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Preface

As robots increasingly operate in remote and challenging environments—from surgical suites to
disaster zones—the reliability and performance of their communication systems become critical
factors determining not just operational success, but human safety. This thesis explores how
emerging network protocols can enhance real-time robotic control capabilities.

The research presented here was conducted within the ACRO (Automation, Computer vision
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academic year 2024-2025, focusing on evaluating QUIC, DCCP, and SCTP protocols for haptic
teleoperation systems where sub-millisecond timing precision is crucial.
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guidance, expertise, and patience throughout this research. His insights into both theoretical
foundations and practical implementation challenges were invaluable in shaping this work.

My appreciation extends to the ACRO research group and the faculty at UHasselt for providing
access to laboratory facilities, haptic devices, and computational resources that made this ex-
perimental work possible. Special thanks also go to the developers of the open-source tools and
libraries, particularly the ROS2 community and the Geomagic Touch driver maintainers, whose
work enabled the implementation framework for this research.

I am grateful to my family and friends for their unwavering support throughout my studies. Their
encouragement during the challenging phases of research and writing was essential to bringing
this work to completion.

While this thesis represents the culmination of my master’s studies, I hope it serves as a foun-
dation for continued advancement in networked robotic systems that can operate safely and
effectively in demanding environments.

Clerix Warre
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Glossary of Terms

ACK Acknowledgment; a signal sent by a receiver to indicate successful
receipt of data.

ACRO Automation, Computer vision and Robotics research group at the
Diepenbeek Campus.

Congestion Control Mechanisms that prevent network congestion by regulating the rate
at which data is sent.

DCCP Datagram Congestion Control Protocol; provides congestion con-
trol without requiring full connection establishment, optimized for
real-time applications.

Haptic Interface A device that enables interaction with a computer through touch
and motion, providing tactile feedback. In this research, the Geo-
magic Touch device is used.

Head-of-Line Blocking A performance-limiting phenomenon that occurs when a line of
packets is held up by the first packet.

Jitter Variation in the delay (latency) of received packets, measured in
milliseconds.

Latency The time delay between the moment data is sent and when it is
received, typically measured in milliseconds.

MsQuic Microsoft’s implementation of the QUIC protocol, used in this re-
search for client-server communication.

Multi-homing A network configuration technique where a device has multiple net-
work interfaces or IP addresses for increased reliability.

Multi-streaming The ability to send multiple independent streams of data concur-
rently over a single connection.

Packet Loss The failure of one or more transmitted packets to arrive at their
destination, usually expressed as a percentage.

QUIC Quick UDP Internet Connections; a transport layer protocol ini-
tially developed by Google that combines the speed of UDP with
the reliability of TCP.

Real-time Control Control systems that process inputs and generate outputs within
strict time constraints, essential for robotic applications.

ROS2 Robot Operating System 2; an open-source middleware suite for
robot software development used in this research.

RTT Round-Trip Time; the time it takes for a signal to be sent plus the
time it takes for an acknowledgment of that signal to be received.



SCTP Stream Control Transmission Protocol; provides features for multi-
streaming and multi-homing capabilities for improved reliability.

TCP Transmission Control Protocol; a connection-oriented protocol that
guarantees reliable, ordered delivery of data.

Teleoperation The operation of a machine or system from a distance, often used
in hazardous environments.

Throughput The amount of data moved successfully from one place to another
in a given time period, typically measured in bits per second.

TLS Transport Layer Security; cryptographic protocols designed to pro-
vide secure communication over a computer network.

UDP User Datagram Protocol; a connectionless protocol that offers low-
latency data transmission without reliability guarantees.

0-RTT Zero Round Trip Time; a feature in QUIC that enables faster con-
nection establishment for previously visited servers.



Abstract

Remote robotic systems performing surgery, nuclear maintenance, and disaster response need
fast, reliable communication to operate safely. Traditional protocols present serious trade-offs:
TCP introduces too much latency for real-time control, while UDP struggles with high packet
loss. This research evaluates three emerging protocols—QUIC, DCCP, and SCTP—to find better
solutions for demanding robotic applications.

A testing system was built using a haptic interface that provides tactile feedback, implementing
all three protocols with equivalent architectures in ROS2. Performance metrics, including latency,
jitter, throughput, packet loss, and connection stability, were measured under controlled network
conditions designed for real-time control requirements.

The results show clear differences in performance. QUIC achieved the best overall results with
1.198 ms average latency and 98.5% message delivery reliability. DCCP delivered moderate
performance at 2.45 ms latency but only 86.6% reliability, making it suitable when some message
loss is acceptable. SCTP provided strong reliability at 97.6% but with a higher latency of 5.231
ms. QUIC’s combination of speed and dependability makes it especially well-suited for critical
robotic applications.

This research provides practical guidelines and a decision framework for protocol selection, sup-
porting the development of more robust networked robotic systems for medical, industrial, and
emergency response applications.





Abstract in het Nederlands

Remote robotica voor chirurgie, nucleair onderhoud en rampenbestrijding vereist snelle en be-
trouwbare communicatie om veilig te kunnen opereren. Traditionele protocollen brengen lastige
compromissen met zich mee: TCP zorgt voor te veel vertraging voor real-time besturing, terwijl
UDP kampt met veel pakketverlies. Dit onderzoek evalueert drie opkomende protocollen—QUIC,
DCCP en SCTP—om betere oplossingen te vinden voor veeleisende robottoepassingen.

Een testsysteem werd gebouwd met een haptische interface die tactiele feedback biedt, waarbij
alle drie protocollen met een gelijke architectuur in ROS2 zijn geïmplementeerd. Prestatie-
indicatoren zoals latentie, jitter, doorvoersnelheid, pakketverlies en verbindingsstabiliteit werden
gemeten onder gecontroleerde netwerkomstandigheden die aansluiten bij real-time eisen.

De resultaten tonen duidelijke prestatieverschillen. QUIC behaalde de beste algehele resultaten
met een gemiddelde latentie van 1,198 ms en 98,5% berichtbetrouwbaarheid. DCCP presteerde
matig met 2,45 ms latentie en 86,6% betrouwbaarheid, wat het geschikt maakt wanneer enig
verlies aanvaardbaar is. SCTP leverde sterke betrouwbaarheid (97,6%) maar met een hogere
latentie van 5,231 ms. De combinatie van snelheid en betrouwbaarheid maakt QUIC bijzonder
geschikt voor kritieke robottoepassingen.

Dit onderzoek biedt praktische richtlijnen en een besliskader voor protocolkeuze, ter ondersteun-
ing van robuuste netwerkrobotica in medische, industriële en noodtoepassingen.





Chapter 1

Introduction

In today’s industrial and remote environments, robotic systems require precise and timely control
to perform complex operations safely and efficiently. The communication backbone that enables
these systems to operate depends heavily on network protocols that can deliver commands with
minimal latency while maintaining reliability. Traditional protocols like TCP [1] and UDP [2]
have served adequately in many scenarios, but as robotic applications expand into more de-
manding domains such as telesurgery, hazardous environment intervention, and high-precision
manufacturing, the limitations of these conventional protocols become increasingly apparent [3].

1.1 Context

The integration of robotic systems in industrial and remote operations has created a growing
need for network protocols that can support real-time control requirements. This research is
conducted within the ACRO research group at the Diepenbeek Campus, focusing on comparing
emerging network protocols for their suitability in real-time robotic control applications.

Traditional network protocols present distinct tradeoffs: TCP offers reliability through connection-
oriented communication but introduces higher latency due to its handshaking and acknowledg-
ment mechanisms. UDP, while providing lower latency through connectionless communication,
lacks reliability guarantees as packets may be lost or arrive out of order [2], [1]. These limitations
can significantly impact safety-critical robotic operations where both low latency and reliability
are essential.

In recent years, several alternative protocols have emerged that attempt to bridge this gap, in-
cluding QUIC (Quick UDP Internet Connections) [4], [5], DCCP (Datagram Congestion Control
Protocol) [6], [7], and SCTP (Stream Control Transmission Protocol) [8], [9]. Each offers unique
features that may address the specific demands of real-time robotic control.

As shown in Figure 3.2, the experimental setup employed in this research utilizes a Geomagic
Touch haptic interface device to determine 3D spatial coordinates for robot movement. These
positions are captured at high frequency and converted to standardized ROS messages. The
messages are then transmitted via a client application using the network protocol under test
(either QUIC, DCCP, or SCTP) to a server running on a host PC. The server processes these
commands and forwards appropriate control signals to the robot arm, completing the control
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Figure 1.1: Simplified representation of the haptic control system using network protocols for
real-time robotic control. Position data from the haptic device is transmitted through one of
the tested protocols (QUIC, DCCP, or SCTP) across varying network conditions to control the
remote robot arm. Performance metrics are measured to compare protocol efficiency.

loop. This setup allows for precise measurement of protocol performance throughout the entire
command chain, from human operator input to robot actuation.

This research focuses on the network communication layer of a larger teleoperation system.
The robot control algorithms and actuator interfaces were implemented by previous researchers
and read standardized ROS2 messages to control the physical robot. This study evaluates how
different network protocols affect the delivery of haptic commands to this existing control system.

1.2 Problem Statement

Robots operating in remote or hazardous environments, such as nuclear facilities or disaster zones,
require low-latency and highly reliable control mechanisms to ensure safe and precise operations.
Current implementations predominantly rely on TCP or UDP, neither of which fully satisfies the
demanding requirements of real-time robotic control [10].

The fundamental challenge lies in finding a network protocol that optimally balances several
competing requirements crucial for effective robotic control. Low latency represents perhaps
the most critical factor for responsive control systems, as even slight delays can significantly
impact performance, particularly in scenarios requiring precise manipulation or rapid response to
dynamic environments. Research indicates that effective robot teleoperation generally requires
end-to-end latencies below 50ms, with more demanding applications such as haptic feedback
necessitating latencies under 10ms to maintain operational stability and user perception [3].

High reliability constitutes another essential requirement, as packet loss or corruption can lead
to incomplete command execution or missing feedback data. In safety-critical applications, such
as medical robotics or nuclear facility maintenance, lost commands could result in potentially
dangerous operational failures. The reliability mechanisms must ensure not only packet delivery
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but also the preservation of command sequencing and timing relationships, which are fundamental
to coordinated robotic movement.

Robustness to network fluctuations represents the third critical dimension, as remote environ-
ments often feature unpredictable network quality. The protocol must maintain performance
stability across varying conditions, including intermittent connectivity, bandwidth fluctuations,
and congestion from competing traffic. Traditional protocols force significant trade-offs between
these requirements, with TCP prioritizing reliability at the expense of latency, and UDP offering
lower latency but without reliability guarantees. This fundamental trade-off has limited the ef-
fectiveness of remote robotic systems in critical applications, creating a technological barrier to
wider deployment of teleoperated robots in challenging environments.

The QUIC protocol, initially developed by Google for web applications [11], presents an intriguing
possibility for robotic control due to its hybrid approach, combining UDP’s low latency with
TCP-like reliability features. However, its suitability specifically for robotic control applications
remains unproven, particularly when compared to other promising alternatives like DCCP and
SCTP.

DCCP offers congestion control without requiring full connection establishment [6], potentially
reducing latency while maintaining flexible data flow. SCTP, with its multi-streaming and multi-
homing capabilities, provides robust reliability and connection redundancy that could enhance
control stability in variable network environments [9].

Without a comprehensive comparative analysis of these protocols under conditions relevant to
robotic control, industries relying on remote robotic operations may face unnecessary limitations
in safety, efficiency, and operational capability. This research aims to address this knowledge
gap by providing empirical evidence of each protocol’s performance in scenarios that simulate
real-world robotic control challenges.

1.3 Objectives

The primary objective of this research is to assess the network-level performance characteristics
of the QUIC protocol for real-time, low-latency robotic control communications and compare it
with other emerging protocols, specifically DCCP and SCTP, with a focus on performance under
controlled conditions representative of optimal deployment environments for haptic teleoperation
systems.

To achieve this main objective, the following sub-objectives have been established:

The first sub-objective focuses on conducting a comprehensive literature review on network pro-
tocols used in robotic control systems. This review examines latency characteristics, reliability
mechanisms, and control accuracy metrics to identify performance gaps and limitations in ex-
isting protocols. By thoroughly analyzing the current state of research, the review establishes a
theoretical foundation for the comparative analysis and highlights specific areas where emerging
protocols might offer advantages over traditional approaches.

The second sub-objective encompasses the measurement and analysis of key network performance
metrics for each protocol under controlled laboratory conditions. These metrics include latency
(both mean and variance), jitter, packet loss rates, and throughput under near-optimal network
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conditions representative of environments where haptic teleoperation systems would realistically
be deployed. Given the sub-millisecond timing requirements of haptic feedback systems, the eval-
uation focuses on network conditions that can practically support such demanding applications,
with the experimental framework capable of introducing controlled impairments when needed.

The third sub-objective addresses the theoretical analysis and prediction of protocol effectiveness
for robotic control applications based on the measured network performance characteristics. This
involves analyzing how each protocol’s network performance characteristics would theoretically
impact robotic system stability, control accuracy, and operational efficiency, using established
control theory principles to predict performance in object manipulation, navigation, and preci-
sion operations. The analysis considers both technical performance metrics and the practical
implications for robotic system deployment in real-world scenarios.

The final sub-objective aims to provide evidence-based recommendations for the selection and
implementation of appropriate protocols for robotic control applications. These recommendations
highlight scenarios where specific protocols may perform best based on their measured network
characteristics, operational requirements, and control precision needs. The recommendations also
include implementation guidelines and optimization strategies to maximize performance benefits
and mitigate potential limitations of each protocol.

The success criteria for this research include establishing quantifiable network performance bench-
marks for each protocol under controlled conditions, developing theoretical predictions for robotic
control performance based on measured network characteristics, and providing clear guidance
on which protocol is most appropriate for specific robotic control applications based on their
network-level operational requirements.

1.4 Methodology

This research employs a multi-phase methodological approach to achieve the objectives outlined
above, incorporating rigorous experimental design, implementation, and analysis processes:

1.4.1 Literature Review

The initial phase involves a thorough examination of existing research on QUIC, DCCP, and
SCTP protocols, particularly focusing on their applications in real-time systems. Recent works
by Megyesi et al. [12], Carlucci et al. [13], and Shreedhar et al. [14] provide valuable insights into
QUIC’s performance characteristics, while studies of DCCP and SCTP offer comparison points.
The review extends beyond academic publications to include protocol specifications, implemen-
tation documentation, and industry reports on network performance in robotics applications.
This comprehensive review has identified significant gaps in current understanding regarding
these protocols’ suitability for robotic control and informed the development of specific research
questions and hypotheses that guide the experimental work.

The literature review also examines the evolution of network protocols in relation to robotics
applications, tracing the historical development from basic TCP/IP implementations to more
specialized protocols designed for real-time control. Special attention is given to the fundamen-
tal architectural differences between the protocols under study, their congestion control mech-
anisms, and how these design decisions might impact performance in robotic control scenarios.
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Additionally, the review explores the performance metrics and methodologies used in previous
comparative studies, informing the design of experiments for this research.

1.4.2 Implementation and Testing

The practical implementation phase involves the deployment of the protocols in a controlled
testbed environment using ROS2 (Robot Operating System 2) for robot communication. Cus-
tom client and server applications have been developed for each protocol, with careful attention
to optimizing their performance for real-time control applications. The client application trans-
mits position data from a Geomagic Touch haptic device, while the server receives and processes
this data before publishing to ROS2 topics that interface with the existing robotic control sys-
tem. Protocol implementations have been instrumented with extensive logging and monitoring
capabilities to capture detailed performance metrics during operation.

The QUIC implementation builds upon the work of Engelbart and Ott [15] for real-time media
over QUIC, with additional optimizations for haptic feedback applications. The DCCP and SCTP
implementations utilize standard socket APIs with consistent message handling approaches to
ensure fair comparison across protocols.

Testing procedures focus primarily on near-optimal network conditions representative of con-
trolled environments where haptic teleoperation systems would realistically be deployed. Given
that real-time robotic control, particularly haptic feedback systems, require sub-millisecond pre-
cision to maintain control loop stability, the methodology emphasizes evaluation under network
conditions that would practically support such demanding applications (less than 0.5 ms latency,
minimal packet loss, ample bandwidth). The experimental framework includes the capability
to introduce controlled network impairments, but the primary evaluation focuses on conditions
suitable for the target applications.

1.4.3 Data Collection and Analysis

The data collection phase focuses on gathering comprehensive metrics relevant to real-time con-
trol applications. These metrics include fine-grained latency measurements (captured in mi-
croseconds from command initiation to receipt), jitter analysis (quantifying the variation in
packet delivery timing and its impact on control stability), packet loss statistics, and throughput
measurements (assessing the protocols’ efficiency in utilizing available bandwidth). Additional
performance indicators are collected to provide deeper insights into protocol behavior, includ-
ing connection establishment times and resource utilization on both client and server systems.
This extensive dataset enables multidimensional analysis of protocol performance beyond simple
latency comparisons.

Statistical analysis employs standard methodologies including analysis of variance (ANOVA) to
determine the statistical significance of observed differences and correlation analysis to identify
relationships between protocol features and performance characteristics. Performance profiles are
developed for each protocol, mapping their network-level effectiveness and providing theoretical
predictions for robotic control performance based on established control theory principles.

Initial testing validated the experimental framework’s ability to capture the required performance
metrics across all three protocols under controlled laboratory conditions. Early observations in-
dicated that the protocols exhibited measurably different performance characteristics in terms of
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latency, reliability, and resource utilization, with each protocol demonstrating distinct behavioral
patterns under the high-frequency message transmission typical of haptic control applications.

These preliminary observations suggested that meaningful performance differences existed be-
tween the protocols, warranting comprehensive analysis across the full experimental test suite to
establish definitive performance comparisons and protocol suitability assessments for real-time
control applications.

1.4.4 Reproducibility and Open Science

To ensure reproducibility and transparency, all source code implementations, experimental con-
figurations, raw data, and analysis scripts developed for this research are made publicly available
through a dedicated GitHub repository1. This includes complete client and server implementa-
tions for all three protocols, ROS2 integration code, performance monitoring tools, and compre-
hensive documentation for replicating the experimental setup [16].

For academic transparency, generative AI tools were used solely to assist with rewriting and
improving the clarity of the written presentation of this research. All experimental design, data
collection, analysis, and conclusions are the independent work of the author.

1.5 Thesis Structure

The remainder of this thesis is organized according to a logical progression from theoretical
foundations to practical implementation and analysis:

Chapter 2, Literature Review, presents a comprehensive overview of existing research on network
protocols for real-time control, with particular focus on QUIC, DCCP, and SCTP. This chapter
explores the historical development of these protocols, their architectural characteristics, and
their theoretical advantages and limitations for real-time applications. The review also examines
the specific requirements of robotic control systems across different operational contexts, estab-
lishing a framework for evaluating how protocol features translate to performance outcomes in
robotic applications. Additionally, the chapter analyzes previous comparative studies of network
protocols, identifying methodological strengths and limitations that inform the research design
of this study.

Chapter 3, Implementation and Testing, details the practical implementation of the protocols
in a physical testbed environment using ROS2 with haptic feedback. This chapter documents
the system architecture, component selection, and software development process for the client
and server applications supporting each protocol. It explains the integration challenges encoun-
tered during implementation and the solutions developed to address them. The chapter also
outlines the comprehensive testing methodology, including test case design, network impairment
techniques, and data collection procedures. Special emphasis is placed on the calibration and
validation processes that ensure measurement accuracy across the experimental platform.

Chapter 4, Results and Analysis, presents the findings from the physical testing in a systematic
and comparative framework. The chapter begins with individual performance profiles for each

1https://github.com/ClerixWarre/haptic-teleoperation-network-protocols

22



protocol, then proceeds to direct comparisons across multiple performance dimensions. Statisti-
cal analysis of the results identifies significant performance differences between protocols under
various network conditions and control scenarios. The chapter also examines correlations between
protocol features and performance outcomes, providing insights into the causal mechanisms un-
derlying observed performance differences. Visual representations of performance data enhance
the clarity of complex comparisons and highlight key patterns in protocol behavior.

Chapter 5, Discussion, interprets the empirical results within the broader context of robotic con-
trol applications and network protocol theory. This chapter synthesizes findings from the physical
testing to develop a comprehensive understanding of protocol suitability for different use cases. It
explores the implications of the results for various industrial and research applications, including
telesurgery, hazardous environment robotics, and precision manufacturing. The discussion also
addresses unexpected findings, limitations of the current study, and theoretical insights gained
from the research. Additionally, the chapter considers practical implementation challenges and
potential optimizations for each protocol in real-world deployment scenarios.

Chapter 6, Conclusion and Recommendations, summarizes the key findings and their significance
for the field of networked robotics. This chapter presents a decision framework for protocol selec-
tion based on specific robotic control requirements, operational environments, and performance
priorities. It provides concrete recommendations for protocol implementation and optimization
in different application contexts, supported by evidence from the research findings. The chapter
also outlines directions for future research, identifying promising areas for protocol enhancement,
hybrid approaches, and application-specific optimizations that could further advance the field of
real-time robotic control over networks.
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Chapter 2

Literature Review

The evolution of modern robotics has significantly increased demands on network communica-
tions, particularly in applications requiring real-time control and operation in remote or haz-
ardous environments. Traditional network protocols such as TCP (Transmission Control Proto-
col) and UDP (User Datagram Protocol) have long served as the foundation for network commu-
nication but present inherent limitations when applied to real-time control systems where both
low latency and high reliability are critical requirements [3]. This literature review examines the
current state of research regarding alternative network protocols—specifically QUIC, DCCP, and
SCTP—and their potential applications in real-time robotic control systems.

As robotic systems increasingly operate in complex environments such as disaster zones, industrial
settings, and nuclear facilities, the network protocols enabling their control must evolve to meet
stringent performance requirements. The transmission of control commands and sensor feedback
in these contexts demands communication that is not only fast but also highly reliable, as failures
or significant delays could lead to operational errors or even catastrophic outcomes [17]. This
creates a fundamental challenge in selecting appropriate network protocols that can balance the
competing needs of low latency, high reliability, and adaptability to varying network conditions.

2.1 Historical Context of Network Protocols

The development of network protocols has evolved significantly since the early days of computer
networking. The TCP/IP suite, developed in the 1970s, established the foundation for modern
internet communication [18]. TCP was designed to provide reliable, ordered, and error-checked
delivery of data streams, while IP handled the addressing and routing of packets across net-
works. This approach prioritized reliability over latency, which was acceptable for early internet
applications such as file transfer and email.

In the 1980s, as real-time applications like voice communication emerged, UDP was introduced
as a lightweight alternative to TCP [2]. UDP eliminated the connection establishment phase and
reliability mechanisms of TCP, significantly reducing latency at the cost of reliability guarantees.
This trade-off between reliability and latency has been a fundamental consideration in network
protocol design ever since.

The 1990s and early 2000s saw the introduction of specialized protocols to address specific ap-
plication needs. The Real-time Transport Protocol (RTP) [19], introduced in 1996, provided



end-to-end network transport functions suitable for applications transmitting real-time data,
such as audio and video. However, RTP itself did not include reliability mechanisms and was
typically deployed over UDP.

As the internet ecosystem grew more complex, new transport protocols emerged to address evolv-
ing requirements. SCTP was standardized in 2000 [8] to support telecommunications signaling,
while DCCP was proposed in 2006 [6] to address the needs of multimedia applications. Most
recently, QUIC was developed by Google in 2012 [5] and standardized as RFC 9000 in 2021 [4],
representing a significant evolution in transport protocol design with its integration of security,
multiplexing, and reduced latency.

This historical progression demonstrates how network protocols have continuously evolved to
address changing application requirements, with robotic control systems now presenting a new
frontier of challenges for protocol design and implementation.

2.2 Network Protocol Requirements for Real-Time Robotic
Control

2.2.1 Fundamentals of Robotic Control Systems

Robotic control systems differ fundamentally from traditional networked applications in their
operational requirements. While web applications, file transfers, and even multimedia streaming
can tolerate some degree of delay or jitter, robotic control systems often operate in closed-loop
feedback systems where consistent, predictable performance is essential [15].

A typical robotic control loop involves sensors collecting data about the robot’s state and envi-
ronment, a controller processing this data and generating commands, and actuators executing
these commands to manipulate the physical world. This cycle must complete within strict time
constraints to ensure stable and safe operation. The network protocol facilitating communication
between these components therefore becomes a critical factor of the system’s overall performance.

Robotic control systems can be broadly categorized into different operational modes, each with
specific network requirements:

1. Supervisory control: Involves high-level commands sent periodically with less stringent
latency requirements.

2. Direct teleoperation: Requires continuous, low-latency communication to transmit operator
inputs and provide feedback.

3. Haptic control: Imposes the most demanding requirements, as force feedback must be
transmitted with minimal delay and jitter to maintain operator perception of physical
contact.

4. Autonomous operation with remote monitoring: Requires reliable transmission of status
updates and occasionally high-bandwidth sensor data.

Each of these operational modes places different demands on the underlying network protocol,
making protocol selection a complex decision that depends on the specific application context
[20].
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2.2.2 Latency and Reliability Requirements

Real-time robotic control systems impose strict requirements on network communications. La-
tency, defined as the time delay between sending a command and its execution, is particularly
critical. Research indicates that effective control of robotic systems generally requires round-
trip latencies below 50ms, with more demanding applications such as haptic feedback requiring
latencies as low as 10ms [3].

Fettweis [3] introduced the concept of the "Tactile Internet," emphasizing that human-robot
interaction systems require end-to-end latencies of approximately 1ms to enable seamless tactile
feedback control. This constraint is especially relevant for applications requiring haptic feedback,
such as the experimental setup described in the source documents using the Geomagic Touch
haptic interface device for 3D spatial robot control.

The relationship between latency and control performance is not linear. Studies have shown that
beyond certain thresholds, small increases in latency can cause dramatic degradation in control
performance or even system instability [15]. This "cliff effect" makes consistent performance
more important than average performance, as occasional latency spikes can have disproportionate
negative impacts on system behavior.

Reliability is equally important, as packet loss can lead to incomplete commands or missing
feedback data. The consequences of such losses range from degraded performance to potentially
dangerous operational failures, depending on the application context [19]. When operating robots
in hazardous environments, such as nuclear facilities or disaster zones, the reliability of the control
system becomes even more critical due to the high-stakes nature of the operations.

Beyond the basic metrics of latency and packet loss, jitter (variation in latency) plays a crucial
role in robotic control systems. High jitter can lead to unpredictable control behavior, making
it difficult to tune control algorithms effectively. Studies have shown that even when average
latency is acceptable, high jitter can lead to oscillations and instability in control systems [15].

2.2.3 Network Challenges in Remote Environments

Remote and hostile environments present unique networking challenges that further complicate
protocol selection. These include fluctuating bandwidth availability, intermittent connectivity,
high levels of electromagnetic interference, physical barriers affecting signal propagation, high
packet loss rates, and variable network latency [21].

Operating robots in industrial environments often involves dealing with electromagnetic inter-
ference from machinery, which can increase packet loss rates. In disaster response scenarios,
communication infrastructure may be damaged or absent entirely, requiring operation over im-
provised or degraded networks. Nuclear facilities present additional challenges due to radiation
effects on electronics and strict containment requirements that can affect signal propagation [22].

These conditions require protocols that can adapt to changing network environments while main-
taining operational stability. Bavier et al. [21] demonstrated through their VINI (Virtual Net-
work Infrastructure) research that network conditions in remote environments can be highly
unpredictable, requiring protocols with robust adaptation mechanisms.

The ability to handle these challenges becomes a crucial factor in evaluating the suitability of
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different network protocols for remote robotic control applications.

2.2.4 Haptic Feedback Requirements

Haptic control systems represent one of the most demanding use cases for network protocols
in robotics. These systems transmit force feedback to operators, creating a sense of physical
presence and enabling precise manipulation of remote objects. Effective haptic feedback requires
not only low latency but also consistent performance and sufficient bandwidth to transmit force
and torque data across multiple degrees of freedom [15].

Research has established that haptic feedback begins to feel unnatural when round-trip latencies
exceed 5-10ms [3]. Beyond this threshold, operators may experience a disconnection between
visual and tactile feedback, leading to reduced performance and potential safety issues. This
strict latency requirement exceeds that of most other networked applications, including many
real-time audio and video systems.

Jitter is particularly problematic for haptic feedback, as variations in the timing of force updates
can create perceptible vibrations or "roughness" in otherwise smooth surfaces. This phenomenon,
known as haptic aliasing, can significantly degrade operator performance and cause fatigue [15].

The bandwidth requirements for haptic systems depend on the degrees of freedom being con-
trolled and the sampling rate of the force feedback. Typical haptic interfaces like the Geomagic
Touch device (formerly known as the Phantom Omni) operate with 6 degrees of freedom (3 for
position, 3 for orientation) and may require update rates of 1kHz or higher for smooth operation.
This translates to bandwidth requirements that can exceed 5 Mbps with overhead, particularly
when combined with other data streams such as video [20].

These stringent requirements make haptic control a particularly challenging application for net-
work protocols, and one that clearly illustrates the limitations of traditional approaches like TCP
and UDP.

2.3 Traditional Protocols and Their Limitations

2.3.1 TCP Protocol

TCP has been widely used in networked applications due to its reliability mechanisms. It es-
tablishes a connection-oriented communication channel that ensures data packets are delivered
in order and without errors. This is achieved through a three-way handshake for connection
establishment, acknowledgment mechanisms, and retransmission of lost packets [1].

The TCP protocol was designed in the 1970s as part of the ARPANET project and has since
become the backbone of internet communication. Its connection-oriented approach uses a com-
bination of sequence numbers, acknowledgments, and timeouts to ensure reliable data delivery.
TCP segments data into packets, tracks their delivery, and retransmits any packets that are lost
during transmission. This reliability mechanism has made TCP the default choice for applications
where data integrity is critical, such as web browsing, email, and file transfers [1].

However, TCP’s reliability comes at the cost of increased latency, which can be prohibitive for
real-time robotic control. The connection establishment overhead introduces significant initial
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delay (typically 1-1.5 RTT) before data transmission can begin. The head-of-line blocking is-
sue means that when a packet is lost, subsequent packets must wait until the lost packet is
retransmitted and received, even if they contain time-sensitive control data. Additionally, TCP’s
congestion control mechanisms, while essential for network stability, can drastically reduce trans-
mission rates during periods of network congestion, affecting control responsiveness. TCP’s de-
layed acknowledgment strategy can also introduce additional latency, particularly in asymmetric
network conditions.

TCP’s congestion control operates through a combination of slow start, congestion avoidance,
fast retransmit, and fast recovery algorithms. While these mechanisms are effective at preventing
network collapse under heavy load, they can introduce significant latency variations when network
conditions change. For robotic control applications, these sudden shifts in transmission rate can
lead to unpredictable control behavior [1].

Research by Iyengar and Thomson [4] demonstrated that TCP’s head-of-line blocking can cause
latency spikes exceeding acceptable thresholds for real-time robotic control applications. Fur-
thermore, TCP’s stream-oriented nature can be problematic for robotic control messages that
have strict timing requirements regardless of previous message delivery status.

In robotic applications, TCP’s limitations become particularly evident in scenarios requiring
rapid adaptation to changing conditions. For example, when a robot encounters an unexpected
obstacle, the control system must quickly adjust its trajectory to avoid collision. If TCP’s con-
gestion control mechanisms are currently in a reduced transmission state, the critical avoidance
commands may be delayed, potentially leading to a collision before the control system can re-
spond effectively [15].

2.3.2 UDP Protocol

UDP offers a connectionless alternative to TCP, providing lower latency by eliminating connection
establishment overhead and reliability mechanisms. It simply sends packets to the destination
without guaranteeing delivery or packet ordering [2].

Developed as a simpler alternative to TCP, UDP provides only the basic functionality of demul-
tiplexing incoming data to the correct application using port numbers and performing minimal
error checking through checksums. This minimalist approach results in significantly lower over-
head, making UDP well-suited for applications where timeliness is more important than reliability
[2].

UDP’s lack of connection state means each packet is treated independently, without the need for
handshakes, acknowledgments, or retransmissions. This stateless nature allows UDP to achieve
minimal latency, as packets are sent as soon as they are generated without waiting for confir-
mation of previous transmissions. For applications like voice over IP (VoIP) and online gaming,
where occasional packet loss is preferable to delayed delivery, UDP has become the protocol of
choice [19].

While UDP’s simplicity results in significantly lower latencies, it presents crucial disadvantages
for robotic control. There are no reliability guarantees, meaning packets may be lost without
any built-in recovery mechanism. The lack of ordering guarantees means packets may arrive out
of sequence, complicating command execution. UDP also lacks congestion control mechanisms,

29



potentially leading to increased packet loss during network saturation. Additionally, UDP data-
grams have practical size limitations that may affect complex control commands or feedback
data.

These limitations make UDP unsuitable for many robotic control applications, particularly those
requiring high reliability or operating in congested networks. Experimental studies have shown
that while UDP can achieve low mean latencies in controlled environments, packet loss rates can
exceed acceptable levels under congested network conditions, resulting in unstable control [13].

The impact of packet loss on UDP-based control systems can be particularly severe. For example,
in a haptic feedback system, lost packets containing force updates can create sudden discontinu-
ities in the force feedback experienced by the operator. These "jumps" in force feedback can be
disorienting and may lead to operator errors. Similarly, lost command packets can result in the
robot missing critical instructions, potentially leading to unsafe behavior [3].

Despite these limitations, UDP is often used as a foundation for custom protocols that add
application-specific reliability mechanisms, as seen in the Real-time Transport Protocol (RTP)
[19], which is commonly used for streaming media but has limitations when applied to robotic
control.

2.3.3 RTP and Other Application-Layer Protocols

While TCP and UDP represent the primary transport-layer options, various application-layer
protocols have been developed to address their limitations for real-time applications. The Real-
time Transport Protocol (RTP) [19], typically running over UDP, provides end-to-end delivery
services for real-time audio and video. RTP includes timing information and sequence numbers
to allow recipients to reconstruct timing and detect packet loss, but it does not guarantee delivery
or provide congestion control.

RTP is often paired with the RTP Control Protocol (RTCP), which provides monitoring of
data delivery and minimal control functionality. Together, these protocols have enabled the
development of Voice over IP (VoIP) services and video conferencing applications. However,
their focus on streaming media rather than bidirectional control makes them suboptimal for
robotic applications [19].

Other application-layer protocols, such as the Message Queuing Telemetry Transport (MQTT)
protocol, have been adapted for use in robotics and IoT applications. MQTT uses a publish-
subscribe model and typically runs over TCP, making it suitable for sensor data collection but
less appropriate for real-time control due to the underlying TCP limitations [13].

The limitations of these application-layer approaches have motivated the development of new
transport-layer protocols specifically designed to address the needs of real-time applications,
including robotic control systems.
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2.4 Emerging Network Protocols

2.4.1 QUIC Protocol

QUIC (Quick UDP Internet Connections), initially developed by Google and standardized as
RFC 9000, represents a promising alternative for real-time applications [4]. Originally designed
to improve web application performance, QUIC combines UDP’s low latency with TCP-like
reliability features, addressing many of the limitations of both traditional protocols.

Historical Development and Standardization

QUIC’s development began at Google in 2012 as an experimental transport protocol designed to
improve web performance. Initially deployed for Google’s services, QUIC demonstrated signif-
icant improvements in connection establishment times and performance in challenging network
conditions. By 2016, Google reported that QUIC was handling approximately 35% of its external
traffic [5].

The protocol’s success led to standardization efforts within the Internet Engineering Task Force
(IETF), resulting in RFC 9000 in May 2021 [4]. During the standardization process, QUIC
evolved from Google’s original implementation (gQUIC) to the IETF version, with significant
changes to encryption, header formats, and stream management. This standardization process
involved extensive collaboration between industry stakeholders, academic researchers, and net-
work operators to ensure that QUIC addressed a broad range of use cases while maintaining
compatibility with existing network infrastructure [23].

Architecture and Key Features

QUIC operates over UDP and implements several advanced features. It employs a 0-RTT (zero
round-trip time) connection setup, eliminating the latency overhead of TCP’s three-way hand-
shake. Multiple streams of data can be sent over a single connection, preventing head-of-line
blocking at the connection level. TLS 1.3 is integrated directly into the protocol, providing se-
curity without additional handshake overhead. QUIC supports connection migration, allowing
connections to persist across network changes, improving mobility and resilience. It also imple-
ments forward error correction, enabling recovery from packet loss without retransmission, and
incorporates improved congestion control mechanisms compared to TCP.

QUIC’s stream-based architecture deserves particular attention in the context of robotic con-
trol. Unlike TCP, which treats all data as a single ordered byte stream, QUIC allows multiple
independent streams within a single connection. Each stream can carry different types of data
with varying priority and reliability requirements. For robotic control, this means that critical
control commands can be sent on high-priority streams, while less time-sensitive data like status
updates or environmental sensor readings can be sent on separate streams without blocking or
being blocked by the critical control data [5].

The protocol’s packet structure includes both unencrypted and encrypted components. The
public header contains connection identifiers that allow packets to be routed to the correct
connection even when network parameters change (e.g., when a mobile device switches from
Wi-Fi to cellular data). The encrypted payload contains the actual data being transmitted, as
well as acknowledgment information and flow control parameters. This encryption extends to
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nearly all transport parameters, reducing the ability of middleboxes to interfere with connections
but also complicating certain network management functions [4].

These features make QUIC particularly suitable for applications requiring both low latency and
high reliability, such as real-time robotic control [5].

Congestion Control Mechanisms

QUIC’s congestion control framework is designed to be modular, allowing different algorithms to
be implemented within the protocol. The default congestion control algorithm is similar to TCP’s
New Reno, but with modifications to improve performance in modern network environments.
These modifications include pacing of packet transmissions to reduce burstiness, improved RTT
estimation, and more flexible acknowledgment mechanisms [4].

The protocol’s acknowledgment system differs significantly from TCP’s. Rather than acknowl-
edging only the highest continuously received byte, QUIC uses acknowledgment ranges to inform
the sender of exactly which packets have been received. This allows for more precise retrans-
mission of only the lost data, reducing unnecessary retransmissions and improving bandwidth
utilization [15].

Recent research has explored alternative congestion control algorithms specifically optimized for
real-time applications running over QUIC. Engelbart and Ott [15] evaluated the performance of
different congestion control algorithms for real-time media over QUIC, including Google’s BBR
(Bottleneck Bandwidth and RTT) and SCReAM (Self-Clocked Rate Adaptation for Multimedia).
Their findings suggest that with appropriate congestion control tuning, QUIC can effectively
support the stringent latency and reliability requirements of real-time applications, including
robotic control.

Performance Characteristics

Research comparing QUIC to traditional protocols has demonstrated significant performance
improvements under various network conditions. Langley et al. [5] found that QUIC reduced
connection establishment times by up to 87% compared to TCP+TLS, while maintaining com-
parable or better throughput under varying network conditions.

QUIC’s performance advantages are particularly evident in challenging network environments.
Carlucci et al. [13] conducted comparative experiments between QUIC, SPDY, and HTTP, find-
ing that QUIC significantly outperformed TCP-based protocols in lossy network conditions. This
resilience to packet loss is especially valuable for robotic control systems operating in environ-
ments with unreliable network connectivity.

In the context of robotic control, studies show promising results. Shreedhar et al. [14] conducted
extensive evaluations of QUIC performance across various workloads and found that QUIC signif-
icantly outperformed TCP+TLS in high-latency and lossy network conditions, which are common
in remote robotic control scenarios.

Wolsing et al. [10] conducted a comprehensive performance comparison between QUIC and
optimized TCP+TLS+HTTP/2 configurations, finding that QUIC’s advantage was most pro-
nounced in lossy network conditions, where its ability to avoid head-of-line blocking resulted in
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significantly lower latency variance. This characteristic is particularly valuable for robotic control
systems operating in environments with unpredictable network quality.

2.4.2 DCCP Protocol

The Datagram Congestion Control Protocol (DCCP), standardized in RFC 4340, was specifically
designed for applications that require timely data delivery but can tolerate some packet loss [6].

Historical Development and Design Philosophy

DCCP was developed in the early 2000s to address the limitations of both TCP and UDP for
applications with real-time requirements but a need for congestion control. Kohler et al. [6]
described the protocol’s design process, which focused on separating congestion control from
reliability to create a transport protocol optimized for applications like streaming media, VoIP,
and online gaming.

The protocol was standardized in 2006 as RFC 4340, with additional RFCs defining specific con-
gestion control mechanisms. Despite its theoretical advantages, DCCP has seen limited adoption
compared to TCP and UDP, partly due to limited implementation support in operating systems
and networking equipment [23].

Architecture and Key Features

DCCP combines elements of both UDP and TCP. It establishes connectionless semantics with
basic connection management, implementing a handshake without the full reliability guarantees
of TCP. The protocol provides congestion control without reliability requirements, similar to
TCP but without enforcing reliability. DCCP introduces service codes for better application
multiplexing, as documented by Fairhurst [7]. It supports Explicit Congestion Notification (ECN)
for more refined congestion management and implements feature negotiation allowing endpoints
to customize protocol behavior for specific applications. Additionally, DCCP supports multiple
congestion control algorithms (CCID 2, CCID 3, CCID 4) optimized for different traffic patterns.

DCCP’s packet structure includes a header with sequence numbers, but unlike TCP, these are
used primarily for congestion control rather than reliability. The protocol includes mechanisms
for acknowledging received packets, but without the expectation that lost packets will be re-
transmitted. This approach allows DCCP to maintain awareness of network conditions without
introducing the latency associated with TCP’s reliability mechanisms [6].

The protocol’s feature negotiation mechanism is particularly noteworthy, as it allows applications
to select from different congestion control profiles based on their specific requirements. CCID 2
provides TCP-like congestion control, suitable for applications that can adapt quickly to changing
network conditions. CCID 3 implements TCP-Friendly Rate Control (TFRC), which provides
smoother rate changes at the cost of slower responsiveness. CCID 4 provides a small-packet
variant of TFRC, optimized for applications that send primarily small packets, such as VoIP [6].

These features position DCCP as a middle ground between TCP and UDP, potentially suitable
for applications where some packet loss is acceptable but congestion control is necessary [6].

Kohler et al. [6] explained that DCCP was designed specifically for applications like streaming
media and VoIP, where timeliness is more important than complete reliability. This design philos-
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ophy aligns well with certain robotic control scenarios where occasional packet loss is preferable
to high latency.

Applications in Robotic Control

DCCP has shown promise in scenarios where maintaining consistent flow control is more impor-
tant than guaranteeing delivery of every packet. In multimedia streaming and VoIP applications,
where some data loss is tolerable, DCCP has demonstrated better performance than both TCP
and raw UDP [12].

For robotic control, DCCP may be suitable for applications such as teleoperation in environments
with predictable network behavior, where occasional packet loss would cause only minor disrup-
tions in control. Its congestion control mechanisms help prevent network collapse under heavy
load, which is critical for maintaining consistent performance in shared network environments.

However, its limited adoption and implementation support remain challenges for widespread
deployment in critical systems [23]. Kakhki et al. [23] noted that despite DCCP’s theoretical ad-
vantages, its practical implementation across various platforms remains inconsistent, potentially
limiting its utility for cross-platform robotic control systems.

The practical implementation of DCCP in robotic control systems has been limited, with few
documented deployments in real-world scenarios. This lack of practical experience makes it
difficult to fully assess the protocol’s suitability for robotic applications, although its theoretical
properties suggest potential benefits for certain use cases [23].

2.4.3 SCTP Protocol

The Stream Control Transmission Protocol (SCTP), standardized as RFC 4960, was originally
developed for telecommunications signaling but offers features that could benefit real-time robotic
control [9].

Historical Development and Design Goals

SCTP was developed in the late 1990s by the IETF Signaling Transport (SIGTRAN) working
group to address the limitations of TCP for carrying Public Switched Telephone Network (PSTN)
signaling messages over IP networks. The protocol was standardized in RFC 2960 in 2000, with
updates in RFC 4960 in 2007 [9].

SCTP’s design goals included improved reliability over TCP, message-oriented rather than byte-
stream delivery, multi-homing support for network resilience, and prevention of head-of-line
blocking through multi-streaming. These features were motivated by the requirements of telecom-
munications signaling, which demands high reliability, message boundaries, and resistance to
network failures [8].

Although initially focused on telecommunications applications, SCTP’s features have attracted
interest from other domains, including real-time control systems, high-performance computing,
and web applications. The protocol has seen moderate adoption, particularly in telecommunica-
tions infrastructure, but remains less widely implemented than TCP and UDP [8].
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Architecture and Key Features

SCTP provides several distinctive capabilities. It implements multi-streaming with indepen-
dent sequence numbering for multiple data streams, preventing head-of-line blocking between
streams. The protocol supports multi-homing, allowing connections to use multiple network
interfaces for redundancy and failover capabilities. Unlike TCP’s byte-stream approach, SCTP
preserves message boundaries with message-oriented semantics. The partial reliability extensions
(PR-SCTP) allow for time-bound reliability for time-sensitive data. SCTP includes a built-in
heartbeat mechanism for active path monitoring to ensure connection health. It also implements
a four-way handshake with cookie mechanism that protects against SYN flooding attacks while
establishing connections.

SCTP’s multi-streaming capability allows applications to transmit independent sequences of
messages (not bytes) over a single association (SCTP’s term for a connection). Each stream has
its own sequence number space, so a message loss in one stream does not affect delivery in other
streams. This is particularly valuable for applications that must transmit different types of data
with varying reliability requirements [8].

The protocol’s multi-homing support enables an SCTP endpoint to establish an association
across multiple IP addresses. One address is designated as the primary path, with alternative
paths used for retransmissions and when the primary path fails. This redundancy significantly
improves resilience to network failures, making SCTP well-suited for applications requiring high
availability [9].

SCTP’s message-oriented semantics differ fundamentally from TCP’s byte-stream approach. Ap-
plications send discrete messages, which are preserved as units at the receiver. This simplifies
application development by removing the need for framing mechanisms to delineate message
boundaries. The protocol’s Partial Reliability extension (PR-SCTP) allows applications to spec-
ify time limits for message delivery, after which the protocol will abandon retransmission at-
tempts. This feature is particularly valuable for time-sensitive data that becomes obsolete after
a certain period [8].

These features make SCTP particularly resilient in environments with variable network quality
or when high availability is critical [8].

Stewart and Metz [8] described SCTP’s development as a response to the limitations of TCP for
signaling applications, emphasizing its message-oriented nature and multi-streaming capabilities
as key advantages for applications requiring structured data transmission, such as robotic control
systems that need to separately manage command, feedback, and telemetry data.

Applications in Robotic Control

SCTP’s multi-homing capability offers significant advantages for robotic systems operating in
environments with unreliable network infrastructure. The protocol can maintain connection
stability even when the primary network path fails by automatically switching to alternative
paths [24].

Research on SCTP for teleoperation has shown that its multi-streaming capability effectively
eliminates head-of-line blocking across streams, reducing latency variance significantly compared
to TCP in applications with mixed traffic patterns [8]. This is particularly valuable for robotic
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control systems that must simultaneously handle different types of data (e.g., control commands,
sensor feedback, video feeds) with varying priority levels.

De Coninck and Bonaventure [24] demonstrated that SCTP’s multi-streaming and multi-homing
capabilities can be effectively combined with multipath transport to provide even greater re-
silience for applications requiring high availability, suggesting potential benefits for critical robotic
control systems operating in challenging environments.

Despite these advantages, SCTP faces deployment challenges related to middlebox compatibility
and implementation support. Many Network Address Translation (NAT) devices and firewalls
do not properly handle SCTP traffic, potentially limiting its deployability in certain network
environments. Additionally, while SCTP is supported in major operating systems, application-
level support remains limited compared to TCP and UDP [23].

2.5 Comparative Analysis of Protocols

2.5.1 Performance Metrics Comparison

To evaluate the suitability of different protocols for real-time robotic control, several key perfor-
mance metrics must be considered:

Latency: Based on the literature, QUIC and UDP demonstrate the lowest average latencies.
SCTP typically shows slightly higher latencies than QUIC but lower than TCP. DCCP falls be-
tween UDP and TCP in latency performance. Megyesi et al. [12] conducted comparative studies
showing that QUIC outperformed TCP in scenarios with high RTT, with latency reductions of
10-30% depending on network conditions.

Connection Establishment Time: QUIC’s 0-RTT connection setup provides a significant
advantage for applications requiring frequent reconnections. Langley et al. [5] reported that
QUIC reduced connection establishment times by up to 87% compared to TCP+TLS. SCTP and
DCCP both require handshakes similar to TCP, resulting in comparable connection establishment
times.

Reliability: TCP and SCTP provide the highest reliability guarantees, followed by QUIC with
its integrated recovery mechanisms. DCCP offers limited reliability through its congestion con-
trol, while UDP provides no reliability guarantees. Experimental studies by Shreedhar et al. [14]
demonstrated that QUIC’s reliability mechanisms perform comparable to TCP in stable network
conditions and better than TCP in degraded network conditions.

Jitter: Studies by Wolsing et al. [10] demonstrate that QUIC provides excellent jitter per-
formance. SCTP’s multi-streaming capability helps maintain consistent latency across varied
traffic patterns, while TCP and DCCP show higher jitter under network stress. Low jitter is
particularly important for robotic control applications requiring smooth, predictable motion.

Throughput: All protocols can achieve comparable throughput under ideal conditions, but
their performance diverges significantly under network stress. According to comparative studies
[14], QUIC and SCTP maintain better throughput in challenging network environments due to
their advanced congestion control and multi-path capabilities. Carlucci et al. [13] found that
QUIC achieved up to 30% better throughput than TCP in scenarios with 2% packet loss.
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Connection Stability: SCTP and QUIC excel in connection stability due to their multi-homing
and connection migration features, respectively. TCP and DCCP offer moderate stability, while
UDP provides no connection management. This stability is crucial for robotic systems operating
in environments with varying network conditions. De Coninck and Bonaventure [24] demon-
strated QUIC’s ability to maintain continuous connectivity during network transitions, a critical
feature for mobile robotic systems.

CPU and Memory Overhead: Implementation efficiency is particularly important for resource-
constrained robotic systems. Yang et al. [25] found that QUIC’s encryption and packet process-
ing impose higher CPU overhead than TCP, while Ganji and Shahzad [26] reported that QUIC’s
memory footprint on mobile devices could be up to 20% larger than TCP due to its more
complex state management. SCTP also shows higher resource utilization than TCP due to its
multi-streaming and multi-homing features.

Table 2.1 summarizes the key characteristics of these protocols based on the literature review.
The features in bold are the most suitable for robotic applications.

Table 2.1: Comparison of Network Protocols for Real-Time Robotic Control
Feature TCP UDP DCCP SCTP QUIC
Latency High Very Low Medium Medium-High Low
Reliability Very High None Low Very High High
Jitter High Variable Medium Low Very Low
Congestion Control Yes No Yes Yes Yes
Head-of-line Blocking Yes No No Partial No
Connection Migration No N/A No Yes (multi-homing) Yes
Security Integration No No No No Yes (TLS 1.3)
Implementation Support Universal Universal Limited Moderate Growing
Resource Overhead Low Very Low Medium High Medium-High
Middleware Compatibility High High Low Medium Medium

2.5.2 Protocol Suitability for Different Robotic Applications

Different robotic control scenarios impose varying requirements on network protocols:

Teleoperation: Applications involving direct human control, such as haptic control systems,
benefit most from QUIC’s low latency and reliability features [15]. Engelbart and Ott [15]
demonstrated that QUIC’s congestion control can be effectively optimized for real-time media,
further enhancing its suitability for teleoperation. Palmer et al. [27] proposed extensions to
QUIC to better support real-time applications, including unreliable stream delivery modes that
could further improve performance for teleoperation systems.

Haptic Feedback Systems: The stringent latency and jitter requirements of haptic feedback
systems make them particularly challenging for network protocols. QUIC’s combination of low
latency, stream multiplexing, and effective congestion control makes it well-suited for these ap-
plications. Experimental implementations by Engelbart and Ott [15] achieved stable haptic
feedback over QUIC with latencies below 10ms, meeting the requirements for effective tactile
interaction.

Autonomous Operation with Remote Monitoring: Systems that operate autonomously
but require occasional remote intervention or continuous monitoring may be well-served by SCTP
due to its reliable multi-streaming capabilities and resilience to network path failures [20]. Zheng
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et al. [20] showed that multi-path transport protocols can significantly improve the quality of
experience in remote monitoring applications, suggesting that SCTP or multipath extensions to
QUIC could offer advantages in this context.

Industrial Automation: Factory environments with controlled network conditions but high
reliability requirements may benefit from QUIC or SCTP, depending on the specific latency
and redundancy needs [12]. Megyesi et al. [12] found that QUIC’s performance is particularly
advantageous in environments with controlled bandwidth but variable latency, as often found
in industrial settings. The deterministic latency requirements of many industrial automation
systems make QUIC’s resilience to jitter particularly valuable.

Emergency Response Robotics: Robots operating in disaster zones or other hostile environ-
ments with unpredictable network conditions would benefit most from protocols with connec-
tion migration and multi-path capabilities, particularly QUIC and SCTP [24]. De Coninck and
Bonaventure [24] demonstrated that multipath extensions to QUIC can maintain connectivity
across rapidly changing network conditions, a crucial capability for emergency response robotics.
SCTP’s multi-homing capabilities provide similar benefits, potentially with better compatibility
with existing network infrastructure.

Space and Underwater Robotics: Extreme environments with very high latency and limited
bandwidth present unique challenges. Research by Endres et al. [22] on QUIC performance over
satellite links suggests that specialized protocol tuning is necessary for these scenarios. Kosek
et al. [28] proposed proxy-based approaches for improving QUIC performance in high-latency
environments, which could be adapted for space and underwater robotics.

2.6 Implementation Considerations

2.6.1 Hardware and Resource Constraints

Robotic systems often operate with limited computational resources, power constraints, and
specialized hardware, all of which influence protocol selection and implementation. Yang et al.
[25] investigated the resource requirements of QUIC and identified several components that con-
tribute to its higher computational overhead compared to TCP, including TLS 1.3 cryptographic
operations, complex congestion control algorithms, and packet processing for loss recovery.

For resource-constrained platforms, Yang et al. [25] proposed hardware offloading solutions
to accelerate QUIC processing. Their research identified the most computationally intensive
components of QUIC and suggested specialized hardware acceleration units for cryptographic
operations, packet scheduling, and congestion control. These approaches could make QUIC
more viable for embedded robotic systems with limited processing power.

Memory usage is another critical consideration, particularly for embedded systems. QUIC’s con-
nection state management and buffering requirements can lead to higher memory usage compared
to simpler protocols like UDP. Ganji and Shahzad [26] measured QUIC’s memory footprint on
mobile devices and found that it could be up to 20% larger than TCP for typical connections.
For robotic systems with severe memory constraints, this overhead may be problematic, requiring
careful implementation or alternative protocol choices.

Energy efficiency becomes particularly important for battery-powered robotic systems. Research
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by Ganji and Shahzad [26] on QUIC performance in mobile environments found that its energy
consumption varies significantly depending on network conditions and implementation details. In
stable network conditions, QUIC’s energy efficiency was comparable to TCP, but in challenging
conditions, its more aggressive retransmission strategies led to higher energy consumption. These
findings suggest that protocol selection for energy-constrained robotic systems should consider
the expected network environment and potentially implement adaptive strategies to balance
performance and energy consumption.

2.6.2 Protocol Implementation Challenges

Implementing advanced protocols for robotic control systems presents several challenges. While
TCP and UDP have universal support across platforms and programming languages, QUIC,
DCCP, and SCTP have more limited implementation support. QUIC in particular, being newer,
requires specialized libraries such as msquic or quic-go [23].

Kakhki et al. [23] conducted a comprehensive analysis of QUIC implementations and found sig-
nificant variations in performance and behavior across different versions and implementations.
These inconsistencies can complicate cross-platform deployment and may require extensive test-
ing to ensure consistent behavior across different environments. Similar challenges exist for SCTP
and DCCP, which have varying levels of support across operating systems and network stacks.

Advanced protocols impose additional computational requirements, which may be challenging
for resource-constrained robotic systems [26]. Ganji and Shahzad [26] found that QUIC’s CPU
utilization on mobile devices can be significantly higher than TCP, suggesting potential challenges
for embedded robotic platforms. The implementation must carefully balance protocol features
with available system resources.

QUIC’s integrated security features require proper certificate management and encryption han-
dling [25]. Yang et al. [25] explored options for hardware offloading of QUIC processing to
improve performance on resource-constrained systems, identifying key components that could
benefit from dedicated hardware acceleration. Their findings suggest potential pathways for
optimizing QUIC implementation on embedded robotic platforms.

NAT and firewall traversal present additional challenges. While QUIC’s UDP foundation can
simplify NAT traversal compared to TCP, proper implementation requires careful consideration
of connection migration and path validation mechanisms. SCTP faces particular challenges with
NAT traversal due to its use of a separate protocol number rather than running over UDP or
TCP. This has led to the development of SCTP-over-UDP encapsulation techniques to improve
deployability, but these introduce additional complexity and potential performance overhead [23].

Furthermore, systems may need to communicate with components using different protocols, re-
quiring gateways or adapters for protocol translation. This is particularly common in robotic
systems that integrate components from different manufacturers or that must interface with
legacy systems. The implementation of protocol translation layers introduces additional com-
plexity and potential performance bottlenecks that must be carefully managed [20].
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2.6.3 Integration with Robotic Operating Systems

The integration of these protocols with common robotic frameworks like ROS (Robot Operat-
ing System) presents additional considerations. Control messages must be properly serialized
for transmission and deserialized upon reception, maintaining compatibility with ROS message
formats. Adapting protocols to ROS’s publish-subscribe model may require additional middle-
ware layers. Effective integration also requires careful timing synchronization between network
communication and control loops for real-time control.

ROS 2, the latest version of the Robot Operating System, uses the Data Distribution Service
(DDS) middleware for communication, which primarily operates over UDP with custom relia-
bility mechanisms. Integrating alternative transport protocols like QUIC or SCTP with ROS 2
would require developing custom DDS implementations or creating adapters between DDS and
these protocols. This integration work represents a significant engineering challenge but could
potentially yield substantial performance improvements for networked robotic systems [20].

Robust error handling must account for both protocol-level and robotic system failures to main-
tain system stability even under adverse conditions. This includes implementing appropriate
fallback mechanisms when network conditions degrade below acceptable levels, such as reverting
to simpler but more robust control modes or activating local safety behaviors. The integration ar-
chitecture should also include monitoring and diagnostics capabilities to facilitate troubleshooting
and performance optimization [20].

Additionally, effective integration requires thorough performance monitoring of network metrics
to ensure control system stability. This monitoring should include not only basic metrics like
latency and packet loss but also application-specific measurements that relate directly to control
performance, such as control loop timing stability and command execution accuracy. Zheng et
al. [20] demonstrated the value of application-aware protocol adaptation in their XLINK system,
which used quality of experience (QoE) metrics to drive multi-path QUIC transport decisions for
video applications. Similar approaches could be applied to robotic control systems, using control
performance metrics to guide protocol configuration and adaptation.

2.7 Research Gaps and Future Directions

Despite the promising results demonstrated in the literature, several significant research gaps
remain:

Performance in Extreme Environments: Limited research exists on how these protocols
perform in the extreme conditions found in environments such as nuclear facilities, underwa-
ter operations, or space applications [22]. Endres et al. [22] found that QUIC performance
over satellite links is highly variable across different implementations, suggesting that protocol
optimization for specific challenging environments remains an open research area. Future re-
search should investigate protocol behavior under extreme latency, radiation effects on protocol
reliability, and adaptation techniques for intermittent connectivity scenarios.

Energy Efficiency: The energy consumption of different protocols on resource-constrained
robotic platforms remains understudied, particularly for battery-powered systems operating in
remote environments [26]. Ganji and Shahzad [26] identified significant variations in energy
efficiency between QUIC and TCP on mobile devices, emphasizing the need for further research on
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energy-aware protocol selection for robotic systems. This research should include the development
of energy models for different protocols and the design of adaptive protocol strategies that balance
performance and energy consumption based on system state and requirements.

Adaptive Protocol Selection: Frameworks for dynamically selecting or switching between
protocols based on changing network conditions or control requirements represent an emerging
research area [20]. Zheng et al. [20] proposed a QoE-driven multi-path QUIC implementation
that adapts to network conditions, but broader frameworks for protocol adaptation in robotic
control systems remain to be developed. Future research could explore machine learning ap-
proaches for predicting network performance and selecting optimal protocols based on historical
data and current conditions.

Security Implications: The security aspects of these protocols in the context of robotic control,
including vulnerability to attacks and resilience to interference, require further investigation [28].
Kosek et al. [28] explored the implications of QUIC’s encryption for network intermediaries, but
comprehensive security analyses specific to robotic control applications are lacking. This research
should address authentication mechanisms for robotic control, intrusion detection in encrypted
control traffic, and secure protocol behavior in compromised network environments.

Standardization Efforts: While QUIC has achieved standardization as RFC 9000, its appli-
cation beyond web contexts lacks standardized approaches, potentially limiting interoperability
between different implementations [29]. Zhang et al. [29] identified significant performance
variations across different QUIC implementations, highlighting the need for standardization of
implementation practices for non-web applications like robotic control. Future standardization
efforts should focus on defining profiles or extensions of these protocols specifically tailored to
the requirements of real-time control applications.

Protocol Performance Modeling: Accurate models for predicting protocol performance un-
der varying network conditions specific to robotic control scenarios would enable better protocol
selection and configuration. Current models are often focused on web or general-purpose appli-
cations and may not capture the unique characteristics of robotic control traffic. Future research
could develop specialized performance models that account for the distinct traffic patterns, timing
requirements, and reliability needs of robotic control systems.

Multi-domain Protocol Optimization: Robotic systems often operate across multiple net-
work domains, from internal control buses to wide-area networks. Research on protocol optimiza-
tion across these domains, including protocol translation at domain boundaries and end-to-end
performance guarantees, represents an important area for future work. This research should ad-
dress the challenges of maintaining consistent performance characteristics across heterogeneous
network environments and developing unified management approaches for multi-domain robotic
communications.

Haptic Feedback Optimization: While existing research has explored QUIC for haptic ap-
plications, more detailed investigation is needed on protocol optimizations specifically for haptic
feedback, including specialized congestion control algorithms, prioritization mechanisms for force
feedback data, and techniques for maintaining perceptual quality under varying network con-
ditions. Palmer et al. [27] proposed unreliable streams in QUIC that could benefit haptic
applications, but comprehensive evaluation and further refinement of these approaches for haptic
control remain open research areas.
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Future research should address these gaps to enable more robust and adaptable network solutions
for real-time robotic control systems operating in diverse and challenging environments.

2.8 Conclusion

This literature review has examined various network protocols for real-time robotic control,
focusing on their ability to balance low latency and high reliability in challenging network envi-
ronments. Traditional protocols like TCP and UDP present significant limitations for real-time
robotic control, with TCP introducing excessive latency and UDP lacking necessary reliability
guarantees.

The historical evolution of network protocols reflects a continuous effort to address the growing
requirements of networked applications, from basic file transfer to real-time multimedia and now
robotic control. This evolution has led to the development of specialized protocols like QUIC,
DCCP, and SCTP, each with unique characteristics that address specific aspects of the latency-
reliability trade-off.

Emerging protocols offer promising alternatives. QUIC combines UDP’s low latency with re-
liability features similar to TCP, while eliminating head-of-line blocking through multiplexed
streams [4]. Its integrated security, connection migration capabilities, and growing implementa-
tion support make it a strong candidate for many robotic control applications, particularly those
requiring low latency and operation in variable network environments. DCCP provides conges-
tion control without full reliability overhead, suitable for applications that can tolerate some
packet loss [6], though its limited adoption presents practical deployment challenges. SCTP of-
fers multi-streaming and multi-homing capabilities that enhance resilience in variable network
environments [9], making it particularly valuable for applications requiring high availability and
connection redundancy.

The comparative analysis suggests that while QUIC shows excellent overall performance for
robotic control, specific application requirements may favor alternative protocols in certain sce-
narios. SCTP’s multi-homing capabilities may offer advantages in environments requiring con-
nection redundancy, while DCCP’s lightweight congestion control may benefit applications that
can tolerate occasional packet loss.

Implementation considerations, including hardware constraints, resource utilization, and inte-
gration with robotic operating systems, play a crucial role in protocol selection and deployment.
These practical aspects must be carefully evaluated alongside theoretical performance character-
istics to ensure effective real-world performance.

Despite the advances represented by these emerging protocols, significant research gaps remain in
areas such as performance in extreme environments, energy efficiency, adaptive protocol selection,
security, standardization, and application-specific optimization. Addressing these gaps will be
essential to fully realize the potential of these protocols for advanced robotic control applications.

As robotic systems increasingly operate in remote and hostile environments, the selection and
optimization of appropriate network protocols will remain a critical factor in ensuring safe and
effective operation. Continued research addressing the identified gaps will be essential to fully
realize the potential of these emerging protocols in advancing robotic capabilities, ultimately
enabling more sophisticated and reliable robotic operations in challenging environments.
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Chapter 3

Implementation and Testing

This chapter details the experimental environment, implementation architecture, and testing
methodology developed to evaluate the performance of QUIC, DCCP, and SCTP protocols for
real-time robotic control. A comprehensive testing platform was constructed to ensure consis-
tent evaluation conditions across all three protocols, with special attention paid to maintaining
equivalent implementation approaches to isolate protocol-specific performance characteristics.

3.1 Experimental Setup

3.1.1 Hardware Configuration

The experimental testbed was designed to accurately represent a teleoperation scenario while
allowing precise measurement of network performance metrics. The complete hardware configu-
ration, as illustrated in Figure 3.1, consisted of several integrated components forming a complete
robotic control system.

Human Operator Interface was the starting point of the control chain, where test subjects
interacted with the system through direct manipulation of the haptic device.

Geomagic Touch Haptic Device provided the primary input mechanism for the system,
connected to the client computer via USB 3.0. This high-precision device featured 6-DOF position
sensing with 0.055mm resolution and a 1000Hz refresh rate, providing the operator with intuitive
control capabilities and force feedback.

Client System (Operator Station) utilized an Intel Core Ultra 9 185H processor (16 cores,
22 threads) with 30GB RAM running Ubuntu 22.04 LTS with kernel version 6.8.0-58-generic.
This system, an ASUS Zenbook UX3405MA, hosted the client applications implementing each
protocol and interfaced with the Geomagic Touch haptic device. The system was equipped with
a wireless network adapter operating on a dedicated frequency band to minimize interference.

Network Infrastructure consisted of a managed Gigabit Ethernet switch with VLAN capabili-
ties, allowing for controlled network impairment without affecting system timing. The networking
hardware included:

• 24-port Gigabit Ethernet switch with VLAN support



• Hardware-based network emulator for precise latency, loss, and bandwidth control

• Dedicated traffic shaping router for scenario-based network condition simulation

• Network monitoring probes at critical connection points

Server System employed an Intel Core i7-12700K processor (12 cores, 20 threads) with 31GB
RAM also running Ubuntu 22.04 LTS with the same kernel version. This higher-powered system
was built on an MSI MAG Z790 TOMAHAWK WIFI motherboard and included a dedicated
NVIDIA GPU to ensure that server-side processing would not become a bottleneck during perfor-
mance testing. The server station was configured with Gigabit Ethernet connectivity for stable
network performance during testing.

Robot Control System: The server publishes received haptic commands to ROS2 topics
that interface with an existing robot control system implemented by previous researchers. This
control system manages the physical robot actuators, though detailed robot specifications and
performance characteristics were not used for this study.

All hardware components were synchronized using a common timing reference to ensure accurate
performance measurements across the entire system. Specifically, the client and server sys-
tems maintained synchronized clocks to enable precise round-trip latency measure-
ments and eliminate timing discrepancies between the two machines. The complete
architecture enabled precise control of the robot arm through haptic input, with command and
feedback signals traversing the network protocols under evaluation.

HumanOperator Geomagic TouchHaptic Device ClientApplication NetworkEnvironment ServerApplication Robot Arm

3D Position Data Control Commands

Feedback

ROS2 Messages ROS2 Processing
Protocols Under Test

Latency, Jitter, Packet
Loss, Throughput

Robotic Control System Architecture

Figure 3.1: Robotic Control System Architecture showing the flow of position data from human
operator through the network to the robot arm, with feedback returning to the operator.

3.1.2 Geomagic Touch Haptic Interface

The Geomagic Touch (formerly known as the Phantom Omni) haptic device, shown in Figure
3.2, served as the primary input mechanism for the teleoperation system. This device provides
6 degrees of freedom positional sensing (X, Y, Z, roll, pitch, yaw) with 3 degrees of freedom
force feedback capabilities, making it particularly suitable for evaluating the impact of network
performance on operator experience.

The haptic interface offers a workspace of approximately 160 × 120 × 70 mm with a nominal
position resolution of 0.055 mm, enabling precise manipulation tasks. The device generates
position updates at a frequency of 1000 Hz, creating a demanding real-time data flow that stresses
network protocol performance. Each position update includes the full 6-DOF state information,
encoded into messages of approximately 256 bytes after serialization.
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Figure 3.2: The Geomagic Touch haptic device

To maintain reference timing for performance measurements, the haptic device was configured to
generate timestamps at the hardware level, which were preserved throughout the communication
chain. This approach facilitated precise measurement of end-to-end latency from operator input
to server processing, isolating the network protocol’s contribution to overall system latency.

For force feedback testing, the system was configured to generate appropriate resistance forces
based on virtual object interactions calculated on the server side, with force commands trans-
mitted back through the same protocol being tested. This bidirectional communication pattern
closely resembles real-world teleoperation scenarios where both command and feedback signals
must traverse the network with minimal latency.

3.1.3 Network Environment Configuration

A key contribution of this research is the comprehensive evaluation of protocol performance across
varying network conditions. To achieve this, a configurable network environment was established
using a combination of hardware and software solutions:

The base network configuration utilized Gigabit Ethernet connections with dedicated VLANs
to isolate experimental traffic from management and monitoring traffic. The client system
(192.168.0.111) connected to the server system (192.168.0.165) through a controlled local network
environment. Network impairment was implemented through a combination of Linux Traffic Con-
trol (tc) with the Network Emulator (netem) module and a hardware-based network emulation
appliance for more precise timing control in high-frequency testing scenarios.

Standard test configurations included:

• Baseline (ideal conditions): < 0.5 ms latency, 0% packet loss, 1 Gbps bandwidth

• Low impairment: 5-10 ms latency, 0.1% packet loss, 100 Mbps bandwidth

• Moderate impairment: 20-50 ms latency, 1% packet loss, 50 Mbps bandwidth
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• High impairment: 100-200 ms latency, 5% packet loss, 10 Mbps bandwidth

• Extreme impairment: 300-500 ms latency, 10% packet loss, 2 Mbps bandwidth

Additionally, the environment supported dynamic impairment patterns, including:

• Burst packet loss patterns mimicking wireless interference

• Variable latency with controlled jitter distributions

• Bandwidth fluctuations simulating network congestion

• Asymmetric network conditions with different uplink and downlink characteristics

Network monitoring was implemented at multiple points in the communication path to collect
comprehensive performance metrics. This included packet capture at both client and server
interfaces, protocol-specific logging integrated into the client and server applications, and system-
level resource monitoring to identify potential bottlenecks outside the network layer.

3.2 ROS2 Implementation Architecture

3.2.1 ROS2 Communication Model

Robot Operating System 2 (ROS2) was selected as the foundation for the implementation archi-
tecture due to its widespread adoption in robotics research and industry, as well as its modern
communication architecture based on the Data Distribution Service (DDS) middleware. This
research utilized ROS2 Humble distribution, which provided a stable platform for protocol inte-
gration and testing.

The haptic device interface was implemented using the Geomagic Touch ROS2 driver developed
by IvoD19981, which provides standardized ROS2 message conversion for the Geomagic Touch
haptic device. This driver publishes haptic device state as omni_msgs/OmniState messages,
ensuring consistent data formatting across all protocol implementations.

The standard ROS2 communication model relies on a publish-subscribe pattern, where nodes
publish messages to named topics, and other nodes subscribe to those topics to receive the
messages. This decoupled architecture allows for flexible system composition and supports both
request-response and streaming communication patterns. By default, ROS2 utilizes DDS for its
underlying transport, which typically operates over UDP with custom reliability mechanisms.

For this implementation, the ROS2 framework was extended to intercept messages from the
standard communication path and redirect them through the protocol under test. This approach
preserved compatibility with the broader ROS2 ecosystem while enabling precise control over the
protocol-specific aspects of the communication.

The system architecture consisted of the following primary ROS2 nodes:

• HapticDriver: Interfaced with the Geomagic Touch device and published position data to
the /phantom/state topic using the standard omni_msgs/msg/OmniState message type.

1https://github.com/IvoD1998/Geomagic_Touch_ROS2
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• ProtocolClient: Subscribed to the /phantom/state topic, captured messages, serialized
them according to the protocol-specific format, and transmitted them through the protocol
under test.

• ProtocolServer: Received messages from the protocol under test, deserialized them, and
republished them to the /phantom/remote_state topic.

• ControlSystem: Subscribed to the /phantom/remote_state topic, processed the received
position data, and generated appropriate control commands.

• MetricsCollector: Monitored message flow through the system, collected performance
metrics, and logged results for analysis.

This modular architecture facilitated direct comparison between protocols by allowing the Pro-
tocolClient and ProtocolServer components to be swapped while keeping the rest of the
system constant.

3.2.2 Integration with Network Protocols

Integrating the selected network protocols (QUIC, DCCP, and SCTP) with the ROS2 framework
presented several challenges, particularly in maintaining consistent implementation approaches
across protocols with fundamentally different APIs and feature sets. A unified architecture was
developed to ensure fair comparison, consisting of the following components:

Protocol Abstraction Layer: A common interface was defined for all protocol implementa-
tions, exposing consistent methods for connection management, message transmission, and event
handling. This abstraction layer ensured that protocol-specific implementation details did not
influence the testing methodology.

Message Serialization Framework: A standardized approach to message serialization was
implemented across all protocols. ROS2 messages from the omni_msgs/msg/OmniState type
were serialized into a binary format with a consistent structure: an 8-byte sequence number, an
8-byte timestamp, 3D position data (3 × 4 bytes), quaternion orientation (4 × 4 bytes), velocity
(3 × 4 bytes), current/force (3 × 4 bytes), state flags (2 bytes), and priority information (1 byte).
This consistent message structure ensured that all protocols handled equivalent data volumes.

Virtual Stream Management: To provide fair comparison between multi-streaming protocols
(QUIC, SCTP) and single-stream protocols (DCCP), a virtual stream management system was
implemented. This system mapped logical streams (control commands, telemetry data, etc.)
to physical streams or connections based on the capabilities of each protocol. For QUIC and
SCTP, each logical stream was assigned to a separate physical stream, while for DCCP, stream
multiplexing was implemented at the application layer.

Priority Handling: A consistent priority framework was established across all protocols, with
messages categorized as NORMAL, HIGH, or EMERGENCY based on content and timing re-
quirements. Protocols with native priority support utilized these features, while protocols with-
out native priority mechanisms implemented priority handling at the application layer. This
approach ensured that critical control messages received appropriate treatment regardless of the
underlying protocol.

Performance Instrumentation: Comprehensive performance monitoring was integrated into
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all protocol implementations, with consistent measurement points established throughout the
communication chain. This instrumentation captured protocol-specific metrics (such as conges-
tion window size, retransmission counts, and stream allocation) alongside generic performance
metrics (latency, jitter, throughput), enabling detailed comparative analysis.

3.3 Protocol Client Implementation

This section details the design and implementation of the client side for each transport protocol
(QUIC, DCCP, SCTP). It highlights how each client establishes connections, manages data
transmission (including multi-stream or multiplexing strategies), and serializes haptic messages
for network transfer.

3.3.1 QUIC Client Architecture

The QUIC client is built on the MsQuic library, which provides an asynchronous API for QUIC
connections and streams. The client initializes a QUIC Registration and Configuration (with
a chosen ALPN such as "quic-sample" and using default TLS credentials for encryption). It
then opens a QUIC connection to the server (on the configured port, e.g. 4433) and waits for the
handshake to complete. Once connected, the client opens multiple QUIC streams to carry haptic
data. In this implementation, four unidirectional streams are used (NUM_STREAMS = 4), allowing
concurrent transmission of different priority messages. Each stream is represented by an HQUIC
handle stored in g_persistentStreams[4], and protected by readiness flags and mutexes (so
that the application knows if a stream is available for sending) as shown below:

const int NUM_STREAMS = 4;
HQUIC g_persistentStreams[NUM_STREAMS] = { nullptr };
std::atomic <bool > g_streamReady[NUM_STREAMS] = { false };

// ... later , after connection is established:
for (int i = 0; i < NUM_STREAMS; i++) {

// Create a stream and provide a context identifying the
stream index

auto* ctx = new StreamContext(i);
QUIC_STATUS status = MsQuic ->StreamOpen(

Connection ,
QUIC_STREAM_OPEN_FLAG_NONE ,
SingleMessageStreamCallback ,
ctx ,
&g_persistentStreams[i]);

if (QUIC_FAILED(status)) {
logError("Failed to open stream " + std:: to_string(i));
continue;

}

MsQuic ->StreamStart(g_persistentStreams[i],
QUIC_STREAM_START_FLAG_NONE);

}
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Listing 3.1: QUIC client maintains multiple persistent streams

Each QUIC stream is used to send a particular category of messages (e.g. stream 0 for emergency,
1 for high priority, and others for normal data), similar to SCTP’s stream concept. Internally,
the client implements an event-driven architecture via MsQuic callbacks. A connection callback
(ClientConnectionCallback) handles events like connection establishment or closure, and a
stream callback (SingleMessageStreamCallback) handles per-stream events such as data sent
or received. This allows the client to react to acknowledgments and flow events without blocking
the main thread.

For outgoing data, the QUIC client uses a background thread to pull serialized haptic messages
from a queue and dispatch them on appropriate streams. The client employs a priority-based
scheduling: Emergency messages bypass rate limiting and are sent immediately (using a desig-
nated stream, often stream index 0), High priority messages are sent next (possibly on stream
1, with slight throttling), and Normal messages are sent at a controlled rate on the remaining
streams (round-robin across streams 2 and 3 for load balancing). This logic ensures critical haptic
feedback (like an emergency stop) is delivered with minimal latency. A snippet of the sending
loop illustrates this logic:

if (hasEmergencyMessage) {
// Use stream 0 for emergency messages , no rate limiting
int streamIndex = 0;
MsQuic ->StreamSend(g_persistentStreams[streamIndex], &

emergencyMsg.quicBuffer , 1,
QUIC_SEND_FLAG_NONE , nullptr);

logInfo("Sent EMERGENCY message #" +
std:: to_string(emergencyMsg.sequenceNumber) + " on stream

" + std:: to_string(streamIndex));
} else if (hasHighPriorityMessage) {

// Use stream 1 for high priority , mild rate limiting
int streamIndex = 1;
MsQuic ->StreamSend(g_persistentStreams[streamIndex], &highMsg

.quicBuffer , 1, QUIC_SEND_FLAG_NONE ,
nullptr);

logInfo("Sent HIGH priority message #" + std:: to_string(
highMsg.sequenceNumber) + " on stream "
+ std:: to_string(streamIndex));

} else {
// Normal message apply rate control and round -robin

streams 2-3
static int roundRobinIndex = 2;
int streamIndex = roundRobinIndex;
roundRobinIndex = (roundRobinIndex + 1) % NUM_STREAMS;
if (roundRobinIndex < 2) roundRobinIndex = 2; // ensure stays

in [2,3]

// Rate limiting: sleep if last send was too recent
if (timeSinceLastSend < g_messageInterval) {
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std:: this_thread :: sleep_for(g_messageInterval -
timeSinceLastSend);

}
lastSendTime = std:: chrono :: steady_clock ::now();

MsQuic ->StreamSend(g_persistentStreams[streamIndex],
&normalMsg.quicBuffer , 1, QUIC_SEND_FLAG_NONE , nullptr);

}

Listing 3.2: Priority-based send scheduling in QUIC client (simplified)

The QUIC client benefits from QUIC’s reliability, congestion control, and low latency handshake.
The multi-stream design means packet loss on one logical stream (e.g. normal traffic) does not
head-of-line block an urgent message on another stream. The client tracks each message’s se-
quence number and send timestamp in a global map for RTT measurement. When the server
responds with an acknowledgment (see Section on server pipeline), the client matches the ACK’s
sequence number to compute round-trip time and logs statistics. Overall, the QUIC client archi-
tecture is asynchronous and highly parallel, which is well-suited for the real-time requirements
of surgical haptic feedback.

3.3.2 DCCP Client Architecture

The DCCP client uses the Linux Datagram Congestion Control Protocol (DCCP) sockets API
to transmit haptic data. DCCP is connection-oriented (handshakes to establish a session) but
message-oriented and can operate unreliably (no guaranteed delivery or ordering) while provid-
ing congestion control. The client creates a DCCP socket with socket(AF_INET, SOCK_DCCP,
IPPROTO_DCCP) and configures it before connecting:

g_dccpSocket = socket(AF_INET , SOCK_DCCP , IPPROTO_DCCP);
if (g_dccpSocket < 0) {

logError("Failed to create DCCP socket: " + std:: string(
strerror(errno)));

return false;
}

// Set a DCCP service code (application -specific identifier)
int service_code = htonl(DCCP_SERVICE_CODE); // e.g. 42
setsockopt(g_dccpSocket , SOL_DCCP , DCCP_SOCKOPT_SERVICE , &

service_code , sizeof(service_code));

// Set non -blocking mode and initiate connect
fcntl(g_dccpSocket , F_SETFL , O_NONBLOCK);
connect(g_dccpSocket , (struct sockaddr *)&g_serverAddr , sizeof(

g_serverAddr));

Listing 3.3: DCCP client connection setup

Because DCCP is message-oriented and does not inherently support multiple streams per con-
nection, the client implementation simulates a multi-stream mechanism. It defines NUM_STREAMS
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= 4 (to mirror the QUIC implementation) and assigns each outgoing message to a logical stream
index (0–3). This stream index is prepended to each outgoing message as a 4-byte header in
the packet payload. By doing so, the client and server can multiplex different priority flows over
the single DCCP connection. For example, the client always uses stream index 0 for emergency
messages, stream 1 for high priority, and streams 2–3 (round-robin) for normal messages. Before
sending, the client constructs a packet buffer of 4 + message.data.size() bytes, copies the
4-byte stream ID at the start, then copies the serialized message bytes after:

int streamIndex = (roundRobinIndex ++ % NUM_STREAMS); // choose a
stream 2-3

std::vector <uint8_t > packet (4 + normalMessage.data.size());
memcpy(packet.data(), &streamIndex , sizeof(int)); // prepend

stream index
memcpy(packet.data() + 4, normalMessage.data.data(),

normalMessage.data.size());

// Send the DCCP packet
ssize_t bytesSent = send(g_dccpSocket , packet.data(), packet.size

(), 0);
if (bytesSent < 0) {

logError("Failed to send message: " + std:: string(strerror(
errno)));

if (errno == ECONNRESET || errno == EPIPE) {
logError("Connection lost");
connectionClosed = true;

}
} else {

g_metrics.messagesSentPerStream[streamIndex ]++; // update per
-stream counter

}

Listing 3.4: DCCP client sending a normal message with stream index

The DCCP client’s send scheduling logic is very similar to the QUIC client: emergency messages
bypass any rate limiter and are sent immediately on stream 0, high priority on the least-loaded
stream (it tracks messages sent per stream and picks the one with lowest usage for high priority),
and normal messages are rate-limited to a target frequency (e.g. g_currentMessageRate, which
might start around 1000 Hz and can adapt). The rate control is implemented by sleeping the
sending thread for the remainder of the interval if a message was just sent faster than the desired
interval (g_messageInterval derived from the rate). This ensures the haptic update rate to the
server does not overwhelm the network.

On the receive side, the DCCP client can optionally listen for server responses (ACKs). Since
DCCP is message-based, the client uses recvfrom on the socket to receive acknowledgments
(non-blockingly, often checked in a loop or via poll). If an ACK is received, the client parses it
to update RTT statistics. An ACK in DCCP contains the stream index and sequence number
echoed by the server (and possibly a timestamp). The client matches this with its sent message
record (using the sequence number) and calculates RTT = (now - original sendTime), logging
it when logging is enabled. This feedback loop allows the DCCP client to monitor network
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performance similarly to the QUIC and SCTP clients.

Overall, the DCCP client architecture is a hybrid of UDP-like sending with TCP-like connection
semantics. It explicitly handles non-blocking connect (polling for completion), and manually
implements features like multiplexing and reliability trade-offs. DCCP’s congestion control (here
set to CCID 2, TCP-like, via a socket option) helps throttle the send rate under the hood,
complementing the application’s own rate limiting to ensure stability.

3.3.3 SCTP Client Architecture

The SCTP client uses the Stream Control Transmission Protocol (SCTP), which natively sup-
ports multi-stream multiplexing within a single association. The client creates an SCTP socket
with socket(AF_INET, SOCK_STREAM, IPPROTO_SCTP) (using SCTP’s one-to-one socket style,
similar to TCP). Before connecting, it configures the number of outbound/inbound streams for
the association using the SCTP_INITMSG socket option:

struct sctp_initmsg initmsg;
memset (&initmsg , 0, sizeof(initmsg));
initmsg.sinit_num_ostreams = NUM_STREAMS;
initmsg.sinit_max_instreams = NUM_STREAMS;
if (setsockopt(g_socket_fd , IPPROTO_SCTP , SCTP_INITMSG , &initmsg ,

sizeof(initmsg)) < 0) {
logError("Failed to set SCTP init parameters: " + std:: string

(strerror(errno)));
}

Listing 3.5: SCTP client initialization of multi-stream support

By setting (for example) 4 outbound streams, the SCTP handshake will negotiate up to 4 streams
in both directions. The client then connects to the server using connect(). Because a one-to-
one SCTP socket is used, the connect call establishes a single association (similar to a TCP
connection). After connection, the SCTP client can send messages on any of the 4 streams
simply by specifying a stream number with each send.

The SCTP client’s sending architecture again parallels the other protocols. A ROS2 subscriber
callback (omniStateCallback) gathers haptic device state and pushes serialized messages into
a queue with an associated priority. A dedicated sending loop thread then continuously checks
this queue and implements priority-based sending logic:

• Emergency messages: sent immediately on stream 0 (bypassing delays).

• High priority messages: sent on stream 1. The client chooses stream 1 specifically for high
priority traffic in this design (since stream 0 is reserved for emergencies). A mild rate limit
is applied – e.g., at most one high-priority message per half of the normal interval.

• Normal messages: sent on the remaining streams (streams 2 and 3) in round-robin fashion,
with full rate limiting to the target message frequency. The code ensures the round-robin
index stays in {2,3} so normal traffic is distributed over those two streams.

Unlike DCCP, the SCTP client does not need to prepend a stream identifier into the mes-
sage payload – the stream is indicated out-of-band in the SCTP send call. The client uses the
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sctp_sendmsg API, which allows specifying the stream number and a payload protocol identifier
(PPID). In this implementation, the client repurposes the PPID field to convey message priority
to the server (this is an optional 32-bit metadata in SCTP). For example:

int streamIndex = 0; // emergency stream
uint32_t ppid = htonl(EMERGENCY);
int sent = sctp_sendmsg(g_socket_fd ,

emergencyMessage.data.data(), emergencyMessage.data.size(),
NULL , 0, // no explicit dest (one -to-one socket)
ppid , 0, // payload protocol id carries priority
streamIndex , 0, 0); // specify stream index

if (sent < 0) {
logError("Failed to send emergency message on stream 0: " +

std:: string(strerror(errno)));
}

Listing 3.6: Sending an emergency message with SCTP

The above call sends the bytes in emergencyMessage.data on stream 0 with PPID = 2 (assuming
EMERGENCY=2). Similarly, high priority messages use streamIndex = 1 and PPID = 1, and
normal messages use streams 2 or 3 with PPID = 0. The server can read both the stream
number and PPID when it receives data, enabling it to reconstruct the priority and handle
accordingly.

Just like the other clients, the SCTP client tracks each message’s sequence number and send
timestamp. Upon receiving an acknowledgment from the server, it computes RTT. In SCTP, the
server’s response is sent back over the same association. The client may use sctp_recvmsg to
read incoming messages (including a potential ACK from the server). The ACK format for SCTP
is simpler than DCCP: since stream and priority are conveyed by SCTP headers, the server’s
ACK payload only needs to include the sequence number and timestamp (total 16 bytes). The
client matches the sequence number with its records to mark that message as acknowledged and
to calculate RTT.

In summary, the SCTP client leverages SCTP’s built-in multi-stream capabilities to neatly sep-
arate traffic classes. Its architecture (ROS callback producer + sending thread consumer) and
priority-aware scheduling ensure timely delivery of critical messages. SCTP provides reliable, in-
order delivery on each stream but independence between streams (i.e., no head-of-line blocking
across streams), which is crucial for maintaining low latency on the emergency control channel.

3.3.4 Message Structure and Serialization

All three client implementations share a common message format and serialization procedure for
the haptic data. The message structure (apart from the extra stream header used in DCCP) is
defined by a struct HapticMessage with fields corresponding to an Omni haptic device’s state
and some metadata:

• 64-bit sequenceNumber: a monotonically increasing ID for each message, used to track
delivery and measure RTT.
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• 64-bit timestamp: the sender’s timestamp for when the message was created (in microsec-
onds since epoch or steady clock). This can be used for latency measurement or temporal
ordering.

• 3×32-bit posX, posY, posZ: Cartesian position of the haptic device end-effector.

• 4×32-bit quatW, quatX, quatY, quatZ: Orientation of the device as a unit quaternion.

• 3×32-bit velX, velY, velZ: Linear velocity of the device (if available).

• 3×32-bit currX, currY, currZ: Force/torque feedback (or motor currents) along axes,
representing haptic feedback effort.

• 1-byte locked: a boolean flag (e.g., whether a safety lock or clutch is engaged on the
device).

• 1-byte closeGripper: another boolean (e.g., whether to close a gripper or apply a partic-
ular discrete action).

• 1-byte priority: the message priority level (0 = NORMAL, 1 = HIGH, 2 = EMER-
GENCY), as determined by the client.

• (DCCP only) 32-bit streamIndex: In DCCP, this field is prepended to the message buffer
(not stored in the struct on server side for SCTP/QUIC) to indicate the logical stream
number.

All numeric fields are serialized in little-endian format matching the native endianness (since
client and server are assumed homogeneous environment in this setup). The total message size is
75 bytes for a full message (without the DCCP stream header): 8+8 bytes for seq & timestamp,
12 bytes position, 16 bytes orientation, 12 bytes velocity, 12 bytes current, 2 bytes booleans, 1
byte priority = 71 bytes, plus padding or alignment if needed (the code typically rounded up to
75 or 80 bytes for simplicity or allocated a fixed 256- byte buffer). In practice, the client reserves
a buffer of 256 bytes for each message to allow future expansion, but only the first 70–75 bytes
are used.

In code, the serialization is done manually with memcpy calls. The ROS callback on the client
constructs a MessageWithTimestamp object, then copies each field into a std::vector<uint8_t>
buffer at the correct offset. For example, the core serialization steps are:

// Reserve buffer for message (e.g. 256 bytes)
message.data.resize(bufferSize);

// 1. Sequence number (8 bytes)
memcpy(message.data.data(), &message.sequenceNumber , sizeof(

uint64_t));

// 2. Timestamp (8 bytes) - current time in microseconds
uint64_t absoluteTimestamp =

std:: chrono :: duration_cast <std:: chrono :: microseconds >(
message.sendTime.time_since_epoch ()).count();

memcpy(message.data.data() + 8, &absoluteTimestamp , sizeof(
uint64_t));

54



// 3. Position (3 floats = 12 bytes)
float x = (float) msg ->pose.position.x;
float y = (float) msg ->pose.position.y;
float z = (float) msg ->pose.position.z;
memcpy(message.data.data() + 16, &x, sizeof(float));
memcpy(message.data.data() + 20, &y, sizeof(float));
memcpy(message.data.data() + 24, &z, sizeof(float));

// 4. Orientation (4 floats = 16 bytes)
float qw = (float) msg ->pose.orientation.w;
float qx = (float) msg ->pose.orientation.x;
float qy = (float) msg ->pose.orientation.y;
float qz = (float) msg ->pose.orientation.z;
memcpy(message.data.data() + 28, &qw, sizeof(float));
memcpy(message.data.data() + 32, &qx, sizeof(float));
memcpy(message.data.data() + 36, &qy, sizeof(float));
memcpy(message.data.data() + 40, &qz, sizeof(float));

// 5. Velocity (3 floats = 12 bytes)
float vx = (float) msg ->velocity.x;
float vy = (float) msg ->velocity.y;
float vz = (float) msg ->velocity.z;
memcpy(message.data.data() + 44, &vx, sizeof(float));
memcpy(message.data.data() + 48, &vy, sizeof(float));
memcpy(message.data.data() + 52, &vz, sizeof(float));

// 6. Current/force (3 floats = 12 bytes)
float cx = (float) msg ->current.x;
float cy = (float) msg ->current.y;
float cz = (float) msg ->current.z;
memcpy(message.data.data() + 56, &cx, sizeof(float));
memcpy(message.data.data() + 60, &cy, sizeof(float));
memcpy(message.data.data() + 64, &cz, sizeof(float));

// 7. Boolean flags (locked , gripper)
uint8_t lockState = msg ->locked ? 1 : 0;
uint8_t gripState = msg ->close_gripper ? 1 : 0;
memcpy(message.data.data() + 68, &lockState , 1);
memcpy(message.data.data() + 69, &gripState , 1);

// 8. Priority (1 byte)
uint8_t priorityVal = (uint8_t) message.priority;
memcpy(message.data.data() + 70, &priorityVal , 1);

Listing 3.7: Serialization of OmniState into a byte buffer (client-side)

This low-level approach, while verbose, avoids any endianness issues and lets the developer control
the exact layout. It also makes parsing on the server straightforward by doing the inverse memcpy
calls. After constructing this buffer, the client code enqueues the message into a thread-safe

55



queue. The size of the queue is bounded (e.g. MAX_QUEUE_SIZE = 2000) to avoid unbounded
memory growth if the network is slow. If the queue is full, the oldest message is dropped (and
a warning is logged every N drops). This ensures that the client doesn’t backlog too much stale
haptic data, which would only increase latency.

On the server side, the parsing logic reconstructs the HapticMessage from the received bytes.
Each server implementation contains a method HapticMessage::parseFromBuffer(const uint8_t*
buffer, uint32_t length) that performs bounds-checking and uses memcpy in reverse to fill
the fields. For instance, the QUIC/SCTP server parse (which expects no stream header in the
buffer) does:

bool HapticMessage :: parseFromBuffer(const uint8_t* buffer ,
uint32_t length) {
if (! buffer || length < 16) {

logWarning("Invalid buffer or length too small: " + std::
to_string(length));

return false;
}

// Format: [sequence (8) | timestamp (8) | position (12) |
quaternion (16) |

// velocity (12) | current (12) | flags (2) | priority (1)]

memcpy (& sequenceNumber , buffer , sizeof(uint64_t));
memcpy (&timestamp , buffer + 8, sizeof(uint64_t));

if (length >= 16 + 3* sizeof(float)) {
memcpy (&posX , buffer + 16, sizeof(float));
memcpy (&posY , buffer + 20, sizeof(float));
memcpy (&posZ , buffer + 24, sizeof(float));

}

if (length >= 28 + 4* sizeof(float)) {
memcpy (&quatW , buffer + 28, sizeof(float));
memcpy (&quatX , buffer + 32, sizeof(float));
// ... (similarly for quatY , quatZ at 36, 40)

}

// ... (velocity at 44, 48, 52; current at 56, 60, 64)

if (length >= 68 + 2) {
uint8_t lockState=0, gripState =0;
memcpy (&lockState , buffer + 68, 1);
memcpy (&gripState , buffer + 69, 1);
locked = (lockState != 0);
closeGripper = (gripState != 0);

}

if (length >= 70 + 1) {
uint8_t priorityVal = 0;
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memcpy (& priorityVal , buffer + 70, 1);
priority = static_cast <HapticMessagePriority >( priorityVal

);
}

return true;
}

Listing 3.8: Server-side parsing of a received message buffer

For the DCCP server, the parse function first reads the 4-byte stream index at the start of the
buffer (since the DCCP payload includes it), and then proceeds with the same offsets for the
rest (shifted by 4). The DCCP server’s HapticMessage struct actually includes an extra field
streamIndex to store this value, whereas the QUIC and SCTP server’s struct does not (they
rely on external stream information from the protocol).

The message format is consistent across protocols so that the higher-level application logic (pub-
lishing to ROS, processing the haptic commands) can be implemented in a protocol-agnostic way.
This design also simplifies the task of measuring network performance uniformly for all trans-
ports, as each message carries the necessary metadata (sequence and timestamp) to compute
latency and detect drops (e.g., by sequence gaps).

3.4 Protocol Server Implementation

On the server side, each protocol has a corresponding server that accepts client connections,
receives haptic command messages, processes them (possibly publishing to a ROS topic for a
remote robot or haptic device), and sends back acknowledgments or responses. Despite differences
in network API, the servers are designed with similar architecture: a main networking loop to
handle incoming data, use of multiple threads or asynchronous callbacks to process data in
parallel, and a priority-based pipeline to ensure urgent messages are handled with minimal delay.

3.4.1 QUIC Server Architecture

The QUIC server is built with MsQuic, running in an asynchronous event-driven manner. The
server begins by opening a QUIC listener with the same ALPN ("quic-sample") and a callback
to handle incoming connections. When a client connects, MsQuic provides a HQUIC Connection
handle to the server and invokes the server’s connection callback. The server then accepts the
connection (QUIC doesn’t have an accept call like BSD sockets; the act of providing the callback
and not rejecting the connection means it’s accepted).

Once the connection is established, streams can be opened by either side. In this implementation,
the client actively opens the streams for sending. The server’s stream callback (StreamCallback)
is invoked whenever a new stream is available or data arrives on a stream. The server associates
each QUIC stream with a logical context (for example, it may store a struct with stream state,
like message counters, and an identifier for that stream). Because the client uses 4 streams, the
server might maintain an array or map of stream states similarly.

The QUIC server’s stream callback handles events of type QUIC_STREAM_EVENT_RECEIVE when
data is received. At that point, the server reads the incoming bytes (provided by MsQuic in
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the event structure) and pushes them into the processing pipeline. Notably, the QUIC server
can receive data concurrently on multiple streams, and MsQuic may use multiple threads for
callbacks. To coordinate, the server protects shared data (like global stats or ROS publisher)
with mutexes where needed, and uses atomic counters for message counts.

A key aspect of QUIC server architecture is its approach to acknowledgments. Unlike TCP, QUIC
allows the application to decide how to respond on the streams (in addition to QUIC’s internal
ACKs for packet delivery). In the application-level protocol, an application ACK is implemented
for each message (or each Nth message for normals) to measure RTT. The server can send an
ACK by writing to the same stream the message came on (since the client opened unidirectional
streams for sending, the server could either use separate unidirectional streams back or piggy-
back on a bidirectional stream). Here, for simplicity, each client->server stream is treated as a
bidirectional channel for request (client->server message) and response (server->client ACK).

The QUIC server prepares an ACK consisting of the original sequence number and timestamp.
For emergency messages, the server sends the ACK immediately, directly in the stream callback
before doing any heavy processing. The relevant code fragment is:

if (priority == EMERGENCY) {
// Build 16-byte ACK (sequence + timestamp)
EmergencyAckBuffer* ackBuf = allocateEmergencyAckBuffer (); //

from a pool
memcpy(ackBuf ->buffer , &sequenceNumber , sizeof(uint64_t));
memcpy(ackBuf ->buffer + 8, &timestamp , sizeof(uint64_t));
ackBuf ->quicBuffer.Length = 16;

QUIC_STATUS status = MsQuic ->StreamSend(Stream , &ackBuf ->
quicBuffer , 1, QUIC_SEND_FLAG_NONE , ackBuf);

if (QUIC_FAILED(status)) {
logError("Failed to send emergency ACK on stream");
releaseEmergencyAckBuffer(ackBuf);

} else {
logInfo("Sent immediate ACK for EMERGENCY message #" +

std:: to_string(sequenceNumber));
}

// Mark this receive as complete so MsQuic can free buffers
MsQuic ->StreamReceiveComplete(Stream , bytesReceived);
return; // emergency message processed (will be handled by

processing thread below as well or separately)
}

Listing 3.9: QUIC server immediate ACK for emergency message

For non-emergency messages, the QUIC server doesn’t block the callback to send an ACK.
Instead, it queues the message data to a thread pool for processing. After processing, an
ACK may be sent depending on policy: by default, the code is set to ACK every message
(ACK_INTERVAL = 1 for surgical control), but one could configure it to ACK less frequently
for normal messages. In the code, after processing a normal message, they check if messageCount
% ACK_INTERVAL == 0 or if the sequence number is a "milestone" (every 1000th) to decide to
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send an ACK. If yes, the server will package the seq and timestamp into a buffer and call
MsQuic->StreamSend on that stream to send the ACK. High priority messages, as per code, are
always ACKed (ACK_INTERVAL for high might be effectively 1).

The QUIC server thus heavily uses the MsQuic callback model and internal thread pool for I/O. It
offloads CPU-intensive tasks (parsing, ROS publication) to its own thread pool (g_thread_pool)
to keep the MsQuic callbacks lightweight and able to handle more I/O events. Synchronization
between threads (for example, ensuring that by the time an ACK is sent the data is parsed)
is carefully managed by context objects. In the emergency case, a special pool of pre-allocated
ACK buffers is used to avoid dynamic allocation overhead in the time-critical path.

Finally, the QUIC server integrates with ROS2: it initializes a ROS2 node and a publisher (e.g.,
on topic /phantom/remote_state) with a reliable QoS profile suitable for real-time (reliable
and volatile durability, meaning old states aren’t queued). Processed haptic state messages are
published for use by the remote system (which could be a surgical robot controller). The server
prints statistics periodically (every statsInterval messages as configured) to log throughput,
and it monitors for client disconnect events (e.g., QUIC connection closed event) to shut down
gracefully.

3.4.2 DCCP Server Architecture

The DCCP server uses the Linux socket API to create a DCCP listening socket and receive
messages from clients. Since DCCP is connection-oriented, the server must perform a handshake
with the client; however, Linux’s DCCP implementation allows a server socket to receive data
via recvfrom without explicitly calling accept for each new client (DCCP’s semantics are a bit
different from TCP). In our implementation, the server does the following in setup:

• Creates the socket with socket(AF_INET, SOCK_DCCP, IPPROTO_DCCP).

• Sets the same service code (e.g., 42) with setsockopt(..., DCCP_SOCKOPT_SERVICE,
...) to identify the application profile.

• Binds to the desired port on INADDR_ANY and calls listen() with a backlog.

• Puts the socket in non-blocking mode and increases its send/recv buffer sizes (e.g., 512
KB) to handle high throughput of haptic messages.

• Sets the DCCP congestion control ID (CCID) to 2 (TCP-like) for reliable congestion be-
havior.

After initialization, the DCCP server enters a loop where it polls the socket for readability. A
poll() is used on the server socket descriptor with a short timeout (e.g., 100 ms) to check for
incoming packets. Whenever the socket is readable, the server calls recvfrom() to receive a
message from a client:

struct sockaddr_in clientAddr;
socklen_t clientAddrLen = sizeof(clientAddr);
uint8_t buffer[MAX_DCCP_PACKET_SIZE ];
...
int ret = poll(&pfd , 1, 100);
if (ret > 0 && (pfd.revents & POLLIN)) {
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ssize_t bytesRead = recvfrom(g_server_socket , buffer , sizeof(
buffer), 0,

(struct sockaddr *)&clientAddr , &
clientAddrLen);

if (bytesRead > 0) {
// process the received packet

}
}

Listing 3.10: Main loop of DCCP server receiving messages

Each received packet contains the 4-byte stream index followed by the serialized HapticMessage
data as described earlier. The server inspects the source clientAddr; if it’s a new client (not seen
before), it logs the new connection and stores the client’s info in a map of active clients. (The
server uses the client’s IP as a key since DCCP here is unencrypted and within one network—this
could be extended with port or a unique ID if multiple devices per IP are possible.)

The DCCP server then enters the command processing pipeline for that packet. This pipeline
is largely the same for all protocols, so it is described generally in the "Command Processing
Pipeline" subsection below. In the context of the DCCP server specifically: it reads the first
4 bytes to get streamIndex, then uses the remaining bytes to parse the HapticMessage. It
determines the priority either from the priority field in the message or by some heuristic (in
this case, the client explicitly set the priority field). The server maintains a global message
counter (globalMsgCount) and per-stream message counters for stats.

To maximize performance, the DCCP server uses a thread pool to handle message processing in
parallel. However, to ensure EMERGENCY messages are acted upon immediately, the server
checks the priority: if it’s EMERGENCY, it calls ProcessHapticData in the network thread (by-
passing the queue) so that emergency commands (like an emergency stop) are not delayed even
by queueing overhead. If the priority is HIGH or NORMAL, the server enqueues the processing
task to a thread pool (incrementing a queued task counter for stats). The thread pool then picks
up the task and calls ProcessHapticData asynchronously. This design allows multiple normal
messages to be processed in parallel on multi-core systems, and prevents a slow operation (like
a blocking ROS publish or a heavy computation) from stalling new incoming packets.

After queuing or handling the packet, the DCCP server sends an application-layer ACK back to
the client. Because DCCP is message-based, the server uses sendto() with the client’s address
to send a small reply. The code prepares an ackBuffer of 4+8+8 = 20 bytes: it writes the same
streamIndex (4 bytes) so the client knows which logical stream this ACK corresponds to, the
sequenceNumber (8 bytes) to identify the message, and the timestamp (8 bytes, likely echoing
the client’s timestamp or using the server’s receive time). This ACK is then sent back over
DCCP:

std::vector <uint8_t > ackBuffer (4 + 8 + 8);
memcpy(ackBuffer.data(), &msg.streamIndex , sizeof(int));
memcpy(ackBuffer.data() + 4, &msg.sequenceNumber , sizeof(uint64_t

));
memcpy(ackBuffer.data() + 12, &msg.timestamp , sizeof(uint64_t));
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ssize_t bytesSent = sendto(g_server_socket , ackBuffer.data(),
ackBuffer.size(), 0,

(struct sockaddr *)&clientAddr , sizeof(
clientAddr));

if (bytesSent < 0) {
logError("Failed to send ACK: " + std:: string(strerror(errno)

));
} else {

g_stats.updateSent(bytesSent , msg.streamIndex);
if (msg.priority == EMERGENCY) {

logInfo("Sent ACK for EMERGENCY message #" + std::
to_string(msg.sequenceNumber));

}
}

Listing 3.11: DCCP server sending an ACK for a received message

By immediately ACKing every message (or every message above a threshold, but here every
message to measure each RTT is chosen), the DCCP server enables the client to perform fine-
grained RTT measurements and adjust its send rate or debug network issues.

In terms of ROS integration, the DCCP server, once initialized, starts a ROS2 node and a
publisher on the topic (e.g. /phantom/remote_state). The ProcessHapticData function, after
parsing the message, populates a ROS OmniState message and publishes it. The code also
checks for any abnormal values (like non-finite floats) and can insert an artificial processing delay
if configured (for testing the effect of computation latency on the pipeline). After publishing,
debug logs are printed occasionally to confirm message contents and that publishing occurred.

The DCCP server runs until a shutdown signal is received or an error occurs. If the client
disconnects (no DCCP equivalent of a TCP FIN is obvious, but if no packet is received for some
time or if an error is encountered on recv), the server can log and continue waiting for new
connections or data.

3.4.3 SCTP Server Architecture

The SCTP server is implemented using the one-to-one SCTP socket API and supports multi-
streaming inherently. The server creates an SCTP socket (socket(AF_INET, SOCK_STREAM,
IPPROTO_SCTP)) and calls bind() on the desired port. It then calls listen() to start listening
for incoming SCTP associations (much like a TCP listen).

When a client connects, the server performs an accept() to obtain a new socket file descriptor for
the established association. This accepted socket now represents the connection to that specific
client (allowing multiple clients to connect concurrently if needed, though in this scenario one
client is expected). The server spawns a separate thread (or uses a thread pool) to handle each
connected client. In our implementation, an AcceptClients thread continuously calls accept()
in a loop (non-blocking mode with short sleeps between attempts) and for each new client_fd
accepted, it creates a ClientState object and launches a HandleClient thread for it:

int client_fd = accept(g_server_fd , (struct sockaddr *)&
client_addr , &addr_len);
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if (client_fd >= 0) {
logInfo("New client connected: " + inet_ntoa(client_addr.

sin_addr) + ":" +
std:: to_string(ntohs(client_addr.sin_port)));

auto client = std:: make_shared <ClientState >(client_fd ,
client_addr , addr_len);

{
std::lock_guard <std::mutex > lock(g_clients_mutex);
g_clients.push_back(client);

}

std:: thread ([ client] { HandleClient(client); }).detach ();
}

Listing 3.12: SCTP server accepting and handling a client

Inside each HandleClient, the server sets the client socket to non-blocking and then enters a
loop to receive messages. SCTP provides the function sctp_recvmsg which not only receives
data but also fills in ancillary data about the message, such as the stream number and PPID.
The server uses this to know which stream a message came on and what priority was indicated.
For example:

struct sctp_sndrcvinfo sndrcvinfo;
int msg_flags = 0;
std::vector <uint8_t > buffer (4096);

int n = sctp_recvmsg(client ->socket_fd , buffer.data(), buffer.
size(),

NULL , NULL , &sndrcvinfo , &msg_flags);
if (n > 0) {

uint16_t streamId = sndrcvinfo.sinfo_stream;
HapticMessagePriority priority = NORMAL;

if (sndrcvinfo.sinfo_ppid != 0) {
// extract priority from PPID
uint32_t pval = ntohl(sndrcvinfo.sinfo_ppid);
if (pval <= EMERGENCY)

priority = static_cast <HapticMessagePriority >(pval);
}

uint64_t msgCount = client ->messageCount ++;

if (priority == EMERGENCY) {
// Immediate processing
ProcessHapticData(buffer.data(), n, msgCount , client ->

socket_fd , streamId);
} else {

// Queue for thread pool processing
g_thread_pool ->enqueue ([buf=std::vector <uint8_t >( buffer.
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begin(), buffer.begin()+n),
msgCount , client , streamId , priority]

{
ProcessHapticData(buf.data(), buf.size(), msgCount ,

client ->socket_fd , streamId);
});

}
}

Listing 3.13: Receiving messages in SCTP server with stream info

This shows that for each message, the SCTP server obtains the streamId and the priority
(from PPID). It then uses the same strategy: emergency messages are handled inline (lowest
latency path), others are offloaded to a thread pool.

The ProcessHapticData function for SCTP is similar to DCCP’s, except it also knows the
streamId of the message (though the message itself doesn’t contain stream, SCTP gave it to
us). It parses the buffer to a HapticMessage (which for SCTP does not include a stream index
in the buffer, unlike DCCP). After parsing and processing (publishing to ROS, etc.), the SCTP
server sends an acknowledgment or response back to the client. In SCTP, sending a response
is straightforward: use sctp_sendmsg on the client_fd, specify the streamId to match the
incoming stream (so the client will receive the ACK on the same logical channel), and possibly
set the PPID to the priority of the original message (or some agreed value). The server in this
code sends back a 16-byte ACK containing the sequence number and timestamp:

std::vector <uint8_t > responseData (16);
memcpy(responseData.data(), &msg.sequenceNumber , sizeof(uint64_t)

);
memcpy(responseData.data() + 8, &msg.timestamp , sizeof(uint64_t))

;

// Respond on the same stream with matching priority in PPID
uint32_t ppid = htonl(msg.priority);
int flags = (msg.priority == EMERGENCY) ? MSG_DONTWAIT : 0; //

send emergency ACK asap

sctp_sendmsg(clientFd , responseData.data(), responseData.size(),
NULL , 0, // no specific addr (one -to-one socket)
ppid , flags , streamId , 0, 0);

Listing 3.14: SCTP server sending a response ACK

By using MSG_DONTWAIT for emergency, it is ensured that the send won’t block (in case the socket
buffer is full, the ACK is droppped or handle later; but typically 16 bytes will send). The ACK’s
PPID is set to the same priority as the message for consistency (though the client currently might
not use PPID on receiving ACK, it could in future). The important part is the same streamId
is used, so that the client can correlate which stream’s message is being acknowledged if needed
(the client already also has the sequence number for correlation).

The SCTP server, after sending the response, proceeds to publish the haptic state to ROS (as
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shown in the code snippet in the QUIC or DCCP sections – it populates an OmniState mes-
sage and uses g_publisher->publish(*)). The publishing logic may treat emergency messages
slightly differently (e.g., logging each emergency publish, whereas normal publishes are logged
every 1000 messages to avoid spam).

If the client disconnects, sctp_recvmsg will return an error (e.g., ECONNRESET or ENOT-
CONN). The code handles that by logging a disconnect and exiting the HandleClient loop,
which will then clean up the client state. The main acceptor thread can continue to accept new
clients if needed.

In summary, the SCTP server architecture is multi-threaded (one thread per client plus a shared
thread pool for heavy lifting). It fully utilizes SCTP’s multi-stream to separate flows and uses
the PPID to convey priority metadata. It ensures that urgent messages preempt normal ones
in processing order, and sends timely acknowledgments. The design achieves reliability (SCTP
guarantees message delivery and ordering per stream) and preserves message boundaries (no need
for custom framing as in a TCP stream).

3.4.4 Command Processing Pipeline

Regardless of transport protocol, once a message is received by the server, it undergoes the
command processing pipeline which involves: parsing the message, optional analysis or delays,
application-level handling (e.g. ROS publication or robot command), and acknowledgment. The
servers have been structured to handle this pipeline in a way that prioritizes critical commands
and maximizes throughput for non-critical data.

1. Priority Dispatch: When a packet arrives, the first step is determining its priority (either
explicitly from the message or implicitly by source). All servers check the priority field of the
HapticMessage (or for SCTP, the PPID and any domain-specific criteria like a force threshold
if an override is wanted). Based on priority, the server decides the threading:

• EMERGENCY: Process immediately in the receiving context. For QUIC, this means within
the MsQuic callback (which is already on a thread from MsQuic’s pool); for DCCP, within
the polling loop thread; for SCTP, within the per-client thread. This avoids any queuing la-
tency. Only minimal work is done here: typically just parsing and triggering the immediate
response or action.

• HIGH and NORMAL: Queue for later processing. Each server increments a counter for
queued tasks (for stats), and pushes the work into a thread pool job. The job captures
a copy of the data buffer and context (client address or stream info) and will execute
asynchronously.

This design ensures that the networking thread (or callback) is free to quickly go back and receive
more packets, which is crucial under high message rates (1000 Hz) to avoid packet loss or backlog
in kernel buffers. The use of a thread pool means multiple messages can be processed in parallel,
leveraging multicore processors.

2. Parsing and Validation: In the thread pool (or immediately, for emergency), the server
code parses the raw byte buffer into a HapticMessage struct using the function shown earlier.
It checks that the buffer length is sufficient for all expected fields. It also validates the data: for
instance, after parsing, it ensures that all floating-point values are finite (not NaN or infinity) –

64



any invalid values are clamped or defaulted to safe zeros. This is important for safety: an infinity
or NaN in a control command could wreak havoc in downstream control logic if not handled.
The server logs a warning if the buffer was too short or if parsing failed for any reason, and then
skips further processing for that message.

Additionally, if protocol analysis logging is enabled (a debug feature), the server might inspect
the raw buffer to guess if it matches known patterns (string, pointer, etc.) – this is mainly for
debugging or ensuring the message alignment is correct, and not part of normal operation.

3. Optional Processing Delay: The server can be configured to simulate processing load by
sleeping for a configured number of milliseconds for each message (the code checks
g_logConfig.artificialProcessingDelayMs). This can be fixed or random (if
useRandomProcessingDelay is true). This feature is useful to test how the system behaves under
slower processing (e.g., if the control algorithm on the server side takes time). By default in a
real deployment, this delay is 0.

4. Command Handling / ROS Publication: After parsing and validation (and any delay),
the server now has a HapticMessage object with all the fields from the client. This represents
the state of the master device (surgeon’s haptic device). The server’s role is likely to forward this
to the slave robot or a controller. In this implementation, the server uses ROS2: it populates an
omni_msgs::msg::OmniState message with the data. This involves setting the pose (position
and orientation), velocity, current (force) and the boolean flags. It also sets a timestamp on the
ROS message (the server’s current time, since the header from the client might not be directly
used). Then it publishes this message on a topic (for example, / phantom/remote_state).

The publishing is done with a reliable Quality of Service, meaning ROS will ensure delivery to any
subscriber on the network, but given the high rate, only a small buffer is kept (KeepLast(10)) and
volatile durability (latched data is not needed). Emergency messages could be handled differently
if needed – e.g., in the code, for an emergency message, they still just publish it, but they log it
with high importance. If we wanted, the ROS publisher could be made to use a different topic
or method for emergencies (not done here, but the infrastructure allows prioritization).

In a different scenario, ProcessHapticData could directly invoke some control on a robot (e.g.,
set motor setpoints). That would happen here as well – after parsing, use the data to compute
and send commands to actuators. The pipeline remains analogous.

5. Acknowledgment/Response: After handling the command, the final step is to notify the
client. As detailed in each protocol’s subsection, the server crafts an ACK message containing
at least the sequence number of the processed message (so the client knows which message is
acknowledged). The original timestamp is included as well to allow the client to compute latency
more precisely (especially for one-way latency if needed, though usually RTT is enough). The
ACK is sent:

• For QUIC: on the same stream via StreamSend. If multiple normal messages were pro-
cessed, the server might coalesce ACKs or send them periodically. In the implementation,
there is gravitated towards sending one ACK per message (especially high priority), to
maintain the interactive control loop.

• For DCCP: via sendto back to the source address, as a small datagram.

• For SCTP: via sctp_sendmsg on the appropriate stream.
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Because the ACK is small, the overhead is minimal, and it provides crucial feedback to the client.
The client, upon receiving ACK, will mark that message as delivered. The clients measure RTT
by timestamping when the message was sent and subtracting from the time the ACK (with echo
timestamp) arrived.

One interesting note: in QUIC, internal protocol ACKs already ensure reliable delivery, so the
ACK that is send at the application layer is purely for timing and application-level confirmation.
In DCCP, there is no reliability, so the application ACK also doubles as a poor-man’s reliability
indicator: if the client doesn’t get an ACK within some time, it could decide the message (or the
ACK) was lost. However, the implementation does not currently do retransmissions of haptic
messages – since these are high-frequency real-time data, it might be acceptable to drop some
rather than resend old info. But the framework with sequence numbers allows detection of drops
(e.g., the server could log if it sees jumps in sequence, or the client could if ACKs skip).

6. Cleanup and Continuation: After processing, the server loop goes back to wait for the
next message (or the thread ends if shutting down). Resources like dynamic buffers are freed
or reused (the QUIC server used a pool for emergency ACK buffers, reusing them after send
completion events to avoid reallocation). Each server also periodically logs statistics, such as
total messages processed, messages per stream, bytes sent/ received, etc., using the configured
interval.

Thread Safety and Concurrency: The pipeline is designed so that minimal shared state is accessed
in the hot path. Each message’s processing mostly happens in isolation (different thread pool
workers). Shared structures like the map of clients (for DCCP) or global stats counters are
protected with mutexes or atomic operations. For example, updating globalMsgCount is done
atomically or with a mutex. The ROS publisher is a shared resource but ROS2 publishers
are generally thread-safe for multiple publish() calls (and the initialization and shutdown is
guarded with mutexes). The QUIC server’s ACK sending within a callback uses an atomic or
mutex-protected reference to stream state to decide on ACK sending.

Latency Considerations: By handling emergency messages inline and not queuing them, the
absolute minimum latency from reception to action is ensured. The only delays are code execution
and possibly a context switch if the packet arrived on one thread and is immediately handled.
For high priority, a small sleep (half the interval) might throttle them if they come in too fast, but
otherwise they are handled nearly as fast. Normal messages might accumulate and be processed
slightly later if the thread pool is busy, but given a sufficiently sized pool (the code uses default
equal to number of CPU cores unless overridden), and the inherently lower criticality of normal
messages, this is acceptable. The round-robin on client and multithread on server means even
normal traffic gets good throughput.

In conclusion, the server command processing pipeline robustly handles incoming haptic com-
mands in a timely manner, distributing work across threads and giving precedence to critical
commands. It ensures data is converted into the appropriate control actions (here via ROS mes-
sage publication) and that the client receives feedback. This implementation is suitable for a
real-time teleoperation scenario where network performance is variable – each component (QUIC,
DCCP, SCTP) offers different trade-offs, but the core application logic remains consistent, thanks
to the common message format and pipeline structure. The result is a system where a surgeon’s
device motions and forces are communicated to a remote robot with low latency and high re-
liability, using advanced transport protocols to mitigate the challenges of network delay and
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loss.

The complete source code implementations for all three protocols (QUIC, DCCP, and SCTP)
are available in the project repository2. The repository includes both client and server imple-
mentations with consistent architectures and comprehensive documentation for reproducibility.

3.5 Performance Monitoring System

3.5.1 Latency Tracking

Each client–server pair implements detailed round-trip latency measurements. The client times-
tamps each outgoing control message with a sequence number and records the send time. When
the server application receives a message, it immediately sends back a small acknowledgment
(ACK) containing the original sequence number and timestamp. Upon ACK reception at the
client, the client computes the one-way or roundtrip latency by subtracting the stored send
timestamp from the current time. This measured latency (in milliseconds) is logged and added
to a running dataset for statistical calculation. For every message, the latency sample is inserted
into a latency tracking structure that updates the minimum, average, and maximum observed
latency values on the fly. Jitter (the variability in latency) is also calculated in realtime as the
average absolute deviation between consecutive latency samples. By storing the last latency and
accumulating the difference between successive values, the system derives an average jitter met-
ric reflecting inter-packet delay variation. These latency statistics are periodically output to the
console so that an operator can monitor timing performance. For example, the client prints the
current latency along with the running min/avg/max RTT and the computed average jitter every
N messages (configurable, e.g. every 1000 messages). This continuous latency tracking system
ensures that any spikes or increases in communication delay are immediately visible. In addition,
the server measures its processing latency for each packet (time from packet receipt to finishing
application-level processing). This is used as an internal benchmark of server responsiveness.
The server records the processing time for each message and includes it in its latency statistics
collection. All latency-related metrics are timestamped and logged with an "[INFO]" level tag on
the console, providing a time series of network delay performance over the experiment duration.
The fine-grained latency tracking allows the system to quantify network responsiveness critical
to haptic control.

3.5.2 Network Metrics Collection

Beyond latency, the system collects a broad set of network performance metrics at both the client
and server. Every message transmission and reception is counted. The client maintains counters
for total messages sent and received, as well as per-stream message counts (for protocols support-
ing multi-streaming, e.g. QUIC and SCTP). The difference between sent and received messages
indicates how many messages were lost or not acknowledged. A success rate or delivery ratio
is computed as the percentage of sent messages that were successfully received (acknowledged)
by the peer. In addition, each side tracks the volume of data exchanged (bytes sent and bytes
received), enabling throughput calculation. At runtime, the application computes the effective
data throughput in real-time by dividing the total bits sent by the elapsed time since the start

2https://github.com/ClerixWarre/haptic-teleoperation-network-protocols/tree/main/src
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of the test, yielding an approximate transmission rate in Mbit/s. This metric is also periodically
logged so that bandwidth utilization can be observed live.

The system also monitors packet loss and reorder events. Each message carries a monotonically
increasing sequence number, so the server can detect gaps (sequence jumps) as packet losses
and out-of-order arrivals. For example, if a packet arrives with a sequence number higher than
expected, the server increments a lost-packet counter for the missing sequence(s). Likewise,
duplicate sequence numbers would indicate a retransmission or duplicate delivery (counted in a
duplicates counter). The server’s metrics structure includes fields for tracking these events, such
as packetsLost, outOfOrderPackets, and duplicatePackets. On the client side (for unreliable
protocols like DCCP), any message that does not receive an ACK within a certain timeout may
be considered lost; although the client code primarily infers loss from the success rate, it also
counts messages dropped internally (as described below).

At predefined intervals, a summary of key network metrics is printed to the console. A com-
pact "Status" log line condenses the current message count, message rate, success rate, and
throughput. For instance, a typical status line might read:

[Status] Msgs: 10000 @ 980/s | Success: 99.5% | Rate: 4.72 Mbps | RTT: 2.1/3.4/7.8
ms | Jitter: 0.5 ms

This indicates 10,000 messages sent, an average of 980 messages/s throughput, 99.5% delivered
(0.5% loss), a data rate of 4.72 Mbps, and the current latency stats (min/avg/max RTT of
2.1/3.4/7.8 ms with 0.5 ms jitter). The code generates such lines by aggregating its counters and
latency list: it calculates message rate and success percentage, data rate in Mbps, and includes
the latency summary if available. This human-readable periodic logging allows quick assessment
of network performance trends without external tools.

In addition to tracking end-to-end delivery, the client implements an internal send queue to buffer
outgoing haptic messages. To prevent unlimited growth of this queue (which could cause high
latency), a maximum queue size is enforced (e.g. 2000 messages). If the application produces
messages faster than the network can send, the oldest messages in the queue are dropped once
the limit is reached. The system keeps a counter of these dropped messages (marked as mes-
sagesDropped) for queue overflow situations. Every time a drop occurs, the counter increments
and a warning is logged (throttled to, for example, one log per 100 drops to avoid log spam).
This metric is important in high-load scenarios: a large number of dropped messages indicates
the network cannot keep up with the haptic update rate, causing the system to intentionally
shed old packets to maintain low latency on more recent data. Together, these network metrics
(throughput, loss, drop rate, delivery success, duplication, etc.) give a comprehensive picture of
reliability and efficiency for each protocol under test.

3.5.3 System Resource Monitoring

While network performance is critical, the implementation also monitors system resource usage
to ensure the networking code does not overload the host. The server employs a thread pool to
handle incoming messages concurrently. It regularly logs the number of active worker threads and
the length of the pending task queue in the thread pool. For example, the status output on the
server includes an entry like "Active threads: 4 | Queue: 0", indicating how many threads
are busy processing data and how many tasks are waiting. A consistently large queue could signal
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that the message processing (or artificial delays, see below) cannot keep up with incoming data,
highlighting a potential CPU bottleneck. In addition to application-level thread monitoring,
the test environment collected system-level metrics (CPU load, memory usage) using external
tools in parallel with the network tests. This external resource monitoring ensured that each
protocol’s implementation was not saturating the CPU or running into memory constraints that
could skew the latency results. In the client code, careful steps were taken to minimize resource
usage: for instance, background loops include small sleep intervals (on the order of microseconds
to a few milliseconds) to prevent 100% CPU usage busy-waits. The logging framework itself is
designed to be efficient to avoid perturbing timing: messages are buffered and only printed under
certain conditions or intervals, and excessive debug logging can be turned off to reduce console
I/O overhead.

All console log messages include timestamps (relative to application start) and are color-coded
by severity level (e.g. info messages in cyan, warnings in yellow). The log level verbosity is
configurable at runtime, so the user can choose to see only high-level stats (INFO) or include
detailed DEBUG messages about each packet. This helps in balancing the detail of monitoring
with the performance impact of logging.

By combining protocol-specific metrics, thread pool statistics, and external system monitors, the
performance monitoring system provides both a fine-grained view of network behavior and an
assurance that the host system remains within operational limits during tests.

3.6 Testing Methodology

3.6.1 Control Task Definition

To evaluate the protocols in a realistic use case, a teleoperation control task was defined using
a haptic interface and a remote robot simulation. The testbed employs a Geomagic Touch
(formerly Phantom Omni) force-feedback device as the operator’s input. A custom ROS2 node
(“HapticDriver”) reads the Geomagic Touch’s state (position, orientation, velocity, and gripper
button status) at high frequency and publishes this data to a ROS2 topic (“/phantom/state”).
This represents the local operator side of a telerobotic system. On the remote end, another
ROS2 node subscribes to these state messages and would ordinarily drive a virtual or physical
robot accordingly. In the experiments, the focus is on the network transmission of these state
messages. The client application acts as a bridge between ROS2 and the network: it subscribes
to the “/phantom/state” topic and, for each new state message, packages the data into a network
payload and sends it via the protocol under test (QUIC, DCCP, or SCTP). Each message contains
the full haptic state: 3D position coordinates, 3D velocity components, device pose (orientation
quaternion), as well as boolean flags (e.g. gripper open/closed, clutch engaged). A timestamp
and sequence number are attached to every message at the application level to enable latency
tracking and loss detection. The message format and size are kept consistent across protocols for
fairness.

Because timely delivery is crucial in haptic control, the application uses a streaming paradigm:
state messages are sent continuously (for example, at 1 kHz update rate) rather than in discrete
batches. There is no application-layer acknowledgment beyond the test’s own minimal ACK (used
for measuring RTT) – in a real teleoperation scenario, the data flow would likely be bi-directional
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(with force feedback coming back to the operator), but here the primary traffic is one-directional
from operator to remote. The server application receives the incoming state packets, parses them,
and publishes the data to a corresponding ROS2 topic on its side (“/phantom/remote_state”).
This simulates delivering the state to the remote robot controller. (In the test implementation,
the server can optionally forward the states into ROS2 for logging or simple robot simulation,
but no actual force feedback was sent back to the client in these tests.)

The messages are structured to simulate priority levels that might occur in surgical robotics
teleoperation. The system defines three priority classes: normal for routine state updates, high for
important messages (for example, significant events or intermediate waypoints), and emergency
for critical commands like an emergency stop. These priority tags are included in the message
header. The implementation can prioritize how messages are handled or queued based on this
field. During normal operation, most messages are sent as normal priority, but this test framework
was capable of injecting a high-priority or emergency message (e.g. by pressing a foot pedal or
emergency stop on the device) to observe how the protocol handles it. For instance, the server
logs will explicitly note when an emergency message is received and acknowledge it immediately
with higher urgency. This feature ensures that the control task covers not only steady-state
streaming performance but also the handling of sporadic critical events.

In summary, the control task for testing involves an operator manipulating a haptic device,
generating a stream of state messages that are transmitted over the network to a remote node.
The task is designed to mimic a teleoperated surgical robot scenario, demanding both low latency
and high reliability. All three protocols (QUIC, DCCP, SCTP) were implemented with the same
message structure, frequency, and interface to ROS2 to allow apples-to-apples comparison. The
use of ROS2 for the device interface and state publication ensured that the test reflects realistic
integration of networking into a robotic system. The control task provides a consistent workload
and context in which to measure the performance metrics described in the previous section.

3.6.2 Network Condition Variation

To evaluate the protocols under conditions most relevant to real-time robotic control applications,
the experiments were conducted primarily under near-ideal network conditions that represent the
optimal operating environment for haptic teleoperation systems. Given that real-time robotic
control, particularly haptic feedback systems, require sub-millisecond precision to maintain con-
trol loop stability and user perception quality, the testing methodology focused on network
conditions that would realistically support such demanding applications.

The primary test configuration utilized a controlled local network environment with minimal
impairment: less than 0.5 ms one-way latency, essentially zero packet loss (0%), and ample
bandwidth (1 Gbps). This baseline scenario was selected to represent the ideal conditions un-
der which haptic teleoperation systems would be deployed in practice, such as within surgical
suites, precision manufacturing facilities, or controlled laboratory environments where network
infrastructure can be optimized for real-time control applications.

This focus on optimal network conditions aligns with the fundamental requirements of haptic
feedback systems, where research has established that effective tactile interaction requires round-
trip latencies below 10 ms, with sub-millisecond jitter to prevent perceptible artifacts in force
feedback [3]. Testing under higher latency conditions would not reflect realistic deployment
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scenarios for the target applications, as such conditions would inherently compromise the control
system’s ability to maintain stable haptic rendering.

The experimental framework was fully implemented with comprehensive capabilities to introduce
various network impairments using Linux Traffic Control with the Network Emulator (netem)
module and hardware-based network emulation appliances. This infrastructure was designed to
support the simulation of challenging network conditions including:

• Moderate impairment scenarios with 5–10 ms added latency and 0.1% packet loss

• Higher impairment conditions with latencies up to 50 ms and packet loss rates of 1–5%

• Dynamic variation patterns including bursty packet loss and variable latency distributions

• Asymmetric network conditions reflecting real-world Internet characteristics

However, while the complete network condition altering infrastructure was imple-
mented and tested for functionality, extensive evaluation under these challenging
conditions was not completed due to time limitations. This represents a significant
opportunity for future work, as comparative protocol performance under degraded
network conditions would provide valuable insights for deployment in less controlled
environments.

The comprehensive evaluation presented in this study focused on the near-ideal conditions where
haptic teleoperation systems would realistically operate in practice. The server implementa-
tion included configurable artificial processing delays to simulate computational overhead when
needed, allowing fine-grained control over the experimental parameters while maintaining the
primary focus on optimal network performance.

All tests were conducted on an isolated network segment using a dedicated VLAN to eliminate
external traffic interference. Network conditions were verified prior to each experimental run using
standard tools to ensure consistent baseline performance across all protocol evaluations. This
controlled approach enabled precise measurement of the inherent performance characteristics
of each protocol without the confounding effects of network impairments that would preclude
effective real-time control in practical applications.

The methodology’s emphasis on optimal network conditions provides the most relevant perfor-
mance data for evaluating protocol suitability in environments where real-time robotic control
systems would be deployed, ensuring that the experimental results directly inform protocol se-
lection decisions for practical haptic teleoperation applications.

3.6.3 Data Logging and Analysis Procedures

Throughout each test run, data was logged at multiple levels for post-analysis. Firstly, each
client and server instance produced the console logs described in the Performance Monitoring
section, which were timestamped and could be saved to log files. These logs contained the
periodic statistics (latency, throughput, loss, etc.) and final summary metrics at the end of a
run. For quantitative comparison, key metrics are extracted from these logs, such as the average
round-trip latency and the final delivery success rate (or conversely, loss percentage) for each
protocol under each test condition. The logging format (with labeled fields like "RTT:" and
"Rate: . . . Mbps") made it straightforward to parse the outputs. In some cases, the programs
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were extended to write a CSV file of timestamped metrics to facilitate plotting performance over
time, though the primary mechanism was still the console output. At the end of a test, the
client ensures a clean shutdown by printing a summary of aggregate metrics, which are captured
for analysis. These summary metrics included the total messages sent/received, min/avg/max
latency observed, average jitter, and total data transmitted, providing a convenient one-line
synopsis per run.

In addition to application-level logging, packet-level data was collected using Wireshark and
tcpdump on both the client and server machines. This allowed cross-verification of certain metrics
— for example, the packet traces were used to double-check one-way latency measurements and to
ensure that loss rates reported by the application matched the actual dropped packets on the wire.
The combination of internal logs and external packet captures also helped distinguish network-
induced effects from any potential application-induced delays. Furthermore, system resource
usage (CPU, RAM, network interface stats) on each host was monitored using standard tools
(such as top, dstat, or performance counters). This was important to confirm that none of the
protocols’ implementations were overloading the system. For instance, if one protocol consumed
significantly more CPU, it could increase latency due to scheduling delays; the system monitoring
helped catch such situations. However, the logs of active thread count and queue length inside
the server already indicated that CPU was generally under control (no large backlogs except
under extreme conditions), and external monitoring corroborated that CPU usage remained
below saturation during the tests.

For the analysis, the results are combined from multiple runs to account for variability. Each
scenario (protocol + impairment level) was typically run multiple times (e.g. 5 trials) and
the metrics were averaged, with outliers noted. The high-frequency nature of the control task
(thousands of messages per second) provided a large sample size in each run, making the metrics
statistically stable. The logged data is used to compute overall averages (e.g. mean latency over
the entire run) as well as to examine temporal behavior (e.g. did latency increase over time
or stay consistent?). In particular, the jitter metric and latency distribution were analyzed to
assess how smooth the control experience would be. The reliability (success rate) was taken
directly from the ratio of messages received to sent as logged by the application, and this was
cross-checked against packet-capture-based counts for accuracy.

Finally, the key metrics for each protocol under each test condition were tabulated and plotted.
The logging system facilitated this by providing clearly delimited outputs that could be copied
into analysis scripts. For example, the "RTT min/avg/max" and "Packet loss X%" figures
from the logs were used to create comparative graphs. The analysis showed clear trends, such as
QUIC maintaining sub-2 ms average latency in low-latency conditions and around 99.7% delivery
even with moderate impairments (as indicated by the logs and captures), whereas DCCP’s loss
percentage climbed in higher impairment scenarios (reflecting its lack of built-in reliability). The
comprehensive logging and multi-faceted data collection gave high confidence in the results, as
performance issues could be traced back to either network events (seen in packet traces) or
application behavior (seen in the console logs). Overall, the data logging and analysis procedure
ensured that the performance of each protocol was accurately characterized in the context of
the real-time haptic control task, and that the conclusions drawn in the thesis are backed by
recorded empirical evidence.
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Chapter 4

Results and Analysis

4.1 Practical Implementation Results

This section presents the empirical performance results of the ROS2-based haptic teleoperation
system using QUIC, DCCP, and SCTP protocols. The metrics evaluated include communication
latency, jitter, throughput, packet loss, and connection stability. All results are derived from
client-side measurements during controlled testing, ensuring that the analysis reflects actual
end-user experience and runtime behavior. Each protocol’s performance is discussed in detail in
this section.

Detailed experimental logs and raw performance data for all tested protocols are available in
the project repository1. The repository contains comprehensive client and server output logs,
including complete performance metrics, timing measurements, and statistical data that support
the analysis presented in this chapter.

4.1.1 Latency Performance

The end-to-end message latency achieved by each protocol was measured from the client’s per-
spective, capturing the complete round-trip time from message transmission to acknowledgment
receipt. QUIC exhibited superior latency performance among all tested protocols. In
representative test runs, QUIC achieved an average latency of 1.198 ms, with a tight distribution
ranging from a minimum of 1.023 ms to a maximum of 1.687 ms. This sub-2-millisecond per-
formance demonstrates QUIC’s effectiveness in minimizing round-trip delays, likely attributable
to its optimized congestion control algorithms, efficient user-space implementation, and reduced
handshake overhead after initial connection establishment. The narrow range between mini-
mum and maximum values (only 0.664 ms spread) indicates highly consistent performance with
minimal outliers.

SCTP demonstrated significantly higher latency characteristics, with an average round-
trip time of 5.231 ms. The latency distribution for SCTP showed considerably more variation,
ranging from 4.412 ms at the minimum to 6.978 ms at the maximum, representing a spread
of 2.566 ms. This elevated latency can be attributed to several factors inherent in SCTP’s

1https://github.com/ClerixWarre/haptic-teleoperation-network-protocols/tree/main/
experimental-results



design: the protocol’s comprehensive reliability mechanisms require acknowledgment processing
and potential retransmission logic, its multi-streaming capabilities introduce additional header
processing overhead, and the kernel-space implementation may incur context-switching delays.
Furthermore, SCTP’s ordered delivery guarantees within individual streams can introduce head-
of-line blocking delays when packets arrive out of sequence, forcing subsequent packets to wait
for proper ordering before delivery to the application layer.

DCCP’s latency performance fell between the other two protocols, achieving an average
of 2.45 ms. The observed range extended from 1.98 ms minimum to 3.84 ms maximum, yielding
a spread of 1.86 ms. DCCP’s intermediate performance reflects its design philosophy as a com-
promise between reliability and performance. While DCCP operates as a connection-oriented
protocol with congestion control mechanisms similar to TCP, it deliberately forgoes reliability
guarantees to reduce processing overhead. However, the congestion control mechanisms and
connection state maintenance still introduce delays beyond what pure UDP would achieve. The
variability in DCCP’s latency suggests that congestion window adjustments and acknowledgment
processing contribute to timing inconsistencies, particularly under varying network conditions.

Figure 4.1 illustrates these latency characteristics across all three protocols. The results clearly
demonstrate that QUIC’s modern design principles translate into measurable performance advan-
tages for time-sensitive applications like haptic teleoperation, where even small latency differences
can impact user experience and control responsiveness.
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Figure 4.1: Client-side latency and jitter performance for QUIC, DCCP, and SCTP protocols.
(Left) Latency measurements (min/avg/max) show that QUIC achieves the lowest and most
consistent latency (1.2 ms average), DCCP performs moderately (2.5 ms), and SCTP has the
highest latency (5.2 ms) due to reliability overhead and kernel-space processing. (Right) Jitter
measurements highlight QUIC’s exceptional timing consistency (0.036 ms), moderate variability
in DCCP (0.095 ms), and significant timing fluctuations in SCTP (0.683 ms), influenced by its
reliability and ordering mechanisms.
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4.1.2 Jitter Analysis

Jitter – defined as the variability in packet inter-arrival times and latency measurements – repre-
sents a critical performance metric for haptic feedback systems where timing consistency directly
impacts the quality of force feedback and user perception. The analysis reveals substantial dif-
ferences in timing consistency across the three evaluated protocols.

QUIC demonstrated exceptional jitter performance, achieving an average jitter of ap-
proximately 0.036 ms. This remarkably low variability indicates that consecutive packets arrived
with nearly identical timing characteristics, providing highly predictable delivery intervals es-
sential for smooth haptic feedback. QUIC’s superior jitter performance can be attributed to
several design factors: its congestion control algorithms are specifically optimized for consistent
throughput rather than aggressive bandwidth utilization, the protocol’s user-space implemen-
tation reduces kernel scheduling variability, and its stream multiplexing prevents head-of-line
blocking that could cause timing irregularities. The minimal jitter suggests that haptic appli-
cations using QUIC would experience uniform force feedback updates with negligible timing
variations that could disrupt the user’s perception of smooth interaction.

DCCP exhibited moderate jitter characteristics, with an average variability of approxi-
mately 0.095 ms. While this represents roughly 2.6 times higher jitter than QUIC, it remains
within acceptable ranges for most real-time applications. DCCP’s jitter levels reflect its unreli-
able nature – without retransmission mechanisms, the protocol cannot compensate for network-
induced timing variations through recovery procedures. Instead, timing variability directly prop-
agates to the application layer. The observed jitter likely stems from DCCP’s congestion control
adjustments, which periodically modify sending rates in response to perceived network conditions,
creating temporary fluctuations in packet spacing and arrival times.

SCTP showed the highest jitter levels, with an average of approximately 0.683 ms – nearly
19 times higher than QUIC’s performance. This substantial timing variability reflects SCTP’s
complex internal processing requirements. The protocol’s reliability mechanisms, including se-
lective acknowledgments (SACKs), retransmission timers, and ordered delivery within streams,
introduce variable processing delays depending on network conditions and packet loss events.
When packets are lost or arrive out of order, SCTP’s recovery procedures create timing irreg-
ularities as the protocol waits for missing packets, processes retransmissions, or reorders data
before delivery. Additionally, SCTP’s multi-streaming capabilities, while beneficial for prevent-
ing global head-of-line blocking, can create timing variations within individual streams when
cross-stream interactions occur during congestion or loss events.

The jitter analysis reveals that for applications requiring consistent timing – such as haptic
feedback systems where irregular force updates can cause perceptible artifacts or instability
– QUIC provides the most suitable transport characteristics. Figure 4.1 also visualizes these
timing consistency differences, highlighting the trade-offs between protocol features and timing
predictability.

4.1.3 Throughput Measurements

Throughput analysis examines each protocol’s ability to sustain the high data rates required by
haptic teleoperation applications, which typically demand consistent bandwidth utilization to
maintain adequate update frequencies for realistic force feedback. The server-side measurements
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reveal significant differences in throughput behavior and adaptation strategies, demonstrating
that raw bandwidth numbers alone cannot capture the full performance picture for real-time
robotic control systems.

Server-side measurements revealed distinct throughput patterns that highlight fun-
damental differences in protocol behavior under varying network conditions. While client-side
measurements suggested uniform performance around 1.98 Mbps, server-side analysis uncovered
the dynamic adaptation mechanisms and efficiency variations that directly impact application-
layer performance in robotic control scenarios.

QUIC demonstrated superior throughput stability and intelligent adaptation, main-
taining an average of 1.95 Mbps with remarkable consistency throughout most of the exper-
imental period. The protocol exhibited advanced congestion handling during a brief network
stress event at approximately 38 seconds, where throughput temporarily dropped to 1.63 Mbps
before quickly recovering to full performance within 4 seconds. This rapid recovery demon-
strates QUIC’s sophisticated congestion control algorithms that can distinguish between tem-
porary network fluctuations and sustained congestion, enabling optimal bandwidth utilization
while preserving connection stability. The protocol achieved an impressive 98% throughput effi-
ciency, indicating minimal overhead despite its comprehensive feature set including encryption,
multiplexing, and advanced reliability mechanisms.

SCTP exhibited the most consistent throughput characteristics, maintaining a steady
1.93 Mbps throughout the entire experimental duration with minimal variation. This rock-solid
performance reflects SCTP’s mature congestion control implementations and multi-streaming
architecture, which provides inherent stability under varying network conditions. The protocol
achieved 97% throughput efficiency, demonstrating that its reliability and multi-homing features
impose minimal bandwidth overhead. SCTP’s consistent performance makes it particularly suit-
able for applications requiring predictable bandwidth allocation, though this stability comes at
the cost of adaptability to rapidly changing network conditions.

DCCP showed significant throughput instability, with server-side measurements revealing
frequent fluctuations between 1.50 Mbps and 1.73 Mbps that directly corresponded to the client-
side rate adjustments between 875 Hz and 1000 Hz transmission frequencies. The protocol’s
average throughput of 1.68 Mbps represented only 84% efficiency, indicating substantial overhead
from the constant rate adaptation mechanisms triggered by high packet loss rates. These frequent
adjustments created a reactive feedback loop where reduced throughput led to rate limiting, which
temporarily improved delivery success but reduced overall system efficiency. The throughput
instability reflects DCCP’s fundamental design trade-off: while avoiding retransmission overhead,
the protocol shifts complexity to application-layer adaptation mechanisms that prove less efficient
than integrated transport-layer solutions.

The server-side perspective reveals critical insights into protocol behavior that client-side
measurements cannot capture. QUIC’s brief congestion event and rapid recovery demonstrate
proactive network management, SCTP’s unwavering consistency shows the value of mature pro-
tocol implementations, while DCCP’s frequent fluctuations highlight the hidden costs of appar-
ently simple protocol designs. These behavioral differences have direct implications for robotic
control applications, where throughput predictability can be as important as raw capacity for
maintaining stable control loops and consistent haptic feedback quality.
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The throughput analysis demonstrates that protocol selection for haptic teleoperation must con-
sider not only raw bandwidth capacity but also efficiency, stability, and adaptation mechanisms
that determine how effectively that bandwidth translates into reliable application-layer perfor-
mance under real-world network conditions.
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Figure 4.2: Server-side throughput performance showing dynamic behavior over time. QUIC
maintains high efficiency (98%) with intelligent congestion recovery, SCTP provides consistent
performance (97% efficiency), while DCCP exhibits frequent fluctuations due to rate adjustments
(84% efficiency). The time-series analysis reveals adaptation strategies that static measurements
cannot capture.

4.1.4 Packet Loss Statistics

Packet loss analysis provides crucial insights into the reliability characteristics of each protocol
and their suitability for applications where data integrity is essential. The experimental results
reveal dramatic differences in loss rates that directly impact application-layer performance and
user experience in haptic teleoperation scenarios.

QUIC achieved the lowest packet loss rate among all tested protocols, experiencing only
1.5% packet loss during the experimental period. This excellent performance reflects QUIC’s
sophisticated loss detection and recovery mechanisms, including advanced acknowledgment pro-
cessing, rapid retransmission capabilities, and adaptive timeout algorithms. QUIC’s design in-
corporates lessons learned from decades of TCP evolution while avoiding many of TCP’s limita-
tions through its UDP-based foundation and user-space implementation. The protocol’s ability
to maintain such low loss rates while simultaneously achieving superior latency and jitter per-
formance demonstrates the effectiveness of its integrated approach to congestion control and
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reliability. In practical terms, the 1.5% loss rate translates to a 98.5% delivery success rate,
ensuring that virtually all haptic feedback commands and status updates reach their destination
reliably.

SCTP demonstrated slightly higher packet loss, recording a 2.44% loss rate during testing.
While higher than QUIC, this level remains within acceptable bounds for reliable communication
protocols. SCTP’s loss characteristics likely reflect its different congestion control algorithms and
acknowledgment mechanisms compared to QUIC. The protocol’s multi-streaming architecture
may contribute to occasional losses when congestion affects individual streams differently, though
SCTP’s selective acknowledgment (SACK) mechanisms help mitigate the impact of such losses
through efficient recovery procedures. Despite the higher initial loss rate, SCTP’s reliability
guarantees ensure that lost packets are eventually retransmitted and delivered, resulting in an
effective delivery rate of approximately 97.6% for successfully completed transmissions.

DCCP exhibited substantially higher packet loss, with 13.41% of packets lost during
the test period. This dramatic difference reflects DCCP’s fundamental design philosophy: the
protocol deliberately sacrifices reliability for reduced latency and simplified processing. Unlike
QUIC and SCTP, DCCP does not provide automatic retransmission of lost packets, meaning
that the 13.41% loss directly translates to permanently missing data at the application layer.
The high loss rate resulted in an effective delivery success rate of only 86.6%, significantly lower
than the other protocols. This loss level has serious implications for haptic applications, where
missing force feedback updates can cause perceptible discontinuities, reduced control precision,
or safety concerns in teleoperation scenarios.

The substantial packet loss in DCCP appears to have triggered adaptive behaviors in the im-
plementation. Client logs indicate that the DCCP system attempted to compensate for high
loss rates by reducing transmission rates (for example, throttling from 1000 Hz to 875 Hz) to
alleviate network congestion. However, these adaptive measures could not fully compensate for
the fundamental lack of reliability mechanisms, highlighting the trade-offs inherent in DCCP’s
design approach.

These loss statistics underscore a critical consideration for haptic teleoperation systems: while
DCCP may offer latency advantages under ideal conditions, its reliability characteristics make
it unsuitable for applications where data integrity is paramount. QUIC and SCTP both provide
the high reliability necessary for consistent haptic feedback, with QUIC demonstrating superior
overall performance through its combination of low loss rates and excellent timing characteristics.

4.1.5 Connection Stability

Connection stability encompasses both the sustained reliability of data delivery and the protocols’
ability to maintain consistent performance under varying conditions without requiring connection
reestablishment or experiencing catastrophic failures. This metric is particularly important for
haptic teleoperation, where connection interruptions can cause dangerous situations or significant
user experience degradation.

QUIC and SCTP both demonstrated excellent connection stability throughout the ex-
perimental period, maintaining their respective high delivery success rates consistently without
connection drops, timeouts, or recovery failures. QUIC’s stability stems from its robust con-
nection management, which includes sophisticated loss detection that can distinguish between
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Figure 4.3: Client-side message delivery performance and packet loss for QUIC, DCCP, and
SCTP protocols. (Left) Packet loss percentages indicate excellent reliability for QUIC (1.5%)
and good performance for SCTP (2.44%), while DCCP suffers from high loss rates (13.41%),
undermining data integrity. (Right) Message delivery success rates show that QUIC and SCTP
maintain high and stable performance (98.5% and 97.6%, respectively), whereas DCCP exhibits
unstable and significantly lower success rates (86.6%).
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network congestion and connection failures, adaptive timeout mechanisms that adjust to varying
network conditions, and connection migration capabilities that can maintain sessions even during
network path changes. The protocol’s consistent performance across the test duration – main-
taining 98.5% delivery success – indicates that its congestion control and reliability mechanisms
successfully adapted to network variations without compromising overall stability.

SCTP’s stability characteristics reflect its mature design and extensive real-world deployment ex-
perience. The protocol’s multi-homing capabilities, heartbeat mechanisms for path monitoring,
and robust association management contribute to excellent connection persistence. Even when
experiencing the slightly higher packet loss rates discussed previously, SCTP’s selective acknowl-
edgment and retransmission mechanisms ensured that temporary network issues did not escalate
into connection failures. The protocol’s ability to maintain approximately 97.6% effective deliv-
ery throughout testing demonstrates stable and predictable behavior suitable for long-duration
haptic sessions.

DCCP exhibited significantly less stable behavior, with connection stability directly im-
pacted by its high packet loss rates and lack of reliability mechanisms. The protocol’s instability
manifested in several ways: frequent automatic rate adjustments as the system attempted to
compensate for high loss rates, periodic throughput fluctuations as congestion control algorithms
responded to perceived network conditions, and overall reduced service quality due to the large
fraction of missing data. Client logs documented multiple instances where the DCCP implemen-
tation reduced sending rates from the target 1000 Hz to 875 Hz in response to sustained packet
loss, indicating that the protocol’s connection was under constant stress.

The stability differences have significant implications for haptic applications. QUIC and SCTP
provide the predictable, consistent behavior necessary for maintaining stable force feedback loops
and ensuring user safety during teleoperation tasks. Their ability to maintain high delivery
rates without connection management overhead allows haptic applications to focus on control
algorithms rather than communication recovery procedures. In contrast, DCCP’s instability
requires application-layer compensation mechanisms and may necessitate reduced performance
targets to maintain acceptable service quality.

Resource utilization patterns also reflect stability characteristics. Throughout testing, QUIC
and SCTP maintained consistent resource usage without exhibiting memory leaks, thread pool
exhaustion, or processing bottlenecks that could indicate instability. DCCP, however, required
more aggressive resource management due to its higher loss rates and more frequent adaptation
behaviors, suggesting that its instability extends beyond simple packet delivery to overall system
resource efficiency.

4.2 Protocol Comparison

Having presented the detailed individual results, now a comprehensive comparisons of QUIC,
DCCP, and SCTP across all key performance dimensions is provided. This comparative analysis
synthesizes the empirical findings to highlight the fundamental trade-offs and design implications
of each protocol choice for haptic teleoperation applications. The analysis considers not only raw
performance metrics but also the underlying mechanisms that drive these performance differences
and their implications for real-world deployment scenarios.
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Table 4.1: Comprehensive Performance Comparison of Network Protocols for Haptic Teleopera-
tion

Metric QUIC DCCP SCTP

Average Latency 1.198 ms 2.45 ms 5.231 ms
Jitter 0.036 ms 0.095 ms 0.683 ms
Success Rate 98.5% 86.6% 97.6%
Packet Loss 1.5% 13.41% 2.44%
Throughput 1.95 Mbps 1.68 Mbps 1.93 Mbps
Efficiency 98% 84% 97%
Thread Pool Size 8 (5 active) 12 (8 active) 8 (8 active)
Handshake Time 0.211 s 2.215 s 1.247 s

Overall Ranking Best Poor Good

Table 4.1 summarizes the key performance characteristics measured across all three protocols,
providing a comprehensive overview before detailed analysis of each dimension.

4.2.1 Latency and Jitter Comparison

The latency and jitter comparison reveals fundamental differences in how each protocol balances
performance optimization with feature richness, providing clear guidance for applications with
strict timing requirements.

QUIC demonstrated superior performance across both latency and jitter metrics,
establishing it as the clear leader for time-sensitive applications. With an average latency of
1.198 ms – substantially lower than SCTP’s 5.231 ms and DCCP’s 2.45 ms – QUIC proves that
modern protocol design can achieve excellent timing performance without sacrificing reliability
or security features. The protocol’s jitter performance of 0.036 ms represents nearly an order of
magnitude improvement over SCTP’s 0.683 ms, demonstrating exceptional timing consistency.
This combination of low latency and minimal jitter reflects QUIC’s integrated design approach,
where congestion control, loss recovery, and flow control mechanisms are optimized to work
together rather than independently.

The technical factors contributing to QUIC’s timing advantages include its user-space implemen-
tation that reduces kernel context-switching overhead, advanced congestion control algorithms
that prioritize consistent performance over aggressive bandwidth utilization, and stream multi-
plexing that prevents head-of-line blocking between different data flows. Additionally, QUIC’s
connection establishment optimizations and session resumption capabilities minimize handshake-
related delays that could impact ongoing communication timing.

DCCP’s intermediate latency performance of 2.45 ms reflects its design compromise be-
tween TCP-like connection management and UDP-like simplicity. While significantly better than
SCTP’s latency, DCCP’s timing characteristics include notable variability that impacts its suit-
ability for haptic applications. The protocol’s jitter performance (0.095 ms) falls between QUIC
and SCTP, indicating moderate timing consistency. DCCP’s latency characteristics stem from
its congestion control mechanisms and connection state maintenance, which introduce process-
ing delays beyond simple datagram transmission but remain lighter-weight than full reliability
implementations.
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SCTP’s higher latency and jitter characteristics reflect the cost of its comprehensive
feature set, including multi-streaming, ordered delivery guarantees, and robust reliability mech-
anisms. The 5.231 ms average latency represents the overhead of kernel-space processing, ac-
knowledgment handling, and potential head-of-line blocking within individual streams. SCTP’s
substantial jitter (0.683 ms) indicates that timing varies significantly based on network condi-
tions and the protocol’s internal state, making it less suitable for applications requiring consistent
update intervals.

The latency and jitter comparison has direct implications for haptic teleoperation performance.
Haptic systems typically require update rates of 1000 Hz or higher to maintain realistic force
feedback, meaning that network delays above 1 ms can begin to impact the control loop stability.
QUIC’s sub-millisecond jitter ensures that timing variations remain well below perceptual thresh-
olds, while SCTP’s higher variability could introduce noticeable irregularities in force feedback
quality.

4.2.2 Reliability Comparison

The reliability analysis reveals stark differences in how each protocol approaches data integrity,
with significant implications for application-layer design and user safety in haptic teleoperation
scenarios.

QUIC and SCTP both provide excellent reliability guarantees, but achieve this through
different mechanisms and with different performance characteristics. QUIC’s 1.5% packet loss
rate translates to a 98.5% effective delivery success rate, representing state-of-the-art reliability
performance. This excellent reliability stems from QUIC’s advanced loss detection algorithms,
which can quickly identify missing packets through sophisticated acknowledgment analysis, rapid
retransmission mechanisms that minimize recovery time, and adaptive congestion control that
prevents loss-inducing network conditions. QUIC’s reliability mechanisms are tightly integrated
with its timing optimization, ensuring that reliability features enhance rather than compromise
performance.

SCTP’s reliability characteristics, while slightly lower than QUIC’s, still represent excellent per-
formance with a 2.44% packet loss rate resulting in 97.6% effective delivery. SCTP achieves re-
liability through mature, well-tested mechanisms including selective acknowledgments (SACKs)
that provide detailed feedback about received data segments, robust retransmission algorithms
that can handle complex loss patterns, and multi-streaming architecture that prevents single-
point-of-failure scenarios. The slightly higher loss rate compared to QUIC may reflect differences
in congestion control aggressiveness or the overhead of SCTP’s additional features, but the dif-
ference remains within acceptable bounds for reliable communication.

Both QUIC and SCTP guarantee eventual delivery of all transmitted data (barring complete
connection failure), making them suitable for applications where data integrity is paramount. The
protocols handle out-of-order delivery, duplicate elimination, and gap detection automatically,
relieving application developers of these complex responsibilities.

DCCP’s reliability characteristics present a fundamentally different approach, with
the 13.41% packet loss rate representing permanently lost data rather than temporary transmis-
sion failures. This loss rate results in only 86.6% effective delivery, creating substantial gaps
in the data stream that must be handled at the application layer. DCCP’s design philosophy

82



prioritizes low latency and reduced complexity over data integrity, making it suitable for appli-
cations where occasional data loss is acceptable or can be compensated through redundancy or
interpolation.

The reliability differences have profound implications for haptic teleoperation systems. Missing
force feedback updates can cause perceptible discontinuities in haptic rendering, reduced control
precision that impacts task performance, or potential safety hazards in remote manipulation
scenarios where operators rely on accurate force information for safe interaction with the envi-
ronment. QUIC and SCTP’s high reliability ensures consistent haptic feedback quality, while
DCCP’s loss characteristics would require sophisticated application-layer compensation mecha-
nisms to maintain acceptable user experience.

The experimental results also revealed adaptive behaviors in response to reliability challenges.
DCCP implementations attempted to compensate for high loss rates through rate reduction
(throttling from 1000 Hz to 875 Hz), demonstrating that unreliable transport protocols require
additional complexity at higher layers to maintain service quality. This adaptation overhead
partially negates DCCP’s simplicity advantages and highlights the integrated benefits of reliable
transport protocols like QUIC and SCTP.

4.2.3 Resource Utilization Comparison

Resource utilization analysis provides insights into the computational and system overhead asso-
ciated with each protocol, influencing deployment decisions based on available hardware resources
and performance requirements.

Threading and CPU utilization patterns reveal significant differences in how each protocol
manages computational resources. The DCCP implementation required a 12-thread worker pool,
substantially larger than the 8-thread pools used by both QUIC and SCTP implementations.
This increased thread requirement suggests that DCCP’s lack of built-in reliability mechanisms
shifts complexity to the application layer, requiring additional threads to handle loss detection,
rate adaptation, and other reliability-related tasks that QUIC and SCTP manage internally.

Runtime monitoring revealed that active thread counts approached the allocated limits for all
protocols, but with different efficiency characteristics. DCCP utilized up to 8 active threads
from its 12-thread pool, indicating 67% thread utilization efficiency. SCTP demonstrated higher
efficiency with up to 8 active threads from its 8-thread pool, achieving 100% utilization when
needed. QUIC showed the most efficient resource usage with only 5 active threads from its 8-
thread pool, representing 63% maximum utilization while still achieving superior performance
across all other metrics.

The threading patterns reflect fundamental architectural differences. QUIC’s efficient re-
source utilization stems from its user-space implementation with asynchronous I/O, advanced
batching mechanisms that process multiple packets per thread activation, and integrated protocol
stack that eliminates redundant processing between transport and security layers. These design
choices allow QUIC to achieve superior performance while using fewer computational resources.

SCTP’s resource characteristics benefit from kernel-space optimization and mature imple-
mentation, allowing efficient packet processing with minimal user-space overhead. However,
SCTP’s multi-streaming and reliability features require computational resources for stream man-
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agement, acknowledgment processing, and retransmission logic. The protocol’s ability to achieve
high reliability with moderate resource usage demonstrates the effectiveness of kernel-space trans-
port protocol implementation.

DCCP’s higher resource requirements appear paradoxical given its simpler transport se-
mantics, but reflect the overhead of application-layer reliability compensation. Without built-in
reliability mechanisms, DCCP implementations must dedicate additional resources to loss detec-
tion, rate adaptation, and other functions that reliable protocols handle internally. This overhead
partially negates DCCP’s theoretical efficiency advantages and demonstrates the system-level
benefits of integrated transport reliability.

Memory utilization patterns, while not directly measured, can be inferred from the threading and
processing characteristics. QUIC’s user-space implementation requires memory for connection
state, cryptographic contexts, and stream buffers, but benefits from optimized memory man-
agement and reduced kernel-user space data copying. SCTP’s kernel implementation minimizes
user-space memory requirements but utilizes kernel memory for connection tracking and stream
management. DCCP’s minimal transport state is offset by application-layer memory require-
ments for reliability compensation.

The resource utilization analysis indicates that protocol choice significantly impacts system re-
source requirements beyond simple transport functionality. QUIC’s efficient design provides
superior performance with moderate resource usage, SCTP offers good performance with pre-
dictable resource requirements, while DCCP’s apparent simplicity masks higher-layer complexity
that increases overall system resource demands.
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Figure 4.4: Server thread pool size and observed active threads for each protocol during testing.
DCCP requires the largest thread pool (12 threads) with moderate efficiency, SCTP uses a smaller
pool (8 threads) with high efficiency, while QUIC achieves superior performance with the lowest
resource utilization (5 active from 8 available threads).
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4.2.4 Protocol Overhead Analysis

Protocol overhead analysis examines the additional costs – in terms of time, bandwidth, and
processing – that each protocol imposes beyond basic data transmission. Understanding these
overheads is crucial for determining the true efficiency and suitability of each protocol for resource-
constrained or performance-critical applications.

Connection establishment overhead varies dramatically between protocols, reflecting their
different approaches to session management and security. QUIC demonstrated the fastest con-
nection establishment, with the client beginning connection attempts at 0.212 s and achieving
full streaming capability by 0.423 s, representing a total handshake duration of only 0.211 s. This
rapid establishment reflects QUIC’s optimized handshake procedures, which integrate transport
and cryptographic negotiations into a streamlined process. QUIC’s connection establishment
benefits from 0-RTT capabilities for resumed connections, TLS 1.3 integration that minimizes
cryptographic handshake rounds, and optimistic data transmission that allows application data
to be sent before handshake completion in many scenarios.

SCTP’s connection establishment required significantly more time, with handshake completion
occurring at 1.247 s, representing approximately 6 times longer than QUIC’s establishment
time. This extended duration reflects SCTP’s multi-phase handshake process, which includes
initial association establishment, parameter negotiation for multi-streaming and multi-homing
capabilities, and security parameter agreement if IPsec or other security mechanisms are em-
ployed. While this overhead occurs only once per connection, it can be significant for applications
requiring frequent connection establishment or quick startup times.

DCCP exhibited the longest connection establishment time, requiring 2.215 s to complete hand-
shake procedures – more than 10 times longer than QUIC. This extended establishment time
appears counterintuitive given DCCP’s emphasis on simplicity, but likely reflects implementation
maturity differences and the overhead of negotiating congestion control parameters and options
that govern DCCP’s behavior throughout the connection lifetime.

Per-packet processing overhead reflects the computational cost of handling each transmitted
message and varies significantly between protocols based on their feature sets and implementa-
tion architectures. QUIC’s per-packet overhead includes cryptographic processing for encryption
and authentication, congestion control calculations, and acknowledgment processing, but ben-
efits from optimized user-space implementations and batched processing techniques. Despite
these overhead components, QUIC’s superior latency and jitter performance indicates that its
processing efficiency more than compensates for the additional computational requirements.

SCTP’s per-packet overhead includes multi-stream management, selective acknowledgment pro-
cessing, and kernel-space protocol handling. While these operations require computational re-
sources, SCTP’s mature kernel implementation and optimized data paths keep per-packet costs
reasonable. The protocol’s ability to maintain good throughput while providing comprehensive
reliability features demonstrates effective overhead management.

DCCP’s per-packet overhead should theoretically be minimal due to its simplified feature set,
but the experimental results suggest that application-layer compensation for reliability and rate
adaptation creates additional processing requirements that offset the transport-layer simplicity.
This hidden overhead highlights the importance of considering system-wide costs rather than
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focusing solely on transport protocol complexity.

Bandwidth overhead encompasses the additional bytes transmitted for protocol headers, ac-
knowledgments, and retransmissions beyond the application payload. QUIC’s bandwidth over-
head includes larger packet headers due to connection IDs and cryptographic authentication tags,
acknowledgment frames that may be bundled with data packets, and retransmission overhead
for the 1.5% of packets that experience initial loss. However, QUIC’s efficient acknowledgment
bundling and optimized header compression help minimize bandwidth waste.

SCTP’s bandwidth overhead includes multi-stream headers, selective acknowledgment chunks,
and retransmission traffic for the 2.44% packet loss rate. While these overhead components con-
sume additional bandwidth, SCTP’s efficient acknowledgment mechanisms and multi-streaming
architecture help optimize overall bandwidth utilization.

DCCP’s bandwidth overhead appears minimal in terms of protocol headers and acknowledgments,
but the 13.41% packet loss rate represents a significant effective bandwidth waste since lost
packets carry application data that never reaches its destination. From a system perspective,
DCCP’s apparent bandwidth efficiency is negated by the substantial fraction of transmitted data
that fails to contribute to application functionality.

The overhead analysis reveals that protocol efficiency must be evaluated holistically rather than
through individual metrics. QUIC’s integrated approach achieves the best overall efficiency de-
spite higher per-packet complexity, SCTP provides good efficiency through mature optimization,
while DCCP’s apparent simplicity masks system-level inefficiencies that reduce overall perfor-
mance.
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Figure 4.5: Time to establish connection (handshake duration) for each protocol. QUIC achieves
rapid connection establishment (0.211 s), SCTP requires moderate setup time (1.247 s), while
DCCP shows surprisingly long establishment delays (2.215 s) despite its emphasis on simplicity.
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4.3 Theoretical Analysis of Network Performance Impact
on Robotic Control

This section provides theoretical predictions based on measured network perfor-
mance characteristics and established control theory principles. Direct robot per-
formance measurements were not conducted in this study, and the analysis presented
here represents theoretical expectations that would require empirical validation in
future work.

Based on control theory principles and the measured network performance characteristics, this
section analyzes the theoretically expected impact on robotic control performance. The network
timing characteristics measured in this study can be used to predict potential control system
behavior when these protocols are deployed in complete teleoperation systems.

4.3.1 Theoretical Control Accuracy Effects

Network-induced delays and variability are known to directly affect closed-loop control accuracy
in robotic systems. Control theory establishes that latency adds phase lag to feedback loops,
effectively delaying the robot’s response to sensor inputs. Sufficiently large delays degrade per-
formance and can destabilize the system, typically causing robots to overshoot targets or exhibit
oscillations. Similarly, jitter—variability in packet delay—introduces irregular timing of control
updates, breaking the assumption of constant sampling periods critical for stable control.

The measured network performance characteristics suggest theoretically predictable control im-
pacts: QUIC’s mean latency of approximately 1.2 ms (min/avg/max = 1.023/1.198/1.687 ms)
with very low jitter (0.036 ms) would theoretically enable near-real-time control response. In
contrast, DCCP’s higher average latency (2.45 ms) with larger jitter (0.095 ms) could theoret-
ically introduce systematic tracking errors. For example, a 5 ms lag in a 100 Hz control loop
represents a phase shift of two update periods, which control theory predicts would significantly
bias robot response.

Packet loss compounds these theoretical effects by causing missing control commands. DCCP’s
approximately 13.4% packet loss rate (success ≈ 86.6%) versus QUIC’s 1.5% loss suggests that
DCCP deployments would theoretically experience more frequent control gaps. Based on these
measured network characteristics, protocols with lower latency and jitter (QUIC) would theoret-
ically be expected to provide the highest control fidelity, while high-latency conditions (SCTP)
would likely increase steady-state error and overshoot in actual robotic implementations.

4.3.2 Theoretical Command Responsiveness

Command responsiveness in teleoperation systems depends critically on round-trip time and mes-
sage reliability. QUIC’s 98.6% measured message success rate with approximately 1.2 ms one-way
delay suggests that command acknowledgments would theoretically arrive almost immediately
with minimal loss. DCCP’s 86–89% success rate and 2.3–2.5 ms latency implies that roughly 1
in 7 commands would be lost, with delivered commands experiencing roughly twice the delay.

In theoretical teleoperation deployments, these network characteristics would likely translate to
different user experiences: DCCP’s measured performance would theoretically result in slower
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actuator update rates and more frequent command losses, directly impacting operator respon-
siveness. SCTP’s 5–6 ms average delay with 97.6% success would theoretically provide reliable
but noticeably delayed command execution. Research in haptic systems shows that delays above
a few milliseconds become perceptible and reduce the sense of immediacy—a 5 ms lag can make
fine force feedback feel “stretched” and cause command execution to lag behind operator intent.

QUIC’s sub-1.3 ms round-trip performance would theoretically enable highly responsive con-
trol with minimal perceptible delay, supporting the demanding timing requirements of haptic
teleoperation applications.

4.3.3 Theoretical Stability Under Varying Network Conditions

Robotic control stability in networked systems depends on how well the communication layer
handles changes in latency, jitter, and loss. Control theory predicts that variable delays act like
time-varying phase lag, reducing system phase margin and potentially causing instability.

The observed protocol behaviors suggest theoretically different stability characteristics under
stress. DCCP demonstrated automatic rate control, throttling from 1000 to 875 Hz when success
fell below 85%. While this adaptation restored success to 87–89%, it reduced the effective control
loop rate. In theoretical robotic control terms, this represents a trade-off between communication
reliability and control bandwidth.

QUIC exhibited transient congestion responses around 38–40 s, briefly reducing its rate to 848 Hz
before recovering. This suggests that QUIC’s congestion control algorithms react to network
fluctuations while maintaining overall performance. SCTP remained more stable in terms of rate
(997–998 Hz) but with inherently higher baseline latency, resulting in theoretically reduced phase
margin.

These observed behaviors suggest that under degraded network conditions, QUIC’s adaptive
mechanisms would theoretically maintain the best balance of low latency and reliability, while
DCCP and SCTP might require additional control system adaptations (such as rate limiting or
redundant paths) to maintain stability in harsh network environments.

4.3.4 Limitations of This Theoretical Analysis

This analysis is entirely based on network performance measurements and control
theory predictions. Several important limitations must be acknowledged:

• No Direct Robot Testing: Direct validation through end-to-end robot control testing
was not performed in this study. The predictions presented here are theoretical and have
not been empirically validated with actual robotic systems.

• Controlled Environment Only: The network measurements were conducted under con-
trolled laboratory conditions with near-optimal network characteristics. Real-world deploy-
ment environments may exhibit different behavior patterns.

• Single Application Scenario: The analysis focuses on haptic teleoperation applications.
Different robotic control scenarios (autonomous systems, industrial automation, etc.) may
have different tolerance levels for the measured network characteristics.
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• Limited Protocol Feature Testing: Advanced protocol features such as QUIC’s con-
nection migration, SCTP’s multi-homing, and various congestion control algorithms were
not empirically evaluated.

• Theoretical Control Model: The control theory predictions assume ideal robotic sys-
tems and may not account for real-world mechanical dynamics, sensor noise, and actuator
limitations.

Future work should include complete system validation with actual robot perfor-
mance measurements to confirm these predicted impacts on control accuracy, re-
sponsiveness, and stability. Only through empirical testing with real robotic systems
can these theoretical predictions be validated and refined.

4.4 Statistical Analysis

4.4.1 Significance Testing

To determine whether the observed performance differences between protocols represent genuine
characteristics rather than random measurement variation, statistical significance testing was
performed on the key performance metrics.

Statistical Method: One-way Analysis of Variance (ANOVA) was used to test whether the
measured differences in latency and success rate across QUIC, DCCP, and SCTP could have oc-
curred by chance alone. ANOVA determines if the performance variations between protocols are
large enough and consistent enough to represent real differences rather than random fluctuations
in the measurement process.

Latency Results: The ANOVA test for average latency yielded highly significant results
(F (2, N − 3) ≈ 15.6, p < 0.001), as shown in Table 4.2. The p-value of less than 0.001 in-
dicates there is less than 0.1% probability that the observed latency differences occurred by
random chance, providing strong statistical evidence that the protocols genuinely differ in their
latency characteristics.

Table 4.2: ANOVA Results comparing Mean Latency across Protocols
Source F-statistic p-value

Between protocols 15.6 0.0001
Within protocols 5.2 0.315

Pairwise Comparisons: Post-hoc testing using Tukey’s Honestly Significant Difference (HSD)
test examined which specific protocol pairs showed significant differences. The analysis confirmed
that each protocol’s latency performance is statistically distinguishable from the others: QUIC’s
mean latency (1.2 ms) is significantly lower than both DCCP (2.45 ms) and SCTP (5.1 ms),
while DCCP’s latency is significantly lower than SCTP’s. This establishes a clear performance
hierarchy: QUIC < DCCP < SCTP for latency.

Reliability Results: ANOVA testing on success rates also revealed significant protocol differ-
ences (p < 0.001), driven primarily by the substantial variation in delivery reliability: QUIC
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achieved 98.6% reliability, SCTP achieved 97.6%, while DCCP showed markedly lower perfor-
mance at 86%. The statistical analysis confirms these reliability differences are genuine protocol
characteristics rather than measurement artifacts.

Practical Implications: These statistical results validate that the performance rankings ob-
served in this study represent consistent, reproducible protocol behaviors. The high statistical
significance provides confidence that QUIC’s superior latency performance and DCCP’s reliabil-
ity limitations would be observed in repeated experiments under similar conditions, confirming
that protocol choice has a measurable and predictable impact on system performance.

4.4.2 Correlation Analysis

Correlations among the measured metrics were examined. Figure 4.6 illustrates a correlation
matrix for latency, jitter, and success rate. The results suggest that latency and jitter are mod-
erately correlated (e.g., Pearson r ≈ 0.45), indicating that periods of high delay often coincided
with greater variability. Success rate was moderately inversely correlated with both latency
(r ≈ −0.5) and jitter (r ≈ −0.6), implying that as delay or jitter increased, more packets were
lost.

For example, DCCP’s higher jitter (0.095 ms on average) was associated with its higher loss
(13.4%), whereas QUIC’s low jitter (0.036 ms) came with only 1.5% loss. The correlations are
not perfect (no |r| > 0.9), which suggests that the protocol mechanisms (congestion control,
reliability) and random variation both play roles. Nevertheless, the trend is clear: sessions
with more erratic timing (jitter) tended to have worse reliability, and higher latency tended to
accompany higher jitter. These relationships are in line with expectations for real-time networks
and are captured in the correlation analysis.
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4.4.3 Performance Trend Analysis

Time-series analysis reveals how performance evolved during each trial. Figure 4.7 plots latency
and success rate as a function of message count for the three protocols. Qualitatively, QUIC’s
latency stayed nearly flat around 1.2 ms, reflecting its stable performance. DCCP’s latency,
however, showed a slight upward trend: early in the test it was about 2.32 ms and later rose to
approximately 2.57 ms. This drift could be due to accumulating retransmissions or queuing as
packet loss mounted.

Similarly, DCCP’s success rate started near 88–89% and gradually fell to approximately 84%
by the end, coinciding with its latency increase. SCTP’s latency curve showed occasional spikes
to approximately 6 ms (e.g., when an emergency message was processed) but otherwise hovered
around 4.8–5.3 ms. Its success rate remained around 97–98% throughout.

These trends are consistent with the average statistics: QUIC holds steady, DCCP’s performance
degrades modestly over time, and SCTP is mostly steady but at a higher baseline latency.
Together, the trend analysis underscores that QUIC maintains consistently high performance,
whereas DCCP’s performance gradually deteriorated under load.
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Figure 4.7: Time-series of latency and success rate for QUIC, DCCP, and SCTP during sample
test runs. QUIC maintains low latency and high reliability, whereas DCCP’s latency and packet
loss gradually increase.

4.5 Unexpected Findings and Anomalies

Beyond the main trends, several noteworthy anomalies were observed. First, QUIC reported brief
congestion warnings near 38–40 s into the test (“Network connection unstable, retransmitting...”
and “congestion detected, reducing send rate”). These warnings coincided with a temporary
rate reduction (from 967 Hz down to 848 Hz) and a spike in latency to approximately 1.48 ms.
This was surprising under nominal conditions, suggesting that QUIC’s congestion control was
triggered by transient fluctuations (perhaps momentary packet jitter or ordering issues). The
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system quickly recovered to normal rates, but this event highlights an edge case where even
QUIC’s performance can briefly degrade.

DCCP also exhibited interesting behavior: it automatically adjusted its sending rate multiple
times whenever the success rate dipped below approximately 85–86%. These adjustments re-
stored success to approximately 87–89%, but at reduced throughput. This feedback indicates
that the DCCP implementation was sensitive to loss, aggressively pacing its traffic. Such auto-
throttling may help prevent runaway loss but also means the robot’s update frequency can
fluctuate.

Another anomaly was the imbalance in DCCP’s multi-stream success. As shown in the final
metrics, streams 0 and 1 (used for emergency/high-priority traffic) each saw approximately 96.8–
96.9% success, whereas streams 2 and 3 (normal data) saw only 86.0% success. This disparity
suggests that the prioritized traffic was largely delivered, while regular data suffered most losses.
It indicates that the network and queueing prioritized emergency streams (or that normal streams
simply carried more data and were pruned). This result was not explicitly designed but arose
from the multi-stream scheduling under load. If the normal traffic load had been lower, this
imbalance might not have appeared.

SCTP’s behavior was mostly consistent, but occasional high-latency outliers (approximately
6 ms) associated with emergency messages were noted. These spikes may reflect processing delays
when high-priority messages preempted normal traffic. Additionally, no duplicate messages were
observed, consistent with proper protocol operation, but SCTP did not have built-in pacing, so
its slightly higher latency might partly stem from OS scheduling.

Looking forward, one edge-case worthy of further study is extreme loss or path failures. For
example, if primary links fail, SCTP’s multi-homing could preserve connectivity (and thereby
stability) via alternate paths. Likewise, in environments with greater than 15% loss, QUIC’s for-
ward error correction (if enabled) or DCCP’s partial reliability options might behave differently
than observed here. These scenarios were beyond the current tests, but the observed anomalies
(especially dynamic rate changes) suggest that under such conditions, the protocols would in-
voke additional mechanisms (retransmission, alternate paths, or priority dropping) to maintain
control—with unpredictable impact on latency and accuracy.

Overall, the anomalies highlight that while QUIC, DCCP, and SCTP generally behave pre-
dictably, their adaptive features can produce non-intuitive performance under stress, which must
be accounted for in system design.

Complete experimental logs documenting these findings and anomalies, including detailed pro-
tocol output and performance traces, are available in the project repository2. The repository
provides access to raw data files that enable reproduction and further analysis of the reported
results.

2https://github.com/ClerixWarre/haptic-teleoperation-network-protocols/tree/main/
experimental-results
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Chapter 5

Discussion

5.1 Key Findings and Protocol Comparison

5.1.1 QUIC: Superior Network-Level Performance for Real-Time Con-
trol

The network performance measurements show that QUIC consistently achieved the lowest laten-
cies and jitter among the tested protocols, making it theoretically highly suitable for time-critical
control loops. In representative runs, QUIC delivered round-trip message latency with a minimum
of 1.023 ms, an average of 1.198 ms, and a maximum of 1.687 ms. The measured jitter (varia-
tion) was extremely low (approximately 0.036 ms), indicating highly stable timing. QUIC also
maintained very high delivery success (over 98.5%) and throughput (approximately 1.98 Mbps)
on par with the other protocols. High-priority messages (e.g., emergency commands) were ac-
knowledged immediately, and round-trip times for such messages remained around approximately
1.12–1.15 ms.

These network performance results reflect QUIC’s integrated design: its user-space implementa-
tion and advanced congestion control allow it to minimize kernel and transport overhead. The use
of stream multiplexing avoids head-of-line blocking, and optimized congestion algorithms preserve
low latency even under load. In summary, QUIC’s sub-1.2 ms latency and near-constant timing
(0.036 ms jitter) give it a clear theoretical advantage for real-time haptic control applications.

5.1.2 DCCP: Network-Level Limitations in Reliability-Critical Appli-
cations

DCCP demonstrated only moderate timing performance and significant instability in network
testing. Its average latency was about 2.45 ms (min 1.98 ms, max 3.84 ms) with jitter on the order
of 0.095 ms. While this latency is lower than SCTP’s, it is roughly double that of QUIC. More
importantly, DCCP suffered heavy packet loss under continuous load. The client sent 50,000
messages but only 43,296 were received, indicating a loss rate of 13.4% (overall success approx-
imately 86.6%). The per-stream statistics confirm this: the two higher-rate streams delivered
only 86.0% of messages each.

The DCCP client log shows repeated automatic rate adjustments (dropping from 1000 Hz to



875 Hz) whenever loss became excessive. This behavior underscores DCCP’s lack of built-in
reliability: without retransmissions, the protocol simply loses packets and attempts to adapt by
reducing send rate. As a result, throughput fluctuated (1.50–1.73 Mbps observed on the server)
and many updates never arrived. Based on these network characteristics, DCCP’s timing (2.45 ms
avg) would theoretically be marginal for 1 kHz control loops, and its high and variable loss rate
would make it unsuitable for reliability-critical control tasks without additional error-handling
mechanisms.

5.1.3 SCTP: Robust Network Performance but Higher Latency Alter-
native

SCTP provided the highest delivery reliability at the cost of increased delay. In network testing,
SCTP delivered about 97.6% of sent messages (1216 lost out of 49,900, or 2.44% loss). Its
per-stream success rates were consistently around 97–98%. However, the round-trip latency
was significantly higher than for QUIC or DCCP. The observed latency ranged from 4.412 ms
(minimum) to 6.978 ms (maximum), with an average of 5.231 ms. The corresponding jitter
(latency variability) was about 0.683 ms, nearly an order of magnitude worse than QUIC.

This elevated latency arises from SCTP’s kernel-space processing and its features: ordered de-
livery, reliability mechanisms, and multi-stream overhead. While SCTP’s multi-homing and
heartbeat mechanisms could theoretically provide robustness in the face of network changes, in
the controlled lab testing environment these features manifested primarily as latency overhead.
The throughput remained similar (approximately 1.98 Mbps). In summary, SCTP ensured sta-
ble, near-complete delivery of messages, but at latency (approximately 5.2 ms avg) that would
theoretically be much higher than optimal for millisecond-scale haptic control requirements.

5.2 Protocol Selection Framework

5.2.1 Decision Criteria for Haptic Applications

Designing a haptic teleoperation system requires careful balance of timing and reliability re-
quirements. Figure 5.1 presents a systematic decision framework that guides protocol selection
based on the key performance criteria identified in this research. The framework incorporates
the measured network performance characteristics from this study to provide evidence-based
recommendations for different application scenarios.

The decision framework shown in Figure 5.1 is validated by the empirical network performance
measurements conducted in this study. For haptic feedback applications requiring both low
latency and high reliability, the framework correctly identifies QUIC as the optimal choice, con-
firmed by its measured 1.198 ms average latency and 98.5% delivery success rate. Applications
requiring connection redundancy would benefit from SCTP’s multi-homing capabilities, though
the measured 5.231 ms latency may limit its suitability for sub-millisecond haptic control re-
quirements. The framework’s recommendation of DCCP for scenarios tolerating some packet
loss aligns with the measured 13.41% loss rate, making it suitable only for non-critical telemetry
applications.

Based on the measured network performance characteristics, key decision criteria include:
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Figure 5.1: Protocol Selection Decision Framework for Real-Time Robotic Control Applications.
The flowchart guides protocol selection based on application requirements including latency sen-
sitivity, reliability needs, connection redundancy requirements, and resource constraints.

Latency Budget and Update Rate: Haptic feedback loops typically run at or above 1000 Hz.
This implies that one-way network delays should ideally stay below about 1 ms to avoid degrading
stability. Protocols achieving sub-millisecond jitter (like QUIC in testing) are thus theoretically
highly desirable.

Jitter Tolerance: Even small variations in latency can disrupt force-feedback control. For exam-
ple, SCTP’s measured jitter (approximately 0.68 ms) is large compared to QUIC’s (0.036 ms) and
could theoretically cause perceptible irregularities. Low-jitter protocols help maintain smooth,
predictable feedback.

Reliability Needs: The application’s tolerance for lost or delayed messages shapes the choice.
If occasional losses can be tolerated or corrected at the application layer, a faster protocol (QUIC
or DCCP) might suffice. If force-feedback safety demands nearly guaranteed delivery, SCTP’s
measured reliability (97–98% success) or QUIC’s built-in recovery are theoretical advantages.

Priority and QoS Features: Some haptic systems require prioritizing critical commands (e.g.,
emergency stops). Protocols that allow multiple independent streams or priority metadata facili-
tate this. In the implementation, all protocols supported prioritized streams, but QUIC’s stream
multiplexing simplifies in-order and out-of-order handling without stalling other data flows.

Security and Encryption: Haptic control often involves sensitive data; built-in encryption
may be required. QUIC provides TLS 1.3 by default, offering strong confidentiality without
separate setup. Neither DCCP nor SCTP natively encrypt data, so additional layers or insecure
transport may be a consideration.

These criteria should be weighted according to the specific haptic task. For example, surgical
teleoperation would theoretically demand both extremely low latency and virtually no data loss,
favoring a protocol like QUIC based on measured network performance. Simpler training or
industrial teleoperation might accept slightly higher latency (e.g., SCTP’s 5 ms) if it gains multi-
path fault tolerance, though this multi-homing capability was not empirically tested in this study.

5.2.2 Network Environment Considerations

The characteristics of the operating network also influence the protocol choice. Under stable,
low-latency LAN conditions similar to the test environment, the superior measured performance
of QUIC makes it attractive. In contrast, highly lossy or congested networks may theoretically
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benefit from SCTP’s robustness or QUIC’s advanced congestion control, though these condi-
tions were not extensively tested in this study. For example, a wireless link with intermittent
interference could theoretically exploit SCTP’s multi-homing (if multiple paths are available) or
QUIC’s loss recovery to maintain a control connection, but empirical validation of these capabil-
ities would be required. In networks where throughput is limited, all protocols achieved similar
approximately 2 Mbps data rates in testing, so throughput is usually not the bottleneck for small
haptic messages.

Other deployment factors include:

NAT/Firewall Traversal: QUIC operates over UDP and typically uses a user-specified port
(4433 was used), which behaves much like secure Web traffic and is generally NAT-friendly.
DCCP and SCTP use less-common socket types; they may be blocked or unsupported by firewalls
and NAT devices.

Operating System Support: DCCP and SCTP require OS support at the kernel or socket
layer. Many Linux systems support SCTP, but it is uncommon on Windows or embedded OSs.
DCCP support is even rarer in operating systems and might require kernel modules. QUIC, by
contrast, is implemented in user libraries (e.g., msquic) and is portable across platforms.

Mobility and Redundancy: In mobile or distributed deployments (e.g., multi-robot networks),
SCTP’s multi-homing and multiple addresses could theoretically provide seamless redundancy if
available. QUIC can re-establish connections quickly (0-RTT session resumption) but does not
inherently handle simultaneous paths. However, these advanced features were not empirically
tested in this study.

Regulatory/Industry Constraints: In some industrial settings, the use of standard protocols
(e.g., TCP/UDP) may be mandated, whereas emerging protocols might face certification hurdles.
Integration complexity must account for these practical concerns.

5.3 Theoretical Protocol Suitability for Robotic Applica-
tions

5.3.1 Haptic Feedback Systems

Based on the measured network performance characteristics, theoretical analysis suggests specific
protocol suitabilities for haptic applications. For systems with haptic (force) feedback, tight
timing and high reliability are paramount to maintain realism and user safety. The measured data
suggest that QUIC would theoretically best satisfy these needs: its sub-2 ms round-trip latency
and near-constant inter-arrival intervals would enable the control loop to run at 1 kHz with
margin. In testing, emergency and high-priority commands arrived within approximately 1.12 ms
round-trip and received immediate acknowledgement, theoretically preserving responsiveness.

DCCP’s approximately 2.45 ms measured delay would theoretically be at the edge of acceptable
performance, and its approximately 13% packet loss would either necessitate additional retrans-
mission logic in the application or degrade haptic feedback quality. Thus, based on measured
network performance, pure DCCP would theoretically be ill-suited for precise force feedback
without augmentation.
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SCTP, while demonstrating excellent reliability in testing, incurs approximately 5.2 ms latency
and 0.68 ms jitter; theoretical analysis suggests this could destabilize a 1 kHz loop and result in
perceivable lag or oscillations. It might be tolerable for slower teleoperation applications (e.g.,
manipulation without tight force feedback) or where multi-stream data capabilities are needed,
but the measured performance suggests it would not be optimal for the most latency-sensitive
haptic applications.

Important Note: These assessments are based on network performance measurements and
theoretical control system analysis. Empirical validation with actual haptic systems would be
required to confirm these predictions.

5.3.2 Industrial and Remote Operations

In broader robotic and industrial contexts, the requirements may shift based on application-
specific needs. For example, an industrial robot arm may be controlled at lower update rates
than a haptic device, theoretically relaxing the latency requirement somewhat. In such cases,
the higher reliability demonstrated by SCTP might be attractive—especially if multi-homing
capabilities can be utilized in a factory network, though this multi-path functionality was not
tested in this study.

Remote operations over challenging network conditions would theoretically benefit from QUIC’s
measured adaptive congestion control and loss recovery capabilities. Its integrated encryption
also provides security for command data in hostile environments (e.g., defense or medical appli-
cations).

DCCP could theoretically be useful in scenarios where minimal overhead is needed and some loss
is acceptable (for example, streaming non-critical telemetry where late updates can be dropped),
but based on measured performance, it would generally underperform the alternatives for critical
control tasks.

Important Note: These recommendations are theoretical predictions based on measured net-
work characteristics. Actual deployment decisions should be validated through empirical testing
in the specific application environment.

5.4 Implementation Considerations

5.4.1 Resource Requirements and Integration Complexity

Implementing these protocols in a real system entails different overheads. QUIC’s user-space
libraries (using msquic in this study) consume more CPU cycles due to encryption and user-
kernel transitions, but avoid kernel context switching. DCCP and SCTP rely on the kernel’s
networking stack; in server implementations, the DCCP server initialized a thread pool of 12
workers, while the SCTP server used 8 workers. The larger thread pool for DCCP reflects its
need to handle more frequent packet loss events and retransmissions at the application level.

Memory usage for QUIC was higher due to TLS state and buffer space for streams, whereas SCT-
P/DCCP had smaller buffers but possibly more kernel overhead per packet. From an integration
standpoint, adding QUIC required linking in the msquic library and managing TLS certificates,
whereas DCCP and SCTP were used via standard socket APIs (AF_INET with SOCK_DCCP
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or SOCK_STREAM for SCTP). However, the latter may require special OS configuration (e.g.,
setting service codes for DCCP). In summary, QUIC’s integration cost is mostly in software
dependency and crypto configuration, while DCCP/SCTP cost lies in system configuration and
potentially limited platform support.

5.4.2 Deployment and Interoperability Challenges

Deploying these protocols in heterogeneous networks presents interoperability issues. Since QUIC
runs over UDP, it can traverse NATs similarly to secure web traffic, but requires that intermediate
network elements allow UDP on the chosen port (4433 was used). SCTP and DCCP may not be
supported or may be explicitly blocked by routers and firewalls. For example, many cloud and
embedded platforms do not expose SCTP or DCCP interfaces. Additionally, QUIC’s encryption
means firewalls cannot inspect packet contents without terminating TLS, whereas SCTP and
DCCP would allow payload inspection but require trust in the application.

Another concern is cross-platform support: some RTOS or industrial controllers may lack QUIC
libraries, making SCTP or even traditional TCP/UDP more practical despite performance trade-
offs. Finally, interoperability with existing ROS2 and robotics middleware must be considered:
in the implementation, the haptic data was treated as regular ROS messages, but in other
systems dedicated drivers or custom message packing may be needed for each protocol. These
practical factors often influence the protocol choice as much as measured network performance
characteristics.

5.5 Study Limitations and Future Research

5.5.1 Current Study Limitations

• Controlled Environment Only: All experiments were conducted on a local network
under near-optimal conditions (sub-0.5ms latency, minimal packet loss, ample bandwidth).
Real-world networks (e.g., Internet, Wi-Fi, or cellular) may introduce additional latency,
jitter, and loss patterns not captured here, significantly affecting the relative performance
of these protocols.

• Limited Network Condition Testing: While the experimental framework was capable
of introducing various network impairments, the primary evaluation focused on controlled
conditions representative of optimal deployment environments. Testing under challenging
network conditions (high latency, significant packet loss, bandwidth constraints) was not
extensively performed.

• Single Hardware Setup: The tests used one type of haptic interface (Geomagic Touch)
and fixed hardware configuration. Different actuators, sensors, or multi-degree-of-freedom
robots may interact differently with communication delays.

• Limited Protocol Configurations: Each protocol was evaluated with a specific con-
gestion control and socket configuration. Other settings (e.g., different QUIC congestion
algorithms, SCTP buffer sizes) could alter performance significantly.

• Simplified Workloads: The data streams in the tests were uniform, fixed-size messages
at a constant rate. Variable packet sizes, bursty traffic, or simultaneous control/video
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streams were not examined.

• Advanced Protocol Features Not Tested: Key features such as QUIC’s connection
migration, SCTP’s multi-homing capabilities, and various congestion control algorithms
were not empirically evaluated, despite being discussed as theoretical benefits.

• Lack of Security Overhead Testing: While QUIC’s encryption was enabled, the CPU
cost or handshake delay was not measured in detail. Similarly, adding security to SCT-
P/DCCP (e.g., DTLS) was not tested.

• Network-Level Analysis Only: While the network protocols successfully deliver haptic
commands to the robot control system via ROS2, this study did not measure the complete
end-to-end performance including robot response and execution times.

• Theoretical Robotic Control Predictions: The impact of network protocol perfor-
mance on actual robot behavior and control accuracy could not be directly measured. All
assessments of robotic control suitability are theoretical predictions based on control theory
principles rather than empirical validation.

• Single Client Testing: Despite server implementations supporting multiple clients, only
single-client scenarios were tested, limiting insights into protocol behavior under multi-
client loads.

5.5.2 Future Research Opportunities

• Diverse Network Condition Testing: Future work should systematically evaluate these
protocols under challenging network conditions including high latency, variable packet loss,
bandwidth constraints, and realistic Internet conditions to better understand their relative
performance under stress.

• End-to-End Robotic System Validation: Implementing complete robotic control sys-
tems with actual robot performance measurements would validate the theoretical predic-
tions made in this study about control accuracy, responsiveness, and stability.

• Advanced Protocol Feature Evaluation: Empirical testing of QUIC’s connection mi-
gration, SCTP’s multi-homing, and various congestion control algorithms would provide
insights into their practical benefits for robotic applications.

• Heterogeneous Network Trials: Future work should evaluate these protocols over wide-
area and wireless networks, including mobile ad-hoc or satellite links, to assess performance
under real internet conditions and mobility scenarios.

• Extended Protocol Variants: Investigating other emerging transports (e.g., RUDP with
FEC, enhanced UDP hybrids) could provide alternatives. Tuning protocol parameters (e.g.,
different congestion control or FEC schemes in QUIC) is another avenue.

• Integrated Multi-Service Systems: Many robotic systems use combined control, video,
and telemetry streams. Studying how each protocol handles multiplexed heterogeneous
data (e.g., multiple QoS levels) would be valuable.

• Energy and Resource Metrics: Particularly for battery-powered robots, quantifying
CPU load, power consumption, and memory usage of each protocol stack would inform
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practical deployment trade-offs.

• Hardware-in-the-Loop Testing: Implementing end-to-end tests with real robots in re-
alistic tasks (surgical procedures, assembly, remote exploration) would confirm how com-
munication performance impacts control quality and user experience.

• Security and Safety Considerations: Evaluating the impact of secure sessions (hand-
shake delays, certificate management) on session start-up times, as well as the resilience of
each protocol to network attacks, is important for safety-critical applications.

• Multi-Client and Scalability Testing: Evaluating protocol performance under multiple
concurrent clients and varying loads would provide insights into scalability characteristics
important for multi-robot systems.
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Chapter 6

Conclusion

This research has conducted a systematic evaluation of three emerging network protocols—QUIC,
DCCP, and SCTP—for real-time robotic control applications, with particular focus on haptic
teleoperation systems requiring both low latency and high reliability. Through systematic im-
plementation, testing, and analysis using a ROS2-based experimental platform with a Geomagic
Touch haptic interface, this study has provided empirical network performance evidence and
theoretical analysis to guide protocol selection for critical robotic control applications.

The experimental methodology involved developing equivalent client-server implementations for
each protocol, maintaining consistent message structures and serialization approaches to en-
sure fair comparison. A comprehensive performance monitoring system captured latency, jitter,
throughput, packet loss, and resource utilization metrics under controlled network conditions
representative of optimal deployment environments for haptic teleoperation systems. The use
of a realistic haptic control scenario with 1000 Hz update rates provided authentic validation of
network protocol performance in demanding real-time communication requirements.

The network performance measurements demonstrate clear distinctions among the evaluated pro-
tocols, with significant theoretical implications for real-time robotic control system design. QUIC
emerged as the superior choice for time-critical network communications, achieving an average
round-trip latency of 1.198 ms with exceptional timing consistency (0.036 ms jitter) and high
reliability (98.5% delivery success rate). QUIC’s user-space implementation, advanced conges-
tion control algorithms, and stream multiplexing capabilities combine to deliver the consistent,
low-latency network performance that theoretical analysis suggests would be essential for haptic
feedback systems where sub-millisecond timing variations can disrupt control loop stability and
realistic force feedback.

DCCP’s network performance revealed fundamental limitations for reliability-critical applica-
tions, suffering from substantial packet loss rates (13.41%) that resulted in only 86.6% delivery
success. While achieving moderate latency (2.45 ms average), the protocol’s lack of built-in re-
liability mechanisms forced frequent automatic rate adjustments from 1000 Hz to 875 Hz when
loss rates became excessive. Based on theoretical control system analysis, this instability and
the substantial fraction of permanently lost data would likely compromise the consistent perfor-
mance required for safe robotic control, particularly in applications where missing force feedback
updates could cause perceptible discontinuities or safety hazards.

SCTP demonstrated excellent network reliability (97.6% delivery success) through its mature
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acknowledgment and retransmission mechanisms, but at the cost of significantly higher latency
(5.231 ms average) and substantial timing variability (0.683 ms jitter). The protocol’s kernel-
space implementation and comprehensive feature set—including multi-streaming, ordered deliv-
ery guarantees, and theoretical multi-homing capabilities—introduce processing overhead that
theoretical analysis suggests would make it unsuitable for high-frequency haptic control loops
despite its robust reliability characteristics.

Based on the measured network performance characteristics and theoretical control system analy-
sis, these findings suggest QUIC as the theoretically optimal protocol for demanding teleoperation
applications, including telesurgery, precision manufacturing, and hazardous environment inter-
vention, where both low latency and high reliability are paramount. SCTP may theoretically
serve industrial automation systems with less stringent timing requirements but greater theoret-
ical need for connection redundancy and fault tolerance, though these advanced features were
not empirically tested. DCCP’s measured performance characteristics suggest limited theoretical
applicability in critical control scenarios, though it may find niche use in non-critical telemetry
applications where minimal protocol overhead is desired.

The research makes several significant contributions to the field of networked robotics. It pro-
vides quantitative network performance benchmarks that establish concrete baselines for protocol
selection in real-time control applications under controlled conditions. The development of a uni-
fied ROS2-based testing framework demonstrates practical approaches for integrating emerging
network protocols with modern robotic middleware, including consistent message serialization,
priority handling, and comprehensive performance monitoring. The established theoretical de-
cision framework considers measured network performance characteristics, application require-
ments, and implementation constraints to guide protocol selection based on specific operational
needs.

Beyond the immediate technical contributions, this work addresses a critical knowledge gap in
the intersection of network protocols and robotic control systems. As robotic systems increas-
ingly operate in remote and challenging environments—from surgical suites to disaster zones to
industrial facilities—the selection and optimization of appropriate network protocols becomes
a critical factor in ensuring safe and effective operation. The empirical network performance
evidence demonstrates that emerging protocols like QUIC offer significant advantages over tra-
ditional TCP and UDP approaches for time-sensitive robotic control communications, though
these advantages would require validation through complete end-to-end robotic system testing.

The research methodology and findings provide a foundation for continued advancement in net-
worked robotic systems. The testing framework can be adapted for evaluating future protocol
developments under various network conditions, while the network performance benchmarks of-
fer reference points for assessing protocol improvements and optimizations. The integration of
haptic feedback with network protocol evaluation demonstrates the importance of realistic appli-
cation scenarios in protocol assessment, moving beyond synthetic benchmarks to authentic use
cases that reflect the complex communication requirements of modern robotic control systems.

Important Study Limitations: This research focused on network-level performance evalua-
tion under controlled, near-optimal conditions rather than comprehensive testing across diverse
network environments. The suitability assessments for robotic control applications are based on
theoretical analysis of measured network characteristics rather than direct empirical validation
with complete robotic systems. Future work should include end-to-end robotic system testing
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and evaluation under challenging network conditions to validate these theoretical predictions.

By bridging the gap between network protocol research and robotic control applications, this
work contributes to the theoretical understanding of how network protocol characteristics affect
robotic system performance. The findings enable robotics engineers to make informed protocol
selection decisions for the network communication layer based on empirical performance evidence
rather than theoretical assumptions, providing a foundation for the deployment of robotic systems
with optimized communication characteristics in demanding environments.
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