual input, providing color frames that 

are essential for object recognition and template matching. Additionally, two mono cameras are set 

up for stereo depth processing. These mono cameras, one placed on the left (CAM_B) and the other 

on the right (CAM_C), are configured at the same resolution to capture the necessary data for depth 

computation. This stereo setup allows the system to generate disparity maps by comparing the slight 

differences between the images captured by the left and right cameras, a fundamental process for 

3D scene reconstruction and depth measurements. 

In terms of camera configuration, the getMonoCamera function is used to define each mono 

camera’s properties, such as its resolution and socket connections to the pipeline. This approach 

ensures that the cameras are correctly initialized for stereo vision. The left and right cameras are 

then linked to a stereo depth processor, which combines the outputs from the two mono cameras. 

The depth processor is configured to enhance depth precision by enabling features like left-right 

consistency checks, extended disparity, and subpixel processing Fig. 17. These settings improve the 

quality of the generated stereo depth data, which can later be used for object detection and spatial 

analysis. 

 

Fig. 16  Visualization of Stereo Vision Depth Measurements [8] 
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Fig. 17 Camera Setup Pipeline 

A critical component of this pipeline is its flexibility in adjusting the various camera parameters, 

such as resolution and depth settings, to optimize performance based on the requirements of the 

specific task. The system is capable to perform real-time adjustments, which is beneficial in a 

warehouse environment, where lighting and object positions can vary. The pipeline also includes 

functions for setting up output queues, such as xout_video for video frames and xout_disp for depth 

information. These output queues are used to stream live video and disparity data from the cameras, 

which can be processed and visualized in real-time. 

The integration of the video and stereo cameras into a single pipeline simplifies the process of 

gathering and managing camera data, enabling a smooth flow of information from the sensors to the 

computer for processing. This real-time video feed and its associated disparity data are crucial for 

tasks such as racking identification, where both visual and depth information are necessary for 

precise measurements. The modular nature of the pipeline also allows for future expansion, for 

example the addition of more cameras and/or advanced processing algorithms, making it a versatile 

platform for a range of applications. 

By using the DepthAI framework, the setup ensures reliable performance while maintaining 

flexibility for future development. The ability to process the data and/or to configure the pipeline 

in real-time provides a solid foundation for integrating further image processing steps, such as 

template matching, that are essential for the system’s overall functionality.  

 

5.4. Calibration  

The code for taking screenshots of the left and right bracket regions is a crucial part of the template 

creation process, used for aligning the crane with the warehouse racking and generating reference 

templates. This setup is designed to allow an operator to manually position and align the crane with 

the first position. Once aligned, the operator can use the system to select regions of interest (ROIs) 

that will be saved as template images for later use in object recognition tasks. 
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This approach to capturing the left and right bracket regions is crucial for creating the template 

reference points that will be used in later sections for comparison and alignment. The saved 

templates will serve as a benchmark for positioning the crane and camera during the startup and 

operational phases, allowing for automated comparisons and the creation of an offset table.  

The process starts by initializing the necessary variables for handling the Region of Interest (ROI) 

selection. The variables roi_start, roi_end, and drawing track the state of the rectangle being drawn 

by the operator. The screenshot_count variable keeps track of the number of ROIs saved, ensuring 

that the left and right bracket regions are saved sequentially. Currently the initial instruction text 

guides the operator through the process, informing them to select the left bracket first. This is a 

process that could be automated in future iterations. 

The core functionality is provided by the draw_rectangle callback function, which is linked to 

mouse events. The operator can click and drag the mouse to define the region of interest on the live 

camera feed. When the mouse button is pressed (cv2.EVENT_LBUTTONDOWN), the drawing state 

is set to True, and the starting point of the rectangle (roi_start) is recorded. As the mouse moves 

(cv2.EVENT_MOUSEMOVE), the rectangle’s end point (roi_end) is updated. Once the mouse 

button is released (cv2.EVENT_LBUTTONUP), the rectangle is finalized, and the drawing state is 

set to False Fig. 18. 

 

Fig. 18 Taking Reference Images 

Within the main loop, the camera feed is continuously captured, and if an ROI is being drawn, it is 

overlaid on the frame as a green rectangle. The instruction text is displayed at the top-left corner of 

the screen, guiding the operator through the process. If the user presses the 's' key, the selected ROI 

is saved as an image file. The first ROI saved is stored as TemplateROI_L.jpg for the left bracket, and 

the second as TemplateROI_R.jpg for the right bracket Fig. 19. These template images are essential 

for the template-matching process, which will later be used to compare crane positions and 

alignments with the reference coordinates. 
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Fig. 19 Code for Saving Reference Images 

The cv2.imwrite function is used to save the selected ROIs as image files on the local disk, and the 

coordinates of the top-left and bottom-right corners of the selected rectangle are printed for 

reference. Once the second ROI is saved, the process exits, and the program ends. If the user decides 

not to save the ROI, they can quit the process by pressing the 'q' key. 

 

5.5. Template Matching and Offset Calculation 

The extended implementation of the template matching system introduces several enhancements 

to improve its integration within the larger project scope, focusing on real-time processing, 

coordinate the comparison method, and offset calculation. This system continually analyzes the 

frame from the OAK-D Pro W camera, performing template matching on grayscale representations 

of the live video stream using two predefined template images (TemplateROI_L and 

TemplateROI_R). The OpenCV function cv2.matchTemplate, combined with the 

cv2.TM_SQDIFF_NORMED method, is employed to detect the regions within each frame that most 

closely resemble the templates. The resulting coordinates for the top-left corners of the matched 

areas are extracted using cv2.minMaxLoc, enabling precise localization Fig. 20. 

 

Fig. 20 Implemented Template Matching Code 

These detected coordinates are subsequently compared against predefined reference coordinates 

(REFERENCE_COORDS_L and REFERENCE_COORDS_R). By calculating the differences in both 

the X and Y axes, the system determines the offset between the current alignment and the ideal 

reference positions. During execution, the program displays this information visually by overlaying 

rectangles on the video feed, with green and red annotations, respectively, for the left and right 

templates, respectively seen in Fig. 21. Corresponding disparity data from the depth stream is 

processed in parallel to calculate depth values within the detected regions, enhancing the 

functionality of the alignment system. 
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Fig. 21 Dual Template Matching with Coordinates 

 

When a user presses the 's' key, the system outputs the detected coordinates, reference coordinates, 

and the calculated offsets for both templates to the console, aiding in debugging and verification 

shown in Fig. 22. However, the final implementation will eliminate manual triggers in favor of 

signals from the crane control system, reflecting a transition toward full automation. Instead of 

printing offsets to the console, the system will save them in an offset table, forming a persistent 

record for alignment correction and system analytics. This shift from manual operation to 

automated data handling enhances the system's precise, real-time alignment in the larger 

operational workflow. By continuously monitoring and comparing alignment data, this 

implementation significantly contributes to the overall reliability and accuracy of the project. 

 

Fig. 22 Template Matching Offset Output 
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5.6. Depth Measurement 

The depth measurement component in the system is a critical feature for accurately determining 

the distance between the camera and objects in the scene. This process starts with the disparity map 

generated by the stereo pair of cameras. The stereo depth configuration employs settings such as 

subpixel accuracy (stereo.initialConfig.setSubpixel(True)) and extended disparity 

(stereo.initialConfig.setExtendedDisparity(True)) to enhance precision. The disparity map, 

representing pixel-wise differences between the left and right camera images, is converted into 

depth values using a known baseline distance between the cameras and the focal length. Depth 

values are further refined by applying a median filter, in this case (KERNEL_7x7) to reduce noise 

and improve clarity in the resulting disparity frame. 

Given that the main camera, used for template matching, has a different field of view compared to 

the stereo cameras, corrections are implemented to align the regions of interest. This involves 

scaling and translating the coordinates of the detected template areas to match the stereo cameras 

perspective. Adjustments, such as dividing the X and Y coordinates by specific scaling factors, ensure 

that the depth measurements correspond to the exact areas detected in the primary video feed. 

To mitigate inaccuracies caused by potential graininess or noise in the disparity map, the depth 

measurement is calculated as an average over a defined rectangular region rather than relying on a 

single point as seen in Fig. 23. The calculateAverageDepth function extracts the region of interest 

from the disparity map and computes the mean of all valid disparity values within the rectangle. 

This approach minimizes the effect of anomalies in individual pixels, resulting in more reliable 

depth estimates. By leveraging an averaged area, the system produces robust measurements that are 

less susceptible to minor variations or noise in the feed. 

 

Fig. 23 Disparity Map and Average Area Depth Measurement 
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The resulting depth values are displayed in real time on the annotated video stream and disparity 

map shown in Fig. 24, providing a clear visual representation of the object distances. This depth 

information is then stored in the offset table along with the x and y coordinates. This 

implementation not only ensures accurate depth calculations, but also integrates seamlessly into the 

overall system by delivering reliable spatial information to support precise alignment and 

positioning within the larger project. 

 

Fig. 24 Disparty Map 
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6. Test Setup Implementation and Testing 

The final testing and implementation of the test setup demonstrated the effectiveness and accuracy 

of the system under realistic conditions. With the stepper motor operating at maximum speed, the 

camera successfully tracked the bracket even in the presence of significant vibrations, showcasing 

its robustness. To evaluate the system’s accuracy, the camera was moved up and down by known 

amounts, and the pixel offsets (X and Y) returned by the code were recorded displayed in Table 2.  

Table 2 Actual vs Calculated Offset 

Actual mm 
offset 

Pixel 
offset mm/pixel |mm/Pixel|  

Pixel Offset * 
Average 

|Actual - Calculated 
Offset| 

20 42 0,48 0,48 19,32 0,68 

33 72 0,45 0,45 33,12 0,62 

-14 -31 0,45 0,45 -14,26 0,26 

15 34 0,44 0,44 15,64 0,64 

54 113 0,48 0,48 51,98 2,02 

36 81 0,44 0,44 37,26 1,26 

-12 -26 0,46 0,46 -11,96 0,04 

-63 -133 0,47 0,47 -61,18 1,82 

   Average: 0,46  0,9 

      

Standard 
Deviation: 0,7 

 

 Using these offsets, the average conversion rate of 0.46 mm per pixel was established. By 

multiplying this value by the measured pixel offsets, the calculated offsets in millimeters were 

obtained. Comparing these calculated offsets with the actual offsets revealed an average difference 

of 0.9 mm and a standard deviation of 0.7 mm. These results confirm that the system is highly 

accurate and suitable for this application given the required accuracy should be less than 5mm. For 

the depth measurement an average of both sides were taken and compared to the actual distance. 

These results showed an overall lower precision and repeatability of ±2mm due to the graininess of 

the depth map, nevertheless these results are accurate enough for this implementation. However, it 

is essential to note that these tests were conducted in a controlled environment, and further testing 

in an actual warehouse is necessary to validate the system's performance under real-world 

conditions. This step is crucial to account for variables like lighting, surface inconsistencies, and 

operational vibrations that may differ from the test setup.  
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7. Conclusion 

In conclusion, this thesis presents the development and implementation of a comprehensive system 

leveraging template matching, depth measurement, and coordinate comparison for precise spatial 

analysis. The integration of these technologies demonstrates a robust approach in identifying and 

tracking objects while providing real-time depth data in a warehouse environment. The design 

emphasizes practical considerations such as reliability, efficiency, and speed, ensuring that the 

system is suitable for real-world applications. 

The template matching process, utilizing pre-defined reference images, allows the system to detect 

and track objects accurately, while the mechanism for comparing detected coordinates to reference 

points ensures precise alignment. The incorporation of a depth measurement system, which 

employs stereo vision and disparity mapping techniques, enhances the system’s capabilities by 

providing spatial depth data. The implementation addresses challenges such as noise and graininess 

in the feed by using averaged depth measurements over defined areas, ensuring greater accuracy 

and robustness. These procedures ensured the systems accuracy fell well within the 5mm 

requirement. 

A significant benefit of this solution is its potential to dramatically reduce the setup phase from days 

or weeks to just a few hours, making the configuration process much faster and more cost-effective. 

This efficiency gains not only result in reduced operational downtime but also streamline the 

deployment of similar systems. Furthermore, the presence of the stereo camera opens up 

opportunities for future improvements, such as leveraging stereo vision to analyze structural 

elements for alignment or angle deviations, further enhancing operational reliability. 

This project also emphasizes adaptability by accommodating field-of-view differences between 

cameras and implementing scaling corrections to ensure alignment between the main and stereo 

cameras. These adjustments not only ensure accurate depth calculations but also align seamlessly 

with the object detection process, demonstrating the importance of cohesive system design. The use 

of real-time feedback mechanisms, such as visual annotations and offset comparisons, further 

highlights the practical utility of the system. 

Overall, this work provides a strong foundation for future advancements in template-based 

detection and depth analysis. The modularity of the system enables potential enhancements, such 

as replacing manual triggers with automated signals or integrating additional sensors for improved 

performance.  
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8. Future Additions and Improvements 

While the current implementation marks a significant first step in leveraging stereo vision 

technology for racking identification, there are several important areas for future development and 

improvement. The most critical next step is to test the system in an actual warehouse environment. 

This requires integrating the developed code into the compute unit of the robotic crane already in 

operation. Additionally, communication must be established with the PLC, which manages the 

crane's motors, to provide accurate positional data. 

Due to time constraints the detection of the safety isn’t completed in the current project but can be 

added using similar template matching techniques and/or utilizing the OpenCV cv2.findContours 

function. Another potential enhancement is to utilize the stereo vision capabilities to measure the 

angle of the support beams. By determining whether these beams are parallel, the system could 

detect structural misalignments and provide error messages to the operator if the deviations exceed 

a predefined threshold. This functionality could be implemented using Python's edge detection 

functions. 

Incorporating such features would not only increase the system's utility but also improve efficiency 

in warehouse operations. However, further research and iterative testing will be necessary to refine 

these functionalities. This continued development will ensure that the solution becomes a robust, 

reliable tool for industrial applications. 
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