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Abstract

Accidental chain reactions, or criticality accidents, can occur when fissile materials like uranium

are arranged to sustain a self-amplifying neutron reaction. This thesis investigates how the spa-

tial distribution of uranium dissolved in water influences the risk of reaching a critical state. A

cylindrical vessel—commonly used in nuclear storage—was modeled, and thousands of possible

configurations were evaluated using the Serpent Monte Carlo code. A genetic algorithm (GA) was

implemented to evolve and optimize the most reactive arrangements, supported by a Bayesian

optimizer that predicts promising distributions. Simulations were run using 1430 cells, a popu-

lation of 100, and a 5-day wall time on a supercomputer. The GA successfully identified more

critical distributions than the initial biases in several cases. However, some runs failed to achieve

criticality, highlighting a trade-off between convergence speed and solution quality. Geometry

and uranium mass were found to influence spatial patterns significantly. Limitations included

the small population size, high computational demands, and supercomputing-related issues. This

study demonstrates the potential of GAs in criticality simulations and suggests future improve-

ments such as adaptive Serpent settings, progressive segmentation, and informed initialization.

Fine-tuning algorithmic parameters could further enhance performance and robustness.





Abstract (in Dutch)

Criticaliteitsongevallen kunnen ontstaan wanneer splijtbaar materiaal, zoals uranium, zodanig

verdeeld is dat een zichzelf versterkende kettingreactie mogelijk wordt. Deze scriptie onder-

zoekt hoe de ruimtelijke verdeling van in water opgeloste uranium invloed heeft op het risico

op kriticiteit. Een cilindrisch vat, typisch voor nucleaire opslag, werd gemodelleerd. Duizenden

configuraties werden geëvalueerd met behulp van de Serpent Monte Carlo-code. Een genetisch

algoritme (GA) werd gebruikt om kritische verdelingen te optimaliseren, ondersteund door een

Bayesian optimizer die veelbelovende configuraties voorspelt. De simulaties werden uitgevoerd

met 1430 cellen, een populatie van 100 individuen en een rekentijd van vijf dagen op een su-

percomputer. In meerdere gevallen vond het GA kritischer verdelingen dan de oorspronkelijke

beginsituaties. Sommige runs bereikten echter geen kriticiteit, wat wijst op een afweging tussen

snelheid en nauwkeurigheid. Geometrie en massa bleken bepalend voor de verdelingspatronen.

Beperkingen waren onder andere de beperkte populatiegrootte, hoge rekenlast en technische

beperkingen bij supercomputing. Deze studie toont het potentieel van GA’s in criticaliteitsanal-

yses en beveelt verbeteringen aan zoals adaptieve Serpent-instellingen, progressieve segmentatie

en slimme initialisatie.





Chapter 1

General

1.1 Introduction

Nuclear energy is a powerful phenomenon with a broad range of applications. The energy released

during nuclear reactions and radioactive decay can be harnessed for electricity generation, medical

treatments, advanced materials research, and more. Among these processes, fission is particularly

important due to the tremendous amounts of energy it produces.

When a fission reaction occurs, the surrounding environment can enable a self-sustaining chain

reaction. This may be intentional—as in a nuclear reactor—or accidental, which can lead to

hazardous situations. The intense energy and radiation released during a criticality event can be

lethal to anyone nearby if proper shielding and protocols are not in place.

Several criticality accidents have occurred throughout history. One notable example is the

Tokaimura accident in Japan, where two workers died after receiving fatal doses of radiation [1].

The incident was caused by the unauthorized use of stainless steel buckets to dissolve uranium

oxide powder, bypassing the mandated dissolution tank designed with a safe geometry for fissile

material. This violation led to the formation of a critical mass inside a precipitation tank [2].

The workers’ lack of understanding of the parameters influencing criticality ultimately led to the

accident.

Furthermore, a criticality event is not excluded to one setting. Criticality risks can also arise

during nuclear fuel fabrication, storage, and transportation. Conservative design approaches and

strict procedural safeguards are essential to prevent accidental criticality in any system handling

fissile material.

It is crucial to carefully manage parameters such as mass, enrichment, geometry, moderation,

reflection, density, and interactions between units [3]. However, these are not the only factors

that matter. The spatial distribution of fissile material within a system also plays a significant

role. For example, the effective multiplication factor of a uranium precipitate in solution can

differ substantially from that of a uniformly distributed uranium solution.



1.2 Problem Statement

While criticality safety is a well-researched field, there remains a lack of studies focusing on

the most critical distribution of fissile material within a system. The optimal distribution can

vary significantly depending on factors such as fissile material mass, enrichment level, and the

dimensions of the system. For certain parameters, the most critical configuration might involve a

higher concentration of mass at the center of the vessel, while in other cases, a uniform solution

might be more dangerous. Most likely, the critical configuration lies somewhere between these

extremes.

Understanding whether real-world scenarios could drive a system toward criticality is crucial for

enhancing safety measures. Several situations highlight the importance of studying the most

critical configuration of fissile material within a system.

One example is precipitation: if uranium powder settles at the bottom of a vessel, a locally

critical configuration could develop. Similarly, if liquid is lost through evaporation or leakage,

the resulting increase in fuel concentration could push the system closer to criticality.

Mechanical disturbances—such as dropping or shaking a vessel—could also redistribute precipi-

tated material unevenly. In such cases, fissile material might accumulate at the center or along

the walls of the vessel, creating a more reactive geometry.

By understanding the critical risks associated with these scenarios, better strategies can be

developed to prevent accidents and improve overall system safety.

The objective of this thesis is to determine the most critical geometric distribution of uranium in

solution under these conditions. The analysis will explore how variations in total mass, enrich-

ment level, and vessel geometry influence the critical configuration. Criticality calculations will

be performed using the Serpent simulation software. An optimization algorithm will simulate

different distributions to identify the configuration that presents the highest risk of criticality.

Through iterative simulations and detailed analysis, the most critical arrangement of fissile ma-

terial will be determined.
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Chapter 2

Theoretical Framework

2.1 Nuclear Physics

2.1.1 Nuclear Fission

When a nucleus is bombarded with neutrons, there is a probability that it will undergo a nuclear

reaction. Among these reactions, fission is of particular interest. When a fissile nucleus, such as
235U, absorbs a neutron, it can split into two smaller daughter nuclei. Together with these fission

products, the reaction produces a substantial amount of energy. In the case of 235U, this energy

amounts to approximately 200 MeV per fission event (for comparison: the burning of a single

carbon atom in a fire produces around 4 eV). In addition to energy, each fission event also emits

a few neutrons (see Fig. 2.1).

Figure 2.1: Nuclear fission reaction [4]

The exact number of released neutrons depends on the energy of the incident neutron and the

nuclide that is being fissioned. But on average, most fissile nuclei emit between two and three

neutrons per fission [5]. These newly generated neutrons can subsequently induce further fission

reactions in other fissile nuclei, potentially leading to a self-sustaining chain reaction.

2.1.2 Fast, Thermal and Epithermal neutrons

As mentioned earlier, the energy of the incoming neutron is an important factor in determining

its interactions with a nucleus. Neutrons are generally classified into three broad categories based

on their energy: fast, thermal and epithermal neutrons.



Thermal neutrons derive their name from their interaction with the surrounding medium, where

they reach thermal equilibrium with the environment. This means their energy distribution fol-

lows the Maxwell-Boltzmann distribution, which describes the statistical distribution of particle

energies in a system at thermal equilibrium [6]. Figure 2.2 shows the distribution for different

temperatures.

Figure 2.2: The Maxwell-Boltzmann flux distribution for 25 K, 300 K and 2000 K moderator
temperature [7]

In most reactor environments, thermal neutrons have energies of approximately 0.025 eV at room

temperature (293 K).

In contrast, fast neutrons possess much higher kinetic energies, typically ranging from 1 MeV to

10 MeV. In a nuclear reactor context, these are produced directly during fission reactions. Ep-

ithermal neutrons have energies that fall between the thermal and fast neutron energy ranges [6].

In PWRs, thermal neutrons are particularly important because they have a significantly higher

probability of inducing fission compared to fast neutrons. Therefore, slowing down fast neutrons

— a process known as moderation — is a crucial aspect of reactor operation [6].

2.1.3 Interactions of interest

Before going further, neutrons can experience some other interactions besides fission. These

are absorption and scattering. During an absorption reaction, the nuclide captures a neutron

but does not undergo fission. For example a hydrogen atom can absorb a neutron and become

deuterium, which consists of a proton and a neutron [8].

1H+ n → 2H+ γ

Furthermore, scattering is another key interaction which can be classified into two types: elastic

and inelastic. The distinction lies in how energy is exchanged during the interaction. In an elastic

scattering event, a neutron collides with a nucleus—such as a proton—and transfers part of its

kinetic energy, causing the neutron to slow down without exciting the nucleus [9]. This process

18



is fundamental for moderating neutrons in a thermal neutron reactor, as well as for neutron

reflection, both of which will be discussed later. In contrast, inelastic scattering involves the

neutron transferring enough energy to the nucleus to excite it to a higher energy state, often

resulting in less efficient moderation at low energies [9].

2.1.4 Microscopic Cross Section

The microscopic cross section σ, represents the probability that a particle will interact with a

specific nucleus and undergo a particular nuclear reaction. It is measured in barns (1 barn =

10−24cm−2), a unit roughly corresponding to the cross-sectional area of a uranium nucleus [10].

For fission, this probability is quantified by the fission cross section, which depends on several

factors. The most significant are the type of nucleus and the energy of the incoming neutron [6].

In general, fissile isotopes such as 235U exhibit a much higher fission cross section for thermal

(low-energy) neutrons. However, some isotopes primarily absorb neutrons at specific energy

ranges rather than undergoing fission. For example, 238U can absorb a neutron and, through

subsequent decay, transform into 239Pu — a fissile material with a high fission cross section for

thermal neutrons. Because of this, 238U is classified as a fertile nuclide [6], [9].

Figure 2.3: Fission cross sections for 235U, 238U and 239Pu [11]

2.1.5 Neutron Flux

The following theoretical development in Sections 2.1.5 through 2.1.7 is primarily based on the

course ”Reactor Physics” taught by Prof. Dr. Ir. Van den Eynde at Hasselt University [6].

In reactor physics, the neutron flux is a fundamental quantity representing the flow of neutrons

through a unit area. However, since the flux can vary with direction, the scalar flux is introduced

to simplify the description of neutron behaviour.
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The scalar flux, denoted as ϕ(r, E, t), is obtained by integrating the angular neutron flux over

all directions. It represents the total neutron flux at a point, independent of direction.

Mathematically, the scalar flux is expressed as:

ϕ(r, E, t) =

∫
4π

φ(r,Ω, E, t) dΩ

Here:

• φ(r,Ω, E, t) is the angular flux, describing the neutron flux as a function of position (r),

direction (Ω), energy (E), and time (t).

• The integration is performed over the entire solid angle (4π).

The scalar flux can be interpreted as the average number of neutrons passing through

a unit area per unit time, regardless of their direction. Now that we have established

a clear understanding of the scalar and angular flux, we can proceed to discuss the Neutron

Transport Equation (NTE).

2.1.6 Neutron Transport Equation

The neutron population within a system is not static; it constantly changes as neutrons are gained

or lost. The rate of change in the neutron population within a given volume can be expressed

as the difference between the neutron gain mechanisms and the neutron loss mechanisms within

that volume:

∂

∂t

[∫
V

n(r, E, Ω̂, t) d3r

]
dE dΩ̂ = Gain in V - Loss in V

Interaction loss is one of the loss mechanisms for neutrons in a system. Neutrons can undergo

interactions such as absorption or scattering, which result in their removal from the population

being monitored. Since multiple types of interactions can occur, they are collectively represented

by the total macroscopic cross section, Σt. The corresponding loss term is given by:

∫
V

Σt(r, E, t)φ(r, E, Ω̂, t) dV

The total macroscopic cross section Σt(r, E, t) represents the probability per unit path length

that a neutron at a given position r, with energy E, and at time t, will undergo an interaction

with the material.

The macroscopic cross section Σ is calculated as the product of the microscopic cross section

σ and the atomic number density N of the material:

Σ = σ ×N

Hence, Σ accounts for the cumulative likelihood of neutron interactions within the material,

incorporating both the probability per nucleus and the number of target nuclei per unit volume.
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Additionally, neutrons may also leak out of the volume being considered. The leakage term can

be initially expressed as:

∫
A

j(r, E, Ω̂, t) d⃗A

However, since all other terms are integrated over the volume, this term is transformed using the

Gauss (Divergence) theorem to:

∫
V

Ω̂ · ∇φ(r, E, Ω̂, t) dV

Furthermore, the population increases through gain mechanisms. These are fission and scattering.

Each fission event releases between 2 and 3 neutrons, depending on the energy of the incident

neutron. The fission gain term is given by:

∫
V

χ(E)

4π

∫ ∞

0

∫
4π

v(E ′)Σf (r, E
′, t)φ(r, E ′,Ω′, t) dΩ′ dE ′ dV

The term χ(E) represents the neutron birth spectrum, or the energy distribution of emitted

neutrons. The function v(E ′) indicates the number of neutrons produced per fission as a function

of the energy E ′ of the inducing neutron.

When neutrons scatter from a different energy and angle to the monitored energy and angle,

they contribute to the neutron population. This is called in-scattering and the term is:

∫
V

∫ ∞

0

∫
4π

ΣS(r, E
′ → E, Ω̂′ → Ω̂, t)φ(r, E ′,Ω′, t) dΩ̂′ dE ′ dV

Here, ΣS represents the scattering cross section, tracking neutrons moving from energy E ′ to E

and from direction Ω′ to Ω.

If an independent neutron source exists, an additional gain term is added:

∫
V

s(r, E, Ω̂, t) dV

This term does not include the neutron population density n(r, E, Ω̂, t) since it is independent

of it.

Combining all terms together, the neutron transport equation is complete.∫
V

∂n(r, E,Ω, t)

∂t
dV = −

∫
V

Σt(r, E, t)φ(r, E, Ω̂, t)dV

−
∫
V

Ω̂.∇φ(r, E, Ω̂, t)dV

+

∫
V

χ(E)

4π

∫ ∞

0

∫
4π

v(E ′)Σf (r, E
′, t)φ(r, E ′,Ω′, t)dΩ′dE ′dV
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+

∫
V

∫ ∞

0

∫
4π

ΣS(r, E
′ −→ E, Ω̂′ −→ Ω̂,t)φ(r, E ′,Ω′, t)dΩ̂′dE ′dV

+

∫
V

s(r, E, Ω̂, t)dV

2.1.7 The k-eigenvalue problem

When the loss of neutrons is equal to the gain of neutrons. The neutron population remains

stable, and the system is therefore stationary (
∫
V

∂n(r,E,Ω,t)
∂t

dV = 0) . In the context of an

operating reactor, the independent neutron source is typically absent or negligible so it will be

excluded from further consideration. Furthermore, to simplify the equation, it can be written in

operator form.

Mφ(r, E, Ω̂) = Fφ(r, E, Ω̂)

where

• M = Leakage term + total interaction loss term - scattering gain term

• F = Fission term

This problem is a homogeneous problem but it isn’t necessarily singular when looking for a non-

trivial solution. To find a stationary solution that is non-zero, a scaling factor k is introduced

for the fission operator.

Mφ(r, E, Ω̂) =
1

k
Fφ(r, E, Ω̂)

Here, k is known as the effective multiplication factor (keff), which determines the system’s

criticality state [9]:

• If k > 1, fission production exceeds neutron losses, meaning the system is supercritical.

• If k < 1, neutron losses exceed fission production, meaning the system is subcritical.

• If k = 1, the neutron population remains constant, meaning the system is critical.

Now this problem becomes a k-eigenvalue problem which can be solved using e.g. the Power

iteration method. Solving for this parameter is crucial to asses the criticality of a system con-

taining fissile material. Different approaches exist to determine keff for a system, each with its

own advantages and applications.

This concludes the theoretical foundation based on the aforementioned course material [6].

2.2 MERMAIDS

When fissile material is arranged in a critical configuration, a self-sustaining chain reaction can

occur. This reaction releases tremendous amounts of energy in the form of heat and ionizing

radiation [1]. If this happens unintentionally, it is referred to as a criticality accident [5], posing

an immediate, life-threatening danger to personnel nearby.

Ionizing radiation can damage DNA by breaking molecular bonds, leading to cell death or muta-

tions. At high radiation doses, widespread cellular damage can occur, resulting in severe health

effects [12]. The extent of biological harm also depends on the type of radiation: charged particles

such as alpha particles (helium nuclei) and beta particles (electrons) have a higher linear energy

22



transfer (LET) compared to gamma rays. As a result, they cause more intense local damage,

even though gamma radiation is more penetrating [12].

Because of these risks, ensuring the safety of systems containing fissile material is crucial. Conser-

vative design practices, simplicity in control mechanisms, and strict adherence to safety protocols

are essential. Overly complex systems can introduce opportunities for human error.

Several factors influence the likelihood of reaching a critical state. The acronym MERMAIDS is

commonly used to help remember these criticality parameters [6].

MERMAIDS:

• M = Mass

• E = Enrichment

• R = Reflection

• M = Moderation

• A = Absorption

• I = Interaction

• D = Density

• S = Shape and Size

To fully understand criticality, it is essential to first grasp these underlying parameters. In the

following sections, some parameters and their principles will be discussed in detail.

2.2.1 Moderation

The dilution of a fissile material can decrease the critical mass. This is because, in most cases, the

fissile material is diluted in an aqueous solution. Due to their similar masses, the light hydrogen

nuclei provide optimal energy transfer for neutrons per collision. They can therefore quickly slow

down the fast neutrons to thermal energies. Increasing the likelihood of the neutrons inducing a

fission [9]. An interpretation of this could be a golf ball that does not go too fast when trying to

drop into a hole as shown in figure 2.4.

Figure 2.4: A golf ball that rolls slowly is more likely to fall into the hole [3]

This effect is called moderation and it plays a crucial role in keeping control of a chain fission

reaction. Still hydrogen nuclei can absorb neutrons and diluting the fissile material too much

or surrounding it with too much water can push the system to a over-moderated state. This
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reduces the reactivity but is also dangerous since losing water would make the system more

critical. Inversely, if a system is under moderated, the introduction of water over a longer period

of time could drive the system to criticality. This is a particular concern in the context of

dry stored nuclear fuel where cracks could allow the ingress of water in the form of mist or

condensation increasing the reactivity over time [5].

2.2.2 Fissile Material Density

One could assume that for a subcritical system to become critical, adding more fissile material

would suffice. However, the critical mass of a metallic sphere of 239Pu is much lower then that of

a sphere containing fillings or chips of 239Pu [5], [9]. Research shows that if a subcritical metallic

sphere of 239Pu is dissolved to a subcritical solution containing 239Pu, somewhere inbetween

the system can still become supercritical [13]. This crucial parameter called the fissile material

density therefore has a significant impact on the criticality of a system. Some vessels could have

a subcritical configuration with precipitated fissile material, but could reach criticality due to

stirring after e.g. a fall or other mechanical disturbances [3], [9]. Figure 2.5 illustrates the hazard.

Figure 2.5: Criticality hazard after accidental stirring [3]

Furthermore, an increasing fuel concentration due to water evaporation or leakage out the vessel

could also push a system towards criticality as shown in figure 2.6.
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Figure 2.6: Criticality hazard due to evaporation [9]

In short, fuel concentration is crucial as it can significantly reduce the amount of fissile material

needed to achieve criticality. For example, a solid metallic sphere of uranium enriched to 97.67%
235U has a critical mass of 21.6 kg when surrounded by a water reflector. In contrast, a homoge-

neous water-reflected solution of uranium enriched to 98% can become critical with just around

800 grams of fissile material [14]. Therefore, the fuel density has a significant role in determining

a system’s criticality.

Adequate spacing between atoms is necessary to ensure sufficient moderation. This aspect is

particularly important when determining the most critical distribution of uranium in a solution.

2.2.3 Geometric Dependency

Departing from the spherical shape increases surface area and thus leakage. To store fissile

material, favored geometries are long and small diameter cylinders or thin slab geometries [5].

Figure 2.7 shows a favorable (favorable as in safe and not sustaining a chain reaction) geometry.

Figure 2.7: Favorable geometry for safety [3]
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2.2.4 Reflection

Another important factor to keep in mind is neutron reflection. Surrounding a system with a

reflective material reduces neutron leakage and can push the system closer to criticality. Many

different materials can act as reflectors, but water is commonly used because it also helps to

moderate neutrons. However, neutron reflection has been the cause of several accidents. One

of the most famous examples is the Demon Core accident [1]. During a manual experiment, a

researcher noticed that the beryllium brick (a strong neutron reflector) he was holding over a

plutonium sphere was making the system supercritical. He quickly tried to pull the brick away,

but it slipped from his hand and fell onto the sphere, pushing the system even further into a

supercritical state. This caused an intense burst of radiation, and the researcher died nine days

later from the exposure [1]. Figure 2.8 demonstrates the principle of neutron reflection, where

neutrons that would otherwise escape the system are redirected back, enhancing reactivity.

Figure 2.8: Reduction of neutron leakage due to reflecting objects [3]

Furthermore, it is important to remember that the human body itself can act as a neutron

reflector, since it is largely made of water. A system that is safely subcritical on its own might

become critical if a person stands too close to it.

Another prime example of risk management in this context is assessing the potential flooding of

subcritical storage vessels, which could become critical after the introduction of the water [5], [9].

2.2.5 Other factors

Several factors influencing reactivity have already been discussed, but a few more are worth

considering. One important factor is the enrichment of the fissile material, which indicates the

proportion of fissile nuclides within the material. For instance, if we have 1 kg of uranium with

an enrichment of 0.80, approximately 800 grams will consist of 235U, while the remaining 200

grams will be 238U. Higher enrichment increases the number of fissile nuclei per unit volume,

thereby enhancing reactivity [3], [5].

Additionally, storing multiple subcritical vessels in close proximity can lead to an unintended

increase in reactivity. This interaction between vessels must always be accounted for, as it can

push an otherwise subcritical system toward criticality [3] (see Fig. 2.9).
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Figure 2.9: Interaction between vessels increasing overall reactivity [3]

2.3 Monte Carlo Simulations

While it is possible to solve the NTE using numerical methods, doing so becomes impractical for

this research due to the large number of varying configurations involved. Implementing direct

methods for each of these would be complex and inefficient—particularly in cases where the fuel

distribution exhibits strong gradients [6]. Since our main interest lies in determining the keff ,

which is exactly what Monte Carlo methods are designed to compute, they are a suitable and

efficient choice for this application.

The Monte Carlo method operates as follows: it is a computational method used to estimate the

probability of various outcomes in random processes. When the probability of a specific event

is known, a random number can be used to determine whether or not the event occurs. By

repeating this simulation many times, reliable statistical estimates can be obtained [6].

A simple analogy can illustrate this concept. Suppose a football striker has a 60 percent chance

of scoring a goal when receiving the ball in the box. To simulate a single attempt, one could

generate a random number between 0 and 100. If the number is less than or equal to 60, the

striker scores; if it is greater, the striker misses. Repeating this simulation over many attempts

for all players of the team would provide a good approximation of the teams performance —

assuming the random numbers are truly random.

This is why Monte Carlo methods are widely used in nuclear physics, where systems often involve

complex interactions and countless particles. Because these systems can exhibit a large variety

of possible outcomes, Monte Carlo simulations are a powerful tool to model their behaviour and

predict statistical trends.

2.3.1 Serpent Monte Carlo Code

Serpent is a Monte Carlo-based neutron transport code designed to evaluate the criticality of

nuclear systems. To run a simulation, the user must first define the system’s configuration in an

input file. This file contains detailed material and geometry definitions necessary for modelling

the system [15].
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The material definition section specifies the composition of materials present in the system,

including the types of nuclides and their relative atomic or mass fractions. The geometry is

constructed by dividing the system into cells, which are defined using basic geometrical shapes

such as cylinders, planes, spheres, and cubes. Each cell is then assigned a material from the

material definitions, effectively mapping the physical setup of the configuration [6].

Once the setup is complete, the simulation begins. Serpent generates a specified number of source

neutrons and distributes them randomly throughout the defined cells [15]. For each neutron, it

calculates the track length, which is the distance a particle can travel before interacting. If this

length exceeds the distance to the nearest cell boundary, the neutron moves into the adjacent

cell [6], [16].

Within each cell, Serpent uses probabilistic methods based on the isotope composition to deter-

mine which nuclide the neutron will interact with, and what type of interaction will occur (e.g.,

fission, absorption, scattering). If the neutron survives the interaction, it continues its path;

otherwise, it is removed from the simulation [6], [16]. The general flow that the particles follow

is shown in Figure 2.10.
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Figure 2.10: General Monte Carlo simulation flow [16]

For example, if 4000 neutrons are simulated in a single generation and only 3000 survive after

accounting for all interactions, the resulting effective multiplication factor would be 0.75. Serpent

repeats this process over many neutron generations to calculate an average keff , providing a

reliable assessment of system criticality. As the system size and the number of particles increase,

so do the computational demands. Fortunately, Monte Carlo simulations can be parallelized

because each simulation is independent of the others. This makes it possible to distribute the

computational workload across multiple CPU cores and aggregate the statistical information

from the independent runs in a final result.

2.4 Genetic Algorithms

Identifying the most critical distribution of uranium within the vessel is fundamentally an op-

timization problem. The objective is to find the configuration that maximizes the system’s

reactivity, representing the most dangerous scenario from a criticality safety perspective. Given

the complex and non-linear relationship between uranium distribution and neutron behavior,

solving this problem directly is challenging. Genetic algorithms offer an effective solution for this

type of optimization task.

Their ability to find global optima even in complex, non-linear, and high-dimensional problems

where traditional methods might get stuck in local optima. Additionally, GAs are non-intrusive:

they do not require detailed knowledge of the internal structure of the problem, only a way to

evaluate how good a solution is. This makes them extremely versatile and useful for a wide range

of applications.

Genetic algorithms are computational models of biological evolution. Here, individuals (bit

strings) undergo natural selection comparable to the natural world. First, a population of indi-

viduals is created where slight variations between individuals make some more fit than others.
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Based on a fitness parameter individuals will survive or be eliminated. Selected (surviving) in-

dividuals will be copied to the next generation. But not entirely, the selected individuals will be

crossed and create offspring. Some of the newly produced offspring can also undergo mutation

(random bit flipped) [17].

The following figure illustrates the working principle of the genetic operators—selection, crossover,

and mutation—in greater detail.

Figure 2.11: Genetic operators : selection, crossover and mutation [18]

Over successive generations, the population evolves toward increasingly optimal solutions. Ide-

ally, each new generation is, on average, fitter than the one before. By repeating this evolu-

tionary cycle for many generations, genetic algorithms can effectively converge on the best—or

near-best—solution to complex optimization problems.

2.5 Bayesian Optimization

Bayesian Optimization (BO) is a sample-efficient technique for finding the optimum of objective

functions that are expensive to evaluate and analytically unknown. These so-called black-box

functions do not provide derivatives, nor do they have a closed-form expression that can be

directly analysed. In such cases, the only way to learn about the function is by evaluating it at

specific points—and since each evaluation can be costly, as in large-scale simulations or physical

experiments, it is crucial to minimize the number of evaluations required [19].

Bayesian Optimization addresses this challenge by constructing a surrogate model, typically a

Gaussian Process (GP), which is updated after each function evaluation. The GP provides both

a mean prediction and a measure of uncertainty (variance) over the entire domain. Instead of

sampling blindly, the algorithm uses an acquisition function to determine where to evaluate the

function next. This function balances two competing objectives:

• Exploration: sampling where the surrogate model is uncertain.

• Exploitation: sampling where the surrogate model predicts high performance.

The result is a method that intelligently navigates the search space to find the global optimum

using relatively few evaluations.
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A typical run of BO is shown in Figure 2.12. The dashed line represents the true (unknown)

objective function, while the solid line shows the surrogate model’s prediction. The shaded

region indicates the model’s uncertainty. The green curve represents the acquisition function,

which peaks in regions of high expected improvement. In each iteration, the acquisition function

is maximized to select the next point to evaluate, which is then used to update the surrogate

model. Over time, this iterative process refines the model and converges toward the optimal

solution [19].

Figure 2.12: Bayesian Optimization in action [19]

This approach is especially useful in optimization problems where evaluations are slow or ex-

pensive, or where the objective function has multiple local optima. It offers a principled way to

make decisions under uncertainty and adaptively improves over time.

However, Bayesian Optimization also comes with limitations that must be considered:

• Limited information: Often, the function is expensive to sample, so data is sparse. In

such cases, one must either make strong (and possibly incorrect) assumptions about the

function or rely on weak priors, both of which affect the optimization performance.

• Exploration vs Exploitation: Tuning the acquisition function is a challenge. Excessive

exploration wastes evaluations without progress, while excessive exploitation risks converg-

ing to a local optimum instead of the global one.

• Scalability with dimension: As the number of parameters increases, the search space

grows exponentially. This ”curse of dimensionality” means more samples are needed to

cover the space adequately. It also increases the number of kernel parameters and acqui-

sition function hyperparameters, making optimization slower and more sensitive to poor

choices.
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Despite these limitations, Bayesian Optimization remains one of the most effective tools available

for sample-efficient optimization in black-box settings [19].
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Chapter 3

Methodology

The general methodology follows a structured process. A cylindrical vessel is defined with a set

of fixed parameters: radius, height, total mass of uranium in solution, and the enrichment level of

the uranium. This information is passed to the algorithm, which then randomly distributes the

uranium mass within the cylinder. This step is repeated across multiple vessels to generate an

initial population of candidate configurations. A cylinder is chosen because from a engineering

perspective it is the most relevant storage unit but the algorithm can be adjusted to create e.g. a

cuboid vessel. Additionally, the composition of both the dissolved fissile material and the solvent

can be modified to explore other configurations of interest.

For each individual in the population, a Monte Carlo simulation is performed using Serpent. The

simulation returns the keff corresponding to each configuration. This initial population forms

generation one.

From this population, a predefined percentage of the most fit individuals—those with the highest

keff values—are selected. These selected individuals are then combined (crossed) to produce

offspring, forming the next generation. The process of selection, crossover, and evaluation via

Monte Carlo simulation is repeated over multiple generations. The algorithm continues until an

optimal or sufficiently high keff value is reached, indicating the most critical configuration found.

Additionally, by varying the mass of uranium in the solution while keeping the vessel dimensions

constant, the algorithm can be rerun to identify the most critical distribution for each mass. This

approach allows for a comparison of results across different masses. Similarly, by maintaining the

mass constant and changing only the vessel dimensions, the effect of the vessel size on the critical

distribution can be studied. However, not all dimensions are relevant. For instance, the esti-

mated minimal critical diameter for an infinitely long cylinder of homogeneous water-moderated

plutonium is approximately 15 cm for a concentration of 0.25 kg/L [20]. Simulating smaller

diameters would therefore yield uninteresting results. Moreover, the critical mass for an aque-

ous 235U solution in spherical geometry, optimized for maximum moderation, is approximately

784 g [21]. Therefore, using a smaller quantity of fissile material would not be suitable when

aiming to achieve criticality.



3.1 Vessel segmentation

Since Serpent only allows one material definition per cell, creating a non-uniform material dis-

tribution inside the vessel requires splitting it into multiple cells, each with its own material

definition. This is done by subdividing the original cylindrical vessel into smaller regions, so that

different material compositions can be assigned where needed.

To make it more concrete, take the following example: if the vessel needs to have four regions

from bottom to top, each with an increasing fuel density, the vessel must be sliced into four

separate cells. Four material definitions would then be created, each corresponding to one of

these cells. If a finer gradient in fuel density is desired, even more cells and material definitions

must be added.

In short, achieving a high-resolution distribution requires many cells. To accomplish this, three

types of segmentation are applied to the cylinder:

• Axial segmentation: The cylinder is sliced horizontally into discs at different heights.

• Radial segmentation: Each disc is divided into concentric rings using cylinders of in-

creasing radii.

• Planar segmentation: Each ring is sliced into wedge-shaped sectors using vertical planes,

similar to cutting a pizza into slices.

Figures 3.1, 3.2 and 3.3 illustrate the performed segmentations.

Figure 3.1: Axial segmentation of the vessel

Figure 3.2: Radial segmentation of the vessel
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Figure 3.3: Planar segmentation of the vessel

After completing the segmentation, the vessel is divided into numerous cells, each representing

a distinct segment of the structure. Figure 3.4 shows the result.

Figure 3.4: Final form of vessel divided into cells

Carefully keeping track of the geometry of each resulting cell is essential, because each material

definition must have the correct mass fractions of uranium and water assigned to it. Flexibility

in segmentation is also important: the number of slices can be chosen differently depending on

the needed resolution. While increasing the number of segments gives a finer distribution and

better accuracy, it also leads to a significant increase in computational workload. To handle this,

high-performance computing resources, such as a supercomputer, will be used.

Once the segmentation scheme is established, the algorithm assigns each cell a fraction of the

total uranium mass according to the defined distribution, allowing for accurate simulation in

Serpent.

3.2 Fissile distributions

As previously mentioned, the individuals in the initial population are generated randomly. This

randomness is crucial for maintaining diversity within the population, which reduces the risk of

the algorithm becoming trapped in a local optimum. Figure 3.5 shows a random distribution

that has 7 axial layers, 7 radial layers and 5 planar segmentations. This gives a total of 490 cells.
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(a) Lateral view (b) Top view

Figure 3.5: Relative fission power plot of random distribution

However, it is also possible to introduce intentionally biased initial distributions. These strategi-

cally chosen configurations are incorporated into the population to ensure that certain ”genes”

are present from the start, promoting faster convergence of the simulation.

In this context, three specific initial distributions are considered: a uniform distribution, where

the uranium mass is evenly spread throughout the vessel, an axially centered distribution, where

the majority of the mass is located near the axial middle of the vessel and a concentrated dis-

tribution which concentrates the mass axially and radially. Appendix A.1 contains the functions

that are used to generate these initial distributions. Including these extremes provides a broader

search space and increases the likelihood of identifying the most critical configuration. Figures 3.6

, 3.7 and 3.8 display the biased distributions.

(a) Lateral view (b) Top view

Figure 3.6: Relative fission power plot of uniform distribution
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(a) Lateral view (b) Top view

Figure 3.7: Relative fission power plot of axially centered distribution

(a) Lateral view (b) Top view

Figure 3.8: Relative fission power plot of concentrated distribution

3.3 Optimization Algorithm

The optimization algorithm employed in this study is a genetic algorithm, inspired by the prin-

ciples of natural evolution [17]. The process begins with the generation of an initial population

of individuals, each representing a unique mass distribution within the vessel.

Each individual is represented by a ”DNA” array, where each element corresponds to the mass

of uranium assigned to a specific cell in the geometry. The structure of this array reflects the

logical ordering of the geometry: starting from the first axial layer, then iterating through each

radial ring and planar slice.

Depending on the chosen distribution method—uniform, axially centered, concentrated, or ran-

dom—each cell is assigned an appropriate mass value. This assignment proceeds cell by cell
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until the entire DNA array is constructed. The resulting array is then used to generate the corre-

sponding Serpent input file. Starting from cell number 1, a material definition ”mat solution 1” is

created which contains the mass fractions and density for that cell. This is performed for all cells

in the configuration. Next, the geometry definitions are created for the cells which is dependant

on the axial, radial and planar segmentations entered in the algorithm. The functions shown

in Appendix A.2 calculate the dimensions of the cylinders needed for the segmentations and

the parameters for the planes. Afterwards, the created cells can be assigned the corresponding

material definition. Figure 3.9 shows part of a created input file.

(a) Material definitions (b) Geometry definitions

Figure 3.9: Input file containing material and geometry definitions

After generating the input file for an individual, a Monte Carlo simulation is performed using

Serpent. The output of this simulation provides the effective multiplication factor keff , which

serves as the fitness value for that individual. The functions in Appendix A.3 are used to run

the input file and extract keff from the output file.

Following the fitness evaluation, a fixed percentage of the fittest individuals is selected to form

the next generation. These individuals are crossed to create offspring, which are then introduced

as new individuals. During crossover, each cell of the new offspring inherits a fraction of material

from one parent and the complementary fraction from the other parent. Typically, this fraction

is set to one-half, ensuring an even contribution from both parents. This strategy preserves

genetic diversity while allowing gradual convergence towards more optimal solutions. The DEAP

library [22] is utilized to implement the genetic algorithm efficiently.

To maintain diversity and reduce the risk of premature convergence, mutation is introduced.

Mutations occur at a predefined rate and with a specific effect size, where random modifications

are applied to some offspring. For each cell in a mutated individual, a small random value—drawn

from a Gaussian distribution—is either added or subtracted based on the mutation effect.

Since crossover and mutation may introduce small deviations in the total uranium mass, nor-

malization is applied to each newly created individual. This is achieved by calculating the total

mass of the offspring and scaling each cell’s value such that the overall mass matches the original

target. Specifically, each cell is multiplied by the ratio of (initial mass / current total mass of
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the individual).

Additionally, a Bayesian optimization algorithm is integrated to enhance the search process. This

algorithm records evaluated individuals and predicts optimal configurations based on acquired

keff values. In each generation, one individual predicted by the Bayesian algorithm is added to

the population. Due to the high dimensionality of the DNA array (often exceeding 1000 elements),

the Bayesian algorithm focuses on axial distributions only. It sums the cell masses within each

axial layer for every evaluated individual, thus generating predictions at the axial level. As a

result, the algorithm outputs mass values for each axial layer, which are then evenly redistributed

across the cells within that layer. While this approach improves prediction capability, it also

reduces the axial ”distribution details” of the predicted individual. Nevertheless, the additional

diversity brought by these predictions benefits the optimization process.

Once all offspring are created and normalized, the new generation undergoes evaluation, and

the cycle of fitness calculation, selection, crossover, mutation, and normalization continues. This

iterative process is repeated for a predefined number of generations or until convergence to an

optimal keff value is achieved. Appendix A.4 contains the Python code for the Genetic and

Bayesian optimization algorithm.

3.4 VSC Network

The number of particles, interactions, cells, individuals, and generations needed to solve this

optimization problem would likely require several weeks of computation on a standard laptop.

However, since Monte Carlo simulations can be parallelized, it is possible to spread the thousands

of individual simulations over multiple CPU cores [15]. This makes the use of a supercomputer

essential for this project. Thanks to Hasselt University’s connection to the Flemish Supercom-

puting Center (VSC), it is possible to run the algorithm on a supercomputing infrastructure,

drastically reducing the total wall clock time and allowing for a much finer resolution of the

distribution.
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Chapter 4

Results

The initial development and testing of the code were carried out on a local laptop. Early tests

primarily focused on verifying basic functionality and ensuring proper input/output handling.

These preliminary runs used approximately 200–400 spatial cells, as higher resolutions would

exceed the memory limitations imposed by Serpent on the local machine. Due to these hardware

constraints, it became essential to transition to a supercomputing infrastructure to effectively

analyze the algorithm’s performance with larger populations, increased spatial resolution, and

extended generational depth.

4.1 Analysing Supercomputer Performance

Before obtaining the final results, tests were conducted on the VSC network. These initial tests

aimed to enhance the understanding of algorithm efficiency and the computational capabilities

of the infrastructure.

Serpent, the primary simulation tool used, features built-in support for OpenMP, which signif-

icantly simplifies parallelization. This allows to distribute the load of computing over multiple

cores which in turn decreases computing time.

To make optimal use of this feature, trial simulations were conducted using a configuration of

6000 neutrons per simulation in Serpent. The number of generations was fixed at 100 active and

20 passive generations, to get a good statistical accuracy for each individuals performance.

The spatial segmentation of the simulation was configured with 15 axial cuts, 15 radial cuts,

and 15 planar cuts. Since the total number of cells is calculated as the product of the number

of axial cuts, radial cuts, and twice the number of planar cuts, this setup resulted in a total of

6,750 cells. In Serpent, computational demand increases significantly with the number of cells,

as the software continuously tracks the positions of neutrons throughout the simulation [15].

Consequently, increasing the resolution of the distribution directly amplifies the computational

load.

To optimize computational resources, the OpenMP parallel calculation setting in Serpent was

configured to use the maximum number of available cores. The request was set to ”max,” and

72 cores were requested from the VSC computing cluster. The computing cluster operates using

job scripts to allocate resources, which requires specifying the desired computational power and



estimated runtime [23]. The simulations were executed on wICE, KU Leuven/UHasselt’s latest

Tier-2 cluster. This system consists of nodes equipped with two CPUs, each containing 36 cores,

allowing for parallel processing with a total of 72 cores per node. The large memory capacity

of 256 GB RAM per node is also essential for Serpent to handle the extensive particle tracking

required during simulations [23].

During the initial setup with 6,750 cells, a simulation involving a population of 100 individuals

running for 100 generations required approximately three days of continuous computation on the

wICE cluster. Further testing was conducted with an increased number of cells, reaching 16,000.

This higher resolution required about 210 GB of the available RAM and extended the simulation

time to approximately eight days for the same number of individuals and generations. These

results clearly demonstrate that increasing the resolution of the uranium distribution significantly

impacts computational requirements, both in terms of memory and processing time. Balancing

the resolution with the available computational resources was therefore a critical consideration

in the optimization process.

4.2 Determining an Effective Algorithm Setup

To determine the optimal setup for the simulations, several parameters were carefully considered.

It was essential to generate a sufficient number of results to enable meaningful comparisons. Given

that the total available computation time was limited, evaluating the algorithm’s wall time was

a key factor.

To this end, four test runs were conducted using different configurations to assess the algorithm’s

performance under varying conditions. These configurations involved changes in the geometry

dimensions, uranium mass, number of cells, and population size. Each simulation was allowed a

maximum wall time of 70 hours, and the resulting outcomes were analyzed.

The primary metrics used for comparison were the number of generations completed within

the allotted time and whether convergence was achieved. In this context, convergence refers to

the algorithm’s ability to discover a distribution that outperforms the initially provided biased

distributions. For each setup, it was important to evaluate how effectively and efficiently the

algorithm improved the configuration over time. Table 4.1 provides a summary of the parameters

and results of the test runs.

Table 4.1: Overview of test runs and their parameters

Parameter Run 1 Run 2 Run 3 Run 4

Radius [cm] 40 40 20 10

Height [cm] 70 70 50 50

Uranium mass [g] 4000 3000 3000 4000

Number of cells 1430 3500 4000 2002

Population size 100 200 200 100

Number of generations 135 78 80 97

Computation Time [h] 70 70 70 22

Converged yes no no no
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The table shows that the configuration with 1430 cells successfully converged after 135 genera-

tions. In contrast, the setups with 3500 and 4000 cells did not show improvement, even after 78

and 80 generations respectively, despite having populations twice as large. This clearly indicates

that increasing the number of cells slows down convergence.

This observation is expected, as the DNA array of each individual grows with the number of

defined cells. A higher resolution leads to a larger search space, making it more challenging for

the algorithm to efficiently find an optimal configuration. Therefore, it becomes important to

balance resolution with computational feasibility, depending on the level of detail required for

the analysis.

The following figures illustrate the final configurations at the end of the 70-hour wall time for

runs 1, 2, and 3. Unfortunately, the fission power plots for run 4 were lost and could not be

included.

(a) Lateral view (b) Top view

Figure 4.1: Relative fission power plot of test run 1

Test run 1 demonstrates convergence of the configuration toward an optimal solution, successfully

identifying a distribution with a higher keff than the initial biased distributions.
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(a) Lateral view (b) Top view

Figure 4.2: Relative fission power plot of test run 2

In contrast, test runs 2, 3, and 4 did not achieve such improvement. It is worth noting, however,

that test run 4 was only executed for 22 hours, as it was started at a later time. While test

runs 1 and 2 have similar configurations, they would be expected to yield comparable results.

However, as shown in Figure 4.2, this is not the case.

(a) Lateral view (b) Top view

Figure 4.3: Relative fission power plot of test run 3

Although the increase in resolution across the runs is evident, it was determined that Run 1

provides a sufficiently detailed resolution for producing meaningful results. Its fast convergence

is the most critical factor when designing an effective setup.

It is also worth noting that the algorithm can be executed for different configurations simultane-

ously. This can be achieved by duplicating the algorithm into separate directories and modifying

the setup parameters for each instance. In this way, multiple runs can proceed in parallel from

different working directories.
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With this parallel approach in mind, the configuration for an efficient algorithm setup was defined.

The number of cells selected for the configuration is 2002, calculated as the product of the number

of axial slices, radial slices, planes, and a factor of 2. Table 4.2 summarizes the selected parameters

for the algorithm.

Table 4.2: Overview of the selected algorithm setup

Parameter Value

Population size 200

Number of generations 200

Number of cells 2002

Mutation rate 0.2

Mutation effect 0.2

Crossover blend 0.5

Number of axial slices 13

Number of radial slices 11

Number of planes 7

Neutron generation size 6000

Passive generations in Serpent 60

Active generations in Serpent 20

4.3 Results for Initial Two Configurations

To ensure sufficient computation time, the maximum estimated wall time was approximately four

days. Consequently, a wall time of five days was requested from the Slurm workload manager

to provide a safety margin. Two algorithm configurations were submitted for simulation, as

summarized in Table 4.3.

Table 4.3: Setup of initial two configurations
Parameter Configuration 1 Configuration 2

Cylinder radius [cm] 40 40

Cylinder height [cm] 70 70

Uranium mass [g] 3000 2000

Enrichment 0.95 0.95

Population size 200 200

The following figures present the results of the two initial configurations, along with their respec-

tive results.
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(a) Lateral view (keff = 0.80338) (b) Top view (keff = 0.80338)

Figure 4.4: Result for setup – 40cm × 70cm, 3000g, 2002 cells, 123 gens

This configuration completed 123 generations within the five-day wall time. Beyond this point,

the algorithm was unable to discover a distribution with a higher keff than the initially provided,

biased axially concentrated distribution (keff = 1.00433).

(a) Lateral view (keff = 0.920051) (b) Top view (keff = 0.920051)

Figure 4.5: Most critical distribution – 40cm × 70cm, 2000g, 2002 cells, 109 gens

This configuration setup reached 109 generations after 5 days of wall time with a population of

200 individuals. The algorithm was able to identify a distribution with a higher keff than the

biased distributions which were added initially.

Despite the estimated wall time of four days for running 200 generations with a population size

of 200 individuals, neither of the two configurations completed all 200 generations within the

five-day Slurm allocation. One configuration failed to progress beyond 110 generations. This

indicated that something was significantly slowing down the algorithm.
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One likely cause identified was the way simulation output from Serpent was handled. During

execution, the algorithm redirected console output to a continuously growing text file stored on

the VSC Data nodes. Over the span of several hours or days, these files could grow to several

gigabytes in size. Writing to such large files—especially if new output had to be appended to

specific positions—may have introduced substantial I/O overhead, thereby slowing down the

overall progress of the algorithm.

To address this issue, two changes were introduced in the subsequent simulations. First, the

console output was disabled to eliminate potential performance degradation due to large output

file sizes. Second, the population size was reduced to 100 individuals in order to accelerate

convergence and reduce total runtime.

4.4 Results from Adjusted Algorithm Setup

As previously mentioned the following results were obtained with a smaller population size, 3

setups were put into the algorithm to analyse the effect of varying vessel dimensions and mass.

Table 4.4 shows the 3 configuration setups.

Table 4.4: Adjusted algorithm: setup of three test configurations
Parameter Configuration 1 Configuration 2 Configuration 3

Cylinder radius [cm] 40 20 20

Cylinder height [cm] 70 50 50

Uranium mass [g] 1000 2000 3000

Enrichment 0.95 0.95 0.95

Population size 100 100 100

A wall time of four days was requested on the computing cluster via the Slurm workload manager.

The following three figures present the results for the three configurations generated using the

adjusted algorithm setup.

(a) Lateral view (keff = 0.766168) (b) Top view (keff = 0.766168)

Figure 4.6: Most critical distribution – 40cm × 70cm, 1000g, 2002 cells, 220 gens
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The algorithm was able to identify a distribution with a higher keff than the initially biased

distributions. However, this solution remains far from optimal, as the resulting keff is still signif-

icantly below 1. Given that a mass of 1000 g of uranium enriched to 95% should, in principle, be

sufficient to reach criticality, this suggests that additional generations would have been required

for the algorithm to converge towards the most critical configuration.

(a) Lateral view (keff = 0.879674) (b) Top view (keff = 0.879674)

Figure 4.7: Result for setup – 20cm × 50cm, 2000g, 2002 cells, 200 gens

Here, the algorithm was not able to discover a configuration with a higher keff than the initially

added homogeneous distribution (keff = 0.995007).

(a) Lateral view (keff = 0.982272) (b) Top view (keff = 0.982272)

Figure 4.8: Result for setup – 20cm × 50cm, 3000g, 2002 cells, 186 gens

In this case as well, the algorithm did not succeed in identifying a configuration with a higher

keff than the initially provided homogeneous distribution (keff = 1.09308).

These results lack improvement within the projected wall time and are far from the optimal

solution. So final adjustments were made to the algorithm to get optimal results quickly and
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efficiently. The neutron generation size was adjusted to 5000 neutrons, furthermore the total

number of cells per distribution was decreased from 2002 cells to 1430 cells. This setup is intended

to facilitate convergence toward an optimal solution. Furthermore, the number of generations

was not constrained; only the total runtime was limited. Table 4.5 summarizes the adjustments.

Table 4.5: Overview of the fine-tuned algorithm setup

Parameter Value

Population size 100

Number of generations Limited to timeframe

Number of cells 1430

Number of axial slices 13

Number of radial slices 11

Number of planes 5

Neutron generation size 5000

4.5 Results from the Fine-Tuned Algorithm Setup

Because of time and resource limitation, only a selected amount of configurations could be sim-

ulated on the supercomputer cluster with the fine-tuned setup. Four configurations which were

thought to be interesting were selected. Each configuration was allocated a wall time of five

days via the Slurm workload manager, Appendix A.5 shows an example of a jobscript. Table 4.6

presents the the different configurations.

Table 4.6: Setup of final four configurations

Parameter Configuration 1 Configuration 2 Configuration 3 Configuration 4

Cylinder radius [cm] 40 40 20 20

Cylinder height [cm] 70 70 50 50

Uranium mass [g] 1500 3000 1500 3000

Enrichment 0.95 0.95 0.95 0.95

Population size 100 100 100 100
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(a) Lateral view (keff = 0.968386) (b) Top view (keff = 0.968386)

Figure 4.9: Most critical distribution – 40cm × 70cm, 1500g, 1430 cells, 242 gens

The algorithm successfully identified a distribution with a higher level of criticality than the

initially biased configurations. The fissile mass appears to be concentrated axially near the center

of the vessel. Figure 4.9(b) shows a concentration of material in the corner, distributed over three

sections, with the highest relative fission power observed in the central region. Nonetheless, the

fact that the resulting keff = 0.968386 remains below 1 indicates that this is not yet the most

critical configuration.

(a) Lateral view (keff = 1.08485) (b) Top view (keff = 1.08485)

Figure 4.10: Most critical distribution – 40cm × 70cm, 3000g, 1430 cells, 180 gens

This vessel contains twice the amount of fissile material compared to the previous configura-

tion. The algorithm identified a distribution with axial concentration at the center and angular

concentration over four sections, resulting in the most critical configuration found. The relative

fission power is equally high in the two central sections. Although criticality was achieved, the

relatively low number of generations (180) suggests that the optimization process may not have

fully converged and that further improvement of keff could still be possible.
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(a) Lateral view (keff = 0.917669) (b) Top view (keff = 0.917669)

Figure 4.11: Results for setup – 20cm × 50cm, 1500g, 1430 cells, 228 gens

The results for this setup indicate a concentration of fissile material at the center of the vessel,

both axially and radially. However, this configuration was not more critical than the initially

biased axially concentrated distribution, which yielded a keff = 0.955383. This suggests that the

algorithm required additional generations to identify a more critical configuration. Moreover, the

distribution exhibits no angular dependence, as the fissile material is uniformly spread across all

angles. The fact that the resulting keff remains below 1 confirms that criticality was not achieved.

Given that 1500 g of fissile material should, in principle, be sufficient to reach criticality, further

optimization of the spatial distribution is necessary.

(a) Lateral view (keff = 1.10611) (b) Top view (keff = 1.10611)

Figure 4.12: Most critical distribution – 20cm × 50cm, 3000g, 1430 cells, 232 gens

The same observations apply to this distribution: it exhibits an even angular spreading and is

centrally concentrated both axially and radially. With a resulting keff ≈ 1.11, the configuration is

clearly supercritical. However, despite containing twice the amount of fissile material compared
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to the previous setup, no significant differences in the spatial distribution of the fissile mass are

observed.
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Chapter 5

Discussion

5.1 Algorithm Performance and Key Findings

The results demonstrate that the genetic algorithm generally functions as intended. In multiple

configurations, it successfully identified spatial distributions yielding a higher keff than those of

the initially biased input configurations. However, criticality was not achieved across all runs,

even when the fissile mass should theoretically have been sufficient. This inconsistency suggests

that convergence to the global optimum was not always reached within the allocated wall time.

This outcome highlights a common trade-off in heuristic optimization: balancing convergence

speed with solution quality. In time-limited scenarios, the GA may converge prematurely to lo-

cally optimal solutions, particularly for configurations that require a larger number of generations

to explore the solution space effectively.

5.2 Impact of Geometry and Mass

The spatial distribution of fissile material was found to depend on both the geometry of the vessel

and the amount of fissile mass. This dependency is particularly evident in Figures 4.9 and 4.10,

where doubling the mass leads to a noticeable difference in the distribution. The number of cells

with a high relative fission power increases with increasing fissile mass. These configurations also

suggest that the most critical distribution tends to concentrate in a corner of the vessel for those

dimensions, indicating strong asymmetry.

In contrast, Figures 4.11 and 4.12 show minimal changes in distribution with increasing mass.

However, since the configuration in Figure 4.11 does not represent the most critical distribution

for that setup, no definitive conclusions can be drawn. Interestingly, both of these distributions

exhibit axial and radial centralization, along with uniform angular spreading around the vessel.

To draw more reliable conclusions about the influence of vessel geometry, fissile mass, and en-

richment on the spatial distribution and criticality, a broader range of configurations must be

simulated over a greater number of generations.



5.3 Computational and Methodological Limitations

One of the most significant constraints was the long wall time required to obtain near-optimal

solutions. The use of a relatively small population (100 individuals) limited the GA’s ability

to explore the solution space thoroughly. In general, larger populations (e.g., 1000+) enhance

exploration and improve convergence robustness but require substantially more computational

resources.

A further limitation was the resolution of the spatial model. Although using more cells to dis-

cretize the vessel geometry would yield more accurate spatial distributions, it also dramatically

increases the dimensionality of the search space. Consequently, the number of generations and

the computational cost per generation rise significantly, since each fitness evaluation involves a

full Serpent simulation. While access to high-performance computing infrastructure was avail-

able, practical issues such as stalled runs, incorrect inputs/outputs, and inaccurate wall time

predictions often disrupted the workflow.

Learning to operate efficiently in an HPC environment, while simultaneously tuning the algo-

rithm, posed a steep challenge. Additionally, interpolation methods used to predict maximum

wall times for job scheduling frequently proved unreliable.

Despite these constraints, considerable improvements were made during the development phase,

particularly in optimizing simulation speed and reducing computational overhead. Additional

performance gains could be realized through more effective parallelization strategies—such as

distributing the evaluation of individuals across multiple cores within a single generation.

5.4 Bayesian Optimization and Algorithm Parameters

While a Bayesian Optimizer was integrated into the framework, it was not extensively tuned.

Fine-tuning the BO’s exploration-exploitation balance could improve convergence rates. Ad-

ditionally, the current BO implementation generates predictions only on the axial level before

renormalization, which limits its utility when the optimal solution exhibits non-uniform axial be-

havior. Preserving detail in axial segments—rather than collapsing it during normalization—may

improve the performance of the BO.

Beyond the BO, several algorithmic parameters were not optimized but could substantially in-

fluence convergence. These include:

• Mutation rate and effect size

• Crossover blend strategies

• Mutation function types

• Number of parents per offspring (e.g., using more than two)

• Selection mechanisms (e.g., tournament, rank-based, roulette-wheel)

Conducting a systematic parameter sensitivity study could yield faster and more reliable conver-

gence.
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5.5 Future Improvements and Practical Considerations

To enhance practicality, future implementations must aim to reduce required wall time. One

potential strategy is to adapt Serpent settings over time—for instance, starting with smaller

neutron generation sizes and lower active cycle counts in early GA generations, where highly

accurate keff estimates are not yet needed. This would reduce simulation time for suboptimal

individuals early in the search process.

Another strategy is progressive segmentation. Starting with coarse segmentation allows the

algorithm to converge to a broadly optimal region of the search space. Finer segmentation can

then be introduced in later generations to refine the solution.

Also, future implementations could benefit from initializing the population with distributions

derived from prior simulations. These informed starting points, if matched appropriately to the

configuration, may help the algorithm bypass unproductive regions of the solution space and

accelerate convergence toward critical distributions.

The current setup also supports practical extension to different configurations. The type of fissile

material and solvent can be easily changed, offering flexibility in criticality studies.

Future research should focus on streamlining the simulation-optimization pipeline, improving

the robustness of job execution, and developing a set of best practices for parameter tuning.

A general, adaptable algorithm setup would be beneficial for applying this methodology across

various fissile systems.
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Chapter 6

Conclusion

This study demonstrates the potential of a genetic algorithm, coupled with Serpent simulations,

to optimize the spatial distribution of fissile material in aqueous systems for criticality analysis.

In several configurations, the algorithm was able to discover distributions with higher keff than

the initial biased inputs, confirming its basic functionality and effectiveness. However, consistent

achievement of criticality or the most critical distribution was not guaranteed, highlighting the

importance of convergence speed and solution quality in heuristic optimization, especially under

time constraints.

The geometry of the vessel and the amount of fissile mass both influenced the resulting spatial

distribution. While some configurations showed clear trends—such as asymmetric concentration

or mass-dependent spreading—others did not, suggesting that geometry may play a more domi-

nant role than mass in certain setups. These findings emphasize the need for further simulations

across a broader range of configurations and enrichment levels to draw more robust conclusions.

Computational limitations posed significant challenges throughout the study. A relatively small

population size and modest spatial resolution restricted the algorithm’s exploratory power, while

each fitness evaluation’s dependence on a full Serpent simulation imposed high computational

costs. Despite access to high-performance computing infrastructure, practical issues—such as

job failures, wall time estimation errors, and input/output misconfigurations—hindered workflow

efficiency.

Nonetheless, several improvements were successfully implemented, including enhanced simulation

speed and reduced overhead. Additional gains could be realized through finer-grained paralleliza-

tion and smarter job management. Although Bayesian Optimization was integrated, its tuning

and architecture require further refinement to fully benefit from its potential. Similarly, key algo-

rithmic parameters—such as mutation rate, selection strategy, and crossover blending—remain

unexplored and may offer opportunities for performance optimization.

Looking forward, a number of enhancements could make the algorithm more practical and ef-

ficient. These include adaptive Serpent settings based on GA progression, dynamic segmenta-

tion strategies, and smarter initialization using distributions from previous simulations. Such

approaches could significantly reduce wall time while maintaining or improving convergence re-

liability.

Importantly, the framework developed here is flexible and extensible. The type of fissile material



and solvent can be easily adjusted, enabling its application to a wide range of criticality scenarios.

To maximize its utility, future research should focus on streamlining the simulation–optimization

pipeline, improving robustness in HPC environments, and establishing a generalizable setup for

parameter tuning. With these refinements, the methodology has the potential to become a

valuable tool for investigating and optimizing fissile systems.
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swetenschappen KU Leuven & UHasselt, 2025.

[7] S. Pirani, Study of the Superconducting Medium Beta Cavity of the European Spallation

Source [PhD thesis]. Lund, Sweden: Lund University, 2020.

[8] International Atomic Energy Agency, Basic Professional Training Course on Nuclear Safety:

Module I – Nuclear Physics and Nuclear Reactor Principles. Vienna, Austria: IAEA, 2015.

[9] E. D. Clayton, A. W. Prichard, B. E. Durst, D. Erickson, and R. J. Puigh, “Anomalies

of Nuclear Criticality, Revision 6,” Tech. Rep. PNNL-19176, Pacific Northwest National

Laboratory, Richland, Washington, 2010.

[10] W. M. Stacey, Nuclear Reactor Physics. Atlanta, GA: John Wiley & Sons, 2018.

[11] N. Soppera, M. Bossant, and E. Dupont, “JANIS 4: An Improved Version of the NEA

Java-based Nuclear Data Information System,” Nuclear Data Sheets, vol. 120, p. 294, 2014.

[12] J.-P. Pouget and S. Mather, “General Aspects of the Cellular Response to Low- and High-

LET Radiation,” European Journal of Nuclear Medicine, vol. 28, pp. 541–561, 2001.

[13] C. O. Brown and R. D. Carter, “Reanalysis of Idealized Plutonium Dissolvers and the ”Al-

ways Safe” Conditions,” Tech. Rep. ARH-LD–109, Atlantic Richfield Hanford Co., Richland,

WA, 1975.

59



[14] N. L. Pruvost and H. C. Paxton, “Critical Dimensions of Systems Containing U-235, Pu-239,

and U-233,” Tech. Rep. LA-10860-MS, Los Alamos National Laboratory, 1987.

[15] VTT Technical Research Centre of Finland, “Installing and Running Serpent - Parallel

Calculation using MPI,” Available: https://serpent.vtt.fi/mediawiki/index.php [Accessed:

7 May 2025].

[16] W. Haeck, An Optimum Approach to Monte Carlo Burn-Up [PhD thesis]. Gent, Belgium:

UGent - Gent University, 2007.

[17] S. Forrest, “Genetic algorithms,” ACM Comput. Surv., vol. 28, p. 77–80, 1996.

[18] V. Podgorelec, J. Brest, and P. Kokol, “Power of Heterogeneous Computing as a Vehicle

for Implementing E3 Medical Decision Support Systems,” Studies in Health Technology and

Informatics, vol. 68, pp. 703–708, 1999.

[19] E. Brochu, V. M. Cora, and N. de Freitas, “A Tutorial on Bayesian Optimization of Expen-

sive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforce-

ment Learning,” CoRR, vol. abs/1012.2599, p. 49, 2010.

[20] D. G. Bowen and R. D. Busch, “Hand Calculation Methods for Criticality Safety – A

Primer,” Tech. Rep. LA-14244-M, Los Alamos National Laboratory, 2006.

[21] European Nuclear Society, “Critical Mass,” Available:

https://www.euronuclear.org/glossary/critical-mass/ [Accessed: 19 May 2025].

[22] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné, “DEAP: Evo-
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Appendix A

Code Listings

A.1 Libraries, input parameters and functions to create

distributions

1 import subprocess

2 import re

3 import math

4 import random

5 import numpy as np

6 import time

7 import shutil

8 from deap import base , creator , tools

9 from sklearn.gaussian_process import GaussianProcessRegressor

10 from sklearn.gaussian_process.kernels import Matern

11 from deap import algorithms

12

13

14 # === Cylinder Parameters ===

15 Cilinder_radius = 40 # cm

16 Cil_height = 70 # cm

17 Uranium_enrichment = 0.95 # Enrichment

18 Massa_U = 1500 # g

19 density_U = 19.1 # g/cm^3

20

21 # Radial , axial and planar segmentation

22 n_radial = 11 # Segmentation of radial shells

23 n_axial = 13 # Segmentation of axial layers

24 n_planes = 5 # Segmentation is two times the amount of added planes!

25

26 # Genetic Algorithm Parameters

27 population_size = 100 #Genetic Algorithm population size

28 generations = 500 # Iteration of generations

29 mutation_rate = 0.20 # Mutation rate

30 mutationeffect = 0.20 # Mutation effect
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31 crossover_blend = 0.5 # fraction of parents material during

crossover

32

33 def planar_slices(n_planes):

34 """ Generates coefficients for planar slices dividing the cylinder.

"""

35 angles = np.linspace(0, np.pi , n_planes , endpoint=False)

36 slices = []

37 for angle in angles:

38 A = math.sin(angle)

39 B = -math.cos(angle)

40 C = 0

41 D = 0

42 slices.append ((A, B, C, D))

43 return slices

44

45 def segment_volume(r_min , r_max , segment_height):

46 """ Calculates the volume of a cylindrical segment."""

47 return math.pi * (r_max **2 - r_min **2) * segment_height

48

49

50 def generate_homogeneous_fuel ():

51 """ Generates a homogeneous uranium distribution."""

52 radial_edges = np.linspace(0, Cilinder_radius , n_radial + 1)

53 axial_edges = np.linspace(0, Cil_height , n_axial + 1)

54 segment_volumes = [segment_volume(radial_edges[j], radial_edges[j

+1], axial_edges[i+1] - axial_edges[i])

55 for i in range(n_axial) for j in range(n_radial)

]

56 total_volume = sum(segment_volumes)

57 segment_densities = [Massa_U / total_volume] * len(segment_volumes)

58 masses = [density * volume for density , volume in zip(

segment_densities , segment_volumes)]

59 slicedmass = []

60

61 # Splits each mass into n_planes parts

62 for mass in masses:

63 for _ in range (2* n_planes):

64 slicedmass.append(mass / (2 * n_planes))

65 return slicedmass

66

67 def generate_random_distribution ():

68 """ Generates a random uranium distribution."""

69 while True:

70 segment_fractions = np.random.dirichlet(np.ones(n_axial *

n_radial))

71 fuel_segments = segment_fractions * Massa_U

72 radial_edges = np.linspace(0, Cilinder_radius , n_radial + 1)

73 axial_edges = np.linspace(0, Cil_height , n_axial + 1)
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74 valid_distribution = True

75

76 for i in range(n_axial):

77 for j in range(n_radial):

78 r_min , r_max = radial_edges[j], radial_edges[j+1]

79 z_min , z_max = axial_edges[i], axial_edges[i+1]

80 segment_height = z_max - z_min

81 cell_volume = segment_volume(r_min , r_max ,

segment_height)

82 uranium_volume = fuel_segments[i * n_radial + j] /

density_U

83 if uranium_volume > cell_volume:

84 valid_distribution = False

85 break

86 if not valid_distribution:

87 break

88

89 if valid_distribution:

90 fuel_segments *= Massa_U / np.sum(fuel_segments)

91 slicedmass = []

92 for mass in fuel_segments:

93 random_fractions = np.random.dirichlet(np.ones(2 * n_planes

))

94 for fraction in random_fractions:

95 slicedmass.append(mass * fraction)

96 return slicedmass

97

98

99 def generate_cilinder_distribution ():

100 """ Generates axially centered uranium distribution in the cylinder.

"""

101 radial_edges = np.linspace(0, Cilinder_radius , n_radial + 1)

102 axial_edges = np.linspace(0, Cil_height , n_axial + 1)

103 segment_masses = []

104

105 for i in range(n_axial):

106 for j in range(n_radial):

107 r_min , r_max = radial_edges[j], radial_edges[j + 1]

108 z_min , z_max = axial_edges[i], axial_edges[i + 1]

109 segment_height = z_max - z_min

110 volume = segment_volume(r_min , r_max , segment_height)

111 segment_masses.append (( volume * density_U))

112

113 total_mass = sum(segment_masses)

114 sphere_volume = Massa_U / density_U

115 sphere_radius = (sphere_volume / (4/3 * math.pi))**(1/3)

116

117

118 # Finds the closest index to the radius of the sphere
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119 sphere_height_up = Cil_height / 2 + sphere_radius

120 sphere_height_down = Cil_height / 2 - sphere_radius

121 i_min = sorted(range(len(axial_edges)), key=lambda i: abs(

axial_edges[i] - sphere_height_down))[0]

122 i_max = sorted(range(len(axial_edges)), key=lambda i: abs(

axial_edges[i] - sphere_height_up))[0]

123 jrad = sorted(range(len(radial_edges)), key=lambda i: abs(

radial_edges[i] - sphere_radius))[0]

124

125 if total_mass > Massa_U:

126 excess_mass = total_mass - Massa_U

127 # Loops radially from outside to inside , but only over the half

of the segments

128 for i in range(n_axial):

129 for j in range(n_radial):

130 if i < i_min -1 or i > i_max or j > jrad +1:

131 index = i * n_radial+ j

132 if segment_masses[index] <= excess_mass:

133 excess_mass -= segment_masses[index]

134 segment_masses[index] = segment_masses[index] *

0.05

135 else:

136 segment_masses[index] -= excess_mass

137 excess_mass = 0

138

139 if excess_mass <= 0:

140 break

141 slicedmass = []

142

143 # Splits each mass into n_planes parts

144 for mass in segment_masses:

145 for _ in range (2* n_planes):

146 slicedmass.append(mass / (2* n_planes))

147 return slicedmass

148

149 def generate_cilinder_distribution2 ():

150 """ Generates concentrated uranium distribution in the cylinder."""

151 radial_edges = np.linspace(0, Cilinder_radius , n_radial + 1)

152 axial_edges = np.linspace(0, Cil_height , n_axial + 1)

153 segment_masses = []

154

155 for i in range(n_axial):

156 for j in range(n_radial):

157 r_min , r_max = radial_edges[j], radial_edges[j + 1]

158 z_min , z_max = axial_edges[i], axial_edges[i + 1]

159 segment_height = z_max - z_min

160 volume = segment_volume(r_min , r_max , segment_height)

161 segment_masses.append (( volume * density_U))

162
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163 total_mass = sum(segment_masses)

164 sphere_volume = Massa_U / density_U

165 sphere_radius = (sphere_volume / (4/3 * math.pi))**(1/3)

166

167

168 # Finds the closest index to the radius of the sphere

169 sphere_height_up = Cil_height / 2 + sphere_radius

170 sphere_height_down = Cil_height / 2 - sphere_radius

171 i_min = sorted(range(len(axial_edges)), key=lambda i: abs(

axial_edges[i] - sphere_height_down))[0]

172 i_max = sorted(range(len(axial_edges)), key=lambda i: abs(

axial_edges[i] - sphere_height_up))[0]

173 jrad = sorted(range(len(radial_edges)), key=lambda i: abs(

radial_edges[i] - sphere_radius))[0]

174

175 if total_mass > Massa_U:

176 excess_mass = total_mass - Massa_U

177 # Loops radially from outside to inside , but only over the half

of the segments

178 for i in range(n_axial):

179 for j in range(n_radial):

180 if i < i_min -1 or i > i_max:

181 index = i * n_radial+ j

182 if segment_masses[index] <= excess_mass:

183 excess_mass -= segment_masses[index]

184 segment_masses[index] = 0.1

185 else:

186 segment_masses[index] -= excess_mass

187 excess_mass = 0

188

189 if excess_mass <= 0:

190 break

191 slicedmass = []

192

193 # Splits each mass into n_planes parts

194 for mass in segment_masses:

195 for _ in range (2* n_planes):

196 slicedmass.append(mass / (2* n_planes))

197 return slicedmass

A.2 Function to create the Serpent input files

1 def generate_geometry(fuel_segments):

2 """ Generates Serpent input file."""

3 input_data = """

4 set acelib "/data/leuven /376/ vsc37601/xsdata/JEFF -3.3.0. xsdata"

5 /************************

6 * Material definitions *
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7 ************************/

8 """

9 radial_edges = np.linspace(0, Cilinder_radius , n_radial + 1)

10 axial_edges = np.linspace(0, Cil_height , n_axial + 1)

11 planes = planar_slices(n_planes)

12 cell_id = 1

13

14 for i in range(n_axial):

15 for j in range(n_radial):

16 for k in range (2* n_planes):

17 r_min , r_max = radial_edges[j], radial_edges[j + 1]

18 z_min , z_max = axial_edges[i], axial_edges[i + 1]

19 segment_height = z_max - z_min

20

21 cell_volume = segment_volume(r_min , r_max ,

segment_height) / n_planes

22 uranium_mass = 2 * fuel_segments[i * n_radial *2*

n_planes + j *2* n_planes + k]

23 uranium_volume = uranium_mass / density_U

24 water_volume = max(cell_volume - uranium_volume , 0)

25 water_mass = water_volume

26 total_mass = uranium_mass + water_mass

27

28 density_solution = total_mass / cell_volume if

cell_volume > 0 else 0

29 mass_percentage_U235 = uranium_mass *

Uranium_enrichment / total_mass if total_mass > 0

else 0

30 mass_percentage_U238 = uranium_mass * (1 -

Uranium_enrichment) / total_mass if total_mass > 0

else 0

31 mass_percentage_H = (water_mass / total_mass) * 2/18 if

total_mass > 0 else 0

32 mass_percentage_O = (water_mass / total_mass) * 16/18

if total_mass > 0 else 0

33

34 input_data += f"""

35 mat solution{cell_id} -{density_solution :.6f}

36 92235.02c -{mass_percentage_U235 :.6f}

37 92238.02c -{mass_percentage_U238 :.6f}

38 1001.02c -{mass_percentage_H :.6f}

39 8016.02c -{mass_percentage_O :.6f}

40 """

41 cell_id += 1

42

43 input_data += """

44 /************************

45 * Geometry definitions *

46 ************************/
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47 """

48

49 cell_id = 0

50 # Define the planes only once

51 for k, (A, B, C, D) in enumerate(planes):

52 input_data += f"surf p_plane{k + 1} plane {round(A, 4)} {round(

B, 4)} {round(C, 4)} {round(D, 4)}\n"

53

54 for i in range(n_axial):

55 for j in range(n_radial):

56 r_min , r_max = radial_edges[j], radial_edges[j + 1]

57 z_min , z_max = axial_edges[i], axial_edges[i + 1]

58

59 # Define the cylindrical shell for each radial and axial

segment

60 input_data += f"surf s{cell_id} cyl 0.0 0.0 {r_max} {z_min}

{z_max}\n"

61

62 solution_id = 1

63 # Add cells using planes that are next to each other to

define slices

64 for k in range(n_planes):

65 if k == 0: #1st plane

66 input_data += f"cell c{cell_id}_sega{k} 0 solution{

solution_id+cell_id} -s{cell_id} p_plane{k + 1}

p_plane{n_planes }\n"

67 solution_id += 1

68 input_data += f"cell c{cell_id}_segb{k} 0 solution{

solution_id+cell_id} -s{cell_id} p_plane{k+1} -

p_plane{k + 2}\n"

69 solution_id += 1

70 input_data += f"cell c{cell_id}_segc{k} 0 solution{

solution_id+cell_id} -s{cell_id} -p_plane{k+1}

p_plane{k + 2}\n"

71 solution_id += 1

72 elif k == n_planes - 1: #last plane

73 input_data += f"cell c{cell_id}_segx{k} 0 solution{

solution_id+cell_id} -s{cell_id} -p_plane1 -

p_plane{k+1}\n"

74 solution_id += 1

75 else: #middle planes

76 input_data += f"cell c{cell_id}_segd{k} 0 solution{

solution_id+cell_id} -s{cell_id} p_plane{k+1} -

p_plane{k + 2}\n"

77 solution_id += 1

78 input_data += f"cell c{cell_id}_sege{k} 0 solution{

solution_id+cell_id} -s{cell_id} -p_plane{k+1}

p_plane{k + 2}\n"

79 solution_id += 1
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80 cell_id += n_planes *2

81

82 # Outer boundary surface

83 input_data += f"surf s{cell_id} cyl 0.0 0.0 {Cilinder_radius} 0 {

Cil_height }\n"

84 input_data += f"cell c{cell_id} 0 outside s{cell_id }\n"

85

86 input_data += """

87 /******************

88 * Run parameters *

89 ******************/

90 set pop 5000 60 20

91 mesh 1 500 500

92 mesh 3 500 500

93 """

94

95 with open("/user/leuven /376/ vsc37601/Serpent/Masterthesis/

Inputfile_fiss_geometry", "w") as file:

96 file.write(input_data)

A.3 Functions to run the input files and extract the value

of keff

1 def run_serpent_script ():

2 """ Runs the Serpent input file."""

3 command = ["/user/leuven /376/ vsc37601 /2.2- main/src/sss2", "-omp", "

max", "Inputfile_fiss_geometry"]

4 subprocess.run(command , check=True)

5

6 def get_keff_value ():

7 """ Extract the keff value from the Serpent output file."""

8 with open("/user/leuven /376/ vsc37601/Serpent/Masterthesis/

Inputfile_fiss_geometry_res.m", "r") as file:

9 content = file.read()

10 matches = re.findall(r’IMP_KEFF\s*\(idx , \[1:\s*2\]\) = \[\s*([\d.E

+-]+)\s*[\d.E+-]+\s*\];’, content)

11 return float(matches [-1]) if matches else None

A.4 Optimization algorithm function consisting of the Deap

genetic algorithm and Bayesian optimization func-

tion

1 creator.create("FitnessMax", base.Fitness , weights =(1.0 ,))

2 creator.create("Individual", list , fitness=creator.FitnessMax)

3 toolbox = base.Toolbox ()
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4

5 # Register the individual creation functions

6 toolbox.register("individual_homogeneous", tools.initIterate , creator.

Individual , generate_homogeneous_fuel)

7 toolbox.register("individual_cilinder", tools.initIterate , creator.

Individual , generate_cilinder_distribution)

8 toolbox.register("individual_cilinder_2", tools.initIterate , creator.

Individual , generate_cilinder_distribution2)

9 toolbox.register("individual_random", tools.initIterate , creator.

Individual , generate_random_distribution)

10

11 best_keff_tracker = {’keff’: 0.0}

12

13 def normalize(individual):

14 """ Normalizes the uranium distribution when needed."""

15 individual = [max(0, mass) for mass in individual]

16 total_mass = sum(individual)

17 return [x * (Massa_U / total_mass) for x in individual]

18

19 def evaluate(individual):

20 """ Evaluates the keff of an individual using Serpent."""

21 # Save current individual ’s distribution to a Serpent input file

22 generate_geometry(individual)

23

24 # Run Serpent

25 run_serpent_script ()

26

27 # Parse output to get keff

28 keff = get_keff_value ()

29

30

31 # If best so far , copy output images immediately

32 if keff - best_keff_tracker[’keff’] > 0.0009:

33 best_keff_tracker[’keff’] = keff

34 with open("/user/leuven /376/ vsc37601/Serpent/Masterthesis/

Generations_population.txt", "a") as f:

35 f.write(f"new best keff = {keff}\n")

36 shutil.copy(

37 "/user/leuven /376/ vsc37601/Serpent/Masterthesis/

Inputfile_fiss_geometry_mesh1.png",

38 "/user/leuven /376/ vsc37601/Serpent/Masterthesis/

Sideview_mostcritical_config.png"

39 )

40 shutil.copy(

41 "/user/leuven /376/ vsc37601/Serpent/Masterthesis/

Inputfile_fiss_geometry_mesh2.png",

42 "/user/leuven /376/ vsc37601/Serpent/Masterthesis/

topview_mostcritical_config.png"

43 )
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44 # Divide the array into n_axial segments and sum every group of

values

45 segment_length = len(individual) // (n_axial)

46 reduced_individual = [sum(individual[i * segment_length :(i + 1) *

segment_length ]) for i in range(n_axial )]

47 evaluated_X.append(np.array(reduced_individual)) # Save the

reduced array for surrogate

48 evaluated_y.append(keff)

49 return (keff ,)

50

51 def deap_crossover(p1 , p2):

52 """ Performs crossover between two parents."""

53 child1 , child2 = tools.cxBlend(p1 , p2 , alpha=crossover_blend) #

Blend crossover (alpha can be adjusted)

54 child1 = normalize(child1) # Normalize the child

55 child2 = normalize(child2) # Normalize the child

56 return child1 , child2

57

58 def deap_mutate(individual):

59 """ Performs mutation on an individual using a gaussian."""

60 mutated_individual = tools.mutGaussian(individual , mu=0, sigma=

mutationeffect , indpb =0.2) [0]

61 mutated_individual = normalize(mutated_individual) # Normalize the

mutated individual

62 return mutated_individual ,

63

64 # Register the genetic algorithm functions

65 toolbox.register("population", tools.initRepeat , list , toolbox.

individual_homogeneous)

66 toolbox.register("mate", deap_crossover)

67 toolbox.register("mutate", deap_mutate)

68 toolbox.register("select", tools.selTournament , tournsize =3)

69 toolbox.register("evaluate", evaluate)

70

71 # BO configuration

72 evaluated_X = [] # List of previous individuals

73 evaluated_y = [] # Corresponding keff values

74

75 def genetic_algorithm_deap ():

76 """ Runs the DEAP genetic algorithm."""

77 # Clear the log file before the GA starts

78 with open("/user/leuven /376/ vsc37601/Serpent/Masterthesis/

Generations_population.txt", "w") as f:

79 f.write("Starting simulation ......") # This clears the file

80

81 # Create the initial population

82 population = [

83 toolbox.individual_homogeneous (),

84 toolbox.individual_cilinder (),
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85 toolbox.individual_cilinder_2 ()]

86

87 population += [toolbox.individual_random () for _ in range(

population_size -3)]

88

89 # Normalize and evaluate

90 population = [creator.Individual(normalize(ind)) for ind in

population]

91 fitnesses = list(map(toolbox.evaluate , population))

92 for ind , fit in zip(population , fitnesses):

93 ind.fitness.values = fit

94

95 last_bo_generation = -1

96 # Run the genetic algorithm

97 for gen in range(generations):

98 print(f"Generation {gen + 1}")

99 current_best = tools.selBest(population , 1)[0]

100 current_keff = current_best.fitness.values [0]

101

102 # Log progress

103 message = f"Generation {gen + 1}, best keff = {

best_keff_tracker}, best keff in this generation = {

current_keff}"

104 print(message)

105 with open("/user/leuven /376/ vsc37601/Serpent/Masterthesis/

Generations_population.txt", "a") as f:

106 f.write(message + "\n")

107

108 # Select top individuals and produce offspring

109 top_half = tools.selBest(population , len(population) // 2)

110 children = []

111 while len(children) < population_size -1:

112 p1 , p2 = map(toolbox.clone , random.sample(top_half , 2))

113 if random.random () < 0.8:

114 toolbox.mate(p1 , p2)

115 del p1.fitness.values

116 del p2.fitness.values

117 if random.random () < mutation_rate:

118 toolbox.mutate(p1)

119 del p1.fitness.values

120 if random.random () < mutation_rate:

121 toolbox.mutate(p2)

122 del p2.fitness.values

123 p1[:] = normalize(p1)

124 p2[:] = normalize(p2)

125 children.extend ([p1, p2])

126

127 #make room for one bayesian prediction

128 population [:] = children [: population_size -1]
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129

130 # Bayesian Optimization: Run if enough data is

collected and at regular intervals

131 if len(evaluated_X) > population_size -1 and gen !=

last_bo_generation:

132 print(f"Running Bayesian Optimization at generation {gen +

1}...")

133 time.sleep (1)

134 last_bo_generation = gen

135 # Convert evaluated data to numpy arrays

136 X = np.array(evaluated_X)

137 y = np.array(evaluated_y)

138

139 # Check if X is non -empty and has the correct shape

140 if X.size == 0 or X.shape [1] == 0:

141 print("Error: Empty or invalid shape for X.")

142 continue

143

144 # Fit surrogate model

145 kernel = Matern(nu =2.5)

146 gp = GaussianProcessRegressor(kernel=kernel , normalize_y=

True)

147 try:

148 gp.fit(X, y)

149 except Exception as e:

150 print(f"Error fitting Gaussian Process: {e}")

151 continue

152

153 # Generate one BO individual

154 best_acq = -np.inf

155 candidate = None

156 for _ in range (100):

157 try:

158 # Generate a random candidate scaled by the maximum

of each feature

159 x_try = np.random.rand(X.shape [1]) * np.max(X, axis

=0)

160

161 # Predict using the surrogate model

162 mu, sigma = gp.predict(x_try.reshape(1, -1),

return_std=True)

163 ucb = mu + 1.96 * sigma

164 if ucb > best_acq:

165 best_acq = ucb

166 candidate = x_try

167 except Exception as e:

168 print(f"Error during candidate prediction: {e}")

169 continue

170
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171 # Check if a valid candidate was found

172 if candidate is None:

173 print("No valid candidate found through Bayesian

Optimization.")

174 continue

175

176 # Renormalize the candidate to match the format

177 renormalized_candidate = []

178 for mass in candidate:

179 for _ in range(2 * n_planes * n_radial):

180 renormalized_candidate.append(mass / (2 * n_planes

* n_radial))

181

182 # Create the BO individual and normalize it

183 bo_ind = creator.Individual(list(normalize(

renormalized_candidate)))

184 bo_ind.fitness.values = toolbox.evaluate(bo_ind)

185

186 # Add BO individual to the population

187 print("Adding BO individual to the population")

188 bo_ind.is_bo = True

189

190 children.append(bo_ind)

191

192 population [:] = children [: population_size]

193

194 # Log the addition of the BO individual

195 with open("/user/leuven /376/ vsc37601/Serpent/Masterthesis/

Generations_population.txt", "a") as f:

196 f.write(f"BO individual added at generation {gen + 1}, keff

: {bo_ind.fitness.values [0]}\n")

197

198 if len(population) != population_size:

199 population += [toolbox.individual_random () for _ in range(

population_size - len(population))]

200

201 # Evaluate new individuals

202 invalid_ind = [ind for ind in population if not ind.fitness.

valid]

203 fitnesses = map(toolbox.evaluate , invalid_ind)

204 for ind , fit in zip(invalid_ind , fitnesses):

205 ind.fitness.values = fit

206

207 # Final result

208 best_individual = tools.selBest(population , 1)[0]

209 return best_individual , best_individual.fitness.values [0]

210

211

212 if __name__ == "__main__":
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213 best_dist , best_keff = genetic_algorithm_deap ()

214 print(f"Best keff: {best_keff}")

A.5 Example of a Slurm jobscript

1 #!/bin/bash -l

2 #SBATCH --account=lp_h_vsc37601

3 #SBATCH --cluster=wice

4 #SBATCH --partition=batch_icelake_long

5 #SBATCH --time =120:00:00

6 #SBATCH --ntasks =1

7 #SBATCH --cpus -per -task =72

8

9 source venv/bin/activate

10 export SERPENT_DATA="$VSC_DATA/xsdata/JEFF -3.3.0"
11 module load libgd /2.3.3 - GCCcore -12.3.0

12

13 python Algoritme_thesis_Enes_Orhan.py > /dev/null 2>&1
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