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Abstract 
 

Lung cancer is the leading cause of cancer-related death worldwide. Early diagnosis and 

accurate staging are essential to improve patient survival. Radiomics, a method for extracting 

features from medical images, can improve this process by identifying patterns invisible to the 

human eye. Segmentation defines the analyzed region and may influence radiomic features. 

This master’s thesis examines whether the choice of PET segmentation method affects the 

performance of prognostic models for non-small cell lung cancer (NSCLC). 

 

A total of 121 patients with stage I-IIIA NSCLC were selected from the NCT03736993 trial 

(ProLUNG study) and the NCT02024113 trial. PET/CT images were segmented using three 

methods (SUV4, MV2, and an AI-based method LIONZ). Radiomic features were subsequently 

extracted from all the different segmentations. Preselected features were used as input for 

different prognostic models that were either based on logistic regression or random forest.  

 

Model performance was compared across the segmentation methods, as well as between the 

models, using the area under the curve (AUC) values of the receiver operating characteristic 

curves. A Friedman test did not find any statistically significant differences between the 

different segmentation methods. Differences in model performance were mainly caused by the 

applied feature selection. The TLG-only model showed the highest overall reliability (AUC 

0.76 ± 0.14), while the most optimal combination included TLG, SUVmax, and DmaxBulk 

with MV2 segmentation (AUC 0.77 ± 0.16). 

 

  



 

 

  



 

 

 

 

Abstract in Dutch 
 

Longkanker is wereldwijd de dodelijkste vorm van kanker. Voor een betere overleving is een 

vroege diagnose en nauwkeurige stadiëring essentieel. Radiomics, een methode om parameters 

uit medische beelden te halen, kan dit proces verbeteren door patronen te identificeren die voor 

het menselijk oog onzichtbaar zijn. Segmentatie bepaalt het geanalyseerde gebied, wat invloed 

kan hebben op de radiomic parameters. Deze masterproef onderzoekt of de keuze van de PET-

segmentatiemethode de prestaties van prognostische modellen voor niet-kleincellige 

longkanker (NSCLC) beïnvloedt. 

 

In totaal werden 121 patiënten met stadium I-IIIA NSCLC geselecteerd uit de NCT03736993-

trial (ProLUNG-studie) en de NCT02024113-trial. PET/CT-beelden werden gesegmenteerd 

met drie methoden (SUV4, MV2 en een AI-gebaseerde methode LIONZ). Radiomic parameters 

werden geëxtraheerd uit alle segmentaties. Vooraf geselecteerde parameters werden gebruikt 

als input voor prognostische modellen gebaseerd op logistische regressie of random forest. 

 

Modelprestaties werden vergeleken tussen de segmentatiemethoden en modellen met behulp 

van de area under the curve (AUC)-waarden van de receiver operating characteristic curves. 

Een Friedman test toonde geen statistisch significante verschillen tussen de verschillende 

segmentatiemethoden. Verder toonde het model met alleen TLG de hoogste globale 

betrouwbaarheid (AUC 0,76 ± 0,14), terwijl de meest optimale combinatie het model met TLG, 

SUVmax en DmaxBulk voor MV2-segmentatie is (AUC 0,77 ± 0,16). 

 

  



 

 

  



 

 

 

 

1 Introduction  
 

Lung cancer is the most common type of cancer and the leading cause of cancer-related death 

worldwide [1]. Based on the location, size, and metastasis of the cancer, a stage is given [2]. 

Staging is essential in order to make an accurate prognosis. To detect and stage tumors in a non-

invasive way, positron emission tomography (PET) together with computed tomography (CT) 

can be used.  

 

In recent years, radiomics has gained popularity in cancer research. Radiomics is a type of 

quantitative image analysis where a large number of features are extracted from medical 

images. These features can be used to identify patterns that cannot be observed by the human 

eye, with the help of a machine and/or deep learning model. In this way, radiomics has the 

potential to offer insights into tumor biology and improve the decision-making processes 

related to cancer detection, staging, prognosis, and treatment [3]. 

 

The radiomic workflow consists of five main steps. The first step is image acquisition. High-

quality images can be obtained through commonly used scans available in the hospital, such as 

CT and PET/CT scans. After image acquisition, tumor segmentation, the outlining of the tumor, 

is performed to obtain a volume of interest (VOI). The third step in the process entails the 

extraction of radiomic features from the VOI. As approximately 500 different radiomic features 

are extracted, the fourth step involves the selection of the most significant features for further 

analysis. Feature selection can either be performed before or simultaneously with step five 

(performance testing) [4], [5]. In this last step, different models are used to analyze the radiomic 

features and develop prognostic cancer models. 

 

This master’s thesis will focus on the development of prognostic models for early-stage non-

small cell lung cancer (NSCLC). The data used in this study comes from the ProLUNG study 

at Ziekenhuis Oost-Limburg (ZOL), located in Genk. The ProLUNG study is funded by ‘Kom 

op tegen Kanker’. Additional data were obtained from the NCT02024113 trial, performed at 

the Limburg PET-Center in Hasselt. In total, 121 patients from the two studies combined were 

selected and included in this study for radiomic analysis. Data from the ProLUNG trial was 

used for prognostic model training, while data from the NCT02024113 trial was used for 

external validation of the trained models. All patients were diagnosed with stage I–IIIA 

NSCLC, or early-stage NSCLC, and underwent a lobectomy as part of their standard-of-care 

treatment, along with a PET/CT scan. 

 

Using the ACCURATE tool, tumor segmentation was performed on the patient’s PET/CT scans 

with three methods: standardized uptake volume (SUV) and majority vote (MV), two threshold-

based methods; and LIONZ, an artificial intelligence (AI)-based segmentation method. 

Following segmentation, around 500 radiomic features were extracted using the RADIOMICS 

tool. Both tools are developed by the research team of Prof. Dr. Ronald Boellaard (Amsterdam, 

UMC). Seven different prognostic models, both simple and more complex, were tested for the 

three segmentation methods. The complexity of each model is determined by the feature 
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selection approach. The simple models only included conventional PET metrics like total lesion 

glycolysis (TLG), a combination of TLG and SUVmax, and a combination of TLG, SUVmax, 

and DmaxBulk. The intermediate models included features using different feature elimination 

methods, such as pairwise elimination (pw), univariate selection (uni), or recursive feature 

elimination (rfe), but remained quite simple because of the use of logistic regression. The most 

complex model tested was a machine learning model called random forest. Cross-validation 

was used to test the accuracy of the different models across the different segmentation methods. 

This methodology is described in more detail in Chapter eight. 

 

The first objective of this study is to investigate whether the choice of tumor segmentation 

method impacts the performance of different prognostic models for early-stage NSCLC. A 

second objective is to investigate which model, and consequently which features, are preferred 

to create the most accurate prognostic model for early-stage NSCLC. 

 

The present thesis is divided into chapters, each dedicated to a different aspect of the subject of 

this study. Chapter two explains the basics of cancer and the cancer hallmarks, while Chapter 

three provides more detail about the grading and staging of tumors, which play an important 

role in making predictions. Chapter four provides more in-depth information about lung cancer. 

 

Chapter five explains the most commonly used imaging techniques to diagnose lung cancer. X-

ray imaging is explained in this chapter, as this technique is used in CT, which is also discussed 

in depth. Further, Chapter five provides information about PET scans. This includes 

information about the radioactive tracer 18F-FDG, the PET camera, and the use of PET/CT 

scans. 

 

Chapter six provides a deeper understanding of radiomics. This chapter includes radiomic 

applications as well as a thorough discussion of all the different steps of the radiomic workflow, 

including segmentation, feature selection, and performance testing of the prognostic models. 

 

The last chapter that provides theoretical information is Chapter seven, which elaborates on the 

different analysis methods that were used, such as the Friedman and the DeLong tests. 

 

While Chapter eight discusses the methodology, Chapter nine focuses on the results. Chapter 

ten provides a thorough discussion of these results and reflects on limitations and future 

research possibilities. At last, the conclusion on both objectives can be found in Chapter eleven. 
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2 Cancer 
 

After cardiovascular diseases, cancer is worldwide the most common cause of death. Cancer is 

a disease that can manifest in different ways, but the underlying principle remains the same: 

uncontrolled cell division. Cells grow and divide in the body. Abnormal tissue growth can occur 

when cells develop abnormalities due to genetic changes. These genetic changes can be caused 

by a variety of factors such as ionizing radiation, asbestos, ultraviolet light, and tobacco. An 

overview of the impact of gene mutation is shown in Figure 1 [5]. 

 

 
Figure 1: An overview of the cell cycle for normal dividing cells compared to tumor-producing cells, showing the impact of 

gene mutation [5, p. 4]. 

 

As shown in Figure 1, deoxyribonucleic acid (DNA) is packaged in a highly condensed manner, 

forming chromosomes composed of chromatin fibers. DNA contains genes that encode proteins 

essential for regulating growth and cell division, involving complex signaling networks that 

include extracellular signaling molecules such as growth factors. These molecules bind to 

specific receptors on the cell surface, initiating signal transduction pathways that control 

cellular division through the cell cycle [6]. Importantly, signaling only occurs in response to 

the right conditions, ensuring that cell proliferation is tightly coordinated to prevent 

uncontrolled growth. However, mutations, caused by various factors, can occur within the 

genes, resulting in the production of abnormal proteins or, in some cases, the complete loss of 

protein expression. This can interfere with key pathways, leading to the dysregulation of cell 

growth and division, and ultimately promote uncontrolled proliferation, transforming normal 

dividing cells into tumor-producing cells [5].  

 

A tumor is defined as a group of cells, either benign or malignant, with dysregulated growth 

control, and thus, uncontrolled cell division [5]. Benign tumors, also called non-cancerous 

tumors, are considered innocuous as they are unlikely to spread to other parts of the body. 

Malignant tumors, also called cancer or cancerous tumors, are considered aggressive as these 

can spread (metastasize) to other parts of the body to eventually form secondary tumors [5], 

[7], [8]. 
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2.1 Cancer hallmarks 

 

In 2000, Hanahan and Weinberg described ‘The Hallmarks of Cancer’ [9]. These six functional 

capabilities, acquired by human cells, are crucial for to develop malignant tumors [10]. 

However, in 2011, two emerging hallmark capabilities and two enabling characteristics were 

added [11]. The emerging hallmarks are referred to as such because, at the time they were 

published, they were still considered provisional. However, at this time, the emerging hallmarks 

are also considered core hallmarks [10]. Enabling characteristics are molecular and cellular 

mechanisms that can lead to the acquisition of the hallmarks. The eight hallmarks and two 

enabling characteristics of cancer are shown in Figure 2. 

 

 
Figure 2: The eight hallmarks of cancer and two enabling characteristics [10, p. 32]. 

 

 

2.1.1 Initial hallmarks 

 

The capacity for sustaining proliferative signaling represents the most fundamental hallmark 

of cancer. In normal cells, cell division is controlled and occurs in response to specific 

extracellular signals, such as growth factors, extracellular matrix components, or signals from 

neighboring cells [9]. These signals activate receptors on the cell surface and trigger pathways 

that allow the cell to proliferate. Malignant cells, however, acquire the ability to undermine 

these signals through various strategies. First, these cells often produce growth factors 

themselves, a process known as autocrine signaling, which makes the growth factors of other 

cells redundant [9]. Second, malignant cells might alter the signal receptors by increasing the 

number of receptors on the cell surface or by overexpression so that these will provoke a 

response even in the presence of minimal signals [9], [11]. Third, malignant cells frequently 

activate intracellular signals by mutating, for example, proteins that regulate growth signals 

[11]. These mutations disable the normal mechanisms that would prevent excessive signaling, 

allowing for uncontrolled cell growth. All these changes result in uncontrolled cell growth and 

increased cell division. 

 

In order to stimulate cancer growth, malignant cells are not only able to induce and sustain 

growth-stimulating factors but also to evade growth-inhibiting factors or growth 

suppressors. Two of the most important tumor suppressor proteins are the retinoblastoma 

protein (pRb), encoded by the retinoblastoma gene, and the tumor protein p53, encoded by the 
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tumor protein p53 gene. The pRb protein integrates signals from both extracellular and 

intracellular sources and can prevent the expression of genes required for DNA synthesis and 

cell cycle advancement [9], [11]. In contrast, p53 responds only to intracellular signals. If the 

levels of different factors, such as glucose, oxygen, or growth-promoting signals, are 

suboptimal or excessive genome damage is present, p53 will halt the cell cycle until normal 

conditions are restored [9], [11]. While pRb and p53 restrict cell proliferation, both operate via 

distinct yet complementary mechanisms, forming a robust barrier against malignant 

transformation [11]. Functional loss or inhibition of pRb or p53, through mutation or pathway 

disruption, is frequently observed in cancers and subsequently results in uncontrolled cellular 

proliferation [9], [12], [13]. 

 

A third hallmark is enabling replicative immortality. Normal cells only pass a limited number 

of complete cell cycles due to senescence and apoptosis. This is mainly regulated by telomeres. 

Telomeres are protective repeated segments at the ends of chromosomes that are added by the 

telomerase enzyme. When a cell undergoes division, the telomeres shorten. If the telomeres 

become too short, cell viability is compromised, ultimately resulting in cell death. Malignant 

cells, however, show increased telomerase levels, leading to less telomere shortening and 

improved cell viability [14]. 

 

Malignant cells can spread to other tissues in the body through the processes of invasion and 

metastasis, which is the fourth hallmark. While invasion is defined as the expansion of 

malignant cells to nearby tissue, metastasis is defined as the process by which a part of the 

primary tumor detaches and spreads to other parts of the body to establish a secondary tumor 

[15]. 

 

Inducing or accessing vasculature, also known as angiogenesis, is the fifth initial hallmark. 

Angiogenesis refers to the formation of new blood vessels originating from existing ones. In 

adults, angiogenesis is inactive if no wound healing is going on. However, malignant cells need 

new blood vessels to supply oxygen and nutrients, among other things. Consequently, when 

malignant cells start to develop, angiogenesis is induced [14].  

 

The sixth initial hallmark of cancer is resisting cell death. Apoptosis, also known as cell death 

or cell suicide, is the cellular process that eliminates damaged or old cells. Apoptosis is one of 

the most powerful barriers against the development of cancer. However, malignant cells, along 

with the loss of tumor suppressor proteins and telomerase overexpression, have developed 

mechanisms to evade apoptosis, thereby allowing damaged cells to survive [14]. 

 

 

2.1.2 Emerging hallmarks 

 

In addition to the six initial hallmarks, there are two emerging hallmarks. The first emerging 

hallmark is avoiding immune destruction. The human body has an immune system that serves 

as the body’s primary defense. This system can detect transformed or damaged cells and prevent 

their proliferation. However, malignant cells can develop a mechanism to bypass the immune 

system, thereby facilitating tumor formation [14]. Malignant cells can, for example, avoid 
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immune destruction by producing transforming growth factor – beta (TGF-β) [11]. In the tumor 

environment, this growth factor suppresses natural killer (NK) cells, which detect and kill 

abnormal cells. This allows cancer cells to evade immune surveillance, resulting in the survival 

and growth of variants that are weakly recognized by NK cells [16]. 

 

A secondary emerging hallmark of cancer is the deregulation of cellular metabolism. As 

previously mentioned, malignant cells are characterized by increased proliferation and cell 

division, thereby requiring significant amounts of energy and other nutrients. To meet these 

high energy demands, malignant cells must undergo metabolic reprogramming [11]. Figure 3 

shows the difference between the metabolism of differentiated tissue and malignant cells. 

 

 
Figure 3: The difference between the metabolism of differentiated tissues and malignant cells. This figure illustrates different 

pathways to generate ATP, such as oxidative phosphorylation, anaerobic glycolysis, and the Warburg effect [17, p. 10].  

ATP: adenosine triphosphate. 

 

The energy production of non-proliferating, differentiated tissue depends on oxygen 

availability. In the presence of oxygen, cells mainly rely on oxidative phosphorylation 

(OXPHOS) to meet energy demands. During this process, glucose is converted to pyruvate via 

glycolysis, which is then oxidized in the mitochondria [11], [14]. The OXPHOS is the most 

efficient pathway to produce energy, as it produces 36 adenosine triphosphate (ATP) molecules 

per glucose molecule [17].  

 

When oxygen is limited, energy production in differentiated tissue depends on anaerobic 

glycolysis instead of the OXPHOS. In this case, pyruvate is converted into lactate rather than 

being transported to the mitochondria for oxidation. This pathway, however, only yields two 

ATP molecules per glucose molecule and is, therefore, less efficient [17]. 

 

As shown in Figure 3, malignant cells predominantly convert pyruvate into lactate despite the 

presence of oxygen. This phenomenon is called the aerobic glycolysis or the Warburg effect 

[11]. Nevertheless, this pathway will only yield around four ATP molecules per glucose 

molecule, which is much lower compared to the OXPHOS. Therefore, to sustain the elevated 

energy demands of malignant cells, an increased glucose uptake is required to enable 

proliferation [11], [17]. 
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2.1.3 Enabling characteristics 

 

The acquisition of the hallmarks is facilitated by two enabling characteristics. The first enabling 

characteristic is tumor-promoting inflammation. This means that tumors are infiltrated with 

immune cells, in large or small amounts, in a manner analogous to the body’s response to 

inflammation triggered by infections. The presence of immune cells could be an indication that 

the body attempts to eliminate the tumor. However, evidence suggests that cancer has 

developed mechanisms to escape the body’s immune response. In contrast to the expected 

immune response, whereby infiltrated immune cells attack the tumor, malignant cells 

manipulate immune cells to support tumor growth. This phenomenon occurs as malignant cells 

are able to take over the inflammatory response, thereby converting immune cells into tumor-

promoting cells. These cells secrete growth factors that facilitate the proliferation, survival, and 

metastasis of the tumor rather than inducing apoptosis. Consequently, while inflammation is 

generally considered a defense mechanism, in this context, it can facilitate the progression of 

the cancer by supporting it rather than eliminating it [11], [18]. 

 

The second, perhaps most well-known, enabling characteristic is genome instability and 

mutation. Genomic instability is defined as the increased tendency of genomic changes in 

genes that contribute to tumor growth control. There are different types of mutations, such as 

substitutions, deletions, insertions, and translocations. Most mutations are non-cancer-related 

and can be resolved by genome surveillance and DNA repair mechanisms. Defects in these 

systems can, therefore, lead to an increased risk of cancer formation. These mutations create an 

environment where genetic instability accelerates the tumor progression rate. As cells acquire 

advantageous traits, they gain the ability to survive in conditions where normal cells would die, 

enabling them to proliferate uncontrollably. This uncontrolled cell division is a hallmark of 

cancer, and over time, the accumulation of mutations increases the chances of acquiring further 

genetic changes. These additional changes can enhance the aggressive behavior of the cancer, 

such as its ability to invade surrounding tissues and resist signals that would normally induce 

cell death [11], [19]. 
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3 Grading and staging of tumors 
 

Grading is performed to determine if a tumor is benign or malignant. Grading, indicated by the 

letter ‘G’, describes the degree to which malignant cells differ in appearance from normal cells. 

If ‘G’ is followed by a low number, it indicates that malignant cells bear a resemblance to 

normal cells. The higher the number, the more malignant cells will differentiate from normal 

cells and the quicker they grow. If ‘GX’ is indicated, it signifies that the grade remains 

undetermined [14], [20], [21]. 

 

To determine the severity of a malignant tumor, staging is used. Cancer staging is based on the 

location, size, and the presence of metastasis [2]. One of the most commonly used staging 

methods is the TNM classification. The letter T provides information about the size and extent 

of the original, or primary, tumor. The letter N indicates whether malignant cells have spread 

to nearby lymph nodes, while the letter M denotes the presence of metastasis in other parts of 

the body. Each letter is always followed by a number to provide more details about the cancer. 

A value of zero always indicates the absence of a specific event, while a value of one or higher 

indicates the presence of an event. The higher the value, the higher the degree of expansion. 

For example, N0 indicates no spread to the lymph nodes, N1 indicates spread to a small number 

of nearby lymph nodes, and N2 indicates spread to a larger number of lymph nodes or more 

distant nodes. If an X follows one of the letters, it indicates the absence of information due to 

its inability to be quantified or assessed [7], [20], [21]. 

 

The TNM values can be combined to determine an overall stage. These are described with 

Roman numbers from I to IV. Stage I is characterized as the most treatable stage of the disease, 

while stage IV is characterized as the most severe stage, as the cancer is widely spread, resulting 

in a poor prognosis [2], [14], [21]. 
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4 Lung cancer 
 

Lung cancer is the most common type of cancer and the leading cause of cancer-related death 

worldwide [1]. One of the main reasons for this high mortality rate is that the early stages of 

lung cancer often appear without noticeable symptoms. When symptoms, such as coughing or 

fatigue, do occur, they are often mistaken for other medical conditions [22]. Subsequently, this 

leads to a delayed diagnosis and treatment, resulting in a low survival rate. To improve current 

survival rates, early lung cancer detection is essential [23]. Table 1 shows that the 5-year 

survival rate increases rapidly when NSCLC is detected in an early stage without metastasis. 

 
Table 1: 5-year relative survival rates for different stages of non-small-cell lung cancer (2012-2018) [24]. 

Stage 5-year relative survival rate 

Localized 65% 

Regional 37% 

Distant 9% 

 

This table illustrates a substantial decline in the survival rate between localized tumors and 

regional metastasized tumors. This decrease is just as significant between regional and distant 

metastasized tumors. The need for good detection, staging, and prognosis prediction is thus 

inevitable. 

 

Lung cancer is categorized into two main types: small cell lung cancer (SCLC) and NSCLC. 

The main part, about 80%, is classified as NSCLC. NSCLC can be further subdivided into three 

distinct types based on tumor histology: adenocarcinoma, squamous cell carcinoma, and large-

cell carcinoma [25].  

 

Lung cancer detection can be performed in several ways. Chest X-rays, CT scans, and tumor 

biopsies are tests that can be used to both detect and stage lung cancer [26], [27]. NSCLC is 

usually staged using the TNM classification as explained in Chapter 3. Staging is very important 

in order to formulate an accurate prognosis. Early-stage lung cancer includes stage I-IIIA, 

where, in the severest case, the tumor has spread no further than the respiratory system itself or 

the nearby lymph nodes. For these stages of cancer, surgery is always included in the treatment 

plan, possibly in combination with radio- or chemotherapy, depending upon the extent of cancer 

development [28]. 
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5 Imaging techniques 
 

Imaging techniques are fundamental to the diagnosis and staging of lung cancer. This chapter 

provides an overview of three commonly used modalities in clinical practice: X-ray imaging, 

computed tomography (CT), and positron emission tomography (PET).  

 

 

5.1 X-ray imaging 

 

X-rays are a type of electromagnetic radiation, which are most often described as packages of 

electromagnetic energy called photons. Generally, X-rays are produced by an external electron 

that interacts near the nucleus [29]. There are two types of X-rays: Bremsstrahlung and 

characteristic radiation. Both types have different energy spectra, as shown in Figure 4.  

 

 
Figure 4: X-ray spectrum produced by Bremsstrahlung and characteristic radiation. This figure shows the process to 

produce both types of X-rays near the nucleus [30, p. 126]. keV: kiloelectron volt. 

 

Around 80% of all X-rays are Bremsstrahlung X-rays [31]. These are produced when a high-

energy electron passes near the nucleus of an atom and is slowed down as its path is deflected. 

The kinetic energy lost during this process is eventually emitted as an X-ray. The energy 

spectrum of Bremsstrahlung X-rays exhibits a continuous spectrum as it can range from 

approximately zero to the initial electron energy. The remaining 20% are characteristic X-rays. 

These are produced by the collision of an incoming high-energy electron with an inner-shell 

electron. This collision results in the ejection of the inner-shell electron and the creation of a 

vacancy. Subsequently, the vacancy is filled by an electron from an outer shell, resulting in the 

loss of binding energy for the orbital electron. This energy difference is emitted in the form of 

a characteristic X-ray. Due to the presence of a fixed energy difference between shells, X-rays 

exhibit a specific energy value for each material type, resulting in a discrete spectrum [29], [30]. 
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5.1.1 X-ray tube 

 

For X-ray-based imaging, controlled X-ray production is required. This production happens in 

an X-ray tube, or X-ray source, which is shown in Figure 5. 

 

 
Figure 5: The different components of an X-ray tube [32]. 

 

The generation of the required electrons is facilitated by the application of an electric current 

to a cathode filament within the X-ray tube, thereby heating the filament. When the filament 

reaches an elevated temperature, electrons start to break free. The free electrons are accelerated 

to the anode side of the X-ray tube by an electric potential difference. To ensure that these 

electrons reach the target and do not interact with air molecules, a vacuum chamber is placed 

around the filament and the target. Upon reaching the anode, the free electrons interact with the 

target’s atoms, producing heat and X-rays. The high degree of conversion of kinetic electron 

energy into heat necessitates the rotation of the target to dissipate the heat. The resulting X-rays 

are emitted as a beam that traverses the chamber through the window towards the patient [30], 

[33].  

 

 

5.1.2 Imaging 

 

To obtain images, X-rays are transmitted through the patient’s body. Depending on the density 

that the X-rays pass, different degrees of attenuation occur. Attenuation is defined as the 

reduction in intensity of an X-ray beam as it passes through tissue [34]. Every tissue exhibits a 

different density, resulting in different levels of beam attenuation. The different types of tissues 

and corresponding colors are shown in Figure 6. 

 

 
Figure 6: Different types of tissues and their representation on X-ray images [35]. 
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As shown in Figure 6, the lower the density, the darker the color. A dark color indicates that 

most X-rays pass through the tissue. Vice versa, the higher the density, the lighter the color, as 

more X-rays are absorbed by the tissue, resulting in a lower number that ultimately reaches the 

detector. After passing through the body, the X-rays are captured by detectors. Based on the 

remaining intensity of the X-rays, an attenuation map can be reconstructed [36]. In the 

beginning, silver halide crystal films were used as detectors [37]. The parts of the film that were 

irradiated would turn darker after processing. Nowadays, most hospitals use flat panel detectors, 

which are a planar array of electronic detectors. The use of these digital detectors offers several 

advantages, including the direct readout of images and an improved spatial resolution [30], [35], 

[38]. 

 

 

5.2 Computed tomography 

 

CT is a medical imaging technique that provides anatomical information [39]. A visual 

representation of a CT scan is shown in Figure 7. 

 

 
Figure 7: Visual representation of the main components and movements of a computed tomography (CT) scan [40]. 

 

The principle of a CT is similar to X-ray imaging, as explained in 5.1 X-ray imaging; however, 

there are two major differences with traditional X-ray imaging. The first difference is that the 

X-ray tube and digital detectors of a CT scan quickly rotate 360°, thereby generating projections 

at various angles [34]. The part that contains the X-ray tube and the detectors is called the 

gantry. The second difference is that simultaneously with the rotation, the patient bed is 

translated through the gantry. This ensures that each rotation is performed on a different part of 

the body [36].  
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5.2.1 Reconstruction 

 

After acquiring all the different projections, readable CT slices must be reconstructed. This 

process is shown in Figure 8. 

 

 
Figure 8: Process of the reconstruction of a CT scan, starting from a single projection to a whole CT slice. (A) The 

projection of scanned material and its corresponding sinogram; (B) A whole CT slice reconstructed by backprojection, 

starting from a sinogram [41]. CT: computed tomography. 

 

The acquired projections of one rotation can be put together in what is called a sinogram. A 

sinogram shows the different detector readings, with time progressing from the top to the 

bottom of the image [41]. It mainly consists of sinus-like lines put together. The acquired 

sinogram can then be reconstructed into a readable CT slice through different methods, with 

backprojection being the most commonly used [38]. These reconstructions eventually result in 

2D images, which can be converted to 3D images by stacking different CT slices on top of each 

other [36].  

 

 

5.3 Positron emission tomography 

 

PET is a nuclear imaging modality that offers insights into the metabolic activity and molecular 

characteristics of tumor tissue, among other things [42]. It is a non-invasive method to detect 

and stage lung cancer. A positron (𝛽+)-emitting radioactive tracer is intravenously 

administered to the patient, where it will accumulate in areas it has an affinity for. Detectors 

surrounding the patient will eventually detect the emitted radiation from the injected tracer. 
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5.3.1 18F-FDG 

 

A radioactive tracer in PET imaging consists of a carrier molecule combined with a radioactive 

nuclide. 18F-labeled fluoro-2-deoxyglucose (18F-FDG) is the most commonly used radiotracer 

for PET imaging. It is a glucose analog where the OH-group at the 2-C position is substituted 

by (radioactive) 18-fluorine, as shown in Figure 9Figure 9. 

 

 
Figure 9: The atomic structures of both 18F-FDG and glucose [43, p. 42]. 

 

As 18F-FDG acts as a glucose analog, it will enter regions with a high glucose demand, such as 

the brain, bladder, inflammatory lesions, and tumors. As seen in Chapter 0, tumors have a higher 

glucose uptake because of the Warburg effect. Once 18F-FDG is taken up into a cell, it is 

subjected to phosphorylation, resulting in the formation of 18F-FDG-6-phosphate. Due to the 

absence of an OH-group, processing of this compound through glycolysis is blocked, and the 

compound becomes metabolically trapped [44]. Due to this trapping, the glucose flux and the 

tumor’s location can be determined [39]. 

 

Besides being a glucose analog, there are additional reasons why 18F-FDG is a preferred 

radiotracer in PET imaging. For example, 18F is a radionuclide with a half-life of 110 minutes. 

This duration is sufficient for the production of 18F-FDG via a cyclotron, its subsequent 

transportation to the hospital, and its quantification in the patient. Moreover, it is not retained 

within the patient’s body for an extended period, as it remains a radioactive substance [45].  

 

 

5.3.2 Principle of a PET scan 

 

All injected radioactive tracers emit positrons because they contain an atom with an unstable 

nucleus, typically due to an excess of protons, such as ¹⁸F. In this process, a proton is converted 

into a neutron, resulting in the emission of a neutrino and a positron, as shown in (1) [46].  

 

𝑋𝑍
𝐴 →  𝑌𝑍−1

𝐴 + 𝛽+ + 𝜐     (1) 

 

Equation (1) represents the mother nucleus as X, with A the atomic mass and Z the number of 

protons. Y represents the daughter nucleus, while 𝛽+ represents a positron and 𝜐 represents a 

neutrino. A neutrino is uncharged and has no mass. Therefore, it doesn’t interact with 

surrounding tissue after it is emitted. On the contrary, a positron has the same mass as an 

electron but has the opposite charge. As it travels through matter, a positron loses its kinetic 

energy and will combine with a free electron in a process called “annihilation”.  
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The pathway from positron-emitting nuclear decay to annihilation is shown in Figure 10 [34].  

 

 
Figure 10: The process of positron-emitting decay and positron-electron annihilation [46, p. 5]. keV: kiloelectron volt. 

 

Upon annihilation, two 511 keV photons are emitted back-to-back at a 180° angle. These 

photons will eventually be detected by a ring of PET detectors surrounding the patient, as shown 

in Figure 11. 

 

 
Figure 11: A visual representation of the capture of an annihilation event and the coincidence condition [34, p. 3]. 

 

When the free electron is not at rest before annihilation occurs, photons might be emitted at an 

angle of less than 180° [47]. To ensure that detection is limited to the true back-to-back photons, 

two conditions must be met. First, the two detectors on opposite sides of the detector ring must 

both detect a photon. The imaginary line between these two detectors is called the line of 

response (LOR). Second, the two photons must be detected within a coincidence window of 

about 5 ns [46]. The intersection of multiple LORs that also meet the coincidence window 

condition indicates the location of tracer accumulation and, thus, possibly a tumor. 
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5.3.3 PET camera 

 

The working principle of the PET camera is shown in Figure 12. 

 

 

Figure 12: A schematic representation of the main components of a PET camera [48, p. 30]. 

 

The initial step in a PET scan involves the emission of two back-to-back 511 keV photons, as 

explained in section 5.3.2 Principle of a PET scan. Following Figure 12 from left to right, these 

photons are detected by crystal elements known as scintillators. The most commonly used 

scintillator materials in PET systems are inorganic, high-density crystals, such as bismuth 

germanate (BGO) or lutetium oxyorthosilicate (LSO) [49]. Upon interaction with the 

scintillator material, a photon converts into light photons. To ensure the collection of all emitted 

light, a reflector is placed around the scintillator. The emitted light is then amplified and 

converted into an electrical signal by the photomultiplier tube (PMT) array, which is optically 

coupled to the scintillator crystal [49]. As scintillator crystals are expensive, it is common 

practice to pair a single scintillator with multiple PMTs [46], [47]. The resulting electrical 

signals are eventually used to calculate the annihilation position and verify if the two detected 

photons are within the coincidence timing window. To accurately reconstruct the distribution 

of the radiotracer within the body, a substantial number of detected photon pairs and 

corresponding LORs is required [34]. 

 

 

5.4 PET/CT 

 

Medical imaging with 18F-FDG PET/CT is proven to be the most convenient method to 

diagnose and stage cancer due to its non-invasive character and its dual functionality. While a 

CT scan provides anatomical information, an 18F-FDG PET scan provides metabolic 

information about a lesion of interest [39]. By fusing both images, a more accurate diagnosis 

and staging can be performed due to improved image interpretations [50]. 

 

This study will examine prognostic models for early-stage NSCLC using PET parameters 

extracted from 18F-FDG PET/CT images. 
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6 Radiomics 
 

Radiomics is a rapidly evolving discipline dedicated to extracting and analyzing high-

dimensional quantitative features from medical images [51]. These features, often not visible 

to the human eye, provide a deeper and more objective understanding of tissue characteristics 

[52], [53]. By using AI models, radiomics is able to identify complex patterns within medical 

images [53]. This allows for more insights into tumor biology and improves the decision-

making process regarding cancer detection, prognosis, and treatment [2]. Unlike biopsy, which 

samples only a limited tissue region and may lead to missing key information, radiomics can 

capture heterogeneity throughout the full tumor volume [51]. 

 

Another advantage of radiomics is its ability to integrate information from different imaging 

modalities, such as PET and CT [52], [53]. Radiomic data are mineable, meaning they can be 

used in large datasets to uncover hidden patterns and biomarkers related to disease progression, 

treatment response, or patient outcomes [52]. As the field advances, radiomics continues to 

enhance the ability to interpret medical images, not by replacing traditional diagnostics but by 

adding valuable layers of quantitative information that support more personalized and informed 

clinical decisions. 

 

 

6.1 Radiomic applications 

 

As radiomic data can be extracted from different widely available imaging modalities, there are 

also different applications. Although radiomics has demonstrated potential in a variety of non-

oncological domains, including the cardiovascular, neurological, and respiratory sciences, it is 

most commonly employed within the domain of oncology [54]. Within this domain, radiomics 

has already been applied to different types of cancer, but this thesis will focus on the use of 

radiomics in lung cancer, specifically early-stage NSCLC. 

 

 

6.1.1 Lung cancer 

 

Radiomics has become a vital tool in the analysis of lung cancer. This technique takes advantage 

of the large amounts of data provided by imaging modalities such as CT, PET, and PET/CT.  

 

One of the major clinical applications of radiomics in lung cancer is the differentiation between 

benign and malignant tissue. Different studies have demonstrated that CT- and PET-based 

texture features can significantly improve the accuracy of distinguishing malignant from benign 

lung lesions, in contrast with traditional diagnostic methods [55], [56]. Radiomics can thus 

facilitate early and more accurate lung cancer diagnosis [57]. 
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Furthermore, radiomics is valuable in assessing tumor heterogeneity, which has significant 

prognostic implications. For example, texture features derived from CT scans have been shown 

to reflect the underlying biology of tumors [58]. Additionally, radiomic data can be used to 

identify tumor subtypes. This can be a non-invasive alternative to invasive biopsy procedures. 

This is especially the case for lung cancer, where tissue biopsy is not always feasible or may 

not provide enough information [4]. 

 

Another application of radiomics in lung cancer is the measurement of total lesion glycolysis 

(TLG) in PET scans. TLG combines both tumor volume and the intensity of glucose uptake, 

thus providing a comprehensive measure of metabolic tumor activity. Several studies have 

demonstrated that TLG is a significant predictor of survival outcomes [59]. This makes TLG a 

valuable imaging biomarker that could assist in determining the aggressiveness of the tumor 

and the most appropriate treatment option [51]. 

 

 

6.1.2 Prognosis 

 

Radiomics has demonstrated significant potential in prognostic outcomes in lung cancer, 

focusing on predicting overall survival (OS) and progression-free survival (PFS). The ability to 

predict survival is critical for personalized treatment, as it helps in selecting the most 

appropriate treatment option. Radiomic features derived from CT and PET scans, such as tumor 

heterogeneity, shape, and texture, have been correlated with clinical outcomes such as 

recurrence and metastasis [58], [57]. 

 

Metrics, such as TLG, play a crucial role in prognosis. Higher TLG values often indicate 

increased metabolic tumor activity and larger tumor volumes, both of which are associated with 

worse prognostic outcomes, especially for advanced-stage lung cancer [59]. However, in early-

stage lung cancer, the application of radiomic prognoses is mainly used to predict the response 

to treatments. Radiomic features have been demonstrated to predict the chance of recurrence, 

influencing decisions regarding the need for additional treatments such as chemotherapy [58].  

 

Thus, radiomics is effecting a paradigm shift in the domain of lung cancer by furnishing more 

accurate and personalized prognostic outcomes. The analysis of radiomic features facilitates 

not only prognostic assessments but also optimization for individual patients. 

 

 

6.2 Workflow of radiomics 

 

The general radiomic workflow consists of five main parts, as shown in Figure 13. The 

workflow starts with image acquisition, followed by tumor segmentation. This step is followed 

by feature extraction. Out of the extracted features, the relevant features will be selected in the 

fourth step. The final step includes performance testing, where models are developed, tested, 

and validated.  
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Figure 13: Workflow of radiomics [4, p. 160]. AUC: area under the curve, KM: Kaplan-Meier. 

 

 

6.2.1 Image acquisition 

 

The first step is image acquisition. High-quality images can be obtained through commonly 

used scans available in the hospital, such as CT and PET/CT scans. Extracted features can be 

influenced by the quality of the images [57]. Therefore, it is important to standardize the 

acquisition of images in order to use the same model for data derived from different machines 

[58]. More information about PET and CT images is provided in Chapter 5. 

 

 

6.2.2 Tumor segmentation 

 

Once a tumor is located on PET/CT, segmentation can be performed. This means the outlining 

of the metabolic tumor volume. Tumor segmentation can be performed in many different ways, 

such as manual segmentation, threshold-based methods, region-based methods, stochastic-

based methods, boundary-based methods, and joint segmentation methods [60]. Each method 

uses specific criteria, such as intensity or spatial location, to determine if a voxel should be 

marked. A voxel can be defined as a 3D pixel, as PET/CT images are able to render 3D images. 

Segmentation produces a VOI created by the marked voxels. Because many tumors exhibit 

indistinct borders, which complicates their delineation, the selection of a segmentation method 

may significantly impact the final outcome of a model [61]. 

 

Most segmentation methods are semi-automated, meaning that the segmentation can be 

performed automatically with a segmentation algorithm, but using information provided by an 

observer. After the automatic segmentation, the observer can adjust selections, for example, by 

deleting regions with high physiological 18F-FDG uptake, such as the brain or the bladder [62]. 

 

This study will focus on three different segmentation methods: two different threshold-based 

segmentation methods and one AI-based method. All three methods are discussed in detail 

below. 
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Threshold-based methods are the most commonly used segmentation methods. Because of its 

biologically significant evaluation of cellular metabolism, the standardized uptake value 

(SUV) is the most commonly used threshold-based segmentation method in PET imaging [60]. 

This value standardizes the intensity of a PET scan. It is defined as a ratio of radiotracer uptake 

in a region of interest to the total injected radioactive 18F-FDG, normalized to the patient’s 

bodyweight [63], [64]. If the SUV of a voxel is higher than the threshold, for example, 4 

(SUV4), the voxel will be marked. When using SUV, a value of 2.5 or more typically indicates 

that the tissue might be malignant [65]. 

 

Another threshold-based segmentation method is based on the majority vote (MV), where the 

voxels in a VOI of the same object, segmented with different methods, will be compared. If a 

voxel is marked by the majority of the segmentation methods, the voxel is kept. Otherwise, the 

voxel is considered a segmentation error [66]. For example, MV2 marks a voxel if two or more 

segmentation methods, such as SUV2.5 or 41% of SUVmax, have marked the voxel [67]. 

 

Other than semi-automated methods, AI-based segmentation methods, such as LIONZ, exist. 

LIONZ is a deep learning-based automatic lesion segmentation tool for segmenting lesions in 

whole-body 18F-FDG PET/CT scans of lung cancer patients. The tool was trained on the 

autoPET challenge dataset. LIONZ learned from over 1,000 18F-FDG -PET scans, including 

cases of melanoma, lymphoma, lung cancer, and cancer-free controls [68]. 

 

This study will conduct a comparative analysis of the SUV4, MV2, and LIONZ segmentation 

methods. 

 

 

6.2.3 Feature extraction 

 

Radiomic features are quantitative parameters that can be extracted from the VOI of medical 

images with the help of different programs such as LifeX or RADIOMICS. These features 

correlate with the outcome of clinical analysis [57]. To understand this thesis and other research, 

it is not mandatory to have knowledge about the different types of features, but it can aid in 

understanding some results. Therefore, a brief overview of the various types of radiomic 

features is included. [69] provides more detailed information about the different features.  

 

Shape-based features characterize the geometry of the VOI and are conceptually the easiest 

radiomic features [52]. These features, such as volume, surface area, and surface-to-volume 

ratio, differentiate regular from irregular lesions. Because of the higher image resolution, shape 

features can be more accurately assessed using CT imaging compared to PET imaging [57]. 

 

Histogram features, also known as first-order statistical features, are based on single-voxel 

analyses, meaning that spatial connections are not taken into account [59]. These features 

include values that are relatively invariant to geometric transformation and thus based on the 

gray-level histogram, such as grey-level mean, range, and skewness [57]. Conventional PET 

metrics such as SUVmax, which indicates the maximum SUV in a region; DmaxBulk, which 

indicates the distance between lesions; or TLG are classified under this category [70], [71]. 



39 

 

Texture features, also known as second-order statistical features, are acquired by the joint 

signal variation between neighboring voxels [57], [59]. These features are commonly 

categorized into five types. The Gray-Level Co-occurrence Matrix characterizes the spatial 

relationship between voxel pairs based on predefined intensity levels and spatial configurations. 

The Gray-Level Run-Length Matrix captures the distribution of consecutive voxels with 

identical intensities along specific directions. The Gray-Level Size Zone Matrix reflects the size 

and frequency of homogeneous zones formed by connected voxels with the same gray level. 

The three previously explained types are shown in Figure 14: Three types of texture features in 

radiomics. GLCM is based on the spatial relation between voxel pairs, GLRLM is based on the 

distribution of consecutive voxels, and GLSZM is based on homogenous zones with the same 

gray-level voxels Figure 14. The Neighborhood Gray-Tone Difference Matrix assesses the 

contrast between a voxel’s intensity and the average intensity of its surrounding neighborhood. 

Lastly, the Neighborhood Gray-Level Dependence Matrix quantifies the extent to which voxels 

with similar intensities are spatially dependent within a defined neighborhood [52]. 

 

  
Figure 14: Three types of texture features in radiomics. GLCM is based on the spatial relation between voxel pairs, GLRLM 

is based on the distribution of consecutive voxels, and GLSZM is based on homogenous zones with the same gray-level voxels 

[52, p. 490]. GLCM: Gray-Level Co-occurrence Matrix, GLRLM: Gray-Level Run-Length Matrix, GLSZM: Gray-Level Size 

Zone Matrix. 

 

Transform-based features, also known as higher-order statistical features, are extracted using 

mathematical methods to enhance pattern identification and suppress noise in medical images 

[59]. These mathematical methods include wavelet transformation, Fourier transformation, 

Laplacian transformation, and Minkowski functionality. These transformed domains capture 

subtle variations in texture and intensity that may not be visible in the original image. The 

resulting features provide a more comprehensive quantification of tissue heterogeneity for 

clinical analysis [52], [59]. 
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6.2.4 Feature selection 

 

As approximately 500 different radiomic features are extracted, the fourth step of the radiomic 

workflow involves the selection of the most stable and prognostic features for further analysis 

[4], [9]. This can be achieved through various methods, such as filter or wrapper methods. Filter 

methods evaluate features based on their statistical relevance, independently of any model. 

Wrapper methods asses different subsets of features by training a model to determine which 

combinations have the best model performance [72]. This section explains different feature 

selection methods used in this master’s thesis. 

 

The Spearman rank correlation test is a filter-based method used to measure the correlation 

between two features. The application of this test is not limited to specific categories of data; it 

can be used with both continuous and discrete data, as well as with data that follows a normal 

distribution and data that does not follow a normal distribution [73], [74]. The underlying reason 

for this discrepancy is the utilization of rank variables rather than the original values of the data 

[75]. Equation (2) is used to calculate the Spearman rank correlation coefficient  [73], [76]: 

 

𝜌 = 1 − 
6 ∑ 𝑑𝑖

2

𝑛 (𝑛2−1) 
      (2) 

 

Equation (2) represents the difference between the ranks of the paired variables as di, while n 

represents the total number of observations. Different values of  indicate different levels of 

correlation. The correlation value typically ranges from -1 to +1, with 0 indicating the absence 

of a correlation. The sign of the value indicates either a negative or positive correlation. A 

correlation value, positive or negative, between 0.10 and 0.29, between 0.30 and 0.49, and 

above 0.50 indicates little, medium, and strong correlations, respectively [73]. Features 

demonstrating a correlation above a defined threshold with the target variable are considered 

for elimination [75]. 

 

Pairwise elimination (pw), or pairwise feature selection, is a filter-based method that reduces 

the number of selected features by evaluating the correlation between feature pairs. The 

correlation between each feature is presented in a correlation matrix (Figure 15). The values in 

a correlation matrix can be the output of, for example, a Spearman correlation test, as previously 

explained. Systematically, one feature from a highly correlated pair, with a correlation value 

above a predefined threshold, is eliminated. The decision on which feature to eliminate can be 

based on various criteria, such as the feature’s variance, its mean absolute correlation with other 

features, or its relevance to the outcome of interest [77]. A major advantage of pw is that the 

results are straightforward, and the visual representation of the results in the correlation matrix 

is easy to read. However, pw has difficulties with capturing non-linear relationships, which can 

lead to over-eliminating features, which will result in decreased model performance [78]. 
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Figure 15: Example of a correlation matrix of radiomic features, with correlation values derived from a Spearman 

correlation test. 

 

Univariate selection (uni) is a commonly used filter-based method for identifying features that 

are individually highly correlated with a target feature. This technique evaluates each feature 

independently using statistical tests such as the Chi-squared test or the Spearman correlation 

test [72], [79]. Univariate methods have a high computational efficiency and are known to be 

consistent and to have stable performance across multiple applications, including cancer 

classification [79]. However, univariate methods also have limitations. For example, they 

cannot capture interactions between variables or identify redundant features, potentially 

reducing model performance [80], [81].  

 

Recursive feature elimination (rfe) is a wrapper-based method commonly used to reduce the 

number of radiomic features by successively removing less important ones, thereby improving 

the predictive accuracy of prognostic models. This process involves repeatedly building a 

model, identifying the least important features, and removing them one by one. At each step, 

the model is re-trained on the reduced feature set, which is repeated until a certain number of 

features remain [82]. The importance of each feature is based on how much it contributes to the 

model’s predictions. Because rfe re-evaluates feature importance at every step, it also considers 

how features interact with one another rather than evaluating them individually [79]. Rfe leads 

to robust and generalizable radiomic models [83]. However, this method can be 

computationally intensive when using many features [78]. 

 

 

6.2.5 Performance testing 

 

The last step in the radiomic workflow is performance testing. A variety of prognostic models 

can be used for radiomic analysis. For this study, two main types of prognostic models are used, 

namely logistic regression and rf with different feature selection methods. 

 

Logistic regression is a commonly used statistical technique for predicting binary outcomes, 

such as the occurrence of a clinical event. It estimates the probability of an event, such as disease 

recurrence, based on one or more radiomic features [84], [85], [86]. 
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In contrast to linear regression, which deals with predicting continuous variables, logistic 

regression models predict the probability of a binary event by applying the logit function, 

thereby transforming the binary outcome into a continuous scale of log odds. The logit function 

is given by (3), where p represents the probability of an event [85]: 

 

𝑙𝑜𝑔𝑖𝑡 (𝑝𝑥) = log (
𝑝𝑥

1−𝑝𝑥
) =  𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑘𝑋𝑘   (3) 

 

A coefficient β is assigned to each radiomic feature X, which acts as the input variable. The 

coefficient reflects how much a one-unit change in the feature affects the odds (log(px/1-px)) 

of the outcome [85], [86]. 

 

Logistic regression is easy to interpret and can adjust its results for disturbing variables, which 

is especially useful with large datasets. By including multiple features in a single model, it can 

isolate the unique contribution of each feature while checking for others. This makes it useful 

for building multivariable predictive models because it assesses not only individual feature 

relevance but also the correlation between features [84]. 

 

However, logistic regression also has its limitations. To avoid overfitting, the number of 

features included must be limited relative to the number of outcome events, often following the 

“10 events per feature” rule to avoid overfitting, which can cause problems for small datasets 

[85], [86]. 

 

Overall, logistic regression remains a fundamental and interpretable method for binary outcome 

modeling, offering both statistical insight and practical utility in predictive modeling. 

 

Random forest (rf) is a machine learning technique effective for classification and regression 

tasks, such as predicting patient outcomes in radiomics. The core idea of rf is to build many 

decision trees for given data. Each tree is trained on a different subset of the data, and at each 

decision point in the tree, only a random subset of the available features is considered. This 

results in two randomization strategies: the data used to build the trees and the features used. 

The use of two strategies helps to reduce the correlation between trees, improving the model’s 

ability to generalize and avoid overfitting [87], [88], [89]. 

 

Because rf combines the prediction of many trees, it is considered an ensemble learning 

technique [87]. Each tree makes its own prediction, and at the end, the overall decision is 

determined by either majority voting (for classification tasks) or by averaging (for regression 

tasks) [88]. By combining many trees, rf reduces the high variance that typically affects a single 

decision tree, making it less likely to memorize the training data and thus improving the model’s 

accuracy [89]. 

 

One major advantage of rf is its ability to rank the importance of different features in making 

predictions. This is particularly useful in complex fields like radiomics, where many features 

are used [87]. However, a disadvantage of rf is that it is not immune to overfitting. It can 

sometimes show high performance on training data, which can be fitting noise or irrelevant 

patterns. However, when enough trees are used, above 500, the model tends to be more stable. 
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This makes it a reliable method, even in cases where the data may be noisy or incomplete. 

Studies have shown that increasing the number of trees does not degrade performance and can 

stabilize the model further [88], [90]. 

 

Rf is also relatively easy to use. Key parameters, like the number of trees and features 

considered at each decision point, have reasonable defaults that work well in most cases. This 

makes rf particularly useful in clinical settings, where datasets can be small [90]. In clinical and 

medical applications, rf is used for tasks like predicting patient survival outcomes. Its ability to 

handle high-dimensional data while maintaining high accuracy makes it a practical tool in 

healthcare research and decision-making [87], [90]. 

  



44 

 

  



45 

 

 

 

7 Model analysis 
 

There are several methods to analyze the performance of a model. This thesis uses the receiver 

operating characteristic (ROC) curve as a visual representation and the area under the ROC 

curve (AUC) as a numerical representation of the results. 

 

 

7.1 Confusion matrix 

 

Confusion matrices, such as those shown in Figure 16, are a visual representation of the 

predicted outcome from the tested model compared to the true outcome of the tested data.  

 

 
Figure 16: Confusion matrix of model S1 (TLG-only) using MV2 segmentation and an overall survival of 36 months as 

prognostic outcome, evaluated at a threshold of 0.5. 

 

The confusion matrix shows how many true negatives (TN) are predicted in the bottom left cell. 

The true positives (TP) are shown in the upper right cell. Both cells show the number of correct 

predictions made by the model. However, the upper left cell, the false negatives (FN), and the 

lower right cell, the false positives (FP), show the false predictions made by the model. 

Confusion matrices always show the prediction for a certain threshold.  

 

 

7.2 Receiver operating characteristics 

 

A ROC curve can be created when all confusion matrices for thresholds between 0 and 1 are 

considered together. ROC analysis is used for evaluating the diagnostic performance of binary 

classification systems, particularly in medicine and machine learning. It is a visual way to assess 

how well a predictive model distinguishes between two options [91], [92], [93].  

 

On the ROC curve, the horizontal axis represents the false positive rate (FPR), or 1-specificity, 

while the vertical axis represents the true positive rate (TPR), or sensitivity, illustrating how 

model performance varies across different thresholds [91], [93], [94]. The TPR, defined in (4), 

quantifies the fraction of actual positive cases that are correctly identified by the model. 

 

𝑇𝑃𝑅 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
    (4) 
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The FPR, defined in (5), quantifies the proportion of actual negative cases that are incorrectly 

identified as positive by the test. 

 

𝐹𝑃𝑅 = 1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 1 −  
𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
    (5) 

 

By calculating TPR and FPR for every possible cut-off value, a series of (FPR, TPR) 

coordinates is generated. These points are plotted to form the ROC curve [93]. The shape of the 

ROC curve (Figure 17) shows how well a test separates the positive and negative cases. If the 

curve goes toward the upper-left corner, this indicates a higher overall accuracy. A curve close 

to the diagonal line suggests random guessing [91], [94]. 

 

 
Figure 17: Graphical representation of a ROC curve. Test B (pink) separates positive from negative cases better than test A 

(purple). The yellow line indicates the diagonal resulting from purely random guessing [92]. TPF: true positive fraction, 

FPF: false positive fraction. 

 

ROC analysis is independent of a specific threshold, unlike metrics such as accuracy or 

precision, which depend on a single threshold. The ROC curve shows how performance varies 

across all possible thresholds, which makes it a powerful tool for evaluating and comparing 

machine learning models [92]. 

 

 

7.3 Area under the curve 

 

The ROC curve is a helpful visual representation of a model’s prognostic performance. 

However, it is often useful to summarize this information with a single number, called the AUC. 

The AUC reflects the overall ability of the model to separate positive and negative cases [93], 

[94]. 

 

The empirical AUC can be calculated using the trapezoidal rule. It is mathematically equivalent 

to the Mann–Whitney U-statistic, which estimates the chance that a randomly chosen positive 

case will have a higher predicted occurrence than a randomly chosen negative case [95], [96]. 

Equation (6) shows the empirical AUC 𝜃: 

 

𝜃 =  
1

𝑚𝑛
∑ ∑ 𝜓(𝑋𝑖, 𝑌𝑖)

𝑛
𝑗=1

𝑚
𝑖=1       (6) 

where Xi and Yj are the predicted scores for positive and negative events, and m and n are the 

number of positive and negative samples. ψ(Xi,Yj) is the Heaviside function, defined in (7) [96]: 
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𝜓(𝑋𝑖 , 𝑌𝑗) =  {
1

0.5
0

 

𝑖𝑓 𝑋𝑖 > 𝑌𝑗

𝑖𝑓 𝑋𝑖 = 𝑌𝑗

𝑖𝑓 𝑋𝑖 < 𝑌𝑗

      (7) 

 

The Heaviside function is a step function used to compare the predicted scores. If the predicted 

score for a positive case is greater than the predicted score for a negative case (Xi > Yj), then 

the function returns 1. If the scores are equal (Xi = Yj), the function returns 0.5, and if the 

positive case has a lower predicted score than the negative case (Xi < Yj), the function returns 

0.  

 

The Heaviside function allows the empirical AUC to account for the relative ranking of the 

predicted scores. AUC values range from 0 to 1. An AUC of 0.5 indicates random guessing and 

thus no distinguishing ability, whereas an AUC of 1.0 represents perfect distinguishment. 

Therefore, a higher AUC indicates a better overall performance [91], [94]. In clinical practice, 

AUC values are often categorized to make interpretation easier. As no realistic classifier is 

under 0.5 because of random guessing, the different categories are 0.50-0.70, 0.70-0.90, and 

above 0.90. These categories represent low, moderate, and high accuracy, respectively [93]. 

However, high AUC values do not inherently signify clinical efficacy. For example, a test with 

an AUC of 0.81 might still be unreliable if its 95% confidence interval goes from 0.65 to 0.95, 

since the lower end is close to the low accuracy category [93]. It is, therefore, important to study 

both the AUC and its confidence interval when judging the performance of a model.  

 

In conclusion, the ROC curve and AUC values are powerful tools for evaluating prognostic 

models. The ROC curve illustrates the balance between TPR and FPR at various thresholds, 

while the AUC summarizes the overall prognostic performance.  

 

 

7.4 Friedman test 

 

The Friedman test is a nonparametric statistical method used to detect differences between three 

or more related groups [97]. It is particularly useful in repeated-measures designs, where the 

same subjects are evaluated under multiple conditions. This is useful when comparing the 

AUCs of different segmentation methods across multiple prognostic models, where each 

method is applied to the same dataset. 

 

The test ranks the AUC values within each subject, where a subject refers to a single prognostic 

model. For each model, the segmentation methods are compared based on their AUC values. 

The segmentation method with the highest AUC value receives the highest rank, the second-

highest receives the next highest rank, and so on. These ranks are then summed for each 

segmentation method across all models, providing a basis for statistical comparison [98]. The 

Friedman test statistic is calculated as χ² in (8) [97]: 

 

𝜒2 =
12

𝑛𝑘(𝑘+1)
∑ {𝑅𝑗 − 𝑛(𝑘 + 1)/2}²𝑘

𝑗=1     (8) 

where n is the number of subjects (prognostic models), k is the number of groups being 

compared (segmentation methods), and Rⱼ is the sum of the ranks for group j. 
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Under the null hypothesis that all segmentation methods perform equally, the Friedman test 

follows a chi-squared distribution with (k−1) degrees of freedom [97]. This allows the test to 

assess whether the observed rank differences are likely due to chance. If the resulting p-value 

is smaller than 0.05, the null hypothesis is rejected, indicating that at least one segmentation 

method performs differently from the others. A p-value greater than 0.05 suggests that any 

observed differences could be attributed to random variation [99]. 

 

Because the Friedman test does not assume normality and handles repeated measures 

effectively, it is particularly well-suited to medical imaging studies involving non-Gaussian 

distributions and correlated observations [98]. 

 

 

7.5 DeLong test 

 

The DeLong test is a nonparametric statistical method used to determine whether AUCs are 

statistically significantly different from each other. This is useful when comparing models 

evaluated on the same dataset, such as clinical prediction models or machine learning classifiers 

[95], [96]. 

 

To compare the empirical AUCs of two models, DeLong’s method treats them as related 

statistics and calculates their variance and covariance, allowing for statistical testing based on 

the normal distribution [96], [100]. Equation (9) calculates the test statistic as a z-score: 

 

𝑧 =  
𝜃̂𝐴−𝜃̂𝑏

√𝑉𝑎𝑟(𝜃̂𝐴−𝜃̂𝐵)

      (9) 

 

Under the null hypothesis that the models have equal AUCs, this z-score follows a standard 

normal distribution. This means that it can be used to check if the difference in AUCs is likely 

due to chance. If the absolute value of z is greater than 1.96, the difference in AUCs is 

considered significant [95]. This indicates that it is unlikely to have happened by random 

variation alone.  

 

Although the z-score indicates how far the observed difference in AUC deviates from the null 

hypothesis (measured in standard deviations), the p-value translates this into a probability, 

making the result more straightforward to interpret. The p-value indicates the probability of 

such a difference occurring by chance. It is calculated from the z-score using the standard 

normal distribution (z-distribution), which can be done using a statistical z-table or an online 

calculator. For a two-tailed test, a z-score of 1.96 corresponds to a p-value of 0.05. This means 

that there is a 5% chance of observing such a result due to random variation. Therefore, p < 

0.05 is commonly used as the threshold for statistical significance [95], [96]. 

 

The method can also be extended to compare more than two models using a covariance or 

comparison matrix of AUCs and applying generalized U-statistics theory [96]. 
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8 Materials and methods 
 

The data used in this study are derived from the ProLUNG study funded by ‘Kom op tegen 

Kanker’ and performed at Ziekenhuis Oost-Limburg (ZOL) in Genk. All study participants 

were diagnosed with resectable stage I-IIIA NSCLC or early-stage NSCLC. All participants 

signed informed consent before inclusion.  

 

A total of 123 patients were included in the ProLUNG study. However, 34 patients were 

excluded from the current research for various reasons, resulting in a total of 89 patients. All 

these patients were designated to the training cohort of the prognostic models. The different 

exclusion criteria are listed in Table 2, along with the number of excluded patients for each 

criterion.  

 
Table 2: Exclusion criteria of the training cohort with the number of excluded patients per criterion.  

SCLC: small cell lung cancer. 

Exclusion criteria  

No images available 1 

Chemo before lobectomy 1 

Carcinosarcoma 1 

SCLC 3 

No lobectomy 3 

Carcinoid 4 

Tumor is too small to segment 5 

Only inflammation 16 

Excluded 34 

 

For the external validation of each prognostic model, a second, independent, patient cohort was 

assembled from the NCT02024113 trial performed at the Limburg PET-Center in Hasselt [101]. 

Only patients with resectable stage I-IIIA NSCLC were selected from this study, resulting in a 

second patient cohort of 32 patients, designated the validation cohort. 

 

 

8.1 18F-FDG PET/CT scanning procedure 

 

The 18F-FDG PET/CT scanning procedure of both the training and validation cohort are 

explained in this part. All data, including the PET/CT scans from the ProLUNG study and the 

NCT02024113 trial, had previously undergone pseudonymization prior to its utilization in the 

current research. 
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8.1.1 Training cohort 

 

A Biograph Horizon PET/CT scanner from Siemens with lutetium oxyorthosilicate 

(Lu2(SiO4)O) scintillation crystals was used to obtain PET/CT scans from the included patients 

of the training cohort. Technical specifications of the imaging device are listed in Table 3. PET 

scan attenuation correction was performed using the CT scans. All images were taken following 

the European Association of Nuclear Medicine’s imaging procedure guidelines and saved in 

the Picture Archiving and Communications Systems. 

 
Table 3: Technical specifications of the used Biograph Horizon PET/CT scanner from Siemens [102, p. 66].  

CT: computed tomography, PET: positron emission tomography.  

 
 

To perform the PET scan of the training cohort, the radiopharmaceutical 18F-FDG was injected 

into the patient. In order to minimize the radiation exposure to medical personnel, the Iris 

automated multidose injection system from Comecer administered 3 MBq/kg of the 18F-FDG 

to the patient. Images were captured one hour after the injection was administered. Firstly, a 

CT scan (25 mA, 130 kV) was conducted, encompassing the region from the mid-thighs to the 

base of the skull. Secondly, a PET scan was conducted with a duration of 15-20 minutes, 

covering the same area. Depending on the patient’s weight, a different emission time per bed 

position was used. Patients with a mass of less than 50 kg, between 50 and 80 kg, and more 

than 80 kg were scanned for one minute, one and a half minutes, and two minutes, respectively.  

 

 

8.1.2 Validation cohort 

 

A GEMINI TF Big Bore PET/CT scanner from Philips was used to obtain PET/CT scans from 

the patients included in the validation cohort. To perform the PET scan of the validation cohort, 

3.75 MBq/kg of the radiopharmaceutical 18F-FDG was injected into the patient. Images were 

captured one hour after the injection was administered. Firstly, a CT scan (80-175 mA, 120 kV) 

was conducted, encompassing the region from the mid-thighs to the base of the skull. Secondly, 

a PET scan was conducted with a duration of 15-20 minutes, covering the same area. Depending 

on the patient’s body mass index (BMI), a different emission time, between 1 and 2 minutes 

per bed position, was used. 
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8.2 Data acquisition 

 

After image acquisition, segmentation is the next step in the radiomic workflow, as explained 

in section 0 Workflow of radiomics. The acquired PET and CT images were loaded into the 

ACCURATE tool, developed by the research team of Prof. Dr. Ronald Boellaard (Amsterdam, 

UMC). Three different segmentation methods (SUV4, MV2, and AI-based tool LIONZ) were 

performed by this semi-automatic tool. An example of such segmentation is shown in Figure 

18. Because of the large dataset, segmentations performed by LIONZ were run offline in batch 

mode to minimize user interference for every patient. Segmentations derived from all three 

methods could be manually corrected in the ACCURATE tool by adding, removing, or altering 

marked parts. If the segmentation of a patient was unclear, Prof. Dr. Liesbet Mesotten, head of 

the Nuclear Medicine Department at ZOL, was consulted. The final marked parts were saved 

as individual VOIs. 

 

 
Figure 18: Example of a segmentation on a PET/CT image in the ACCURATE tool with (A) a sagittal view and (B) a frontal view.  

The tumor is segmented/indicated in red. 

 

After segmenting and defining the VOIs, feature extraction was performed. This was 

accomplished by loading the VOI files into the RADIOMICS tool, which is also developed by 

the research team of Prof. Dr. Ronald Boellaard (Amsterdam, UMC). This tool extracted 

radiomic features from the VOI files, resulting in CSV files with six PET uptake metrics and 

498 radiomic features. All parameters were saved in three separate Excel files, sorted per 

segmentation method. A more detailed explanation of how to perform the segmentation and 

feature extraction is added in Appendix A. 

 

In order to perform prognostic analyses, additional patient information was combined with the 

radiomic data. The additional data could be split into four sections.  

 

The first section included general patient information such as sex, age, and BMI of the patient. 

The second section provided information about the smoking history of the patient, where a 

value of ‘1’ denotes a positive response, indicating that the subject has smoked. Conversely, 

the value of ‘0’ denotes a negative response, indicating that the subject has never smoked. 

Furthermore, this section also includes the number of pack-years and the number of years a 

patient has stopped smoking. One pack-year is calculated by multiplying the number of packs 

(20 cigarettes) smoked daily by the number of years the individual has smoked.  
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In the third section, information about survival was gathered. The data in this section is used as 

an outcome for the prognostic models. Three types of events were taken into account: 

progression-free survival (PFS), overall survival (OS), and time to progression (TTP). PFS 

refers to the number of months a patient remained free from disease progression or death. For 

each patient, this duration was measured from the date of lobectomy to the date of progression 

or death. OS measures the time, in months, from the date of lobectomy to the date of death. 

TTP refers to the number of months a patient remained free from disease progression, starting 

from the date of lobectomy. For all three outcomes, patient data were labeled with ‘1’ if the 

event, disease progression, or death occurred and with ‘0’ if the event did not occur. In cases 

where an event did not occur, the end date was set as 1/04/2025, as this is the day the 

information was extracted.  

 

The fourth section included information about tumor features such as the TNM stage, the 

overall stage, the type of NSCLC, the lobe position of the tumor, and the tumor’s diameter. 

 

This process of data acquisition was performed for both the training and validation cohorts.  

 

 

8.3 Feature reduction 

 

Given that not all 498 radiomic features are relevant, feature reduction was executed in RStudio. 

First, features with constant values and/or minimal variance were eliminated, as these do not 

have any distinguishing power between patients. Second, the Spearman correlation test was 

used to eliminate features more than 75% correlated with volume or SUVmax, as these two 

features are well understood in the clinical world and are, therefore, worth keeping. 

 

Three additional reduction methods were eventually performed, including pw, uni, and rfe. 

Each method was executed independently following the implementation of the Spearman 

correlation test. The top five remaining features of each separate method were evaluated in a 

logistic regression model. This procedure was repeated for each segmentation method. 

 

 

8.4 Prognostic models 

 

The R scripts that contain the feature reduction also contain the prognostic models. For every 

segmentation method, the R script is the same, except for the data used. Six different linear 

regression models and one rf model were developed by the research team of Prof. Dr. Ronald 

Boellaard (Amsterdam, UMC). These models were tested for four different prognostic 

outcomes. Table 4 provides an overview of all the different models and prognostic outcomes. 

In total, 84 combinations were tested because of the three segmentation methods, seven 

prognostic models, and four prognostic outcomes used. 
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Table 4: Overview of the different prognostic models and different prognostic outcomes used. TLG: total lesion glycolysis. 

Model s1 – TLG 

s2 – TLG and SUVmax 

s3 – TLG, SUVmax, and DmaxBulk 

pw – pairwise elimination 

uni – univariate selection 

rfe – recursive feature elimination 

rf – random forest 

Prognostic 

outcome 

OS24 – Overall survival after 24 months 

OS36 – Overall survival after 36 months 

TTP24 – Time to progression after 24 months 

TTP36 – Time to progression after 36 months 

 

 

8.5 Model analysis 

 

Seven models (s1, s2, s3, pw, uni, rfe, and rf) were trained using radiomics features obtained 

for all patients in the training cohort, using three different segmentation methods. The data was 

internally validated using a 5-fold 10-times cross-validation and externally validated using the 

independent validation cohort. As lesions from patients in the validation cohort were not 

segmented using SUV4, external validation was only possible for the MV2 and LIONZ 

segmentation methods.  

 

The results from all 84 tested combinations, for cross-validation and external validation, were 

gathered in confusion matrices evaluated at a threshold of 0.5. The TPR and FPR values from 

the confusion matrices were used to make ROC curves. From the ROC curves, AUC values, 

their standard deviations, and a 95% confidence interval could be calculated for every 

combination. 

 

The first objective was to assess whether the choice of segmentation method affects the 

performance of prognostic models. For this analysis, AUC values from the ROC curves were 

employed in a Friedman test. First, for each individual model, the segmentation methods were 

ranked based on their performance. Then, these rankings were compared across all the models 

to determine whether there are statistically significant differences in performance between the 

segmentation methods overall, with significance defined by a p-value of less than 0.05. 

Furthermore, a histogram was constructed to facilitate the visualization of the data. This 

histogram incorporates the AUC values from each segmentation method for every model. 

 

The second objective was to determine the best-performing prognostic model. AUC values 

were compared using the DeLong test to assess whether statistically significant differences 

existed between the models. This analysis was carried out for each segmentation method 

separately. From the models where significant differences were observed, the AUC values and 

their standard deviations were further examined to determine the overall best-performing 

model, as well as the most best-performing model–segmentation method combination. 



54 

 

  



55 

 

 

 

9 Results 
 

In this chapter, the demographics of the patient cohorts are discussed, as well as the model 

analysis results. The model analysis is split into two parts, each discussing the results of one of 

the two main objectives of this thesis. All discussed results relate to the prognostic outcome 

OS36 as this is clinically the most relevant. More information about this specified cut-off is 

provided below. The results from all prognostic outcomes can be found in Appendices B-E. 

 

 

9.1 Demographics 

 

For training of the prognostic models, the training cohort of 89 patients derived from the 

ProLUNG study was used. In Table 5, an overview of the demographic features of this training 

cohort is shown. The table can be divided into four main parts: general patient information, 

smoking information, survival, and tumor information.  

 

Table 5: Demographic information of the patients in the training cohort (N=89). Categorical variables are 

indicated with the amount (N), followed by the percentage in brackets. Continuous variables are indicated with 

the amount, followed by the standard deviation. BMI: body mass index, NSCLC: non-small cell lung cancer. 

Total patients 89 

Sex (N,(%)) 
Men 52 (58.4) 

Women 37 (41.6) 

Age (years) 

Median 70 

Average 69 ± 8 

Range 45-83 

BMI (kg/m²) 

Median 26.1 

Average 26.4 ± 5 

Range 16.6-50.4 

Smoking status (N,(%)) 

Current smoker 45 (50.6) 

Ex-smoker 40 (44.9) 

Non-smoker 4 (4.5) 

Packyears (years) 

Median 37 

Average 38 ± 25 

Range 1-132 

Years stopped smoking (years) 

Median 20 

Average 21 ± 14 

Range 2-49 

Survival outcome (N,(%)) 

Death 9 (10.1) 

Progression and death 13 (14.6) 

Progression 14 (15.7) 

Progression-free 53 (59.6) 

Overall survival (months) 

Median 53 

Average 51 ± 20 

Range 3-81 
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Time to progression (months) 

Median 49 

Average 44 ± 23 

Range 3-81 

Stage (N,(%)) 

IA 41 (46.1) 

IB 16 (18.0) 

IIA 2 (2.2) 

IIB 13 (14.6) 

IIIA 14 (15.7) 

Type NSCLC (N,(%)) 

Adenocarcinoma 59 (66.3) 

Squamous cell carcinoma 26 (29.2) 

Large cell neuroendocrine 

carcinoma 
4 (4.5) 

Node inclusion (N,(%)) 
Yes 4 (4.5) 

No 85 (95.5) 

Lobe position (N,(%)) 

Right upper 24 (27) 

Right middle 5 (6) 

Right lower 12 (13) 

Left upper 29 (33) 

Left lower 19 (21) 

Tumor diameter (mm) 

Median 25 

Average 28 ± 16 

Range 7-80 

 

Figure 19 provides more details about the survival of the patients in the training cohort. It 

displays how survival events (1) and non-events (0) are distributed over time. An event is 

defined as the death of a patient, whereas a non-event indicates that the patient was still alive 

at the end of the observation period. The variation in follow-up time among non-events is due 

to differences in the patients’ inclusion dates. There is a noticeable split around 36 months, 

supporting the use of OS36 as the most suitable prognostic outcome for further statistical 

analyses. 

 

 
Figure 19: Distribution of overall survival (OS) events (1) and non-events (0) over time. An event is defined as the death of a 

patient, whereas a non-event indicates that the patient was still alive at the end of the observation period. 
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9.2 Influence of segmentation method on the performance of prognostic    

       models 

 

The first objective of this thesis is to determine if the choice of segmentation method has an 

impact on the performance of prognostic models.  

 

 

9.2.1 Cross-validation results 

 

ROC curves of all cross-validated prognostic models obtained using SUV4, MV2, and LIONZ 

segmentation are shown in Figure 20. 

 

 
Figure 20: ROC curve of all cross-validated prognostic models with an overall survival of 36 months as prognostic outcome. 

(A) ROC curves of the prognostic models using SUV4 segmentation, (B) ROC curves of the prognostic models using MV2 

segmentation, (C) ROC curves of the prognostic models using LIONZ segmentation. 

 

A 

B 

C 
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Table 6 summarizes all average AUC values, along with their corresponding standard 

deviations and 95% confidence intervals, across the 5-fold, 10-times cross-validation for all 

models across each segmentation method. 

 
Table 6: AUC values with standard deviation and 95% confidence interval of cross-validated prognostic models using SUV4, 

MV2, and LIONZ as segmentation methods. All models use an overall survival of 36 months as a prognostic outcome.  

AUC sd: area under the curve standard deviation, 95% CI: 95% confidence interval. 

OS36 s1 s2 s3 pw uni rfe rf 

 SUV4 (mean AUC: 0.72 ± 0.14) 

AUC 0.75 0.74 0.72 0.68 0.68 0.72 0.72 

AUC sd 0.15 0.10 0.15 0.17 0.17 0.15 0.12 

95% CI 
[0.713, 

0.795] 

[0.714, 

0.771] 

[0.677, 

0.760] 

[0.636, 

0.732] 

[0.634, 

0.737] 

[0.681, 

0.764] 

[0.683, 

0.749] 

 MV2 (mean AUC: 0.69 ± 0.15) 

AUC 0.76 0.75 0.77 0.66 0.54 0.67 0.70 

AUC sd 0.13 0.14 0.16 0.18 0.12 0.16 0.13 

95% CI 
[0.722, 

0.796] 

[0.706, 

0.785] 

[0.729, 

0.815] 

[0.612, 

0.710] 

[0.511, 

0.577] 

[0.622, 

0.710] 

[0.662, 

0.734] 

 LIONZ (mean AUC: 0.68 ± 0.14) 

AUC 0.76 0.74 0.76 0.57 0.50 0.76 0.69 

AUC sd 0.14 0.16 0.13 0.15 0.14 0.14 0.13 

95% CI 
[0.720, 

0.795] 

[0.690, 

0.781] 

[0.729, 

0.798] 

[0.529, 

0.613] 

[0.464, 

0.542] 

[0.722, 

0.799] 

[0.653, 

0.723] 

 

In a ROC plot, a curve approaching the top-left corner indicates near-perfect performance, 

whereas a curve on the diagonal line indicates random guessing.  

 

Figure 20A does not show a lot of difference in model performance between the tested models 

for SUV4 segmentation. When inspecting the ROC curves more closely, a steep initial rise is 

detected for models rf and s2. Following this initial rise, the curve of the rf model bends towards 

the diagonal, while the curve of the s2 model remains further away from the diagonal, indicating 

a stronger overall performance. Model s1 does not have this steep initial rise, but remains 

furthest from the diagonal in other regions of the curve, which can also indicate strong 

performance. Around the threshold value of 1.0, the pw model performs worse than random 

guessing. As it approaches the threshold value of 0.5, the pw model seems to recover, but still 

seems to perform the worst of all the models. This seemingly low model performance, is 

confirmed by the AUC values in Table 6. These values also indicate that models s1 and s2 are 

the best performers for SUV4 segmentation. When comparing these two models, model s1 has 

a higher average AUC value, but also has a higher standard deviation compared to model s2. 

 

Figure 20B clearly shows that the uni model has the weakest performance for MV2 

segmentation, as its curve lies close to the diagonal. All other models demonstrate similar 

performance at the beginning and end of their respective curves. However, in the middle region, 

the simple models (s1, s2, and s3) can be clearly distinguished from the more complex models 

(pw, rfe, and rf), with the simple models showing better performance. These visual findings are 

confirmed by the AUC values in Table 6, where the average AUC values for the simple models 
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are above 0.75, whereas the average AUC values of the other models are below 0.70. The uni 

model shows especially weak performance, with an average AUC value of 0.54, indicating 

nearly random guessing. 

 

When using LIONZ segmentation (Figure 20C), the uni model once again has the weakest 

performance, with a curve that lies on top of the diagonal. The pw and rf models also seem to 

perform poorly, with curves close to the diagonal. The remaining models (s1, s2, s3, and rfe) 

appear to have a similar model performance, with model rfe performing better at thresholds 

closer to 1.0 and the other models performing better at thresholds closer to 0.0. These visual 

findings are confirmed by the AUC values in Table 6. The s1, s2, s3, and rfe models have AUC 

values above 0.74, whereas the other models have AUC values below 0.70. The uni model’s 

AUC value of 0.50 indicates random guessing, as previously thought.  

 

The quantitative AUC values in Table 6 were compared both visually (using the histogram in 

Figure 21) and statistically (by performing a Friedman test). 

 

 
Figure 21: Histogram comparing the AUC values of all cross-validated models using LIONZ, MV2, and SUV4 segmentations 

with an overall survival of 36 months as prognostic outcome. Orange bars represent the AUC value using LIONZ 

segmentations, green bars represent the AUC value using MV2 segmentations, and blue bars represent the AUC value using 

SUV4 segmentations. 

 

Visually, the histogram shows that the three segmentation methods have different performances 

across the evaluated models. MV2 is the most consistent performer, often producing the highest 

or second-highest AUC values. It outperforms the other segmentation methods in the simple 

models. In the other models, MV2 remains competitive, but underperforms compared to SUV4. 

SUV4 seems the most stable method, demonstrating consistently high performance across the 

models, indicating a strong performance regardless of model complexity. LIONZ generally 

underperforms relative to MV2 and SUV4, especially in the pw and uni models. Nevertheless, 

the performance of LIONZ is comparable to the other segmentation methods in the simple 

models. 

 

In addition, the Friedman test ranks the segmentation methods, for each individual prognostic 

model, based on their performance. Then, these rankings are compared across all the models to 

determine whether there are statistically significant differences in performance between the 

segmentation methods overall. The test showed a p-value of 0.6065, indicating no significant 

difference between the three segmentation methods. 
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In conclusion, the visual findings together with the results of the Friedman test, indicate that 

there is no significant difference in the performance of the prognostic models for early-stage 

NSCLC when using different segmentation methods. 

 

 

9.2.2 External validation results 

 

To confirm the results obtained by cross-validation, the same trained models were applied to 

external validation testing using the validation cohort. Figure 22 shows the ROC curves of all 

externally validated prognostic models obtained using MV2 and LIONZ segmentation. As 

mentioned before, the external dataset did not contain any information about SUV4 

segmentations. Therefore, SUV4 segmentation is not discussed in this part of the study. 

 

 
Figure 22: ROC curve of all externally validated prognostic models with an overall survival of 36 months as prognostic 

outcome. (A) ROC curves of all externally validated models using MV2 segmentation, (B) ROC curves of all externally 

validated models using LIONZ segmentation. 

 

Table 7 summarizes all averaged AUC values for the externally validated models across each 

segmentation method. 

 
Table 7: The AUC values of external validation (AUC ext) of every model for every segmentation method with an overall 

survival of 36 months as prognostic outcome. 

OS36 s1 s2 s3 pw uni rfe rf 

 MV2 (mean AUC: 0.57) 

AUC ext 0.59 0.57 0.57 0.64 0.54 0.55 0.53 

 LIONZ (mean AUC: 0.53) 

AUC ext 0.60 0.42 0.57 0.46 0.48 0.58 0.58 

A 

B 
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Figure 22A (MV2 segmentation) shows that all models have ROC curves that lie very close to 

the diagonal reference line, indicating limited predictive power for all models. The pw and uni 

models show slightly better performance, with their curves floating just above the diagonal. 

The s2, s3, and rfe models display highly similar patterns, with each model crossing the 

diagonal line multiple times, pointing to inconsistent prognostic performance. The rf model 

generally performs the worst, as it crosses the diagonal most often. The AUC values of all 

models are close to each other and differ by only 0.11 between the extremes, as shown in Table 

7. The simple models tend to have higher AUC values than the more complex models, except 

for the pw model, which has the highest AUC value. Overall, the models demonstrate minimal 

prognostic performance. 

 

Figure 22B (LIONZ segmentation) shows that the s2, pw, and uni models perform the worst. 

These models’ curves practically always lie below the diagonal reference line, which represents 

random guessing. Model s1 shows the next weakest performance, as its curve is close to the 

diagonal line at all thresholds. The remaining three models (s3, rfe, and rf) show similar 

performance. The three curves alternate as the best-performing model and also have a region 

where they cross the diagonal. Looking at Table 7, model s1 has the highest AUC value, 

followed closely by model s3, rfe, and rf. As the ROC curves suggest, models s2, pw, and uni 

demonstrate the worst model performance. Overall, none of the models demonstrate 

consistently strong performance. 

 

The AUC values in Table 7 were compared visually using the histogram in Figure 23. 

 

 
Figure 23: Histogram comparing the AUC values of all externally validated models obtained using LIONZ and MV2 

segmentations with an overall survival of 36 months as prognostic outcome. Orange bars represent models using LIONZ 

segmentations, and blue bars represent models using MV2 segmentation. 

 

The histogram in Figure 23 shows that the bars of MV2- and LIONZ-based prognostic models 

are nearly the same height for the s1 and s2 models, indicating no significant difference in 

model performance. Other models, such as s3, pw, and uni have AUC values around 0.5, 

indicating random guessing. The two most complex models, rfe and rf, show a better 

performance for LIONZ segmentation than for MV2 segmentation.  

 

In conclusion, there is no consistency in how a segmentation method performs across the 

different prognostic models with external validation. The results of external validation do not 

add value to the conclusion made from the cross-validation. 
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9.3 Best-performing model 

 

A second objective of this thesis is to determine the best-performing prognostic model overall 

and the best model-segmentation combination. To determine this, the AUC values from Table 

6 and 7 were used to perform a DeLong test for every model across all segmentation methods.  

 

 

9.3.1 DeLong test on cross-validation results 

 

First, a DeLong test was performed on the AUC values from the cross-validation. This 

determined if there were statistically significant differences between the different prognostic 

models. The resulting p-values are displayed in a comparison matrix for all prognostic models 

within each segmentation method. Cells highlighted in green indicate a significant difference 

between two compared models. If a difference was found, the number of the best-performing 

model is shown below the p-value. Figure 24 shows the comparison matrix from the DeLong 

test performed on the seven prognostic models using SUV4, MV2, and LIONZ segmentation. 

 

Figure 24: Comparison matrix of the DeLong test performed on the seven cross-validated prognostic models. (A) 

Comparison matrix for models using SUV4 segmentation, (B) Comparison matrix for models using MV2 segmentation, (C) 

Comparison matrix for models using LIONZ segmentation. 

A 

B 

C 
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Figure 24A shows that a few significant differences were observed in the cross-validated 

prognostic models using SUV4 as segmentation method. Only comparisons between s1-pw, s2-

pw, and rf-pw were significantly different. In all three cases, the pw model performed the worst. 

Consequently, the best-performing models using SUV4 segmentation are s1, s2, and rf. 

 

Figure 24B shows many significant differences between the AUC values of the cross-validated 

prognostic models using MV2 segmentation. All models were significantly different, with 

exception of the s1-s2, s1-s3, s1-rf, s2-s3, s2-rf, and pw-rfe models. Overall, the uni model was 

the worst-performing model. Comparing all significantly different models, the best-performing 

models using MV2 segmentation are s1, s2, and s3. 

 

Figure 24C illustrates many significant differences between the AUC values of the cross-

validated prognostic models using LIONZ segmentation. All models were significantly 

different, with the exception of the s1-s2, s1-s3, s1-rfe, s2-s3, s2-rfe, s2-rf, and s3-rfe models. 

Overall, uni and pw were the worst-performing models. Of the significantly different models, 

s1, s3, and rfe are the best-performing models for LIONZ. 

 

After identifying the best-performing models for each segmentation method, the next step is to 

determine the best overall model and the model-segmentation combination. First, the average 

AUC value was calculated for each model across all segmentation methods, regardless of 

significant differences. Calculating the average AUC value helps to summarize a model’s 

overall performance and shows which model performs better, regardless of the segmentation 

method. Model s1 had the highest average AUC (0.76 ± 0.14), followed by model s3 with an 

average AUC of 0.75 ± 0.15.  

 

Next, the AUC values for each significantly different combination were examined by 

determining the highest lower bound of the 95% confidence interval. This was calculated using 

(10) and (11), with n equal to 50, as a 5-fold 10-times cross-validation was performed.  

 

𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 95% 𝐶𝐼 = 𝐴𝑈𝐶 − 1.96 ∗ 𝑆𝐸    (10) 

𝑆𝐸 =  
𝑆𝐷

√𝑛
      (11) 

 

The model-segmentation combination with the highest lower bound was model s3 with MV2 

segmentation, with a lower bound of 0.729 and an AUC of 0.77 ± 0.16, as shown in Table 6. 

 

 

9.3.2 Confusion matrices for cross-validation results 

 

Confusion matrices can be used to confirm or deny the results coming from the DeLong test. 

Figure 25 shows the confusion matrices with a threshold of 0.5 for the significantly different 

model-segmentation combinations. 
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Figure 25: Confusion matrices with a threshold of 0.5 for all cross-validated model-segmentation combinations that were 

proven statistically significantly different by the DeLong test. (A) Model s1 with SUV4 segmentation, (B) Model s3 with SUV4 

segmentation, (C) Model rfe with SUV4 segmentation, (D) Model s1 with MV2 segmentation, (E) Model s2 with MV2 

segmentation, (F) Model s3 with MV2 segmentation, (G) Model s1 with LIONZ segmentation, (H) Model s2 with LIONZ 

segmentation, (I) Model rf with LIONZ segmentation. 

 

As mentioned above, the results of the 95% confidence interval indicate that the best-

performing model-segmentation combination is model s3 with MV2 segmentation. Figure 25F 

shows the corresponding confusion matrix for this combination at a threshold of 0.5. To have a 

strong prognostic model for cancer, an accurate identification of TP and TN is required. 

Additionally, achieving a low FN rate is important, as this can result in undertreatment of 

patients. When comparing the s3-MV2 combination to combinations using SUV4 segmentation 

(Figure 25A, 25B, and 25C), the s3-MV2 combination is able to identify more TP and TF while 

simultaneously identifying fewer FN, pointing towards a better performance of the s3-MV2 

combination. The same applies to combinations using the s2 model (Figures 25E and 25H) and 

to the s1-LIONZ combination (Figure 25G). However, when comparing the s3-MV2 

combination with the s1-MV2 combination in Figure 25D, the latter shows a better 

performance, with higher TP and lower FN values. Figure 25I shows that the rf-LIONZ 

combination exhibits extreme behavior, as it predicted every case correctly. This indicates a 

bias, as perfect prediction is nearly impossible and can therefore not be trusted as a correct 

indicator of the overall performance of this combination. 

 

The results from the confusion matrix do not indicate the s3-MV2 combination as the best, but 

rather the third-best-performing combination. This still indicates a strong model-segmentation 

performance. Furthermore, it must be kept in mind that confusion matrices only provide results 

for a specific threshold and do not offer an overall performance evaluation. This may explain 

why these results differ from those of the 95% confidence interval seen previously. 
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9.3.3 External validation results 

 

Additionally, a DeLong test was also performed on the AUC values derived from the external 

validation. Figure 26 shows the comparison matrices from the DeLong test performed on the 

externally validated prognostic models using MV2 and LIONZ segmentation. 

 

Figure 26: Comparison matrix of the DeLong test performed on the seven prognostic models using external validation data. 

(A) Comparison matrix for the externally validated models using MV2 segmentation, (B) Comparison matrix for the 

externally validated models using LIONZ segmentation. 

 

As shown in Figure 26A, no significant differences were observed between the AUC values of 

the externally validated prognostic models using MV2 segmentation. Figure 26B also shows 

that no significant differences were observed for the externally validated prognostic models 

using LIONZ segmentation.  

 

Based on these results, it can be concluded that testing with external validation did not provide 

any additional information about the best-performing prognostic model. 

 

  

A 

B 
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10 Discussion 
 

This research evaluated seven prognostic models, which were divided into three categories. The 

first category includes simple logistic regression models that use one to three conventional PET 

metrics such as TLG, SUVmax, and DmaxBulk (s1, s2, and s3). The second category includes 

intermediate logistic regression models in which radiomic features are selected using three 

different feature selection methods (pw, uni, and rfe). The third category includes a complex 

machine learning model (rf). The performance of all models was tested using three different 

segmentation methods (SUV4, MV2, and LIONZ) and four different prognostic outcomes 

(OS24, OS36, TTP24, and TTP36). This setup led to two main findings that could improve the 

radiomic workflow, leading to better prognostic models for early-stage NSCLC: 

 

- there is no statistically significant difference in prognostic model performance for early-

stage NSCLC when using different segmentation methods; 

- the TLG-only model (s1) prevailed as best-performing model overall, and the model 

using TLG, SUVmax, and DmaxBulk (s3) with an MV2 segmentation was the best-

performing model-segmentation combination. These results suggest that simple 

prognostic models outperform more complex prognostic models.  

 

The first major finding relates to segmentation, the second step of the radiomic workflow. A 

Friedman test conducted on the cross-validated AUC values from the training cohort yielded a 

p-value of 0.6065. Since this value exceeds the conventional significance level of 0.05, it 

indicates that there is no significant difference in model performance across the different 

segmentation methods evaluated – SUV4, MV2, and LIONZ. This suggests that, from a purely 

performance-based perspective, the choice of segmentation method does not critically influence 

the outcome of radiomic models. 

 

Since no significant differences were observed among the different segmentation methods, the 

choice of method for clinical use must depend on factors other than model performance. Several 

factors besides model performance can determine the choice of segmentation method. For 

example, consider the reliability of the segmentation method. Semi-automated segmentation 

methods are generally more robust and reliable than manual methods [103]. All of the 

segmentation methods used in this study are semi-automated. However, it has also been shown 

that AI-based segmentation methods have a higher repeatability than threshold-based methods 

[104]. Consequently, this factor favors using LIONZ over SUV4 and MV2. Another factor is 

the clinical understanding of the used segmentation method. Threshold-based segmentation 

methods are the most frequently used for lung cancer segmentation [105]. Among these 

methods, SUV methods, such as SUV4, are widely used due to their comprehensive evaluation 

of cellular metabolism, which is biologically significant and useful to physicians. In contrast, 

AI-based methods such as LIONZ often operate as “black boxes”, offering less transparency in 

clinical decision-making. A third factor is human intervention. The extent of human 

intervention required also plays a significant role in determining the practicality of a 

segmentation method. Reducing human intervention improves feature reliability and facilitates 
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clinical implementation [103]. In this study, MV2 required the least human intervention, with 

adjustments needed in only 5.6% (one minor and four major adjustments) of cases, followed by 

LIONZ at 7.9% (three minor and four major adjustments), and SUV4 at 21.3% (one minor and 

18 major adjustments). These findings align with previous research in Classical Hodgkin 

Lymphoma, which concluded that the most effective segmentation method was the one 

requiring the least human intervention [67]. Taken together, these factors suggest that while no 

single segmentation method is definitively superior, each presents a unique balance of strengths 

and limitations.  

 

One potential limitation regarding this first finding is that all segmentations were performed by 

a single observer, which could introduce subjectivity [58]. However, prior research shows that 

semi-automatic tools allow even untrained observers to produce contours comparable to those 

created manually by trained physicians [103]. Moreover, consistency in using a single 

segmentation method is emphasized as more critical than inter-observer variability, framing 

this issue more as a methodological note than a limitation.  

 

The second major finding of this study relates to the performance of different prognostic 

models. The best-performing model was determined by identifying the model with the highest 

average AUC value. Model s1, which only includes TLG, showed the best overall performance, 

closely followed by model s3, which combines TLG, SUVmax, and DmaxBulk. Additionally, 

DeLong tests confirmed significant differences between models within each segmentation 

method. When the significant model-segmentation combinations were ranked based on the 

highest lower boundary of a 95% confidence interval, model s3 with MV2 

segmentation showed the highest performance. Interestingly, this model also ranked as 

the second-best-performing model overall, suggesting that combining multiple PET-derived 

features may improve prognostic accuracy.  

 

As mentioned above, the results indicate that simple models using conventional PET metrics, 

such as TLG, SUVmax, and DmaxBulk, perform better than more complex models. Previous 

studies have shown that TLG is a strong prognostic parameter for overall survival in patients 

with advanced-stage NSCLC and lymphoma [106], [107]. However, the evidence for early-

stage NSCLC remains limited and somewhat inconsistent. The consistent inclusion of TLG in 

the best-performing models in this study cautiously supports its prognostic value in early-stage 

NSCLC. Although DmaxBulk contributed to the performance of model s3, its influence in this 

study is limited because early-stage NSCLC rarely contains metastasis. Only seven out of 89 

patients in this study had a non-zero DmaxBulk value, yet its inclusion still improved model 

performance. This was shown by the strong performance of model s3 and suggests that even 

minimal spatial information can enhance prognostic accuracy when combined with metabolic 

features, highlighting the potential value of spatial features in NSCLC [71]. Although both 

models, s2 and s3, include SUVmax, previous research has shown that its significance as a 

prognostic parameter for OS varies based on staging and other factors [106], [108], [109]. This 

may explain why model s2, which combines TLG and SUVmax, performed worse than model 

s3, which also included DmaxBulk. These results suggest that SUVmax does not meaningfully 

improve prognostic accuracy, whereas spatial features like DmaxBulk and metabolic features 

like TLG can strengthen model performance. 
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Overall, the simpler models (s1, s2, and s3) performed better than the intermediate (pw, uni, 

and rfe) and complex (rf) models. One possible explanation is that this study focused on early-

stage NSCLC, which mostly includes rather small lesions. Conventional PET metrics are 

closely correlated with features extracted from the small lesions; thus, integrating extra 

radiomic features into the models does not provide additional value [110]. Another possible 

explanation is overfitting. Although complex models were restricted to their top five features, 

the small dataset (n=89) increases the risk of overfitting, potentially causing the models to learn 

noise instead of meaningful patterns. This leads to models that perform well on the training data 

but fail to generalize to unseen data [52]. This concern is further supported by the results of 

unseen, external validation data. In both segmentation and model performance analyses, no 

statistically significant results were obtained in the external validation cohort. Two primary 

factors may explain this. First, the validation cohort was limited to only 32 patients. A 

commonly used guideline recommends including at least ten patients per feature used in a 

model [85]. This threshold was achieved for the simple methods but not for the more complex 

models, which use their top five features. Small validation cohorts reduce statistical power and 

increase variability, resulting in higher p-values and wider confidence intervals. This is a 

frequent problem in radiomics research because the field is still relatively new, and available 

datasets remain limited in size [111]. A second possible reason for the failing external validation 

is the use of a different PET scan in the validation dataset compared to the training dataset. 

Studies have shown that using different PET scanners, especially those from different 

manufacturers, can produce varying SUV measurements [112]. This variation increases when 

scanning small lesions because the partial volume effect leads to an underestimation of SUV 

due to limited image resolution [113]. This study exhibits both scanner variability and the 

presence of small lesions, suggesting that SUV measurements from the training cohort may 

differ from those in the validation cohort.  

 

Looking ahead, there are several interesting directions for future research. First, the findings 

from this study can be externally validated. This can be achieved by using a larger external 

dataset to confirm the reliability of the finding and overcome current limitations, such as 

overfitting, as well as by segmenting the patients in the validation cohort using SUV4. This 

would allow for a comparison of all three segmentation methods. In addition, the training cohort 

can be expanded by adding more patients and including all visible lymph nodes on the PET 

scan, including those that are not clinically positive. Another promising step would be to 

combine features from the current prognostic models, such as the TLG-only model, with 

metabolomic data. This could lead to more accurate models and offer new insights into the 

connection between lung cancer tissue and metabolism. These insights could eventually help to 

improve early detection and reduce mortality. It would also be valuable to compare the current 

models with deep learning approaches, as these have demonstrated significant potential in 

related fields. This comparison could reveal ways to improve performance further. 

 

In the long term, this study could support the development of more accurate prognostic models 

for early-stage NSCLC. Using PET/CT imaging to predict disease progression and survival 

could help to determine further treatment and provide patients with clearer information about 

their prognosis, potentially improving their peace of mind and overall quality of life. 
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11 Conclusion 
 

During this research, the PET/CT scans of 121 patients were analyzed and divided into a 

training cohort of 89 patients and an independent validation cohort of 32 patients. Three tumor 

segmentation methods were used: SUV4, MV2, and an AI-based method, LIONZ. From all 

segmented images, radiomic parameters were extracted and evaluated across seven different 

prognostic models. Three models were simple logistic regression models using preselected 

conventional PET metrics such as TLG, SUVmax, and DmaxBulk; three models were 

intermediate logistic regression models using various feature selection methods; and the final 

model was a complex random forest model. All segmentation methods and models were tested 

across four different prognostic outcomes, with OS36 selected as the primary outcome. The 

training cohort was used to train and cross-validate the prognostic models, whereas the 

validation cohort was used for external validation. 

 

The objectives of this thesis are to investigate whether the choice of tumor segmentation method 

has an impact on the performance of different prognostic models for early-stage NSCLC, and 

additionally to determine which model is preferred to create the most accurate prognostic model 

for early-stage NSCLC. 

 

The results show that the choice of tumor segmentation method does not significantly affect the 

performance of prognostic models for early-stage NSCLC. This conclusion is supported by the 

Friedman test on cross-validated AUC values, which found no statistically significant 

differences between segmentation methods across the different models. While external 

validation was performed, the cohort size was too small to draw statistically meaningful 

conclusions. Regarding the second objective, model comparison using the DeLong test 

demonstrated that simple prognostic models outperformed more complex models, such as 

logistic regression after feature elimination or random forest. The TLG-only model (s1) 

achieved the highest average AUC, while the best model-segmentation combination was the s3 

model with MV2 segmentation, which includes TLG, SUVmax, and DmaxBulk. These findings 

suggest that simple and easy-to-interpret models can be effective in clinical practice as long as 

the imaging data is segmented consistently. Overall, this study supports the use of 

straightforward radiomic models for predicting prognostic outcomes in early-stage NSCLC. 
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Appendix A: An instruction manual on how to extract 

radiomic data for three segmentation methods using the 

ACCURATE and RADIOMICS tools (Prof. Dr. Boellaard, 

Amsterdam UMC) 
 

Note: This instruction manual is written to analyze one patient. All steps need to be repeated 

when analyzing multiple patients. 

Note 2: Before following this instruction manual, the following programs should be installed: 

ACCURATE, RADIOMICS, LIONZ, and Python 3.11. 

 

Step 1: First of all, make a map containing the CT and PET scans of the patient. This map is 

preferably called PXXX, with XXX indicating the pseudonymization number of each patient. 

For example, the patient map of patient 21 will be called P021. 

 
Note: Make sure that the path to the patient map does not contain any spaces. Preferably, the 

patient map is put in a map that is located directly in de C:\ disk of the computer, where the 

ACCURATE and RADIOMICS tool are located as well. An example of a correct path is shown 

in the image above. 

 

Step 2: Open the ACCURATE tool (developed by the research team of Prof. Dr. Ronald 

Boellaard at Amsterdam UMC). The ACCURATE tool should be located on the C:\ disk of the 

computer and can be opened by launching ‘accurate4petct_v10072024’. Then press ‘Click to 

continue’ and the application should open. When opened, the application should look like the 

image below. 

 

 

 

 

 

 

 

 

 

 

 

Note: During the use of the application, there is a possibility that it will crash when an error 

occurs or if you miss-clicked. If this happens, just reopen the application. 
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Step 3: To be sure that the PET/CT image will be correctly imported into the tool, it is important 

that uncompressed slices are uploaded. The ACCURATE tool can uncompress files by pressing 

‘Fast DICOM import’, followed by ‘uncompress jpeg DICOM’. This is shown in the left figure 

below. 

Next, a window will open. You need to follow the path ‘ACCURATE\dcmtk\bin\dcmdjpeg’. 

This is shown in the right figure below. Then, a white window will open where you need to 

indicate the map where the CT or PET slices are located. This step should be done individually 

for every map that contains either CT or PET slices. 

 
 

Step 4: When both the CT and PET scan are uncompressed, a project can be made. A project 

is the overlaying of the CT and PET scan to form a PET/CT. This can be done via the tab ‘Fast 

DICOM import’ followed by pressing firstly ‘Fast DICOM PET’ and next ‘Fast DICOM CT’. 

The different tabs are shown in the figure below. 

 
Note: When uploading the CT, two warnings will be displayed after one another. By pressing 

‘ok’ these will disappear without giving an error.  

 

Note 2: It can be possible that when uploading the CT scan, it will give a weird image (e.g.: 

blurry images containing lines). In this case, it is recommended to redownload and re-

uncompress the CT scan. If this doesn’t resolve the problem, check whether the CT is a full 

body CT scan. 

 

Step 5: When the PET/CT is uploaded, essential parameters need to be filled in. The weight 

and size of the patient should be included, as well as the study date, study time, and moment of 

injection. The necessary boxes are shown in the picture below. When the boxes are filled in, 

the button ‘VALIDATE DATA/IMAGES’ should be pressed to validate everything. 
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Step 6: When the project is validated, it can be saved. Via the tab ‘File’, you can press 

‘SaveProject’, which will open a window to save the project. This is shown in the left figure. 

The project should be saved in the corresponding patient map. To remain consistent, the project 

needs to be named ‘Project_PXXX’. Thus, the project of patient 21 will be saved in the map 

P021 and will be named ‘Project_P021’. This is shown in the right figure. 

 

  
 

 

Step 7: For segmentation with AI, the project files should have a specific name. ACCURATE 

should be closed, and two files in the patient map should be renamed. The file 

‘Project_PXXX_ct.nii’ should be renamed to ‘CT_PXXX’, and the file 

‘Project_PXXX_pet_bqml.nii’ should be renamed to ‘PT_PXXX’. Both unchanged and 

changed files are shown in the figures below. 
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Step 8: When the AI segmentation tool LIONZ is installed, it can be run via the command 

prompt of the computer. The commands that should be run are: 

cd C:\Python\Python311\ LIONZ-env\Scripts 

activate 

 LIONZ -d C:\Data_testProlung -m fdg 

 

Note: Depending on where Python is installed and where the patient files are located, the 

directories, that are underlined, can differ. 

Note 2: While LIONZ is running, steps 9-12B can be performed. 

 

Step 9: The patient project must be loaded again in ACCURATE. By clicking ‘File’ in the 

toolbar and selecting ‘LoadProject’, you can choose the correct patient project in the format of 

a ‘.prj’ file.  

 
Now that the project is loaded, it needs to be validated again by pressing the button 

‘VALIDATE DATA/IMAGES’. 
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Step 10: Open the tab ‘Total Tumor Burden Tool’. One CT, one PET, and one PET/CT image 

should appear, as shown in the figure below. To make the images larger, the ‘ZOOM’ function 

in the upper right corner can be used.  

 
 

Step 11A: To do the presegmentation for SUV4, there are several steps, which are indicated 

with corresponding numbers on the figure below: 

i) Set the preset to FDG, now red spots will light up on the images. These spots indicate 

parts of the body with high glucose consumption levels. 

ii) Not all high-glucose-consuming parts are tumors. These parts, such as the head, 

heart, bladder, or intestines need to be unselected by clicking on them with the right 

mouse button. 

iii) Press the button ‘ACCEPT PRESET’. 

iv) Choose as ‘CONTOUR’ the option ‘Fixed SUV’ 

v) Press the button ‘MATV’ 

vi) Save the MATV by pressing the button ‘SAVE MATV’. It is recommended to keep 

the name that ACCURATE suggests. This will likely be 

‘TTBT_PRESET_FIXED_SUV_40’ 

 
 

 

i 

ii 

iii 
iv 

v 

vi 
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Step 11B: To do the final segmentation for SUV4, there are several steps, which are indicated 

with corresponding numbers on the figure below: 

i) Go to the tab ‘Volume of interest’ 

ii) Choose a view that suits for you. There are four options: AX (axial), COR (coronal), 

SAG (sagittal), or MIP (Maximum Intensity Projection). 

iii) Press the button ‘SUV40’ 

iv) Click, with the right mouse button, on the image where the tumor is located so that 

it will be marked red on the image.  

Note: It is possible that you need to use different views or that you need to zoom. 

Note 2: If the tumor will not turn red, choose the button ‘S15’. This will put a sphere 

where you click on the image. 

v) Change in the ‘VOI LABLE’, the word ‘PRESET’ to ‘FINAL’ 

vi) Press the button ‘SV’ 

 
 

After the segmentation with SUV4, you should at least have the four files that are shown in the 

figure below. 

 
 

 

 

 

 

 

 

 

 

i 

ii 
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iv 

iv 
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Step 12A: To do the presegmentation for MV2, almost all steps are identical as those for SUV4. 

The only step that differs is step iv) where ‘MV2’ should be chosen as ‘CONTOUR’. The steps 

are indicated with corresponding numbers on the figure below. 

 
 

Step 12B: To do the final segmentation for MV2, almost all steps are identical as those for 

SUV4. The only step that differs is step iii) where the button ‘MV2’ should be pressed instead 

of the button SUV40. The steps are indicated with corresponding numbers on the figure below. 

 
Note: It is possible that an area larger than the tumor will be indicated when you right-click 

with your mouse. To remove a part of the indicated area, you can press the buttons ‘C1’, ‘C2’ 

or ‘C3’, with C meaning circle. Then hold shift while hovering over the part you want to 

remove. This action can be performed in all views accept the MIP view, meaning that the 

removal needs to be done for every slice. An example of a removed area is indicated with the 

green circle in the figure above. 

After the segmentation with MV2, you should at least have the four files that are shown in the 

figure below. 
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Step 13: To do the segmentation for LIONZ, the presegmentation for LIONZ is also the final 

segmentation. Meaning that everything can be done in the tab ‘Total Tumor Burden Tool’. The 

steps needed for segmentation for LIONZ are indicated with corresponding numbers on the 

figure down below. 

i) Set the preset to ‘load voi’. This will open a window. When you go to your patient 

map, you will see that because of step 8 there will be a map added. You follow the 

directory, as shown in the figure below, until you find a NII and/or Zip file. When 

selecting this file, the red spots will appear on the images. 

 

 

 

 

 

 

 

 

ii) Not all high-glucose-consuming parts are tumors. The non-tumors need to be 

unselected by clicking on them with the right mouse button. 

iii) Press the button ‘ACCEPT PRESET’. 

iv) Choose as ‘CONTOUR’ the option ‘LIONZ’ 

v) Press the button ‘MATV’ 

vi) Save the MATV by pressing the button ‘SAVE MATV’. It is recommended to keep 

the name that accurate suggests. This will likely be ‘TTBT_PRESET_LIONZ’. You 

can also change the name to ‘TTBT_LIONZ’. 

 
 

After the segmentation with LIONZ, you should at least have the file that is shown in the figure 

below. 
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Step 14: When the VOIs of all three segmentation methods are acquired, VOI statistics can be 

extracted. This is simply done by pressing the ‘Voi Stats’ button and selecting the wanted VOIs 

of the patient. It is possible to select multiple VOIs at once, so all three VOIs from the different 

segmentation methods can be processed at the same time.  

 
 

Now, there should be three Excel files added to the patient folder, such as shown in the figure 

below. 

 
 

Step 15: Close the ACCURATE tool and open the RADIOMICS tool. The RADIOMICS tool 

should be located on the C:\ disk of the computer and can be opened by launching 

‘AccRadiomicsQueue_v127c_06082020. Then press ‘Click to continue’ and the application 

should open. When opened, the application should look like the image below. 

 
Note: You can either extract radiomic features for multiple patients at a time, via the option to 

define a que on the left side of the application. Or you can process one patient at a time via the 

right side of the application. 
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Step 16: To process one patient at a time, click ‘Process 1 study’. Then select the project file 

and next the different VOI-files you want to process.  

Now, there should be three Excel files added to the patient folder, as shown in the figure below. 

 
 

Step 17: Open the Excel files. The data will all be in one column, as it is actually a CSV file: 

 
To separate the data in multiple columns, the ‘Text to column’ button under the ‘Data’ tab can 

be used as shown in the figures below. It is important to note that all cells must be selected. 

 

 
Now the data should be split into three columns. 

 
This process needs to be repeated for every Excel file of the patient, including the VOI Excel 

files. 
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Step 18: Combine per segmentation method and per data type (VOI stats or Radiomics) the 

data of every patient in one big Excel file. Thus, in total, there must be 6 big Excel files with 

data from all patients. The files should look like the figures below for respectively Radiomics 

and VOI stats. 

 



94 

 

  



95 

 

Appendix B: Results for overall survival of 24 months 

SUV4 segmentation  

 
 

 

 
 

 
 

 
 

Figure S1: Results with SUV4 segmentation for the cross-validated prognostic models using OS24 as the prognostic 

outcome. (A) The confusion matrix for the s1 model is a TLG-only logistic regression model; (B) The confusion matrix for the 

s2 model is a logistic regression model with the TLG and SUVmax; (C) The confusion matrix for the s3 model is a logistic 

regression model with the TLG, SUVmax and DmaxBulk; (D) The confusion matrix for a logistic regression model after 

pairwise elimination; (E) The confusion matrix for a logistic regression model after univariate selection; (F) the confusion 

matrix for a logistic regression model after recursive feature elimination; (G) The confusion matrix for a random forest 

model; (H) The ROC curve for the cross-validated prognostic models using SUV4 segmentation. Logreg: logistic regression. 
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MV2 segmentation 

 
 

 
 

 
 

 
 

Figure S2: Results with MV2 segmentation for the cross-validated prognostic models using OS24 as the prognostic outcome. 

(A) The confusion matrix for the s1 model is a TLG-only logistic regression model; (B) The confusion matrix for the s2 model 

is a logistic regression model with the TLG and SUVmax; (C) The confusion matrix for the s3 model is a logistic regression 

model with the TLG, SUVmax and DmaxBulk; (D) The confusion matrix for a logistic regression model after pairwise 

elimination; (E) The confusion matrix for a logistic regression model after univariate selection; (F) the confusion matrix for 

a logistic regression model after recursive feature elimination; (G) The confusion matrix for a random forest model; (H) The 

ROC curve for the cross-validated prognostic models using MV2 segmentation. Logreg: logistic regression. 
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MV2 segmentation external validation 

 
 

 
 

 
 

 
 

Figure S3: Results with MV2 segmentation for the externally validated prognostic models using OS24 as the prognostic 

outcome. (A) The confusion matrix for the s1 model is a TLG-only logistic regression model; (B) The confusion matrix for the 

s2 model is a logistic regression model with the TLG and SUVmax; (C) The confusion matrix for the s3 model is a logistic 

regression model with the TLG, SUVmax and DmaxBulk; (D) The confusion matrix for a logistic regression model after 

pairwise elimination; (E) The confusion matrix for a logistic regression model after univariate selection; (F) the confusion 

matrix for a logistic regression model after recursive feature elimination; (G) The confusion matrix for a random forest 

model; (H) The ROC curve for the externally validated prognostic models using MV2 segmentation. Logreg: logistic 

regression. 
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LIONZ segmentation 

 
 

 
 

 
 

 
 

Figure S4: Results with LIONZ segmentation for the cross-validated prognostic models using OS24 as the prognostic 

outcome. (A) The confusion matrix for the s1 model is a TLG-only logistic regression model; (B) The confusion matrix for the 

s2 model is a logistic regression model with the TLG and SUVmax; (C) The confusion matrix for the s3 model is a logistic 

regression model with the TLG, SUVmax and DmaxBulk; (D) The confusion matrix for a logistic regression model after 

pairwise elimination; (E) The confusion matrix for a logistic regression model after univariate selection; (F) the confusion 

matrix for a logistic regression model after recursive feature elimination; (G) The confusion matrix for a random forest 

model; (H) The ROC curve for the cross-validated prognostic models using LIONZ segmentation. Logreg: logistic 

regression. 
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LIONZ segmentation external validation 

 
 

 
 

 
 

 
 

Figure S5: Results with LIONZ segmentation for the externally validated prognostic models using OS24 as the prognostic 

outcome. (A) The confusion matrix for the s1 model is a TLG-only logistic regression model; (B) The confusion matrix for the 

s2 model is a logistic regression model with the TLG and SUVmax; (C) The confusion matrix for the s3 model is a logistic 

regression model with the TLG, SUVmax and DmaxBulk; (D) The confusion matrix for a logistic regression model after 

pairwise elimination; (E) The confusion matrix for a logistic regression model after univariate selection; (F) the confusion 

matrix for a logistic regression model after recursive feature elimination; (G) The confusion matrix for a random forest 

model; (H) The ROC curve for the externally validated prognostic models using LIONZ segmentation. Logreg: logistic 

regression. 
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General information  

 

Figure S6: Histogram comparing the AUC values of all cross-validated models using LIONZ, MV2, and SUV4 segmentations 

with an overall survival of 24 months as prognostic outcome. Orange bars represent models using LIONZ segmentations, 

green bars represent models using MV2 segmentations, and blue bars represent models using SUV4 segmentations. 

 

 

Figure S7: Histogram comparing the AUC values of all externally validated models obtained using LIONZ and MV2 

segmentations with an overall survival of 24 months as prognostic outcome. Orange bars represent models using LIONZ 

segmentations, blue bars represent models using MV2 segmentation. 

 

Table S1: Cross-validated AUC values with standard deviation and externally validated AUC values of prognostic models 

using SUV4, MV2, and LIONZ as segmentation methods. All models use an overall survival of 24 months as prognostic 

outcome. AUC sd: area under the curve standard deviation, AUC ext: AUC of external validation. 

OS24 s1 s2 s3 pw uni rfe rf 

 SUV4 

AUC 0.72 0.66 0.74 0.69 0.66 0.62 0.59 

AUC sd 0.15 0.17 0.14 0.20 0.16 0.18 0.14 

 MV2 

AUC 0.72 0.68 0.72 0.60 0.53 0.65 0.62 

AUC sd 0.14 0.18 0.16 0.18 0.15 0.22 0.19 

AUC ext 0.82 0.81 0.81 0.89 0.61 0.81 0.62 

 LIONZ 

AUC 0.73 0.70 0.71 0.53 0.51 0.70 0.66 

AUC sd 0.17 0.16 0.15 0.18 0.14 0.16 0.17 

AUC ext 0.82 0.82 0.82 0.72 0.51 0.73 0.81 



101 

 

DeLong test conversion matrices 

SUV4 

 
Figure S8: Comparison matrix of the DeLong test with SUV4 segmentation for the cross-validation of the training cohort, 

with OS24 as prognostic outcome. Green boxes indicate a statistically significant difference between the two models, with the 

number of the best model shown. Red boxes indicate a non-statistically significant difference between the two models. 

 

MV2 

 
Figure S9: Comparison matrix of the DeLong test with MV2 segmentation for the cross-validation of the training cohort, 

with OS24 as prognostic outcome. Green boxes indicate a statistically significant difference between the two models, with the 

number of the best model shown. Red boxes indicate a non-statistically significant difference between the two models. 

 

MV2 external validation 

 
Figure S10: Comparison matrix of the DeLong test with MV2 segmentation for the external validation with the external 

cohort, with OS24 as prognostic outcome. Green boxes indicate a statistically significant difference between the two models, 

with the number of the best model shown. Red boxes indicate a non-statistically significant difference between the two 

models. 
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LIONZ 

 
Figure S11: Comparison matrix of the DeLong test with LIONZ segmentation for the cross-validation of the training cohort, 

with OS24 as prognostic outcome. Green boxes indicate a statistically significant difference between the two models, with the 

number of the best model shown. Red boxes indicate a non-statistically significant difference between the two models. 

 

LIONZ external validation 

 
Figure S12: Comparison matrix of the DeLong test with LIONZ segmentation for the external validation with the validation 

cohort, with OS24 as prognostic outcome. Green boxes indicate a statistically significant difference between the two models, 

with the number of the best model shown. Red boxes indicate a non-statistically significant difference between the two 

models. 
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Appendix C: Results for overall survival of 36 months  

SUV4 segmentation 

 
 

 
 

 
 

 
 

Figure S13: Results with SUV4 segmentation for the cross-validated prognostic models using OS36 as the prognostic 

outcome. (A) The confusion matrix for the s1 model is a TLG-only logistic regression model; (B) The confusion matrix for the 

s2 model is a logistic regression model with the TLG and SUVmax; (C) The confusion matrix for the s3 model is a logistic 

regression model with the TLG, SUVmax and DmaxBulk; (D) The confusion matrix for a logistic regression model after 

pairwise elimination; (E) The confusion matrix for a logistic regression model after univariate selection; (F) the confusion 

matrix for a logistic regression model after recursive feature elimination; (G) The confusion matrix for a random forest 

model; (H) The ROC curve for the cross-validated prognostic models using SUV4 segmentation. Logreg: logistic regression. 
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MV2 segmentation 

 
 

 
 

 
 

 
 

Figure S14: Results with MV2 segmentation for the cross-validated prognostic models using OS36 as the prognostic 

outcome. (A) The confusion matrix for the s1 model is a TLG-only logistic regression model; (B) The confusion matrix for the 

s2 model is a logistic regression model with the TLG and SUVmax; (C) The confusion matrix for the s3 model is a logistic 

regression model with the TLG, SUVmax and DmaxBulk; (D) The confusion matrix for a logistic regression model after 

pairwise elimination; (E) The confusion matrix for a logistic regression model after univariate selection; (F) the confusion 

matrix for a logistic regression model after recursive feature elimination; (G) The confusion matrix for a random forest 

model; (H) The ROC curve for the cross-validated prognostic models using MV2 segmentation. Logreg: logistic regression. 
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MV2 segmentation external validation 

 
 

 
 

 
 

 
 

Figure S15: Results with MV2 segmentation for the externally validated prognostic models using OS36 as the prognostic 

outcome. (A) The confusion matrix for the s1 model is a TLG-only logistic regression model; (B) The confusion matrix for the 

s2 model is a logistic regression model with the TLG and SUVmax; (C) The confusion matrix for the s3 model is a logistic 

regression model with the TLG, SUVmax and DmaxBulk; (D) The confusion matrix for a logistic regression model after 

pairwise elimination; (E) The confusion matrix for a logistic regression model after univariate selection; (F) the confusion 

matrix for a logistic regression model after recursive feature elimination; (G) The confusion matrix for a random forest 

model; (H) The ROC curve for the externally validated prognostic models using MV2 segmentation. Logreg: logistic 

regression. 
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LIONZ segmentation 

 
 

 
 

 
 

  
 

Figure S16: Results with LIONZ segmentation for the cross-validated prognostic models using OS36 as the prognostic 

outcome. (A) The confusion matrix for the s1 model is a TLG-only logistic regression model; (B) The confusion matrix for the 

s2 model is a logistic regression model with the TLG and SUVmax; (C) The confusion matrix for the s3 model is a logistic 

regression model with the TLG, SUVmax and DmaxBulk; (D) The confusion matrix for a logistic regression model after 

pairwise elimination; (E) The confusion matrix for a logistic regression model after univariate selection; (F) the confusion 

matrix for a logistic regression model after recursive feature elimination; (G) The confusion matrix for a random forest 

model; (H) The ROC curve for the cross-validated prognostic models using LIONZ segmentation. Logreg: logistic 

regression. 
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LIONZ segmentation external validation 

 
 

 
 

 
 

 
 

Figure S17: Results with LIONZ segmentation for the externally validated prognostic models using OS36 as the prognostic 

outcome. (A) The confusion matrix for the s1 model is a TLG-only logistic regression model; (B) The confusion matrix for the 

s2 model is a logistic regression model with the TLG and SUVmax; (C) The confusion matrix for the s3 model is a logistic 

regression model with the TLG, SUVmax and DmaxBulk; (D) The confusion matrix for a logistic regression model after 

pairwise elimination; (E) The confusion matrix for a logistic regression model after univariate selection; (F) the confusion 

matrix for a logistic regression model after recursive feature elimination; (G) The confusion matrix for a random forest 

model; (H) The ROC curve for the externally validated prognostic models using LIONZ segmentation. Logreg: logistic 

regression. 
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General graphs 

 
Figure S18: Histogram comparing the AUC values of all cross-validated models using LIONZ, MV2, and SUV4 

segmentations with an overall survival of 36 months as prognostic outcome. Orange bars represent models using LIONZ 

segmentations, green bars represent models using MV2 segmentations, and blue bars represent models using SUV4 

segmentations. 

 

 
Figure S19: Histogram comparing the AUC values of all externally validated models obtained using LIONZ and MV2 

segmentations with an overall survival of 36 months as prognostic outcome. Orange bars represent models using LIONZ 

segmentations, blue bars represent models using MV2 segmentation. 

 

Table S2: Cross-validated AUC values with standard deviation and externally validated AUC values of prognostic models 

using SUV4, MV2, and LIONZ as segmentation methods. All models use an overall survival of 36 months as prognostic 

outcome. AUC sd: area under the curve standard deviation, AUC ext: AUC of external validation. 

OS36 s1 s2 s3 pw uni rfe rf 

 SUV4 

AUC 0.75 0.74 0.72 0.68 0.68 0.72 0.72 

AUCsd 0.15 0.10 0.15 0.17 0.17 0.15 0.12 

 MV2 

AUC 0.76 0.75 0.77 0.66 0.54 0.67 0.70 

AUC sd 0.13 0.14 0.16 0.18 0.12 0.16 0.13 

AUC ext 0.59 0.57 0.57 0.64 0.54 0.55 0.53 

 LIONZ 

AUC 0.76 0.74 0.76 0.57 0.50 0.76 0.69 

AUC sd 0.14 0.16 0.13 0.15 0.14 0.14 0.13 

AUC ext 0.60 0.42 0.57 0.46 0.48 0.58 0.58 
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DeLong test conversion matrices 

SUV4 

 
Figure S20: Comparison matrix of the DeLong test with SUV4 segmentation for the cross-validation of the training cohort, 

with OS36 as prognostic outcome. Green boxes indicate a statistically significant difference between the two models, with the 

number of the best model shown. Red boxes indicate a non-statistically significant difference between the two models. 

 

MV2 

 
Figure S21: Comparison matrix of the DeLong test with MV2 segmentation for the cross-validation of the training cohort, 

with OS36 as prognostic outcome. Green boxes indicate a statistically significant difference between the two models, with the 

number of the best model shown. Red boxes indicate a non-statistically significant difference between the two models. 

 

MV2 external validation 

 
Figure S22: Comparison matrix of the DeLong test with MV2 segmentation for the external validation with the validation 

cohort, with OS36 as prognostic outcome. Green boxes indicate a statistically significant difference between the two models, 

with the number of the best model shown. Red boxes indicate a non-statistically significant difference between the two 

models. 
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LIONZ 

 
Figure S23: Comparison matrix of the DeLong test with LIONZ segmentation for the cross-validation of the training cohort, 

with OS36 as prognostic outcome. Green boxes indicate a statistically significant difference between the two models, with the 

number of the best model shown. Red boxes indicate a non-statistically significant difference between the two models. 

 

LIONZ external validation 

 
Figure S24: Comparison matrix of the DeLong test with LIONZ segmentation for the external validation with the external 

cohort, with OS36 as prognostic outcome. Green boxes indicate a statistically significant difference between the two models, 

with the number of the best model shown. Red boxes indicate a non-statistically significant difference between the two 

models. 
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Appendix D: Results for time to progression of 24 months  

SUV4 segmentation 

 
 

 
 

 
 

 
 

Figure S25: Results with SUV4 segmentation for the cross-validated prognostic models using TTP24 as the prognostic 

outcome. (A) The confusion matrix for the s1 model is a TLG-only logistic regression model; (B) The confusion matrix for the 

s2 model is a logistic regression model with the TLG and SUVmax; (C) The confusion matrix for the s3 model is a logistic 

regression model with the TLG, SUVmax and DmaxBulk; (D) The confusion matrix for a logistic regression model after 

pairwise elimination; (E) The confusion matrix for a logistic regression model after univariate selection; (F) the confusion 

matrix for a logistic regression model after recursive feature elimination; (G) The confusion matrix for a random forest 

model; (H) The ROC curve for the cross-validated prognostic models using SUV4 segmentation. Logreg: logistic regression. 
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MV2 segmentation 

 
 

 
 

 
 

 
 

Figure S26: Results with MV2 segmentation for the cross-validated prognostic models using TTP24 as the prognostic 

outcome. (A) The confusion matrix for the s1 model is a TLG-only logistic regression model; (B) The confusion matrix for the 

s2 model is a logistic regression model with the TLG and SUVmax; (C) The confusion matrix for the s3 model is a logistic 

regression model with the TLG, SUVmax and DmaxBulk; (D) The confusion matrix for a logistic regression model after 

pairwise elimination; (E) The confusion matrix for a logistic regression model after univariate selection; (F) the confusion 

matrix for a logistic regression model after recursive feature elimination; (G) The confusion matrix for a random forest 

model; (H) The ROC curve for the cross-validated prognostic models using MV2 segmentation. Logreg: logistic regression. 
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MV2 segmentation external validation 

 
 

 
 

 
 

 
 

Figure S27: Results with MV2 segmentation for the externally validated prognostic models using TTP24 as the prognostic 

outcome. (A) The confusion matrix for the s1 model is a TLG-only logistic regression model; (B) The confusion matrix for the 

s2 model is a logistic regression model with the TLG and SUVmax; (C) The confusion matrix for the s3 model is a logistic 

regression model with the TLG, SUVmax and DmaxBulk; (D) The confusion matrix for a logistic regression model after 

pairwise elimination; (E) The confusion matrix for a logistic regression model after univariate selection; (F) the confusion 

matrix for a logistic regression model after recursive feature elimination; (G) The confusion matrix for a random forest 

model; (H) The ROC curve for the externally validated prognostic models using MV2 segmentation. Logreg: logistic 

regression. 
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LIONZ segmentation 

 
 

 
 

 
 

  
 

Figure S28: Results with LIONZ segmentation for the cross-validated prognostic models using TTP24 as the prognostic 

outcome. (A) The confusion matrix for the s1 model is a TLG-only logistic regression model; (B) The confusion matrix for the 

s2 model is a logistic regression model with the TLG and SUVmax; (C) The confusion matrix for the s3 model is a logistic 

regression model with the TLG, SUVmax and DmaxBulk; (D) The confusion matrix for a logistic regression model after 

pairwise elimination; (E) The confusion matrix for a logistic regression model after univariate selection; (F) the confusion 

matrix for a logistic regression model after recursive feature elimination; (G) The confusion matrix for a random forest 

model; (H) The ROC curve for the cross-validated prognostic models using LIONZ segmentation. Logreg: logistic 

regression. 
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LIONZ segmentation external validation 

 
 

 
 

 
 

 
 

Figure S29: Results with LIONZ segmentation for the externally validated prognostic models using TTP24 as the prognostic 

outcome. (A) The confusion matrix for the s1 model is a TLG-only logistic regression model; (B) The confusion matrix for the 

s2 model is a logistic regression model with the TLG and SUVmax; (C) The confusion matrix for the s3 model is a logistic 

regression model with the TLG, SUVmax and DmaxBulk; (D) The confusion matrix for a logistic regression model after 

pairwise elimination; (E) The confusion matrix for a logistic regression model after univariate selection; (F) the confusion 

matrix for a logistic regression model after recursive feature elimination; (G) The confusion matrix for a random forest 

model; (H) The ROC curve for the externally validated prognostic models using LIONZ segmentation. Logreg: logistic 

regression. 
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General information 

 
Figure S30: Histogram comparing the AUC values of all cross-validated models using LIONZ, MV2, and SUV4 

segmentations with a time to progression of 24 months as prognostic outcome. Orange bars represent models using LIONZ 

segmentations, green bars represent models using MV2 segmentations, and blue bars represent models using SUV4 

segmentations. 

 

 
Figure S31: Histogram comparing the AUC values of all externally validated models obtained using LIONZ and MV2 

segmentations with a time to progression of 24 months as prognostic outcome. Orange bars represent models using LIONZ 

segmentations, blue bars represent models using MV2 segmentation. 

 

Table S3: Cross-validated AUC values with standard deviation and externally validated AUC values of prognostic models 

using SUV4, MV2, and LIONZ as segmentation methods. All models use a time to progression of 24 months as prognostic 

outcome. AUC sd: area under the curve standard deviation, AUC ext: AUC of external validation. 

TTP24 s1 s2 s3 pw uni rfe rf 

 SUV4 

AUC 0.67 0.62 0.62 0.61 0.62 0.65 0.54 

AUCsd 0.14 0.15 0.12 0.17 0.16 0.10 0.16 

 MV2 

AUC 0.67 0.64 0.64 0.46 0.48 0.62 0.51 

AUC sd 0.14 0.17 0.15 0.16 0.12 0.13 0.14 

AUC ext 0.82 0.82 0.78 0.65 0.55 0.71 0.66 

 LIONZ 

AUC 0.65 0.61 0.57 0.54 0.56 0.57 0.55 

AUC sd 0.15 0.14 0.14 0.15 0.15 0.15 0.17 

AUC ext 0.82 0.78 0.80 0.63 0.73 0.82 0.63 
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DeLong test conversion matrices 

SUV4 

 
Figure S32: Comparison matrix of the DeLong test with SUV4 segmentation for the cross-validation of the training cohort, 

with TTP24 as prognostic outcome. Green boxes indicate a statistically significant difference between the two models, with 

the number of the best model shown. Red boxes indicate a non-statistically significant difference between the two models. 

 

MV2 

 
Figure S33: Comparison matrix of the DeLong test with MV2 segmentation for the cross-validation of the training cohort, 

with TTP24 as prognostic outcome. Green boxes indicate a statistically significant difference between the two models, with 

the number of the best model shown. Red boxes indicate a non-statistically significant difference between the two models. 

 

MV2 external validation 

 
Figure S34: Comparison matrix of the DeLong test with MV2 segmentation for the external validation with the external 

cohort, with TTP24 as prognostic outcome. Green boxes indicate a statistically significant difference between the two 

models, with the number of the best model shown. Red boxes indicate a non-statistically significant difference between the 

two models. 
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LIONZ 

 
Figure S35: Comparison matrix of the DeLong test with LIONZ segmentation for the cross-validation of the training cohort, 

with TTP24 as prognostic outcome. Green boxes indicate a statistically significant difference between the two models, with 

the number of the best model shown. Red boxes indicate a non-statistically significant difference between the two models. 

 

LIONZ external validation 

 
Figure S36: Comparison matrix of the DeLong test with LIONZ segmentation for the external validation with the external 

cohort, with TTP24 as prognostic outcome. Green boxes indicate a statistically significant difference between the two 

models, with the number of the best model shown. Red boxes indicate a non-statistically significant difference between the 

two models. 
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Appendix E: Results for time to progression of 36 months  

SUV4 segmentation 

 
 

 
 

 
 

 
 

Figure S37: Results with SUV4 segmentation for the cross-validated prognostic models using TTP36 as the prognostic 

outcome. (A) The confusion matrix for the s1 model is a TLG-only logistic regression model; (B) The confusion matrix for the 

s2 model is a logistic regression model with the TLG and SUVmax; (C) The confusion matrix for the s3 model is a logistic 

regression model with the TLG, SUVmax and DmaxBulk; (D) The confusion matrix for a logistic regression model after 

pairwise elimination; (E) The confusion matrix for a logistic regression model after univariate selection; (F) the confusion 

matrix for a logistic regression model after recursive feature elimination; (G) The confusion matrix for a random forest 

model; (H) The ROC curve for the cross-validated prognostic models using SUV4 segmentation. Logreg: logistic regression. 
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MV2 segmentation 

 
 

 
 

 
 

 
 

Figure S38: Results with MV2 segmentation for the cross-validated prognostic models using TTP36 as the prognostic 

outcome. (A) The confusion matrix for the s1 model is a TLG-only logistic regression model; (B) The confusion matrix for the 

s2 model is a logistic regression model with the TLG and SUVmax; (C) The confusion matrix for the s3 model is a logistic 

regression model with the TLG, SUVmax and DmaxBulk; (D) The confusion matrix for a logistic regression model after 

pairwise elimination; (E) The confusion matrix for a logistic regression model after univariate selection; (F) the confusion 

matrix for a logistic regression model after recursive feature elimination; (G) The confusion matrix for a random forest 

model; (H) The ROC curve for the cross-validated prognostic models using MV2 segmentation. Logreg: logistic regression. 
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MV2 segmentation external validation 

 
 

 
 

 
 

 
 

Figure S39: Results with MV2 segmentation for the externally validated prognostic models using TTP36 as the prognostic 

outcome. (A) The confusion matrix for the s1 model is a TLG-only logistic regression model; (B) The confusion matrix for the 

s2 model is a logistic regression model with the TLG and SUVmax; (C) The confusion matrix for the s3 model is a logistic 

regression model with the TLG, SUVmax and DmaxBulk; (D) The confusion matrix for a logistic regression model after 

pairwise elimination; (E) The confusion matrix for a logistic regression model after univariate selection; (F) the confusion 

matrix for a logistic regression model after recursive feature elimination; (G) The confusion matrix for a random forest 

model; (H) The ROC curve for the externally validated prognostic models using MV2 segmentation. Logreg: logistic 

regression.. 
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LIONZ segmentation 

 
 

 
 

 
 

 
 

Figure S40: Results with LIONZ segmentation for the cross-validated prognostic models using TTP36 as the prognostic 

outcome. (A) The confusion matrix for the s1 model is a TLG-only logistic regression model; (B) The confusion matrix for the 

s2 model is a logistic regression model with the TLG and SUVmax; (C) The confusion matrix for the s3 model is a logistic 

regression model with the TLG, SUVmax and DmaxBulk; (D) The confusion matrix for a logistic regression model after 

pairwise elimination; (E) The confusion matrix for a logistic regression model after univariate selection; (F) the confusion 

matrix for a logistic regression model after recursive feature elimination; (G) The confusion matrix for a random forest 

model; (H) The ROC curve for the cross-validated prognostic models using LIONZ segmentation. Logreg: logistic 

regression. 
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LIONZ segmentation external validation 

 
 

 
 

 
 

 
 

Figure S41: Results with LIONZ segmentation for the externally validated prognostic models using TTP36 as the prognostic 

outcome. (A) The confusion matrix for the s1 model is a TLG-only logistic regression model; (B) The confusion matrix for the 

s2 model is a logistic regression model with the TLG and SUVmax; (C) The confusion matrix for the s3 model is a logistic 

regression model with the TLG, SUVmax and DmaxBulk; (D) The confusion matrix for a logistic regression model after 

pairwise elimination; (E) The confusion matrix for a logistic regression model after univariate selection; (F) the confusion 

matrix for a logistic regression model after recursive feature elimination; (G) The confusion matrix for a random forest 

model; (H) The ROC curve for the externally validated prognostic models using LIONZ segmentation. Logreg: logistic 

regression. 
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General information 

 
Figure S42: Histogram comparing the AUC values of all cross-validated models using LIONZ, MV2, and SUV4 

segmentations with a time to progression of 36 months as prognostic outcome. Orange bars represent models using LIONZ 

segmentations, green bars represent models using MV2 segmentations, and blue bars represent models using SUV4 

segmentations. 

 

 
Figure S43: Histogram comparing the AUC values of all externally validated models obtained using LIONZ and MV2 

segmentations with a time to progression of 36 months as prognostic outcome. Orange bars represent models using LIONZ 

segmentations, blue bars represent models using MV2 segmentation. 

 

Table S4: Cross-validated AUC values with standard deviation and externally validated AUC values of prognostic models 

using SUV4, MV2, and LIONZ as segmentation methods. All models use a time to progression of 36 months as prognostic 

outcome. AUC sd: area under the curve standard deviation, AUC ext: AUC of external validation. 

TTP36 s1 s2 s3 pw uni rfe rf 

 SUV4 

AUC 0.70 0.69 0.65 0.65 0.62 0.67 0.65 

AUCsd 0.12 0.12 0.16 0.14 0.12 0.12 0.11 

 MV2 

AUC 0.68 0.68 0.67 0.56 0.58 0.71 0.64 

AUC sd 0.14 0.13 0.17 0.13 0.13 0.14 0.11 

AUC ext 0.61 0.62 0.62 0.56 0.49 0.54 0.53 

 LIONZ 

AUC 0.70 0.70 0.67 0.60 0.61 0.67 0.62 

AUC sd 0.13 0.11 0.12 0.14 0.13 0.13 0.14 

AUC ext 0.63 0.63 0.62 0.59 0.53 0.62 0.49 
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DeLong test conversion matrices 

SUV4 

 
Figure S44: Comparison matrix of the DeLong test with SUV4 segmentation for the cross-validation of the training cohort, 

with TTP36 as prognostic outcome. Green boxes indicate a statistically significant difference between the two models, with 

the number of the best model shown. Red boxes indicate a non-statistically significant difference between the two models. 

 

MV2 

 
Figure S45: Comparison matrix of the DeLong test with MV2 segmentation for the cross-validation of the training cohort, 

with TTP36 as prognostic outcome. Green boxes indicate a statistically significant difference between the two models, with 

the number of the best model shown. Red boxes indicate a non-statistically significant difference between the two models. 

 

MV2 external validation 

 
Figure S46: Comparison matrix of the DeLong test with MV2 segmentation for the external validation with the validation 

cohort, with TTP36 as prognostic outcome. Green boxes indicate a statistically significant difference between the two 

models, with the number of the best model shown. Red boxes indicate a non-statistically significant difference between the 

two models. 
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LIONZ 

 
Figure S47: Comparison matrix of the DeLong test with LIONZ segmentation for the cross-validation of the training cohort, 

with TTP36 as prognostic outcome. Green boxes indicate a statistically significant difference between the two models, with 

the number of the best model shown. Red boxes indicate a non-statistically significant difference between the two models. 

 

LIONZ external validation 

 
Figure S48: Comparison matrix of the DeLong test with LIONZ segmentation for the external validation with the validation 

cohort, with TTP36 as prognostic outcome. Green boxes indicate a statistically significant difference between the two 

models, with the number of the best model shown. Red boxes indicate a non-statistically significant difference between the 

two models. 


